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Abstract—This paper applies the reinforcement learning in
the joint relay selection and power allocation in the secure
cognitive radio (CR) relay network, where the data buffers and
full-duplex jamming are applied at the relay nodes. Two cases
are considered: maximizing the throughput with the delay and
secrecy constraints, and maximizing the secrecy rate with the
delay constraint, respectively. In both cases, the optimization relies
on the buffer states, the interference to/from the primary user,
and the constraints on the delay and/or secrecy. This makes it
mathematically intractable to apply the traditional optimization
methods. In this paper, the double deep Q-network (DDQN) is
used to solve the above two optimization problems. We also apply
the a-priori information in the CR network to improve the DDQN
learning convergence. Simulation results show that the proposed
scheme outperforms the traditional algorithm significantly.

Index Terms—Buffer-aided relay selection, power allocation,
secure cognitive radio networks, double deep Q-Network, delay.

I. INTRODUCTION

W ITH the development of 5th generation (5G) commu-
nications, both cognitive networks and relay networks

have attracted much attention in current research topics [1].
Cognitive relay networks allow users to share the spectrum
to improve spectral efficiency, and ensure cooperations among
secondary users to enhance communication reliability [2]. Var-
ious relay selection algorithms in cognitive relay networks
have been proposed. In [3], a Max-Min based relay selection
method was intended to improve the outage performance in
decode-and-forward (DF) cognitive relay networks. An outage
probability-based relay selection was investigated in cognitive
relay networks where the relay nodes are randomly distributed
[4]. Buffer-aided relay selection as a robust scheme can further
enhance the outage performance in cooperative networks [5]. In
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[6] and [7], the Max-Link relay selection scheme was proposed
to select the available link with the highest signal-to-noise
(SNR) for DF and amplify-and-forward (AF) buffer-aided relay
networks, respectively. To enhance the outage performance in
buffer-aided cognitive relay networks, the available link with
the highest signal-to-interference ratio (SIR) was selected for
the relay selection scheme in [8]. Then, in [9], a state-based
relay selection scheme was proposed to group all links with
different priorities to further improve the outage performance in
buffer-aided cognitive relay networks. Though applying buffer
technology in cooperative networks can reduce the outage
probability significantly, it often results in higher delays in data
transmissions [10]–[12]. Therefore, this paper will consider the
delay as one of the constraints to do the buffer-aided relay
selection.

On the other hand, the physical layer secrecy has been widely
studied in cooperative communications. In [13], a Max-Ratio
relay selection scheme was proposed based on selecting the
highest signal-to-interference-ratio (SIR) to reduce the secrecy
outage probability in buffer-aided relay networks. The Max-
Ratio based relay selection scheme was proposed in the buffer-
aided cognitive relay network to reduce the secrecy outage prob-
ability in [14]. In [15], the secrecy performance was analyzed
by applying the Max-Link scheme in the buffer-aided cognitive
relay network with the impact of outdated channel state infor-
mation (CSI). The secrecy outage performance of the Max-Link
scheme was studied for the multi-antenna buffer-aided cognitive
relay networks in [16]. However, aforementioned studies only
consider the security in half-duplex (HD) relay systems.

The full-duplex (FD) is an attractive way to improve the
secrecy performance in wireless communications, because of
the successful use of the self-interference cancellation scheme
[17]–[19]. In [17], the secrecy is improved by directing the
FD jamming to the eavesdropper. In [18] and [19], the FD
relay network achieves better secrecy performance with the
self-interference cancellation. In [20], the optimal secrecy per-
formance was achieved with the convex optimization in the
FD relay network by using power allocation. A joint relay
selection and power allocation scheme was proposed by using
the dominant balance to achieve a high secrecy rate in [21]. In
[22], a simple joint relay selection and power allocation scheme
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based on the SNR was proposed to maximize the instantaneous
secrecy rate.

The machine learning methods have attracted much attention
in the relay network [23]. For example, in [24], a deep Q-
Learning based relay selection was proposed to achieve better
outage performance. In [25], a relay selection based on deep
reinforcement learning was proposed to enhance the robust-
ness. In [26], the deep Q-Learning was applied to select the
virtual vehicle relay node. None of these approaches considers
buffers and/or full duplex transmission at the relay, which will
significantly increase the searching dimension for the learning,
making it harder to converge.

In this paper, we consider the joint relay selection and power
allocation in the buffer-aided cognitive relay network, where
the relay node may work in the standard half-duplex mode
or full-duplex jamming mode. Due to the integer nature of
the optimization problem, the complexity will go very high
with the number of variables. Therefore, to solve this type
of problems, deep reinforcement learning can be introduced in
wireless communications [27], [28]. For better convergence, we
propose to apply the double deep Q-Network (DDQN) [29].
By applying two neural networks to estimate the next action
and the target Q-value, respectively, the DDQN algorithm is
able to reduce the overestimation effects which is particularly
serious in the secure buffer-aided cognitive relay network. This
is because applying the data buffers and full-duplex jamming at
the relays leads to very high dimension for learning. As a result,
the randomly initialized Q-values can be easily overestimated,
leading to slow convergence. The main contributions of this
paper are listed as follows:

• We investigate the DDQN learning-based joint buffer-
aided hybrid-duplex relay selection and transmit power
allocation (DDQN-RP) scheme to solve two complicated
optimization problems in the secure cognitive networks.

• We propose the a-priori information based DDQN learn-
ing, which is used to analyse the impact of variables
and tuples in the system and improve the convergence of
DDQN.

• The simulation result confirms that the performance of the
DDQN-based hybrid-duplex relay selection scheme with
priori information (DDQNPI-RP) outperforms DDQN-RP
and Max-Ratio scheme with the HD relay.

The rest of the paper is organized as follows: Section II
describes the system model; Section III defines the MDP
tuples for two relay selection cases; Section IV applies the
DDQN-based algorithm in the CR relay network; Section V
applies a-priori information in the DDQN approach; Section VI
shows simulation result to verify the proposed schemes; Finally,
Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
The system model of a secure buffer-aided cognitive relay

network is shown in Fig. 1, where there are one pair of primary

Fig. 1. System model of the secure buffer-aided cognitive relay
network.

source PS and destination PD, one pair of secondary source
SS and destination SD, and a set of K randomize-and-forward1

relays Rk which is equipped with a data buffer of finite size
L, where k ∈ {1, 2...,K}. There is an untrusted node2 E to
eavesdrop the transmission between SS to SD. Every relay
node Rk and SD can perform at either the HD or the FD mode.
When a node performs at the HD mode, it only receives data.
When a node is at the FD mode, it receives data and transmits
jamming signal at the same time, but cannot transmit data to
SD.

We assume that all channels are assumed to be quasi-static
Rayleigh fading and there is no direct link between SS and
SD [31]. The channel coefficients between node m and node
n are denoted as gm n = hm nd

−α/2
m n , where hm n and dm n

are the fading coefficients and the distance between two nodes,
respectively, and α is the path loss exponent. E[|gm n|2] =
λm n = d−αm n is the average channel gain, where E[.] is the
expectation operator, and hm n is the complex Gaussian random
variable with unit variance. At every time slot, only one channel
link can be selected for data transmission. The source node
SS receives the instantaneous buffer states and the CSI of all
channels3.

This paper considers underlay cognitive relay network that
the interference to the primary PD must be smaller than the pre-

1Randomize-and-forward strategy employs different codebooks for the two
hops, and the legitimate user utilizes the Wyner wiretap code at different
transmission time slots [30].

2The untrusted node, which is usually a user in the secondary networks,
may have potential malicious behaviour such as eavesdropping [22].

3In general, either the source node or a central node applies the relay
selection, where the required CSI can be obtained through independent feedback
links, or based on other methods such as the reciprocal equivalent channel. The
details of the channel estimation are out of the scope of this work, which can
be found in [32]
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defined level Ith. On the other hand, the total transmit power4

from all transmit nodes at any time is also limited to Pb. To be
specific, when a SS → Rk link is selected, the transmit powers
for SS and Rk are given by βPb and (1− β)Pb, respectively,
where β ∈ (0, 1] which is the power split factor. It is clear
that when β = 1, Rk operates at the HD mode that it only
receives signal from SS and otherwise at the FD mode by
transmitting the jamming signal at the same time. Similarly,
when a Rk → SD link is selected, the transmit powers for Rk
and SD are given by βPb and (1 − β)Pb, respectively. With
these considerations, the transmit powers at SS, Rk and SD
are obtained as

PSS = min
(
P̄SS , βPb

)
and P JRk = min

(
P̄Rk , (1− β)Pb

)
,

PTRk = min
(
P̄Rk , βPb

)
and PSD = min

(
P̄SD, (1− β)Pb

)
,

(1)

respectively, where P JRk and PTRk are the data and jamming
transmit power at Rk respectively, and

P̄SS =
Ith

|gSS PD|2
, P̄Rk =

Ith
|gRk PD|2

and P̄SD =
Ith

|gSD PD|2
(2)

At a time slot, when a SS −→ Rk link is selected after the
use of self-interference cancellation scheme [33], the received
signal at Rk is given by

yRk =
√
PSSgSS RkxS +

√
PPSgPS RkxP

+
√
ρP JRkgRkxJ1 + nRk ,

(3)

where xS and xP are the data signals from SS and PS
respectively, ρ ∈ [0, 1] is the self-interference cancellation
factor, where ρ = 0 denotes that there is no self-interference
when Rk operates in the HD mode, gRk is the residual self-
interference channel gain due to the FD transmission at Rk,
xJ1 is the jamming signal at Rk, PPS is the transmit power at
PS, nRk is the additive-white-Gaussian-noise (AWGN) noise
with variance σ2

n at Rk. The intercepted signal at E is given
by

ySE =
√
PSSgSS ExS +

√
PPSgPS ExP

+
√
P JRkgRk ExJ1 + nE ,

(4)

where nE is the AWGN noise with variance σ2
n at E.

The channel capacities for SS −→ Rk and SS −→ E links
are given by

CSRk =
1

2
log2

1 +
PSS

|hSS Rk
|2

dα
SS Rk

PPS
|hPS Rk

|2

dα
PS Rk

+ ρP JRk |hrk |
2 + σ2

n

 ,

CSE =
1

2
log2

1 +
PSS

|hSS E |2
dα
SS E

PPS
|hPS E |2
dα
PS E

+ P JRk
|hRk E |

2

dα
Rk E

+ σ2
n

 ,

(5)

respectively, where ρP JRk |hrk |
2 is the residual self-interference

4In this paper, we investigated the total energy consumption of the the
secondary system [22], but the proposed algorithm can be generalized to other
power allocation schemes.

of node Rk when Rk operates in the FD mode [33]. If the
receiver operates in the HD mode, there is no self-interference.

On the other hand, when a Rk −→ SD link is selected by
using self-interference cancellation scheme, the received signal
at SD is given by

yD =
√
PTRkgRk SDxRk +

√
PPSgPS SDxP

+
√
ρPSDgSDxJ2 + nD,

(6)

where xRk is the data signal from Rk, nD is the AWGN noise
with variance σ2

n at SD, gSD is the residual self-interference
channel gain, xJ2 is the jamming signal at node SD. And the
intercepted signal at E is given by

yRkE =
√
PTRkgRk ExRk +

√
PPSgPS ExP

+
√
PSDgSD ExJ2 + nE .

(7)

The channel capacities of Rk −→ SD and Rk −→ E links
are given by

CRkD =
1

2
log2

1 +
PTRk

|hRk SD|
2

dα
Rk SD

PPS
|hPS SD|2
dα
PS SD

+ ρPSD|hSD|2 + σ2
n

 ,

CRkE =
1

2
log2

1 +
PTRk

|hRk E |
2

dα
Rk E

PPS
|hPS E |2
dα
PS E

+ PSD
|hSD E |2
dα
SD E

+ σ2
n

 .

(8)

where ρPSD|hSD|2 is the residual self-interference of node
SD when SD operates in the FD mode, and there is no self-
interference when SD operates in the HD mode.

Then the secrecy capacities for SS −→ Rk and Rk −→ SD
links can be obtained as

Cs(SRk) = [CSRk − CSE ]+,

Cs(RkD) = [CRkD − CRkE ]+,
(9)

respectively, where [y]+ = max(0, y). We assume the target data
rate is η, with which the achievable secrecy rates are obtained
by letting CSRk = CRkD = η.

B. Problem Formulation

Applying data buffers at the relays improves the data through-
put but increases the packet delay. The delay D for a packet
is defined as the period between the packet being transmitted
from SS and arrived at SD successfully.

We define the binary selection parameter as Vk,j(t), where
k = 1, 2, ...,K which is the relay index and j = 0 or 1 which
corresponds to the S → Rk or Rk → D link, respectively.
Specifically, if Vk,0(t) = 1 (or 0), the corresponding S → Rk
link is (or is not) selected for data transmission. Similarly, if
Vk,1(t) = 1 (or 0), the corresponding Rk → D link is (or is
not) selected. Particularly, when the buffer of a relay is empty
or full, the corresponding Rk → D or S → Rk link becomes
unavailable for data transmission, respectively. At any time slot,
only one link or no link is selected for data transmission.
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In this paper, we consider two relay selection cases: to
maximize the data throughput subject to the delay- and secrecy-
constraints, and to maximize the secure data throughput subject
to the delay constraint, respectively.

Case 1 - To improve the transmission efficiency of the secure
cognitive relay network, the joint relay selection and power
allocation is to maximize the throughput subject to delay- and
secrecy- constraints as:

O = max
V, β

1

N

N∑
t=1

K∑
k=1

Vk,1(t), (10)

s.t. CRk SD(t) ≥ Vk,1(t) · η, (10a)
CSS Rk(t) ≥ Vk,0(t) · η, (10b)
Cs(Rk SD)(t) ≥ Vk,1(t) · ψ, (10c)
Cs(SS Rk)(t) ≥ Vk,0(t) · ψ, (10d)
Vk,1(t) ·D(t) ≤ ω, (10e)
β ∈ (0, 1], (10f)
Vk,j(t) ∈ {0, 1} (10g)
K∑
k=1

1∑
j=0

Vk,j(t) ∈ {0, 1} (10h)

where V(t) = [V1,0(t), V1,1(t), ..., VK,0(t), VK,1(t)] which is
the relay selection vector at time slot t, N is the number of total
time slots, η and ψ are the target data rate and target secrecy
rate respectively, ω is the target delay, (10a) and (10b) ensure
that the selected link satisfies data transmission requirement,
(10c) and (10d) ensure that the selected link satisfies data
secure transmission requirement, (10e) ensures that only the
arrived packets satisfying the delay constraint are included in
the throughput, (10f) defines the range of the power allocation
ratio, (10g) states that the selection parameter is binary, and
(10h) ensures that either only one link or no link is selected at
any time slot.

Case 2 - The joint relay selection and power allocation is
to maximize the secrecy rate with the delay-constraint as:

U = max
V, β

1

N

N∑
t=1

K∑
k=1

(
Vk,1(t)

·min
{
Cs(SRk)(t−D(t)), Cs(RkD)(t)

})
, (11)

s.t. CRk SD(t) ≥ Vk,1(t) · η, (11a)
CSS Rk(t) ≥ Vk,0(t) · η, (11b)
Vk,1(t) ·D(t) ≤ ω, (11c)
β ∈ (0, 1], (11d)
Vk,j(t) ∈ {0, 1} (11e)
K∑
k=1

1∑
j=0

Vk,j(t) ∈ {0, 1} (11f)

where the constraints are similarly defined as those in (10).
The joint relay selection and power allocation in both Case

1 and 2 are complicated. By applying the buffers at the
relays, the problems in Case 1 and 2 can be regarded as a
Markov decision process (MDP) which is affected by the fading
channels, buffer-states, interactions with the primary networks.
The constraint on instantaneous delay further complicates the
problem. Moreover, the eavesdropper can intercept the data in
both hop 1 and 2, which does not occur consecutively. All these
make the optimization in Case 1 and 2 very complicated, if not
impossible, to be obtained. The machine learning is thus used
to handle the cases.

III. MARKOV DECISION PROCESS

In secure buffer-aided cognitive relay networks, the system
can select a link for data transmission at the current state, then
and randomly moves into the next system state. Therefore, to
reduce the complexity of the joint relay selection and power
allocation in secure buffer-aided cognitive relay networks, we
model the optimization problems in Case 1 and Case 2 as MDPs
which include a set of actions, a set of states and rewards. In
a Q-Learning based algorithm, there is an agent who can take
actions to change the state of the system and learn to maximize
the total reward to find a good solution. In the proposed scheme,
the agent selects an action by using ε-greedy strategy to get
a balance between the exploration and exploitation. In the
exploration mode of the Q-learning, the agent selects a link
randomly so that the algorithm can update the Q-value for all
possible actions. On the other hand, in the exploitation mode,
the agent chooses an action from its learning experience.

A. Case 1: Maximizing the Throughput

In Case 1, the goal is to maximize the throughput with
constraints in (10) so that the definition of tuples in this MDP
problem should aim to reach the maximum throughput with
constraints.

1) Action: In the proposed system, an action is not only to
select a link for data transmission but also to decide the transmit
power allocation for the transmitter and the receiver. Therefore,
we define the action as a(t) = ak,V,β where k ∈ {1, 2, ...,K},
V ∈ {0, 1} and β ∈ (0, 1]. To be specific, at time slot t the
agent takes action a(t) = ak,V,β which is selecting the SS −→
Rk link for data transmission when V = 0, with the transmit
power βPb for the transmitter and (1 − β)Pb for the receiver.
Otherwise, the action is selecting Rk −→ SD link when V = 1.
Because the action space should be discrete in a MDP problem,
we assume a discrete power allocation in the proposed scheme
as in [34], and the number of the power levels is `, then we
obtain

β ∈
{

1

`
,

2

`
, ..., 1

}
. (12)

At any time slot, a system with K relays can have 2`K possible
actions, and we consider there is a possible action that no link
is selected, thus the total number of actions is 2`K + 1.
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2) State: The system state is the combination of the buffer
state and channel state. It is clear that a SS −→ Rk link can
not be used for data transmission when the buffer state lk(t) =
L. Moreover, a Rk −→ SD link can not be used for data
transmission when lk(t) = 0. The channel state zk(t) for the
corresponding relay Rk denotes the availability of two links
for data transmission and secure data transmission. We define
µm n(t) = 1 indicates Cm n(t) ≥ η and Cs(m n)(t) ≥ ψ,
otherwise, µm n(t) = 0. Then, we form the channel state zIk(t)
in this case as

zIk(t) =


1, µSS Rk (t) = 0, µRk SD(t) = 0
2, µSS Rk (t) = 1, µRk SD(t) = 0
3, µSS Rk (t) = 0, µRk SD(t) = 1
4, µSS Rk (t) = 1, µRk SD(t) = 1.

(13)

Notice that we define the channel state zIk(t) with β = 1, and
a learning-based algorithm should learn a function to map this
state and the optimum value of β at a given time slot. However,
in practice the range of exploration is wide and it may affect
the convergence of the algorithm. We discuss the solution to
this problem in Section V-B.

Then, we build the system state which includes buffer state
lk(t) and channel state zIk(t) as

s(t) = {l1(t), l2(t), ..., lK(t), zI1(t), zI2(t), ..., zIK(t)}, k ∈ {1, ...,K}.
(14)

In a cognitive relay network with K relays, the total number
of system states is (4(L+ 1))K .

3) Reward: The reward is used to help the Q-Learning
algorithm maximize the throughput with delay and security
constraints in Case 1. We consider giving a positive bonus
if there is a packet arriving at SD satisfied to delay-and
security-constrained. Thus, the algorithm can learn to get more
throughput with the constraints. However, we also consider that
sometimes the algorithm may make wrong decisions due to its
large range of exploration. To solve this problem, we design
the negative reward for the proposed scheme to avoid invalid
actions, such as selecting unavailable links or allocating small
value of β which leads to a failed data transmission. Therefore,
the combination of the positive reward and the negative reward
can help the learning algorithm reduce the range of exploration
and converge faster.

B. Case 2: Maximizing the Secrecy Rate

In Case 2, the goal is to maximize the secrecy rate with
constraints in (11) so that the definition of tuples in this MDP
problem should aim to reach the maximum secrecy rate with
constraints.

1) Action: In Case 2, the actions are the same as in Case 1.

2) State: In Case 2, the buffer state b(t) of the system is the
same as in Case 1. However, the channel state only needs to
show the availability of two links for data transmission. Thus,

Fig. 2. The structure of the Q-Learning in the buffer-aided cognitive
relay networks.

we form the channel state zIIk (t) for Case 2 as

zIIk (t) =


1, CSS Rk (t) < η & CRk SD(t) < η,
2, CSS Rk (t) ≥ η & CRk SD(t) < η,
3, CSS Rk (t) < η & CRk SD(t) ≥ η,
4, CSS Rk (t) ≥ η & CRk SD(t) ≥ η.

(15)

3) Reward: In Case 2, the goal is to maximize the secrecy
rate with delay constrained so that the positive reward is
designed to encourage the agent selecting high-security links.
However, in the exploration mode, the agent may choose a
low-security link for data transmission. Therefore, we consider
the negative reward for the agent when low-security links are
selected.

Therefore, we have defined basic tuples of the environment
for a DDQN-based algorithm in both two cases. In order to
solve the optimization problem in (10) and (11), we will intro-
duce two DDQN-based algorithms in the following sections.

IV. DDQN-BASED ALGORITHM WITHOUT PRIORI
INFORMATION

Firstly, we consider the conventional learning-based scheme
without prior information. To break the barriers of tradi-
tional optimization schemes, the Q-Learning algorithm which
is shown in Fig. 2 was proposed. Moreover, to avoid the
overestimation problem, the double Q-Learning algorithm was
proposed to improve the performance of the Q-Learning. There
is an agent in the double Q-learning to make decisions for
the system at each time slot. Moreover, the agent can explore
the system based on the ε-greedy strategy and then store its
experience in Q-tables which can help the agent make decisions.
When in the exploitation mode, the agent takes the action an(t)
which is estimated from the Q-table. On the other hand, when
in the exploration mode, the agent takes an action randomly.
In the double Q-learning, two Q-tables are designed to avoid
the overestimation problem, and at each time slot only one Q-
table is randomly selected to update. We assume the Q-value
QA(s(t), a(t)) denotes the value for state s(t) and action a(t)
at time slot t in Q-table A. Then the function of updating Q-
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values in Q-table A at time slot t is given by

QA(s(t), a(t)) = QA(s(t), a(t)) + δ(r(s(t),a(t))

+ τ ·QB(s(t+ 1), argmaxa{Q
A(s(t+ 1), a)})−

QA(s(t), a(t))),
(16)

where rs(t),a(t) is the reward for the state s(t) and action
a(t), δ ∈ (0, 1) denotes the learning rate, τ ∈ (0, 1) is the
discount rate, and argmaxa{QA(s(t+ 1), a)} denotes the next
state at+ 1 with the maximum Q-value in Q-table A. To
solve the overestimation problem, Q-table A decides the next
action with the maximum Q-value, but the evaluation value
QB(s(t+ 1), argmaxa{QA(s(t+ 1), a)}) is from Q-table B.
Then the function of updating Q-values in Q-table B at time
slot t is given by

QB(s(t), a(t)) = QB(s(t), a(t)) + δ(r(s(t),a(t))

+ τ ·QA(s(t+ 1), argmaxa{Q
B(s(t+ 1), a)})−

QB(s(t), a(t))).
(17)

However, in a K relays buffer-aided cognitive relay network,
the Q-Table is a (4(L+ 1))K × (2`K + 1) matrix. With such
a high-dimensional state-action space, it is difficult to build
Q-tables for a double Q-Learning algorithm. Therefore, we
introduce the deep neural network in the double Q-Learning
as a function approximator to map the actions and states. Fur-
thermore, we introduce Adam [35] as the iterative optimization
algorithm for the proposed DDQN-RP scheme.

In the DDQN-RP scheme, the agent can generate a sample
for each time slot, and then save the sample to its memory. We
define the sample as

{s(t), a(t), r(s(t),a(t)), s(t+ 1)}. (18)

Then after every M time slots, the agent selects W training
samples randomly from the memory and sends them to the deep
neural networks for training [36], [37]. Notice that the agent
is designed to select W samples rather than select the whole
memory to prevent the overfitting problem which is a modelling
error. We design two neural networks for DDQN-RP, which are
the prediction network and the target network, respectively. The
prediction network can estimate the Q-value QP (s(t), a(t)) for
s(t) and a(t) from the sample, while the target network outputs
the Q-value QT (s(t+ 1), argmaxaQ

P (s(t+ 1), a)) which is
based on the next action from the prediction network. There-
fore, we can calculate the loss between the outputs from the
two networks, and then update the prediction network. With
considering the reward and the discount factor, the loss function
is given by

Fig. 3. The structure of training neural networks in DDQN based
scheme.

Algorithm 1 DDQN-RP:

1: Initialize the variables.
2: Repeat:
3: for v = 1, · · · , V do
4: for t = 1, · · · ,M do
5: Predict an(t) from the prediction network for the

exploitation mode.
6: Use the ε-greedy strategy to decide the explo-

ration/exploitation mode, and then select an(t)
or a random action as the current action a(t).

7: Get the reward r(s(t),a(t)) and the next state s(t+1).
8: Generate a sample {s(t), a(t), r(s(t),a(t)), s(t+ 1)}.
9: end for

10: for i = 1, · · · ,W do
11: Get QP (s(t), a(t))

i from the prediction network
based on s(t) and a(t).

12: Get QT (s(t+ 1), argmaxaQ
P (s(t+ 1), a))

i from
the target network based on s(t+ 1).

13: end for
14: Use the loss function (19) and iterative optimization

method Adam to update the prediction network.
15: end for
16: Update the target network.

% =

W∑
t=1

(
r(s(t),a(t)) + τ ·QT

(
s(t+ 1), argmaxaQ

P (s(t+ 1), a)
)

−QP
(
s(t), a(t)

))2

.

(19)

After updating the prediction network, the agent clears its
memory and then continues to generate new samples. After
updating the prediction network for V times, the agent up-
dates the target network by copying the parameters from the
prediction network. The structure of the training for the two
neural networks is shown in Fig. 3. Notice that the DDQN-RP
scheme can work in both Case 1 and Case 2. It shows that the
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DDQN-based scheme can learn the solution with different goals,
due to its low complexity for implementation after building the
algorithm. The specific implementation process of DDQN-RP
scheme is shown in Algorithm 1.

V. DDQN-BASED ALGORITHM WITH THE PRIORI
INFORMATION

With introducing the power allocation as well as increasing
buffer length and relay number, the range of exploration in
secure buffer-aided cognitive relay networks is quite large for
the traditional Q-Learning algorithm. To reduce the range of
exploration, the priori information can be used to help Q-
Learning algorithms converge faster and improve the perfor-
mance. Therefore, we need to re-define the tuples in MDP to
introduce the priori information for the double Q-Learning.

A. Action

Although the total number of the actions is still 2`K + 1,
not all actions are available at a given time slot due to the
constraints of the target data rate, the target secrecy rate and
the buffer state in secure buffer-aided cognitive relay networks.
Therefore, for Case 1, it is clear shown that an action (selecting
a link between nodes m and n) cannot work at time slot t unless
it satisfies the requirements as follows:

Cm n(t) ≥ η, Cs(m n)(t) ≥ ψ,
lk(t) < L for SS −→ Rk, k ∈ {1, 2, ...,K},
lk(t) > 0 for Rk −→ SD, k ∈ {1, 2, ...,K}.

(20)

In an action, the power level β has an impact on the data
rate Cm n(t) and the secrecy rate Cs(m n)(t) at time slot t.
Therefore, we propose the priori information-based learning to
delete invalid actions which cannot satisfy (20). Then we embed
it in the proposed scheme to improve the performance of the
proposed scheme, which will be shown in Section VI.

In Case 2, the action set is the same as in Case 1, but the
priori information is different based on (10) and (11). Therefore,
in Case 2, an action (selecting a link between nodes m and n)
can not work at time slot t unless it satisfies:

Cm n(t) ≥ η,
lk(t) < L for SS −→ Rk, k ∈ {1, 2, ...,K},
lk(t) > 0 for Rk −→ SD, k ∈ {1, 2, ...,K}.

(21)

With considering the effect of β for the data rate, we delete in-
valid actions which cannot satisfy (21) in the priori information-
based learning algorithm and embed it in the proposed scheme.

Furthermore, we consider that the buffer state can also be
a priori information when it is not empty and not full. When
the value of target delay is not sufficiently large (e.g. close
to the buffer length), a trade-off between buffer states that are
kept away from empty or full as much as possible can improve
the efficiency of overall transmission. Moreover, the average
channel gains also have an impact on the delay, a strong link
can always have valid actions for transmission, but a weak

link only has few valid actions for transmission. Therefore, we
introduce the target buffer length of ξk for relay Rk as the priori
information to help the algorithm converge faster. ξk is given
by

ξk = min

(
ωlog2(1 + d−αRk SD)∑K
i=1 log2(1 + d−αRi SD)

, L

)
. (22)

If the buffer state lk(t) ≥ ξk at time slot t, the actions for
selecting SS −→ Rk links are assumed to be all invalid.

B. State

By considering the power allocation in the proposed scheme,
the channel state is decided by the channel coefficients and the
power allocation. For each action a(t) = ak,V,β with different
transmit power βPt at the transmitter, the transmission rate may
be different at time slot t. Therefore, we should consider all
valid actions which can satisfy (20). The channel state zk(t)
with the prior information for both two cases is given by

zk(t) =


1, no link can be selected;
2, only exist valid actions for Rk −→ SD;
3, only exist valid actions for SS −→ Rk;
4, exist valid actions for both two links.

(23)

Furthermore, there is a requirement of the target secrecy rate
in Case 1 and the goal of Case 2 is to maximize the average
secrecy rate. Thus, optimizing the secrecy rate is a key point
in both two cases. When the successful data transmission is
guaranteed, we can easily know that a strong jamming signal
has an impact on the untrust node, which will enhance the
secrecy rate of the legitimate nodes [38]. Therefore, in Case
1 the optimal scheme aims to find the smallest β which can
guarantee the data transmission requirement Cm n(t) ≥ η at
time slot t. This power allocation idea can guarantee the data
transmission first, and then maximize the secrecy rate to make
sure that the transmission is secure. To be specific, in Case 1
the data transmission has been guaranteed first to maximize the
throughput, and then the secrecy rate is maximized to try to
meet the requirement of the target secrecy rate. On the other
hand, to maximize the average secrecy rate in Case 2, the outage
can be acceptable when the maximum secrecy rate is sufficiently
low. However, the requirement of delay leads to the result that
the smallest β which can guarantee the data transmission is
still important to get a trade-off between the throughput and the
maximum secrecy rate. Thus, we can use this prior information
to consider the channel state for each action. When the valid
actions are obtained at a given time slot, we can reduce the
range of state space by introducing the minimum value of β
for each link. To be specific, we can build the system state
with the prior information as

s(t) ={l1(t), l2(t), ..., lK(t), z1(t), z2(t), ..., zK(t),

β̄1,V (t), β̄2,V (t), ..., β̄K,V (t)}, k ∈ {1, ...,K},
(24)

where β̄k,V (t) denotes the minimum value of β which can guar-
antee Cm n(t) ≥ η for the corresponding relay Rk at time slot
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Fig. 4. The structure of DDQN-based scheme with the priori informa-
tion in buffer-aided cognitive relay networks.

t, Cm n(t) = CSS Rk(t) when V = 0, Cm n(t) = CRk SD(t)
when V = 1.

C. Reward

The penalty is designed to avoid invalid actions in Case 1 and
Case 2. Therefore, we remove the invalid actions in Section V-A
for each time slot, and then the double Q-Learning algorithm
can reduce the possible selections and converge faster in both
two cases. Moreover, in Case 1 selecting none of the links is the
action which we always try to avoid when any other valid action
exists. Thus, we can define a strong penalty for the action that
no link can be selected when other valid actions exist. On the
other hand, no link can be selected may avoid low secrecy rate
in Case 2, the reward of this action depends on the maximum
secrecy rate at a given time slot.

D. Learning Algorithm with the Priori Information

In general Q-Learning algorithms, the reward is used to help
the agent reach the target and avoid bad selections. However,
in buffer-aided secure cognitive relay networks, the agent can
know which actions are invalid from (20), and we can design
a method to help the agent avoid selecting invalid actions.
Therefore, before using the ε-greedy strategy to decide the
action for the current state at a given time slot, we can remove
the invalid actions from the action set to reduce the complexity
of selection. To be specific, when the neural networks predict
the Q-values of all possible actions for the current state s(t),
we remove the output Q-values for invalid actions at time slot
t for state s(t).

Moreover, the state set with the priori information can help
reduce the range of exploration. The structure of DDQNPI-
RP scheme is shown in Fig. 4, and the specific implementa-
tion process of DDQNPI-RP scheme is shown in Algorithm
2. The computational complexity of the proposed algorithm
with/without the priori information is V (M + W ) as the
number of iterations of loops in [39], [40], exploring the priori
information does not introduce extra complexity.

Algorithm 2 DDQNPI-RP:

1: Initialize the variables.
2: Repeat:
3: for v = 1, · · · , V do
4: for t = 1, · · · ,M do
5: Based on the current state s(t), remove all

invalid actions from the action set at time slot t.
6: Predict an(t) among the action set from the predic-

tion network for the exploitation mode.
7: Use the ε-greedy strategy to decide the explo-

ration/exploitation mode, and then select an(t)
or a random action as the current action a(t).

8: Get the reward r(s(t),a(t)) and the next state s(t+1).
9: Generate a sample {s(t), a(t), r(s(t),a(t)), s(t+ 1)}.

10: end for
11: for i = 1, · · · ,W do
12: Get QP (s(t), a(t))

i from the prediction network
based on s(t) and a(t).

13: Get QT (s(t+ 1), argmaxaQ
P (s(t+ 1), a))

i from
the target network based on s(t+ 1).

14: end for
15: Use the loss function (19) and iterative optimization

method Adam to update the prediction network.
16: end for
17: Update the target network.

VI. SIMULATION RESULTS

The results of the proposed DDQN-RP scheme and DDQNPI-
RP scheme are shown in this section, and the Max-Ratio buffer-
aided relay selection algorithm is selected as the benchmark.
Unless otherwise stated, we set the parameters for the system
as follows: the number of relays K = 3, the buffer size L = 10,
the pre-defined level Ith = 10, the maximum total transmit
power to noise ratio for each time slot Pb/σ2

n = 40 dB, the
transmit power at PS is assumed to be unity without losing
generality, the self-interference factor ρ = 0.5, the number of
power levels ` = 10, the path loss exponent α = 3, the target
rate η = 2 bps/Hz, the target secrecy rate ψ = 0.5 bps/Hz, the
target delay ω = 12 time slots. The locations of all nodes are
shown in Table I.

In this paper, we use the deep learning library
Keras/TensorFlow to build the deep neural networks which
consists of three fully-connected layers with 64 neurons [41].
The computer with the GPU NVIDIA GeForce GTX-2080
is used to run the simulations. In the neural network, the ε
decay factor for the ε-greedy strategy is 0.999, the minimum ε
decay value is 0.1, the learning rate is 0.9, the discount factor
τ = 0.9, the memory size M = 500, the sample size W = 32,
the iteration number of updating the target network V = 100.

Fig. 5 shows the throughput learning curves with and without
the a-priori information in Case 1. It shows that the throughput
of the DDQNPI-RP scheme converges to 0.41 packet/time slot
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TABLE I: Positions of Nodes

SS SD PS PD

(0, 0) m (0, 10) m (5.5, 2.4) m (5.4, 2.6) m

R1 R2 R3 E
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Fig. 5. Throughput with delay and security constrained vs. training
iterations in Case 1.
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Fig. 6. The comparison of throughput between proposed schemes and
Max-Ratio scheme for Case 1 with different target rate.

after 4,000 training iterations, while that of the DDQN-RP
scheme only achieves about 0.31 after 7,000 iterations. This
verifies that the DDQNPI-RP uses the priori information to
avoid these invalid actions, leading to faster convergence and
higher throughput than its DDQN-RP counterpart. Moreover,
because the DDQNPI-RP always avoids the invalid actions,
even at the beginning of the training that the neural networks are
randomly initialized, the DDQNPI-RP has better performance
than the DDQN-RP. This is clearly shown in Fig. 5.
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Fig. 7. The comparison of throughput between proposed schemes and
Max-Ratio scheme for Case 1 with different secrecy target rate.

Fig. 6 shows the comparison of throughput between the
proposed schemes and Max-Ratio scheme for Case 1. It shows
that both proposed schemes outperform Max-Ratio significantly,
the DDQNPI-RP and DDQN-RP get the throughput of 0.32 and
0.24 with the target rate η = 3 bps/Hz, respectively, while Max-
Ratio only achieves 0.06. This clearly indicates that the Max-
Ratio has not considered throughput with delay and security
constrained. However, the proposed two schemes can solve this
problem because the agent can learn the solution by using the
ε-greedy strategy to satisfy the constraints.

Fig. 7 shows the throughput with delay-and security-
constrained vs. secrecy target rate for the proposed two schemes
and Max-Ratio scheme in Case 1. We can observe that the
proposed algorithm performs dramatically better than Max-
Ratio. The DDQNPI-RP and DDQN-RP achieve 0.41 and 0.31
when the target secrecy rate ψ = 0.5 bps/Hz, respectively, while
Max-Ratio obtains 0.07. Though Max-Ratio improves Max-
Link algorithm by considering the security, many selections can
lead to a huge delay by using Max-Ratio because the delay
constraint is not considered in Max-Ratio.

Fig. 8 shows the throughput with delay and security con-
strained vs. target delay for the proposed two schemes and Max-
Ratio scheme in Case 1, where DDQN-RP(HD) is the DDQN-
based scheme for the HD system. It is clearly shown that with
a target delay, the DDQNPI-RP scheme achieves around 0.39
when the target delay ω = 10 time slots, which outperforms
Max-Ratio dramatically. Both two learning schemes can learn
to meet different requirements of target delay, and thus the
agent can learn different policies for each case. On the other
hand, it is clear that the Max-Ratio is not designed for the data
transmissions with delay constraints. Compared with the HD
system, we can observe that the hybrid-duplex system can help
improve the performance, due to the impact of FD jamming.
Notice that all schemes can only achieve throughput when
ω ≥ 2, because a packet arriving at SD takes at least two
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Fig. 8. The comparison of throughput between proposed schemes and
Max-Ratio scheme for Case 1 with different target delay.
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Fig. 9. Average secrecy rate with delay constrained vs. training
iterations in Case 2.

time slots.
Fig. 9 shows the secrecy rate learning curves of the proposed

scheme with and without a priori information in Case 2. It
shows that the DDQNPI-RP scheme converges to around 0.38
bps/Hz slot after 5,000 training iterations, while DDQN-RP
scheme achieves about 0.3 after 7,000 iterations. It is clear
that DDQNPI-RP scheme can achieve higher and more stable
secrecy rate than the DDQN-RP, which verifies the effectiveness
of applying the a-priori information.

Fig. 10 shows the average secrecy rate with the constrained
delay vs. target delay for the proposed two schemes and Max-
Ratio scheme in Case 2. We can observe that the DDQNPI-
RP scheme can achieve average secrecy rate of 0.35 when the
target delay ω = 10 time slots, while DDQN-RP and Max-
Ratio only achieve around 0.29 and 0.08, respectively. The
exploration mode leads to many local optimum problems and it
makes the performance of DDQN-RP unstable. Therefore, with
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Fig. 10. Average secrecy rate with delay constrained vs. target delay
in Case 2.

the priori information, DDQN-based scheme can try to avoid
local optimums and achieve better performance. Moreover, the
hybrid-duplex transmission can switch between the HD and FD
modes, and achieve better performance than HD transmission.

VII. CONCLUSION

In this paper, we applied the DDQN for the joint relay
selection and power allocation in the delay and/or secrecy
constrained buffer-aided cognitive relay networks. Two cases
have been considered, namely maximizing the throughput and
the average secrecy rate, respectively. We introduced the a-priori
information to improve the convergence. Simulations show that
proposed schemes outperform the max-ratio scheme in both
two cases. Finally, we note that the proposed scheme can be
generalized to more complicated system such as the multi-
antenna and/or multi-user cases [42]. While this would further
complicate the learning process, the principle of the proposed
scheme remains the same. This would be left as an interesting
future topic.
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