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ABSTRACT
BACKGROUND: Responding emotionally to danger is critical for survival. Normal functioning also requires flexible
alteration of emotional responses when a threat becomes safe. Aberrant threat and safety learning occur in many
psychiatric disorders, including posttraumatic stress disorder, obsessive-compulsive disorder, and schizophrenia, in
which emotional responses can persist pathologically. While there is evidence that threat and safety learning can be
modulated by the serotonin systems, there have been few studies in humans. We addressed a critical clinically
relevant question: How does lowering serotonin affect memory retention of conditioned threat and safety memory?
METHODS: Forty-seven healthy participants underwent conditioning to two stimuli predictive of threat on day 1. One
stimulus but not the other was subsequently presented in an extinction session. Emotional responding was assessed
by the skin conductance response. On day 2, we employed acute dietary tryptophan depletion to lower serotonin
temporarily, in a double-blind, placebo-controlled, randomized between-groups design. We then tested for the
retention of conditioned threat and extinction memory. We also measured self-reported intolerance of uncertainty,
known to modulate threat memory expression.
RESULTS: The expression of emotional memory was attenuated in participants who had undergone tryptophan
depletion. Individuals who were more intolerant of uncertainty showed even greater attenuation of emotion following
depletion.
CONCLUSIONS: These results support the view that serotonin is involved in predicting aversive outcomes and refine
our understanding of the role of serotonin in the persistence of emotional responsivity, with implications for individual
differences in vulnerability to psychopathology.

https://doi.org/10.1016/j.bpsc.2020.12.012
Emotional responses to threats are critical for survival. Once a
threat is no longer present, emotion must adapt to reflect
safety for normal functioning to continue. Dysfunction of threat
and safety learning lies at the core of posttraumatic stress
disorder (1) and anxiety disorders (2,3) and is a feature of
obsessive-compulsive disorder (4–6) and schizophrenia (7).
Elucidating contributors to persistent emotional reactions is
essential for developing new treatments. We tested the influ-
ence of the neuromodulator serotonin (5-HT) on the retention
of conditioned threat and safety memory, with a widely used
laboratory model (8).

In Pavlovian threat conditioning paradigms, more commonly
known as fear conditioning (9), a neutral stimulus is paired with
an aversive outcome (e.g., mild electric shock). Individuals learn
that the cue signals threat, and an anticipatory sympathetic
nervous system arousal response occurs. This manifests as
measurable perspiration known as the skin conductance
response (SCR). After learning that a cue signals threat, the
stimulus can be repeatedly presented without the aversive
ª 2021 Society of Biological Psychiatry. Pu
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consequence (extinction learning)—a model of exposure therapy
in the clinic by which a new memory of safety should be formed.
These two memories—threat and safety—compete for expres-
sion upon re-encountering a conditioned stimulus (CS) (10,11).
Conditioned threat memories (learned physiological responses
to conditioned stimuli) often persist despite extinction training,
and re-emerge after the passage of time (spontaneous recovery)
or after re-exposure to adversity (reinstatement) (10). Under-
standing what contributes to spontaneous recovery and rein-
statement is of great clinical interest and has implications for
conditions such as posttraumatic stress disorder (8,12).

Serotonin, meanwhile, is widely implicated in aversive learning
(13). While several studies have begun to explore the role of
serotonin in threat and safety learning and in aversive memory,
most experiments have been carried out in rodents (14). The
dearth of human studies at the nexus of threat memory and
serotonin function is particularly surprising given that first-line
pharmacological treatments of disorders in which threat condi-
tioning processes are impaired modulate serotonin (15). No one,
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1. Group Characteristics

Placebo Depletion

Age, Years 24.23 (5.88) 25.80 (6.24)

Education, Years 17.18 (2.38) 17.28 (2.42)

BDI-II 5.23 (4.38) 4.04 (3.92)

STAI 37.36 (7.27) 35.52 (5.96)

IUS 55.73 (13.69) 49.80 (13.44)

Values are mean (SD). The questionnaires listed here were
administered before depletion took effect: BDI-II (75), STAI (55), and
IUS (44).

BDI-II, Beck Depression Inventory-II; IUS, Intolerance of Uncertainty
Scale; STAI, State-Trait Anxiety Inventory.
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Figure 1. Task schematic. Each row represents a different phase of the
experiment. Lightning bolts represent shock. The extinguished conditioned
stimulus (CS1E) is the CS1 that was presented during the extinction phase.
The not-extinguished CS1 (CS1N) is the CS1 that was not presented
during the extinction phase. The CS2 was never paired with shock. ATD,
acute tryptophan depletion.
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to our knowledge, has manipulated serotonin experimentally to
examine its influence on spontaneous recovery in humans.

Acute tryptophan depletion (ATD) is commonly used to study
serotonin: tryptophan, the biosynthetic precursor to serotonin, is
temporarily removed from the diet in the presence of other amino
acids, which decreases serotonin synthesis (16–20). ATD and 5-
HT2A/2C receptor antagonism via ritanserin have attenuated
threat conditioning in humans, as assessed by SCR (21,22). 5-
HT can also impact startle when anticipating shocks during
acquisition (23–25). Fourteen-day administration of the serotonin
reuptake inhibitor (SRI) escitalopram in humans did not impact
the acquisition of threat memory but facilitated extinction (using
SCR) (26). Fourteen-day treatment with fluoxetine (an SRI) in
mice, initiated before extinction, diminished spontaneous re-
covery and reinstatement; fluoxetine was present in all post-
acquisition phases (27). Treatment of rats, the primary animal
model, with citalopram (an SRI) for 22 days, before extinction
training but after conditioning, impaired extinction, whereas 9-
day treatment had no effect; spontaneous recovery and rein-
statement were not studied (28). A human behavioral genetics
study found a relationship between spontaneous recovery (not
acquisition or extinction) and variation in the serotonin trans-
porter polyadenylation polymorphism (29). Other human studies
have shown that 5-HT modulated explicit, often same-day,
memory (30–32) and processing of emotional facial expres-
sions (33), rather than implicit memory assessed physiologically.

Another factor can influence threat conditioning processes:
intolerance of uncertainty, the dispositional tendency to
appraise uncertain situations as aversive (34–43), assessed by
the Intolerance of Uncertainty Scale (IUS) (44). Indeed, high IUS
score has been linked to enhanced spontaneous recovery and
reinstatement (34,36). Critically, effects of high intolerance of
uncertainty on threat conditioning processes were distinct
from trait anxiety (37,38,40–42). Intolerance of uncertainty is a
transdiagnostic construct (45–47) and is heightened in in-
dividuals with diagnoses spanning generalized anxiety disor-
der, social phobia, panic disorder, agoraphobia, obsessive-
compulsive disorder, and depression (46,47), and those with
posttraumatic stress disorder symptoms (48), making the IUS
score relevant for psychiatric classification frameworks (e.g.,
RDoC [Research Domain Criteria]) (49). To our knowledge, this
study is the first to employ the IUS in the context of serotonin’s
emotional effects.

Here, we employed ATD in healthy humans and investigated the
following questions: How does lowering serotonin affect the
retention of conditioned threat and extinction memory, and does
intolerance of uncertainty influence how serotonin modulates
emotion? We predicted that lowering serotonin function would
modulate the expression of previously formed threat memory,
without affecting expression of extinction memory, and that ac-
counting for IUS score would contribute to explaining these effects.

METHODS AND MATERIALS

Participants

Forty-seven healthy participants (mean age, 25 years; age
range, 18–25 years; 29 males, 18 females), free from psychi-
atric disorder, who met criterion for Pavlovian conditioning
(assessed by SCR) were included. Participants (Table 1) gave
informed consent and were paid.
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
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Participants were randomly assigned to receive either ATD
(n = 25; 16 males, 9 females) or placebo (n = 22; 13 males,
9 females) in a double-blind between-groups design. The
depletion group received a drink that contained a balance of all
essential amino acids except tryptophan. The placebo group
received the same drink, with tryptophan (50).

Task and Procedure

The protocol received ethical approval. Participants attended
sessions on 2 consecutive days. Day 1 comprised a short af-
ternoon session with no serotonergic manipulation. Participants
were subjected to the threat of mild electrical stimulation (shock)
(1,29,51–53), which was calibrated to be uncomfortable but not
painful. Acquisition involved three conditioned stimuli (CSs):
CS1E, CS1N, and CS2. Two CSs, CS1E (extinguished) and
CS1N (not extinguished), were paired with receipt of shock
(unconditioned stimulus [US]) on 37.5% of trials; the CS2 was
never paired with the US (Figure 1). Extinction followed: the
CS1E and CS2 were repeatedly presented, both without the
US. The CS1N was not presented. On day 2, participants
021; -:-–- www.sobp.org/BPCNNI

http://www.sobp.org/BPCNNI


Figure 3. (A) Skin conductance responses (SCRs) in the initial threat con-
ditioning phase (acquisition) on day 1, conducted before serotonergic chal-
lenge. There were no differences between the future placebo and future acute
tryptophan depletion (ATD) groups, and both groups showed significant threat
conditioning to both paired conditioned stimuli (CS1s) compared with the
CS2, as predicted. This equivalent baseline conditioning on day 1 enabled
testing the effects of ATD on its retention on day 2. Brackets denote follow-up
t tests contrasting stimuli within group, after observing a main effect of stim-
ulus. ***p , .001. Error bars indicate 61 SE. (B) SCRs in the extinction phase
on day 1. Smaller brackets refer to the beginning and end of extinction, and the
larger bracket denotes a mild reduction in SCRs in late compared with early
extinction. *p , .05. Error bars indicate 61 SE. Raw data (following trans-
formation) (see Supplement) are displayed. CS1E, extinguished CS1; CS1N,
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arrived in the morning having fasted for at least 9 hours, gave a
blood sample, and ingested either the placebo or ATD drink. In
the afternoon a second blood sample was taken and, at least 4.5
hours following ingestion (54), participants were re-exposed to
the CS1E, CS1N, and CS2 without the US, to assess spon-
taneous recovery to the CS1E (10). At this stage, the CS1N is a
comparator against which spontaneous recovery of the CS1E
can be measured. If ATD modulates expression of the original
threat memory, it would be expected to alter responses to the
CS1N. If it specifically affects the expression of the extinction
memory (spontaneous recovery), it would be expected to alter
responses to the CS1E but not to the CS1N. Reinstatement
comprised four USs, not paired with any CS, followed by re-
exposure to all conditioned stimuli. Reacquisition was con-
ducted exactly as initial acquisition. Greater reacquisition can be
reflective of a stronger threat memory (10). The context remained
the same across both days.

RESULTS

Blood and Mood

Robust depletion of tryptophan was achieved (t43 = 215.317,
p = 5.05 3 10219) (Figure 2). Mood, assessed prior to the task,
after depletion had taken effect, did not differ from those
participants who received placebo (t38 = 21.227, p = .228).

Acquisition Before Depletion

Threat conditioning was achieved and was no different be-
tween those who later received placebo versus depletion
(Figure 3A). Repeated-measures analysis of covariance
(ANCOVA) with group assignment (future placebo, future ATD)
and sex (male, female) as between-subjects factors, stimulus
(CS1E, CS1N, CS2; all trials) as a within-subjects factor, and
IUS as a covariate yielded a main effect of stimulus (F1,56 =
9.239, p = .002, hp

2 = .180), no main effect of group assign-
ment (F1,42 = 0.591, p = .446, hp

2 = .014), and no group
assignment 3 stimulus interaction (F1,56 = 1.272, p = .277,
hp

2 = .029). There was a significant stimulus 3 IUS interaction
(F1,56 = 4.175, p = .035, hp

2 = .090), no main effect of sex, and
no interactions with sex (F , 3.5, p . .05, hp

2 , .08). Paired t
tests confirmed that SCRs to the CS1E (t46 = 25.315, p = 3 3
Figure 2. Robust tryptophan depletion was achieved, verified via plasma
samples. More negative values indicate greater depletion of tryptophan.
Error bars indicate 61 SE. DTRP:LNAA, change in the ratio between tryp-
tophan and all large neutral amino acids from before to after depletion.

not extinguished CS1; n.s., not significant.
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1026) and CS1N (t46 = 24.632, p = 3 3 1025) were each
significantly greater than to the CS2.

Extinction Before Depletion

ANCOVA was performed with group assignment (future placebo,
future ATD) and sex (male, female) as between-subjects factors,
stimulus (CS1E, CS2) and phase (early, late; first and last two
trials) as within-subjects factors, and IUS as covariate. There was
no difference during extinction between those who later received
placebo versus depletion (F1,42 = 1.165, p = .287, hp

2 = .027), nor
was there an interaction between group and phase (F1,42 =
0.003, p = .960, hp

2 = 6.10 3 1025). In contrast to acquisition,
there was no longer a significant effect of stimulus during the
extinction session (F1,42 = 1.490, p = .229, hp

2 = .034), indicating
evidence of extinction. Additionally, there was an effect of phase
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 3
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Figure 4. Tryptophan depletion reduced skin conductance response
(SCR) expression. SCRs are displayed from the (A) spontaneous recovery,
(B) reinstatement, and (C) reacquisition phases. Large brackets denote a
main effect of stimulus. **p , .01; *p , .05. Error bars indicate 61 SE. Raw
data (following transformation) (see Supplement) are displayed, not adjusted
values after controlling for intolerance of uncertainty, sex, or strength of
initial conditioning on day 1. CS, conditioned stimulus; CS1E, extinguished
CS1; CS1N, not extinguished CS1.
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(F1,42 = 4.125, p = .049, hp
2 = .089), showing lower responding,

irrespective of stimulus, in the late trials. There was no phase 3

stimulus interaction (F1,42 = 0.074, p = .787, hp
2 = .002). There

was no main effect of IUS, nor were there any significant in-
teractions with IUS (F , 2.5, p . .05, hp

2 , .06). There was a
main effect of sex (F1,42 = 5.064, p = .030, hp

2 = .108), such that
females extinguished better than males. We therefore included
sex as a factor in the core day 2 analyses.

Spontaneous Recovery After Depletion

ATD modulated emotional responses during the spontaneous re-
covery phase (Figure 4A). ANCOVA was conducted with serotonin
status (placebo, ATD), sex (male, female), and stimulus (CS1E,
CS1N, CS2; first half of trials) as factors, controlling for strength of
initial conditioning and IUS. SCR during acquisition was used as a
covariate because we were interested in assessing the influence of
ATD on memory expression, irrespective of how the strength of the
initial memory affected expression a day later. IUS was used as an
additional covariate because this trait can affect threat memory
expression (34). There was a significant main effect of serotonin
status (F1,41 = 7.729, p = .008, hp

2 = .159)—emotional responses
were significantly attenuated under ATD. There was amain effect of
stimulus (F2,68 = 3.750, p = .036, hp

2 = .084). There was no main
effect of sex, nor were there any significant interactions with sex (F
, 1.1, p . .05, hp

2 , .03). The strength of acquisition covariate
was significant (F1,41 = 140.487, p = 1.311 3 10216, hp

2 = .815).
Rerunning the ANCOVA without IUS as a covariate also yielded a
significant main effect of serotonin status (F1,42 = 5.406, p = .025,
hp

2 = .114). IUS, furthermore, was a significant predictor over and
above trait anxiety (55) (see Supplement). Paired t tests revealed
that responses to the CS1E and CS1N, collapsed across sero-
tonergic status, were each significantly greater than responses to
the CS2 (CS1E [t46 = 24.549, p = 3.9 3 1025], CS1N
[t46 = 25.089, p = 7 3 1026]), demonstrating that return of threat
memory expression occurred irrespective of serotonin status. Re-
sponses to the CS1E and CS1N did not differ from one another
(t46 = 20.312, p = .756), likely because there was not robust
extinction of the CS1E. There was no serotonin 3 stimulus inter-
action (F2,68 = 1.916, p = .162, hp

2 = .045), indicating that the effect
of ATD was not specific to any CS. Conditioning to both CS1s
from day 1 was retained on day 2 in both the placebo and ATD
groups; however, overall emotional responsivity was diminished by
ATD, irrespective of stimulus.

Relationship Between Spontaneous Recovery and
Extent of Depletion

The extent of tryptophan depletion significantly correlated with
the attenuation of threat responding but not with safety
memory expression during the spontaneous recovery phase
(Figure 5A). Critically, this substantiated the relationship be-
tween depletion and conditioned threat memory expression
during spontaneous recovery. Using a partial correlation to
control for strength of acquisition, IUS, and sex, there was a
significant relationship between the degree of tryptophan
depletion overall (including both placebo and ATD conditions)
and the extent to which the threat memory returned. The extent
of depletion correlated with the SCR to the CS1E and CS1N,
and not to the CS2, indicating that the effect of tryptophan
depletion did not generalize to safety memory expression:
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
threat memory responses were more attenuated the greater
the depletion (CS1E [r40 = .413, p = .007], CS1N [r40 = .389,
p = .011], CS2 [r40 = .113, p = .478]), which remained signifi-
cant after being subjected to the Benjamini–Hochberg pro-
cedure at q = .15 for three comparisons (56). These
relationships did not reach significance in the ATD condition
alone (p . .05). However, there was no interaction between
stimulus (CS1E, CS1N, CS2) and plasma results on SCR, as
assessed by ANCOVA with plasma values, IUS score, sex, and
strength of initial conditioning as predictors (F2,67 = 2.315, p =
.115, hp

2 = .055).
021; -:-–- www.sobp.org/BPCNNI
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Figure 5. Skin conductance responses (SCRs) on day 2 plotted against
the extent of depletion during the (A) spontaneous recovery, (B) reinstate-
ment, and (C) reacquisition phases. Lower x-axis values indicate greater
depletion, indexed by the change in the ratio of tryptophan to large neutral
amino acids (DTRP:LNAA) assessed via plasma samples. Raw data
(following transformation) (see Supplement) are displayed, not adjusted
values after controlling for intolerance of uncertainty, sex, or strength of
initial conditioning on day 1. The CS2 is denoted by purple circles, the
extinguished CS1 (CS1E) is denoted by blue triangles, and the not-extin-
guished CS1 (CS1N) is denoted by green squares. Significant relationships
between depletion and SCR were seen in the spontaneous recovery phase
for the CS1E and CS1N but not for the CS2, in reinstatement for the CS1E
and CS2, and in reacquisition for the CS1E and CS2. CS, conditioned
stimulus.

Figure 6. Skin conductance responses (SCRs) during spontaneous re-
covery (day 2) plotted against self-report on the Intolerance of Uncertainty
Scale (IUS), shown separately for (A) placebo and (B) depletion. Raw data
(following transformation) (see Supplement) are displayed. The CS2 is
denoted by purple circles, the extinguished CS1 (CS1E) is denoted by blue
triangles, and the not-extinguished CS1 (CS1N) is denoted by green
squares. CS, conditioned stimulus.
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Role of Intolerance of Uncertainty in ATD Effects on
Spontaneous Recovery

Next, we examined how IUS score related to SCR during
spontaneous recovery (Figure 6A). Correlation analyses be-
tween IUS score and SCR to each CS, controlling for strength
Biological Psychiatry: Cognitive Neuroscien
of conditioning, revealed significant effects in the depletion
group only: individuals more intolerant of uncertainty showed
significantly diminished emotional expression to the CS1E
(r25 = 2.554, p = .004), CS1N (r25 = 2.453, p = .023), and CS2
(r25 = 2.418, p = .038). Under placebo, this relationship with
IUS score was not present (CS1E [r25 = 2.135, p = .549],
CS1N [r25 = 2.249, p = .264], CS2 [r25 = 2.109, p = .629]).
Critically, these results survived correction for six comparisons
(56). Next, an interaction term between serotonin and IUS
score was incorporated into the general linear model used in
the initial analysis of spontaneous recovery, to examine
whether IUS score and serotonin status interacted to modulate
SCR to specific stimuli. ANCOVA with serotonin and IUS score
as a between-subjects interaction term, controlling for main
effects and strength of initial conditioning, sex (male, female)
as an additional between-subjects factor, and stimulus (CS1E,
CS1N, CS2) as within-subjects factors, did not show an
interaction between serotonin and IUS score (F1,41 = 0.058, p =
.811, hp

2 = .001) or between serotonin, IUS score, and stimulus
(F2,67 = 1.278, p = .281, hp

2 = .030). While there was no
interaction between ATD and IUS score, the correlation results
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 5
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suggest that ATD modulated the relationship between IUS
score and SCR to the conditioned stimuli.

Reinstatement After Depletion

The SCRs to the US during reinstatement were unaffected by
ATD (F1,39 = 0.729, p = .399, hp

2 = .018) (Figure 4B). Instead,
ATD modulated cue-evoked SCRs during the reinstatement
phase of the experiment. ANCOVA revealed a significant effect
of serotonin status (F1,39 = 4.403, p = .042, hp

2 = .101), again
with lower SCRs under ATD. By this stage in the experiment,
however, there was no longer a main effect of stimulus (F1,47 =
0.083, p = .823, hp

2 = .002); there was no differential response
to the CS1s relative to the CS2, and thus no reinstatement of
the threat memory. There was also no serotonin 3 stimulus
interaction (F1,47 = 1.306, p = .267, hp

2 = .032).

Relationship Between Reinstatement and Extent of
Depletion

Controlling for strength of acquisition, IUS score, and sex,
there was a significant correlation between depletion and
CS1E and CS2 responses but not between depletion and
CS1N responses (CS1E [r38 = .413, p = .008], CS1N [r38 =
.234, p = .146], and CS2 [r38 = .455, p = .003]) (Figure 5B).
These results were not predicted and need further investigation
in future studies.

Reacquisition After Depletion

Because effects in these paradigms are often short lived (57),
and participants’ SCRs tended to habituate later in the
experiment, the same analysis used in the spontaneous re-
covery and reinstatement phases was repeated on the first two
trials of the reacquisition phase, which showed a main effect of
serotonin status: responses to the conditioned stimuli were
attenuated overall by ATD (F1,39 = 6.974, p = .012, hp

2 = .152)
(Figure 4C). There was no main effect of stimulus (F2,78 = 1.598,
p = .209, hp

2 = .039), nor was there a serotonin 3 stimulus
interaction (F2,78 = 2.194, p = .118, hp

2 = .053), providing no
evidence of reconditioning in either group.

Relationship Between Reacquisition and Extent of
Depletion

A partial correlation analysis was performed, as in the prior
phases (accounting for sex), isolating the first two trials, as
before. There was a significant correlation between depletion
and SCRs to the CS1E and CS2, but not to the CS1N (CS1E
[r38 = .475, p = .002], CS1N [r38 = .229, p = .156], CS2 [r38 =
.371, p = .018]) (Figure 5C). These results were not predicted
and require further investigation in future studies.

Summary of Results

Baseline conditioning and extinction did not differ between
those destined to receive placebo versus ATD. The key result
was that ATD attenuated the expression of previously acquired
emotion in the spontaneous recovery phase. While the
reduction in SCR during the spontaneous recovery phase by
ATD was not specific to any of the three stimuli at the group
level, the greater the extent of depletion, the more the CS1E
and CS1N were attenuated, whereas there was no such cor-
relation for SCRs to the CS2. Differential conditioning was not
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
abolished by ATD, and accounting for IUS score contributed to
the prediction of how ATD modulated SCR during sponta-
neous recovery. Following ATD, individuals more intolerant of
uncertainty showed significantly less emotional expression to
all three stimuli during the spontaneous recovery phase.
Importantly, SCR to the US was unaffected by ATD. ATD also
attenuated responses during the reinstatement and reac-
quisition phases, consistent with the spontaneous recovery
phase results; however, there was no longer evidence of dif-
ferential conditioning.
DISCUSSION

Here we showed, for the first time, that modulating serotonin
affected the expression of aversive emotional memory in
humans. During the key phase of the study—spontaneous
recovery—ATD diminished physiological responses to the
CS1s and CS2 nonspecifically, and differential conditioning
was preserved. Analysis of individual plasma samples, how-
ever, revealed that a greater degree of depletion was associ-
ated with reduced emotional responding to the CS1s, with no
effect on CS2 responses. These plasma data suggest that
aversive emotional memory was attenuated by ATD. Exam-
ining intolerance of uncertainty, a trait previously related to
spontaneous recovery (34), aided in uncovering how ATD
affected emotion by contributing to the prediction of the gen-
eral linear model. Individuals with a higher IUS score showed
even lower responses during spontaneous recovery when
depleted. ATD also attenuated cue-evoked SCRs during the
reinstatement and reacquisition phases. Importantly, uncon-
ditioned responses were unaffected by ATD, indicating that the
effect was specific to learned cues and not a general blunting
of arousal encompassing responses to aversion itself. Mood
was unaffected by ATD, consistent with previous studies of
healthy volunteers (58–60). By using a task that elicited phys-
iological reactions, however, it was possible to uncover an
effect of serotonin on emotion. The primary implication of the
study is that serotonin plays a central role in conditioned threat
memory expression. Excessive serotonin signaling may be an
important contributor to the persistence of pathological
emotional reactions. This might be a feature of individuals who
are highly intolerant of uncertainty, a trait we propose could
represent a latent marker of vulnerability to serotonergic
dysregulation.

The directionality of the depletion effects—a reduction,
rather than enhancement, of emotion—may seem counterin-
tuitive. These results, however, are in line with and advance
influential theories of serotonin function (61–63) and are
consistent with an array of experimental data (14,21,22,62,64).
Serotonin is thought to be critically involved in predicting
punishment, and aversively conditioned cues stimulate sero-
tonin release (14,62–64). The present results are most directly
comparable to, and therefore substantiated by, two studies
that diminished serotonin function in healthy humans and
showed attenuated SCR during threat conditioning of neutral
cues (21,22). One of these studies additionally employed
functional magnetic resonance imaging and found that the
attenuation of SCR following ATD was accompanied by
diminished signals in the amygdala and orbitofrontal cortex
that were otherwise evoked by cues predictive of aversion (21).
021; -:-–- www.sobp.org/BPCNNI
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The current study represents an important extension of this
work on initial conditioning in humans by addressing a critical
clinically relevant question: How does lowering serotonin
impact the intensity with which previously formed emotional
memories return? Our results are also consistent with a study
that conditioned rats off-drug and tested them a day later
for threat memory expression under a different serotonergic
manipulation. Acute SRI administration, which increases
extracellular serotonin, enhanced conditioned threat memory
expression, and this effect was blocked by administering a 5-
HT2C antagonist (but not by a 5-HT3 antagonist) (65). Indeed,
downregulation of 5-HT2C receptors is believed to occur with
repeated administration of SRIs and may contribute to their
therapeutic effects (62).

The present results appear to agree with what is known
about the basic serotonergic innervation of different amygdala
subnuclei. The basolateral nucleus of the amygdala (BLA) is
critical for storing associations between cues and aversive
outcomes (66). The central nucleus of the amygdala (CeA),
meanwhile, is a major source of Pavlovian conditioned output
from the amygdala and signals downstream to structures,
including the hypothalamus and periacqueductal gray, that
contribute to defensive reactions such as perspiration in
humans and freezing in rodents (66). Critically, the BLA re-
ceives dense serotonergic innervation, while the CeA receives
weak serotonergic input (14). Indeed, overexpressing 5-HT2C
receptors in the BLA and infusing a 5-HT2A/2C agonist into the
BLA enhanced defensive behaviors in rodents, whereas 5-
HT2C knockout mice displayed the opposite behavioral effect
(14). This is remarkably consistent with the present findings:
emotional responses to predictive cues (conditioned stimuli),
which should heavily engage serotonin signaling in the BLA,
were modulated by ATD, whereas SCR to the aversive
outcome itself was unaffected. Indeed, it is the CeA that re-
sponds to aversive outcomes (67). That activity associated
with aversive expectations occurs in the BLA, but not in the
CeA, has furthermore been associated with individual differ-
ences in trait anxiety in humans (67). Meanwhile, it should be
noted that in the absence of stimuli, serotonin has an inhibitory
role in the lateral amygdala of rats (68,69): this accords with the
view that the amygdala is a relatively “silent” brain structure,
containing a strong inhibitory network to minimize firing of cells
spontaneously or to irrelevant stimuli (70).

Group-level SCR during the spontaneous recovery phase
was lower under ATD for the CS2, as well as for the CS1s.
While the CS2 is safe and thus typically associated with lower
SCRs regardless of ATD, the CS2 can still evoke SCRs:
anticipatory arousal may be diminished but not entirely absent.
The implication, based on our data, is that normally occurring
nonzero CS2 responses (anticipatory arousal) are serotonergi-
cally mediated and thus attenuated by ATD. In the reinstatement
and reacquisition phases, in which there was no longer a dif-
ferential response to the CS1s relative to the CS2 regardless of
serotonin status, likely owing to the short-lived nature of effects
in these paradigms (57), a similar logic applies: the nonspecific
attenuation of cue-evoked SCRs by ATD appears to reflect
serotonin-mediated anticipatory arousal. In other words, group-
level analyses of the spontaneous recovery, reinstatement, and
reacquisition phases show that ATD attenuated anticipatory
arousal elicited by both the CS1 and CS2.
Biological Psychiatry: Cognitive Neuroscien
An important limitation is that we did not see robust evi-
dence for complete extinction on day 1. One reason could be
the use of partial reinforcement during acquisition, which can
prolong conditioning (43,71,72). We employed two CS1s to
compare retention of conditioning versus retention of extinc-
tion: ultimately, these could not be definitively parsed. While
the lack of difference between the CS1E and CS1N on day 2
is likely due to incomplete extinction, it is also possible (10) that
including the CS1N in all day 2 phases cued memory for
conditioning on day 1—thus enhancing memory expression for
CS1E—more so than an extinction memory trace. SCR
habituated during reinstatement and reacquisition, which often
occurs (57), but made it more difficult to ascertain effects. The
ATD group tended to have nonsignificantly lower SCRs even
before depletion: while this could possibly have affected re-
sults after depletion, a covariate was included to control for
this possibility. The distribution of SCR values, furthermore,
was highly variable, even after appropriate transformation.

Another limitation is that serotonin was not measured
directly. ATD as a method has been critiqued (73), yet defen-
ded on the basis of considerable evidence (18,20). Consonant
results from human ATD studies and rodent experiments with
5,7-dihydroxytryptamine (50,74), which induces profound se-
rotonin loss, bolsters the case that ATD reduces central
serotonin.

We have shown for the first time that lowering serotonin
attenuated the subsequent return of threat responses, condi-
tioned prior to depletion: this has particular clinical relevance
and advances the human literature on serotonin and threat
conditioning (5,7,8,12,14). Integrating traits and neurochemical
state is relevant for understanding vulnerability in health and
may inform transdiagnostic mechanisms of illness to refine
psychiatric classification (49) and help direct treatment
strategies.

ACKNOWLEDGMENTS AND DISCLOSURES
This work was supported by a Wellcome Trust Senior Investigator Award
(Grant No. 104631/Z/14/Z [to TWR]), the National Institute for Health
Research Cambridge Biomedical Research Centre (Mental Health Theme)
(to BJS), the UK Medical Research Council (Grant No. MC_PC_17213 [to
RNC]), a Gates Cambridge Scholarship (to JWK), and an Angharad Dodds
John Bursary in Mental Health and Neuropsychiatry (to JWK). The views
expressed are those of the authors and not necessarily those of the National
Institute for Health Research or the Department of Health and Social Care.

We thank the staff at the National Institute for Health Research/Wellcome
Trust Clinical Research Facility at Addenbrooke’s Hospital, where the study
was conducted, and Rachel Kyd of the Cambridge University Hospital
Research and Development Office for assistance with study approval.

TWR discloses consultancy with Cambridge Cognition, Greenfields
Bioventures, and Unilever; he receives research grants from Shionogi & Co
and GlaxoSmithKline, royalties for CANTAB from Cambridge Cognition, and
editorial honoraria from Springer Verlag and Elsevier. BJS discloses con-
sultancy with Cambridge Cognition, Greenfield BioVentures, and Cassava
Sciences and receives royalties for CANTAB from Cambridge Cognition.
RNC consults for Campden Instruments and receives royalties from Cam-
bridge Enterprise, Routledge, and Cambridge University Press. All other
authors report no biomedical financial interests or potential conflicts of
interest.

ARTICLE INFORMATION
From the Department of Psychology (JWK, FEA, RY, TWR), Behavioural and
Clinical Neuroscience Institute (JWK, FEA, RY, AMA-S, BJS, RNC, TWR),
and Department of Psychiatry (DMC, AP, BJS, RNC), University of
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 7

http://www.sobp.org/BPCNNI


Tryptophan Depletion, Emotional Memory, and Uncertainty
Biological
Psychiatry:
CNNI
Cambridge; and Cambridgeshire and Peterborough NHS Foundation Trust
(DMC, AP, RNC), Cambridge; Section of Eating Disorders (RY), Department
of Psychological Medicine, Institute of Psychiatry, Psychology and Neuro-
science, King’s College London, London; and Department of Neuroscience,
Psychology and Behaviour (AMA-S), University of Leicester, Leicester,
United Kingdom; and the Department of Psychology (FEA), Leiden Univer-
sity, Leiden, the Netherlands.

Address correspondence to Jonathan W. Kanen, Ph.D., at jonathan.
kanen@gmail.com.

Received Mar 3, 2020; revised Dec 15, 2020; accepted Dec 16, 2020.
Supplementary material cited in this article is available online at https://

doi.org/10.1016/j.bpsc.2020.12.012.
REFERENCES
1. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al.

(2009): Neurobiological basis of failure to recall extinction memory in
posttraumatic stress disorder. Biol Psychiatry 66:1075–1082.

2. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM,
Marchante AN, Whalen PJ (2011): The structural and functional con-
nectivity of the amygdala: From normal emotion to pathological anxi-
ety. Behav Brain Res 223:403–410.

3. Marin MF, Zsido RG, Song H, Lasko NB, Killgore WDS, Rauch SL,
et al. (2017): Skin conductance responses and neural activations
during fear conditioning and extinction recall across anxiety disorders.
JAMA Psychiatry 74:622–631.

4. Apergis-Schoute AM, Gillan CM, Fineberg NA, Fernandez-Egea E,
Sahakian BJ, Robbins TW (2017): Neural basis of impaired safety
signaling in obsessive compulsive disorder. Proc Natl Acad Sci U S A
114:3216–3221.

5. McLaughlin NCR, Strong D, Abrantes A, Garnaat S, Cerny A,
O’Connell C, et al. (2015): Extinction retention and fear renewal in a
lifetime obsessive-compulsive disorder sample. Behav Brain Res
280:72–77.

6. Milad MR, Furtak SC, Greenberg JL, Keshaviah A, Im JJ,
Falkenstein MJ, et al. (2013): Deficits in conditioned fear extinction in
obsessive-compulsive disorder and neurobiological changes in the
fear circuit. JAMA Psychiatry 70:608–618.

7. Holt DJ, Coombs G, Zeidan MA, Goff DC, Milad MR (2012): Failure of
neural responses to safety cues in schizophrenia. Arch Gen Psychiatry
69:893–903.

8. Graham BM, Milad MR (2011): The study of fear extinction: Implica-
tions for anxiety disorders. Am J Psychiatry 168:1255–1265.

9. LeDoux JE, Pine DS (2016): Using neuroscience to help understand
fear and anxiety: A two-system framework. Am J Psychiatry 173:1083–
1093.

10. Bouton ME (2002): Context, ambiguity, and unlearning: Sources of
relapse after behavioral extinction. Biol Psychiatry 52:976–986.

11. Schiller D, Delgado MR (2010): Overlapping neural systems mediating
extinction, reversal and regulation of fear. Trends Cogn Sci 14:268–276.

12. Milad MR, Quirk GJ (2012): Fear extinction as a model for trans-
lational neuroscience: Ten years of progress. Annu Rev Psychol
63:129–151.

13. Cools R, Roberts AC, Robbins TW (2008): Serotoninergic regulation of
emotional and behavioural control processes. Trends Cogn Sci 12:31–40.

14. Bauer EP (2015): Serotonin in fear conditioning processes. Behav
Brain Res 277:68–77.

15. Stahl SM (2013): Stahl’s Essential Psychopharmacology: Neurosci-
entific Basis and Practical Applications, 4th ed. Cambridge, United
Kingdom: Cambridge University Press.

16. Bel N, Artigas F (1996): Reduction of serotonergic function in rat brain
by tryptophan depletion: Effects in control and fluvoxamine-treated
rats. J Neurochem 67:669–676.

17. Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL (1974): Rapid
depletion of serum tryptophan, brain tryptophan, serotonin and 5-
hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329.

18. Crockett MJ, Clark L, Roiser JP, Robinson OJ, Cools R, Chase HW,
et al. (2012): Converging evidence for central 5-HT effects in acute
tryptophan depletion. Mol Psychiatry 17:121–123.
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
19. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de
Montigny C, et al. (1997): Differences between males and females in
rates of serotonin synthesis in human brain. Proc Natl Acad Sci
94:5308–5313.

20. Young SN (2013): Acute tryptophan depletion in humans: A review of
theoretical, practical and ethical aspects. J Psychiatry Neurosci
38:294–305.

21. Hindi Attar C, Finckh B, Büchel C (2012): The influence of serotonin on
fear learning. PLoS One 7:e42397.

22. Hensman R, Guimaraes FS, Wang M, Deakin JFW (1991): Effects of
ritanserin on aversive classical conditioning in humans. Psychophar-
macology (Berl) 104:220–224.

23. Grillon C, Chavis C, Covington MF, Pine DS (2009): Two-week treatment
with the selective serotonin reuptake inhibitor citalopram reduces
contextual anxiety but not cued fear in healthy volunteers: A fear-
potentiated startle study. Neuropsychopharmacology 34:964–971.

24. Grillon C, Levenson J, Pine DS (2007): A single dose of the selective
serotonin reuptake inhibitor citalopram exacerbates anxiety in
humans: A fear-potentiated startle study. Neuropsychopharmacology
32:225–231.

25. Robinson OJ, Overstreet C, Allen PS, Pine DS, Grillon C (2012): Acute
tryptophan depletion increases translational indices of anxiety but not
fear: Serotonergic modulation of the bed nucleus of the stria termi-
nalis? Neuropsychopharmacology 37:1963–1971.

26. Bui E, Orr SP, Jacoby RJ, Keshaviah A, Leblanc NJ, Milad MR, et al.
(2013): Two weeks of pretreatment with escitalopram facilitates
extinction learning in healthy individuals. Hum Psychopharmacol Clin
Exp 28:447–456.

27. Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N,
Agustsdottir A, et al. (2011): Fear erasure in mice requires synergy
between antidepressant drugs and extinction training. Science
334:1731–1734.

28. Burghardt NS, Sigurdsson T, Gorman JM, McEwen BS, LeDoux JE
(2013): Chronic antidepressant treatment impairs the acquisition of
fear extinction. Biol Psychiatry 73:1078–1086.

29. Hartley CA, McKenna MC, Salman R, Holmes A, Casey BJ, Phelps EA,
Glatt CE (2012): Serotonin transporter polyadenylation polymorphism
modulates the retention of fear extinction memory. Proc Natl Acad Sci
U S A 109:5493–5498.

30. Elliott R, Zahn R, Deakin JFW, Anderson IM (2011): Affective cognition
and its disruption in mood disorders. Neuropsychopharmacology
36:153–182.

31. Harmer CJ, Bhagwagar Z, Cowen PJ, Goodwin GM (2002): Acute
administration of citalopram facilitates memory consolidation in
healthy volunteers. Psychopharmacology (Berl) 163:106–110.

32. Harmer CJ, Phil D, Shelley NC, Cowen PJ, Psych FRC, Goodwin GM
(2004): Increased positive versus negative affective perception and
memory in healthy volunteers following selective serotonin and
norepinephrine reuptake inhibition. Am J Psychiatry 161:1256–1263.

33. Harmer CJ, Rogers RD, Tunbridge E, Cowen PJ, Goodwin GM (2003):
Tryptophan depletion decreases the recognition of fear in female
volunteers. Psychopharmacology (Berl) 167:411–417.

34. Dunsmoor JE, Campese VD, Ceceli AO, LeDoux JE, Phelps EA (2015):
Novelty-facilitated extinction: Providing a novel outcome in place of an
expected threat diminishes recovery of defensive responses. Biol
Psychiatry 78:203–209.

35. Freeston MH, Rhéaume J, Letarte H, Dugas MJ, Ladouceur R (1994):
Why do people worry? Pers Individ Dif 17:791–802.

36. Lucas K, Luck CC, Lipp OV (2018): Novelty-facilitated extinction and the
reinstatement of conditional human fear. Behav Res Ther 109:68–74.

37. Morriss J, Saldarini F, Chapman C, Pollard M, van Reekum CM (2019):
Out with the old and in with the new: The role of intolerance of un-
certainty in reversal of threat and safety. J Exp Psychopathol 10:
2043808719834451.

38. Morriss J, Macdonald B, Van Reekum CM (2016): What is going on
around here? Intolerance of uncertainty predicts threat generalization.
PLoS One 11:e0154494.

39. Morriss J, van Reekum CM (2019): I feel safe when I know: Contin-
gency instruction promotes threat extinction in high intolerance of
uncertainty individuals. Behav Res Ther 116:111–118.
021; -:-–- www.sobp.org/BPCNNI

mailto:jonathan.kanen@gmail.com
mailto:jonathan.kanen@gmail.com
https://doi.org/10.1016/j.bpsc.2020.12.012
https://doi.org/10.1016/j.bpsc.2020.12.012
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref1
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref1
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref1
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref2
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref2
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref2
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref2
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref3
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref3
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref3
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref3
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref4
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref4
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref4
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref4
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref5
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref5
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref5
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref5
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref6
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref6
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref6
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref6
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref7
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref7
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref7
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref8
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref8
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref9
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref9
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref9
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref10
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref10
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref11
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref11
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref12
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref12
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref12
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref13
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref13
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref14
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref14
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref15
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref15
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref15
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref16
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref16
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref16
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref17
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref17
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref17
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref18
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref18
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref18
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref19
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref19
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref19
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref19
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref20
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref20
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref20
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref21
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref21
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref22
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref22
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref22
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref23
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref23
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref23
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref23
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref24
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref24
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref24
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref24
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref25
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref25
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref25
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref25
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref26
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref26
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref26
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref26
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref27
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref27
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref27
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref27
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref28
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref28
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref28
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref29
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref29
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref29
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref29
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref30
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref30
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref30
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref31
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref31
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref31
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref32
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref32
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref32
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref32
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref33
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref33
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref33
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref34
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref34
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref34
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref34
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref35
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref35
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref36
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref36
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref37
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref37
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref37
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref37
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref38
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref38
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref38
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref39
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref39
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref39
http://www.sobp.org/BPCNNI


Tryptophan Depletion, Emotional Memory, and Uncertainty
Biological
Psychiatry:
CNNI
40. Morriss J (2019): What do I do now? Intolerance of uncertainty is
associated with discrete patterns of anticipatory physiological
responding to different contexts. Psychophysiology 56:e13396.

41. Morriss J, Christakou A, van Reekum CM (2015): Intolerance of un-
certainty predicts fear extinction in amygdala-ventromedial prefrontal
cortical circuitry. Biol Mood Anxiety Disord 5:4.

42. Morriss J, Christakou A, van Reekum CM (2016): Nothing is safe:
Intolerance of uncertainty is associated with compromised fear
extinction learning. Biol Psychol 121:187–193.

43. Morriss J, Wake S, Lindner M, McSorley E, Dodd H (2020): How many
times do I need to see to believe? The impact of intolerance of un-
certainty and exposure experience on safety-learning and retention in
young adults. Int J Psychophysiol 153:8–17.

44. Carleton RN, Norton MAPJ, Asmundson GJG (2007): Fearing the un-
known: A short version of the Intolerance of Uncertainty Scale.
J Anxiety Disord 21:105–117.

45. Carleton RN (2016): Into the unknown: A review and synthesis of
contemporary models involving uncertainty. J Anxiety Disord 39:30–43.

46. Gentes EL, Ruscio AM (2011): A meta-analysis of the relation of
intolerance of uncertainty to symptoms of generalized anxiety disor-
der, major depressive disorder, and obsessive-compulsive disorder.
Clin Psychol Rev 31:923–933.

47. McEvoy PM, Mahoney AEJ (2012): To be sure, to be sure: Intolerance
of uncertainty mediates symptoms of various anxiety disorders and
depression. Behav Ther 43:533–545.

48. Fetzner MG, Horswill SC, Boelen PA, Carleton RN (2013): Intolerance
of uncertainty and PTSD symptoms: Exploring the construct rela-
tionship in a community sample with a heterogeneous trauma history.
Cognit Ther Res 37:725–734.

49. Cuthbert BN, Insel TR (2013): Toward the future of psychiatric diag-
nosis: The seven pillars of RDoC. BMC Med 11:126.

50. Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW (2014):
Serotonin depletion induces “waiting impulsivity” on the human four-
choice serial reaction time task: Cross-species translational signifi-
cance. Neuropsychopharmacology 39:1519–1526.

51. Raio CM, Brignoni-Perez E, Goldman R, Phelps EA (2014): Acute
stress impairs the retrieval of extinction memory in humans. Neurobiol
Learn Mem 112:212–221.

52. Schiller D, Kanen JW, LeDoux JE, Monfils M-H, Phelps EA (2013):
Extinction during reconsolidation of threat memory diminishes prefrontal
cortex involvement. Proc Natl Acad Sci U S A 110:20040–20045.

53. Haaker J, Golkar A, Hermans D, Lonsdorf TB (2014): A review on
human reinstatement studies: An overview and methodological chal-
lenges. Learn Mem 21:424–440.

54. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PDS,
Price LH, et al. (1998): Tryptophan depletion during continuous CSF
sampling in healthy human subjects. Neuropsychopharmacology
19:26–35.

55. Spielberger C, Gorsuch R, Lushene R (1983): STAI Manual for the
State-Trait Anxiety Inventory. Palo Alto, CA: Consult Psychologists
Press.

56. Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F,
et al. (2018): Dissociable effects of acute SSRI (escitalopram) on ex-
ecutive, learning and emotional functions in healthy humans. Neuro-
psychopharmacology 43:2645–2651.
Biological Psychiatry: Cognitive Neuroscien
57. Gershman SJ, Hartley CA (2015): Individual differences in learning
predict the return of fear. Learn Behav 43:243–250.

58. Bell CJ, Hood SD, Nutt DJ (2005): Acute tryptophan depletion. Part
II: Clincal effects and implications. Aust N Z J Psychiatry 39:565–
574.

59. Booij L, Van der Does a JW, Riedel WJ (2003): Monoamine depletion in
psychiatric and healthy populations: Review. Mol Psychiatry 8:951–
973.

60. Ruhé HG, Mason NS, Schene AH (2007): Mood is indirectly related to
serotonin, norepinephrine and dopamine levels in humans: A meta-
analysis of monoamine depletion studies. Mol Psychiatry 12:331–359.

61. Cools R, Nakamura K, Daw ND (2011): Serotonin and dopamine:
Unifying affective, activational, and decision functions. Neuro-
psychopharmacology 36:98–113.

62. Deakin JFW (2013): The origins of “5-HT and mechanisms of defence”
by Deakin and Graeff: A personal perspective. J Psychopharmacol
27:1084–1089.

63. Deakin JFW, Graeff F (1991): 5-HT and mechanisms of defence.
J Psychopharmacol 5:305–315.

64. Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M (2016):
Serotonin, amygdala and fear: Assembling the puzzle. Front Neural
Circuits 10:24.

65. Burghardt NS, Bush DEA, McEwen BS, LeDoux JE (2007): Acute se-
lective serotonin reuptake inhibitors increase conditioned fear
expression: Blockade with a 5-HT2C receptor antagonist. Biol Psy-
chiatry 62:1111–1118.

66. LeDoux JE (2000): Emotion circuits in the brain. Annu Rev Neurosci
23:155–184.

67. Michely J, Rigoli F, Rutledge RB, Hauser TU, Dolan RJ (2019): Distinct
processing of aversive experience in amygdala subregions. Biol Psy-
chiatry Cogn Neurosci Neuroimaging 5:291–300.

68. Stutzmann GE, McEwen BS, Ledoux JE (1998): Serotonin modulation
of sensory inputs to the lateral amygdala: Dependency on cortico-
sterone. J Neurosci 18:9529–9538.

69. Stutzmann GE, LeDoux JE (1999): GABAergic antagonists block the
inhibitory effects of serotonin in the lateral amygdala: A mechanism for
modulation of sensory inputs related to fear conditioning. J Neurosci
19:RC8.

70. LeDoux J (2007): The amygdala. Curr Biol 17:868–874.
71. Grady AK, Bowen KH, Hyde AT, Totsch SK, Knight DC (2016): Effect of

continuous and partial reinforcement on the acquisition and extinction
of human conditioned fear. Behav Neurosci 130:36–43.

72. Leonard DW (1975): Partial reinforcement effects in classical aversive
conditioning in rabbits and human beings. J Comp Physiol Psychol
88:596–608.

73. van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT,
Steinbusch HWM, Prickaerts J (2011): Mechanism of acute tryptophan
depletion: Is it only serotonin? Mol Psychiatry 16:695–713.

74. Winstanley CA, Dalley JW, Theobald DEH, Robbins TW (2004): Frac-
tioning impulsivity: Contrasting effects of central 5-HT depletion on
different measures of impulsive behaviour. Neuro-
psychopharmacology 29:1331–1343.

75. Beck AT, Steer RA, Ball R, Ranieri WF (1996): Comparison of Beck
Depression Inventories -IA and -II in psychiatric outpatients. J Pers
Assess 67:588–597.
ce and Neuroimaging - 2021; -:-–- www.sobp.org/BPCNNI 9

http://refhub.elsevier.com/S2451-9022(21)00001-X/sref40
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref40
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref40
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref41
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref41
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref41
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref42
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref42
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref42
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref43
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref43
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref43
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref43
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref44
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref44
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref44
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref45
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref45
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref46
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref46
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref46
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref46
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref47
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref47
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref47
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref48
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref48
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref48
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref48
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref49
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref49
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref50
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref50
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref50
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref50
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref51
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref51
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref51
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref52
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref52
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref52
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref53
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref53
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref53
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref54
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref54
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref54
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref54
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref55
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref55
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref55
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref56
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref56
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref56
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref56
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref57
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref57
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref58
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref58
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref58
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref59
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref59
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref59
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref60
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref60
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref60
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref61
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref61
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref61
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref62
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref62
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref62
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref63
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref63
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref64
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref64
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref64
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref65
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref65
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref65
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref65
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref66
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref66
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref67
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref67
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref67
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref68
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref68
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref68
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref69
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref69
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref69
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref69
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref70
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref71
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref71
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref71
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref72
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref72
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref72
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref73
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref73
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref73
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref74
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref74
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref74
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref74
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref75
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref75
http://refhub.elsevier.com/S2451-9022(21)00001-X/sref75
http://www.sobp.org/BPCNNI

	Effect of Tryptophan Depletion on Conditioned Threat Memory Expression: Role of Intolerance of Uncertainty
	Methods and Materials
	Participants
	Acute Tryptophan Depletion
	Task and Procedure

	Results
	Blood and Mood
	Acquisition Before Depletion
	Extinction Before Depletion
	Spontaneous Recovery After Depletion
	Relationship Between Spontaneous Recovery and Extent of Depletion
	Role of Intolerance of Uncertainty in ATD Effects on Spontaneous Recovery
	Reinstatement After Depletion
	Relationship Between Reinstatement and Extent of Depletion
	Reacquisition After Depletion
	Relationship Between Reacquisition and Extent of Depletion
	Summary of Results

	Discussion
	References


