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Look at the sky. We are not alone.

The whole universe is friendly to us

and conspires only to give the best

to those who dream and work.

- Dr. A P J Abdul Kalam





Abstract

Dynamic accretion discs around supermassive black holes

by Anagha Raj

Accretion discs around supermassive black holes act as the power houses of radiation to

the most luminous, continuously emitting objects in the Universe; Active Galactic Nuclei

(AGN). Accretion discs produce light, which we can observe by turning gravitational

potential energy into heat via viscous torques. For discs around black holes, the available

gravitational energy is the significant fraction of the rest mass energy of the orbiting

matter. Simple, analytical models are capable of explaining the broad features of observed

accreting black holes. However, recent observations have challenged existing theories by

finding that AGN luminosities vary rapidly and with large amplitudes. In this thesis,

we investigate the dynamics of warped discs with numerical simulations to see if such

variability can be produced by these discs. Previous works have provided a criterion for

warped discs to tear into discrete rings. We examine this possibility and explore how

this may connect to observed disc behaviour. We demonstrate an agreement between

our numerical results and the predicted criterion for disc tearing in warped discs around

supermassive black holes. We also explore how our numerical analysis prove useful to

illustrate the observational variability exhibited in AGN discs. In the later chapter, we

show that often used initial conditions for accretion discs in simulations that employ

Smoothed Particle Hydrodynamics (SPH) are not in dynamical equilibrium, and this

leads to the formation of unwanted pressure waves that cannot be effectively damped at

higher resolution. We propose a damping scheme, which uses an initial relaxing phase to

remove these waves over a timescale comparable with the disc’s dynamical timescale.
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Introduction

Black holes are among the most extreme objects in the Universe. The gravitational field

generated by a black hole is so strong that nothing, not even light can escape out of it.

The surface bounding the region of no escape around a black hole is termed as the event

horizon. Outside of the event horizon, black holes are nature’s simplest objects which are

defined by their mass and spin angular momentum. Black holes can also have a charge

which in astrophysical concept is taken to be zero.

The possibility of the existence of black holes was first discussed at the end of the

18th century by John Michell and Pierre-Simon Laplace. The theory of relativity was

first proposed by Albert Einstein in 1915. A year after, Karl Schwarzschild deduced

the spherically symmetric vacuum solution of Einsteins equations describing the exterior

gravitational field of a spherically symmetric body and derived the Schwarzschild solution

characterising spherical, non-rotating black holes (Schwarschild radius Rs). It was not

until 1963 when, Roy Kerr determined a solution corresponding to spinning black holes.

This was termed as the Kerr solution, and it played an important role in understanding the

energetics of a spinning black hole. This solution infers that the space outside of a spinning

black hole rotates like a vortex. This tends to drag nearby matter into rotation around

the black hole and this effect is termed as frame-dragging. Initially, the existence of black

holes remained virtually as theoretical and mathematical ideas. While the physicists had
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1. INTRODUCTION

been struggling to research more on the theory of black holes, astronomers had looked

for real examples of black holes in the Universe.

Astronomers discovered dozens of compact objects identified as black hole candidates

with masses greater than the mass of a neutron star at 3M⊙ where M⊙ is the mass of the

Sun (Shapiro & Teukolsky, 1983). In terms of their masses, black holes are categorised

into two classes - those with masses ∼ 5 - 20 M⊙ termed as stellar mass black holes

typically found in X-Ray binaries; and those with masses ∼ 106 - 1010 M⊙ named as

supermassive black holes residing at the centre of galaxies. For a black hole of mass M

and radius Rs, the gravitational potential energy released per unit mass accreted is given

as (Frank et al., 2002)

∆Eacc =
GM

Rs

(1.1)

where Rs = 2GM/c2, so ∆Eacc = 0.5c2. This energy yield is much higher in comparison

to the nuclear fusion in stars (or burning of hydrogen to helium) with an energy release

of ∆Eacc = 0.007c2.

Quasars, first discovered in the late 50s in all sky radio surveys (the term quasars is a

contraction for quasi stellar radio source) were quickly identified as accreting black holes

(Matthews et al., 1964; Salpeter, 1964; Zel’dovich, 1964). Around the same time, Cygnus

X-1 was discovered and identified as one of the brightest X-ray sources in the sky. In 1971,

Thomas Bolton, Louise Webster and Paul Murdin found that Cygnus X-1 had a massive

stellar companion. By studying the orbital motion of the companion star, the mass of

the compact object in Cygnus X-1 was calculated and it exceeded the maximum value

for the mass of a neutron star. As a result, Cygnus X-1 was identified as the first stellar

mass black hole candidate. Thereafter, an increasing number of observations indicated

the presence of stellar mass black holes in X-ray binaries (Remillard & McClintock, 2006)

and supermassive black holes at the centre of many galaxies (Kormendy & Richstone,
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1995).

There are several methods to estimate the mass of black holes such as, by studying

the orbital motion of nearby stars or by observational techniques such as gravitational

microlensing or reverberation mapping (discussed in detail in section 1.2.3). There have

also been significant efforts to measure black hole spins using different methods. The two

main techniques are the continuum-fitting method (Zhang et al., 1997; McClintock et al.,

2014) and X-ray reflection spectroscopy or iron line method (Brenneman & Reynolds,

2006; Reynolds, 2014). With better technological progress and improvements in obser-

vational facilities over many years, there has been substantial progress in the study of

astrophysical black holes. In 2015, the LIGO experiment detected gravitational waves

from the coalescence of two black holes (Abbott et al., 2016) and the Event Horizon

Telescope collaboration released the first image of a black hole in 2019 (Akiyama et al.,

2019).

1.1 Physical properties

Each black hole is characterised by two parameters: mass M and the dimensionless spin

parameter a that measures the rotation rate of the black hole and ranges between 0 (for

a non spinning BH) to 1 (maximally-spinnning BH). From observational evidence, we

classify astrophysical black holes into two classes: stellar-mass black holes (1 - 100 M⊙)

and the most spectacular supermassive black holes (105 - 1010 M⊙) which power active

galactic nuclei or AGN. A third class of objects named as intermediate mass black holes

(100 - 10000 M⊙) are believed to be formed by collision or merging of stellar mass black

holes, but their nature still remains controversial (Bambi, 2019).
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1.1.1 Stellar Mass Black Holes

Stellar mass black holes are remnants of collapsed, massive stars. Many of such candidates

are expected to be found in X-ray binaries and close binary systems. The initial mass of

a stellar-mass black hole depends on the properties of the progenitor star which includes:

its mass, its evolution, and the supernova explosion mechanism (Belczynski et al., 2010).

It is important to distinguish the black hole candidates from the accreting neutron

stars (also found in X-ray binaries). Hence, a lower bound in the maximum mass (around

2 - 3 M⊙) is used to distinguish between a neutron star and black hole. A star collapses

when it depletes the nuclear material and its gas pressure can no longer balance the

gravitational force. At masses below 2 - 3 M⊙, the quantum pressure of neutrons and

electrons can prevent the star’s collapse, thus forming neutron stars. On the other hand,

bodies exceeding this mass limit collapse and form black holes (Rhoades & Ruffini, 1974;

Kalogera & Baym, 1996; Lattimer, 2012).

Black holes in X-ray binaries (or black hole binaries) are classified into two types: low-

mass X-ray binaries (LMXBs) and high-mass X-ray binaries (HMXBs). Low and high are

referred in terms of the mass of the stellar companion. In LMXBs, the companion star

has a mass M < 3M⊙, whereas for HMXBs the companion star has M > 10M⊙. The

dynamical measurements of their masses are done by studying the orbital motion of the

companion star. The mass function f(M) is given as (Casares & Jonker, 2014)

f(M) =
K3

cPorb

2πGN

=
M sin3 i

(1 +Mc/M)2
(1.2)

where Kc = vc sin i, vc is the velocity of the companion star, i is the angle between the

normal of the orbital plane and the observer’s line of sight, Porb is the orbital period of the

system, Mc is the mass of the companion star andM is the mass detected using dynamical

measurements (or mass of a black hole if M > 3M⊙). Combining measurements of Kc
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and Porb with estimates of i and Mc, the masses of X-ray emitting stars in several X-ray

binaries with stellar mass black hole could be measured.

Figure 1.1: Sketch of 22 X-ray binaries with a stellar-mass black hole confirmed by dynamical measurements is shown. The
black hole accretion disk is on the left, and the companion star is on the right for every system. In order to have an idea
of the size of these systems, the figure also shows the Sun (whose radius is 0.7 millions km) and the distance Sun-Mercury
(about 50 millions km). Figure courtesy of Jerome Orosz.

Figure 1.1 shows 22 X-ray binaries with a stellar mass black hole confirmed by dynam-

ical measurements where Cygnus X-1, LMC X-1, LMC X-3, and M33 X-7 are HMXBs,

while all other systems are LMXBs. Recently, it has become possible through gravita-

tional wave astronomy to detect black holes, in binary systems in the process of merging.

These include black hole - black hole and black hole - neutron star binaries. Figure 1.2

shows the black hole masses (pre mergers and post mergers) observed by the LIGO/Virgo

collaboration.
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Figure 1.2: Gravitational waves events showing black holes observed by gravitational waves, with the two initial objects
merging to form a larger one, as shown by the arrows (Image Credit: LIGO/NSF/Caltech/SSU Aurore Simmonet).

Furthermore, black holes with a mass range∼ 102 - 104 M⊙ are termed as Intermediate-

mass black holes (IMBHs). The existence of intermediate-mass black holes is associated

with some ultra-luminous X-ray sources by the detection of quasi-periodic oscillations

(QPOs) (Colbert & Mushotzky, 1999). A transient X-ray source named HLX-1 of mass

≥ 500M⊙ at the centre of the galaxy ESO 243-49 is a recognised example of an intermedi-

ate mass black hole (Farrell et al., 2009). However, there are no dynamical measurements

done so far to study IMBHs since their actual nature is still not well understood. Al-

though some studies suggest that there are intermediate-mass black holes at the centre

of certain globular clusters, there is no common agreement to that theory yet (Gebhardt

et al., 2002; Gebhardt et al., 2005).

1.1.2 Supermassive Black Holes

Astronomical observations indicate the presence of supermassive black holes with masses

ranging 105−1010M⊙ at the centre of a large number of galaxies. The strongest dynamical

evidence for a supermassive black hole is from the centre of our own galaxy, the Milky

Way. Several observations in the infrared, radio and in X-ray wavelengths showed the

presence of a compact source of radiation at the Galactic Centre named as Sagittarius A∗
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(Sgr A∗) with mass ∼ 4×106M⊙, calculated from the proper motions of the surrounding

stars (Schödel et al., 2002).

Additional evidence for a supermassive black hole comes from the maser emission due

to water molecules at the centre of the galaxy NGC 4258 (Miyoshi et al., 1995). Radio

interferometry measurements were used to map the radial velocities, proper motions and

accelerations of the masers which were consistent with Keplerian dynamics (Bragg et al.,

2000). These measurements inferred the presence of a black hole at the centre of NGC

4258 with a mass of 3.5× 107M⊙.

Although, the stellar-mass black holes in the Universe are expected to be the final

product of heavy stars, the exact origin of the supermassive black holes at the centre of

galaxies is not fully understood. A few possibilities of their origin include, the collapse

of heavy primordial clouds at initial masses much larger than stellar mass black holes

or from the merger of several black holes (Volonteri, 2010). Over the last few years, it

has become clear that supermassive black holes can grow to masses ∼ 1010 M⊙ when the

Universe is only 1 Gyr old (Wu et al., 2015; McLure & Jarvis, 2002). This requires the

black holes to grow with higher accretion efficiencies and higher accretion rates.

Furthermore, Willott et al. (2003) discusses near infrared observations of quasars

demonstrating evidence of supermassive black holes with mass M ≥ 5 × 109M⊙ at a

redshift of z ≃ 6. This finding presented a challenge to theoretical models which prompted

King & Pringle (2006, 2007) to propose the idea of chaotic accretion. In this picture,

accretion proceeds through a sequence of events with each accretion disc forming at a

random angle to the black hole spin vector (further discussed in the following section).
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1.1.3 Black hole spin

For a black hole with mass M and angular momentum J , we define the spin parameter

as:

a =
cJ

GM2
(1.3)

where c is the speed of light and G is the gravitational constant. When circular orbits in

a BH spacetime are considered, a key concept is the innermost stable circular orbit RISCO

(also referred as the marginally stable orbit). In an accretion disc, the gas starts from a

large radii and spirals in through a sequence of circular orbits. When the gas reaches the

ISCO, there are no more stable circular orbits available. As a result, the gas accelerates

radially and free falls into the BH. Therefore, circular orbits with radii R ≥ RISCO are

stable, whereas those with R < RISCO are unstable.

ISCO: Schwarzschild and Kerr black holes

The inner most stable orbit in an accretion disc, RISCO is dependent on the black hole

spin a. For the general case of a spinning black hole, the spacetime is described by the

Kerr metric which is simplified to the Schwarzschild metric when the spin parameter a

= 0. In the case of a Schwarzschild black hole, the effective potential is given as (Hobson

et al., 2005)

Veff =
h2

2r2
− GM

r
− GMh2

c2r3
(1.4)

where h represents the specific angular momentum.

dVeff

dr
= −h2

r3
+

GM

r2
+

3GMh2

c2r4
= 0 (1.5)

This can be rewritten as

−h2r +GMr2 +
3GMh2

c2
= 0. (1.6)
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This equation is quadratic in r and the solution is given as:

r =
h

2GM

󰀗
h±

󰁵
h2 − 12G2M2

c2

󰀘
, (1.7)

• if h2− 12G2M2

c2
> 0, it can either give a minima (for stable circular orbit) or maxima

(unstable orbit).

• if h2 − 12G2M2

c2
< 0, no circular orbits are possible.

• if h2 − 12G2M2

C2 = 0, the system has its critical point at h2 = 12G2M2

c2
.

Substituting h2 = 12G2M2

c2
in equation (1.7) gives:

r =
h2

2GM
=

6GM

c2
. (1.8)

This gives the value of the innermost stable circular orbit for a Schwarzschild black hole.

The same derivation can be extended for Kerr black holes and one can examine how the

ISCO values differ for spinning black holes at values of a varying between −1 and +1.

The equation of the first derivative of the effective potential in Kerr metric is given as

(Hobson et al., 2005)

dVeff

dr
= r2 − 6GMr

c2
− 3a2

G2M2

c4
+ 8a

GM

c2

󰁵
GMr

c2
= 0. (1.9)

Therefore,

r2 − 6GMr

c2
− 3a2

G2M2

c4
+ 8a

GM

c2

󰁵
GMr

c2
= 0 (1.10)

where a is the spin parameter and we get:

rISCO =
6GM

c2
for a = 0 (Schwarzschild black hole), (1.11)

rISCO =
GM

c2
for a = +1 (Maximum prograde), (1.12)
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rISCO =
9GM

c2
for a = −1 (Maximum retrogade). (1.13)

Figure 1.3: This plot shows the variation of the inner most stable orbit (RISCO assuming G = M = c = 1) varies with black
hole spin a (Image taken from De Rosa et al. (2019)).

Figure 1.3 shows the variation of RISCO with spin a. For a maximally spinning BH

(a = +1), RISCO = GM/c2 with the orbit co-rotating with the BH spin (prograde).

The value of RISCO = 9GM/c2 with the orbit counter-rotating or in retrograde motion

(a = −1) and for a non-spinning or Schwarzchild BH (a = 0), RISCO = 6GM/c2.

A significant quantity considered in the astronomical observations of accreting black

holes is the accretion luminosity of the source measured in Eddington units. It is required

that the inward gravitational force on the gas must balance or be greater than the force

due to outward radiation such that the central object remains intact, i.e. |Frad| ≤ |Fgrav|

where Frad = σeL/4πr
2c and Fgrav = GMmp/r

2 (Peterson, 1997).

σe
L

4πr2c
≤ GMmp

r2
(1.14)

L ≤ 4πGcMmp

σe

(1.15)
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Therefore, the Eddington luminosity for a black hole of mass M is given as:

LEdd =
4πGMmpc

σe

= 1.26× 1038
M

M⊙
erg s−1 (1.16)

where σe is the electron (Thomson) cross section andmp is the mass of a proton (also given

by equation 3.3 in Peterson (1997)). Assuming that SMBHs acquire most of their mass

by accretion, Soltan (1982) showed that the accretion luminosity due to the accretion

rate of mass in black holes is given as:

Lacc = 󰂃Ṁaccc
2 (1.17)

where 󰂃 is the accretion efficiency determined by the fractional binding energy of the

innermost stable circular orbit (ISCO), c is the speed of light and Ṁacc is the rate of mass

accretion.

Bardeen (1970) established the relation between RISCO, spin a and accretion efficiency

󰂃, i.e:

󰂃 = 1−
󰀗
1− 2

3x

󰀘1/2
(1.18)

a =
x1/2

3

󰀗
4− (3x− 2)1/2

󰀘
(1.19)

with RISCO = x GM/c2 where x = 9,6 and 1 for spin parameters a = −1, 0 and +1

respectively. As mentioned earlier, there is observational evidence of supermasssive black

holes with masses ≥ 109M⊙ at redshift z ≈ 6 (Willott et al., 2003). Assuming that its

accretion luminosity cannot exceed the value:

Lacc =
4πGMc

κ
≃ 1047 erg s−1 (1.20)

for M = 109M⊙, where κ = mp/σT = 0.4 cm2g−1 is the electron scattering (Thomson)

opacity. King & Pringle (2006) showed that Soltan’s assumption (equation 1.17) can set
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a limit on the growth of SMBH. The accretion rate can be limited by the Eddington limit

given by

󰂃Ṁaccc
2 ≤ LEdd =

4πGMc

κ
, (1.21)

Ṁacc ≤
1

󰂃
.
4πGM

κc
. (1.22)

If we assume, that the accretion of matter proceeds at a rate

Ṁ = (1− 󰂃)Ṁacc (1.23)

Substituting equation 1.22 in 1.23 gives

Ṁ =
1− 󰂃

󰂃

M

tEdd

(1.24)

where

tEdd =
κc

4πG
= 4.5× 108 yrs. (1.25)

King & Pringle (2006) shows that although the value of 󰂃 changes as accretion proceeds,

its minimum of 󰂃min places a limit on the mass M to which the black hole grows from an

initial seed mass of M0 in a given time. Integrating equation 1.24 gives (King & Pringle,

2006)

M

M0

< exp

󰀗󰀕
t

tEdd

󰀖󰀕
1

󰂃min

− 1

󰀖󰀘
. (1.26)

At a redshift of z ≃ 6, the value of t/tEdd ≃ 2. Thus, for a maximally spinning black hole

at a = 1, the value of 󰂃min = 0.43 and M/M0 ≤ 20. On the other hand, if 󰂃min ≃ 0.06

for spin parameter values a ≃ 0.3 - 0.4, then M/M0 ∼ 4× 1013M⊙. This shows that it is

possible to grow the black holes rapidly if we can keep the spin low.

As we know, galactic nuclei are chaotic environments where random injections of

energy and momentum occur. The gas falling into the nuclei, has no prior knowledge of

the SMBH angular momentum and settles into a disc at a random angle of misalignment
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between the disc (Jd) and the SMBH angular momentum (Jh). The chaotic infalling of

gas can induce warping in discs due to the Lense Thirring effect (detailed in Section 1.5

and chapter 3) in spinning SMBHs (Bardeen & Petterson, 1975). Since accretion occurs

in both retrograde and prograde discs at different epochs, the chaotic infall of gas in

SMBHs is suggested as a mechanism to keep the spin low thereby allowing the growth of

SMBHs from stellar mass seeds (King & Pringle, 2006, 2007; King et al., 2008).

1.2 Observational properties of AGN

The spectra of galaxies with highly luminous nuclei, termed as Active Galactic Nuclei

(AGN) show broad emission lines covering a wide range of ionisation. In terms of their

broad limits of luminosity, these range from the brightest quasi-stellar objects (QSOs) or

quasars to the more common and less luminous Seyfert galaxies. There are two significant

properties, which make AGNs very interesting to study. Firstly, their ability to generate

extraordinary luminosities in tiny volumes (Edelson et al., 1996). The second are their

spectral features ranging over several orders of magnitude in luminosity across the various

wavebands. In this section, we review some of the observational characteristics in AGNs.

1.2.1 Spectra

As mentioned earlier, the output spectrum of AGN includes a huge range of wavelengths,

covering most of the electromagnetic spectrum. The spectral energy distribution (SED)

is a plot of frequency multiplied by flux (νFν) against frequency (ν). In the case of a

typical AGN spectrum, the spectrum peaks in the infrared (named the IR bump) and the

optical/UV (the UV bump). The UV bump takes the shape of the black body spectrum,

which represents the thermal emission from the accretion disc. On the other hand, the IR

radiation is the characteristic of the thermal emission from dust. The relative strengths

of these two peaks differ for different AGN types.
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Figure 1.4 shows the broadband continuum spectral energy distribution (SED) in

different types of AGN. The spectrum is extended over different orders of magnitude in

frequency. A lot of energy is emitted in the IR region (IR bump) as well as the optical/UV

region (the Big Blue Bump). The radio-quiet spectrum is divided into three major parts:

the infrared bump which is due to the reprocessing of the UV emission by dust in a

range of temperatures and at a range of distances, the Big Blue Bump (BBB) which is a

characteristic of the thermal emission from the accretion disc and the lastly X-ray region

which is due to the high-energy continuation of the BBB along with a Comptonised power

law with fluorescence and reflection from cold material (Koratkar & Blaes, 1999).

Figure 1.4: This shows the broadband continuum spectral energy distribution seen in the different types of AGNs (Peterson,
1997).

The hard X-ray band of the AGN spectrum represents a power law which can be

due to Compton upscattering of optical/UV photons by hot or non thermal electrons

in the central engine, possibly at a hot magnetised corona above the disk (Koratkar &

Blaes, 1999). In the soft X-ray region, the spectrum of many objects show a soft X-ray

excess that exceeds the extrapolation from the observed hard X-ray power-law continuum
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(Turner & Pounds 1989; Masnou et al. 1992). This excess may be considered the high

energy continuation of the BBB, but it doesn’t have an easy explanation as it is subjected

to a number of observational difficulties, making it the least well understood component

of the AGNs spectral energy distribution (SED).

1.2.2 Variability

A significant trait that led to the discovery of AGN is the rapid changes in the ob-

served luminosity. Every waveband of AGN exhibits variability, but not all AGN vary

in all wavebands. Since they are multi-wavelength emitters, the changes in the flux cor-

responding to different wavebands can be used to deduce the sizes and locations of the

various emitting regions in discs around the AGN. The time delay between the continuum

fluctuations and the emission line response gives the light travel time from the black hole

to the region of clouds termed as the broad line region (BLR) as shown in figure 1.5. The

size of the BLR can be determined and the same principle can be used to calculate the

size of the accretion discs using reverberation mapping models of AGN. One drawback

of this method is its requirement of long term monitoring (Edelson et al., 2015). The

technique of reverberation mapping is also used to estimate the masses of supermassive

black holes (Peterson, 2014). The next section summarises the technique of reverberation

mapping, and how it can be used to determine the mass estimates of black holes and to

determine the size of the BLR (De Rosa et al., 2015) and accretion discs (Edelson et al.,

2015).

1.2.3 Reverberation mapping

The term reverberation mapping acquired its significance when the emission variability

of AGN models became an observed phenomenon (Peterson, 1993). As shown in the

unified AGN model (figure 1.5), the continuum radiation originates from the inner part
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Figure 1.5: Unified AGN model showing a supermassive black hole with an obscurring dusty torus. Image taken from Urry
& Padovani (1995).

of the accretion disc. There is a broad line region (BLR) with relatively cold material

which absorbs the continuum radiation and re-emit at discrete wavelengths producing a

series of emission lines in the AGN spectrum (Peterson & Horne, 2004). In a nutshell,

the accretion disc produces a time-variable high-energy continuum flux that heats the gas

and the broad emission line fluxes respond to the changes in the flux of the continuum

source (Peterson & Horne, 2004). Due to the rotation of the BLR clouds around the

central mass, the emission lines are broadened due to Doppler effect.

Due to the sparse availability of data, the research models could not provide adequate

information on the structure of the AGN discs. This motivated the use of a technique

in which the light-travel time delays between the continuum source and the line emitting

clouds is utilised to examine the geometry and the velocity field of the BLR. This esti-

mation of the distance between the broad line regions and the central source is termed

as reverberation mapping (RM) (Blandford & McKee, 1982; Peterson, 1993).

As mentioned earlier, RM is also used to calculate mass estimates of a black hole

(Peterson & Wandel, 1999; Peterson & Wandel, 2000; Peterson, 2014). The equation is
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given as:

MBH = f

󰀕
∆V 2R

G

󰀖
(1.27)

where G is the gravitational constant, MBH is the mass of the black hole, ∆V is the

doppler width and f is a scaling factor that is different for each AGN.

The accretion discs around AGN emit radiation at varying ranges of frequencies such

as optical, ultra-violet (UV) or X-rays. The principle of time delays at different wavebands

can be utilised to determine the size of accretion discs (also discussed in section 1.6.1).

For a time delay τ , the value of the radius R (or size) of the disc can be obtained from

τ = Rc (1.28)

where c is the speed of light.

Figure 1.6: A sketch demonstrating the principle of disc reverberation mapping to observe the emitted radiation at different
frequencies in an AGN accretion disc; dt1 represents the time delay for the emission to reach the observer from the UV
zone and similarly dt2 is the time delay for the optical zone.

The sketch demonstrates the principle of disc reverberation mapping for an accretion

disc (divided into several annuli) with X-rays emitted from the inner region, followed by

the ultra-violet (UV) and the outer part contributed by an optical spectrum. Here, T

is the time taken by the X-rays to reach the observer. Similarly, t + dt1 and t + dt2 are
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the respective times for the emission from the UV and optical region of the disc to reach

the observer with dt1 and dt2 being their time delays with respect to the X-rays. We can

also demonstrate how the resultant luminosity at these three regions in the disc change

over time, as shown in figure 1.7. Using these recorded time delays, we can calculate the

sizes of the disc at each frequency or wavelength (X-rays, UV or optical) using equation

(1.28).

Figure 1.7: Sketch representing Luminosity-time relation, showing a distinct time difference between a variation in the
spectrum observed in X-ray, UV and optical regions respectively. Here T is the time recorded from the central (x-ray)
region of the disc, and the time recorded at UV and optical given resultantly as T+dt1 and T+dt2, with the corresponding
time delays being dt1 and dt2 respectively

1.2.4 Types of AGN

It is very important to understand the taxonomy of AGNs and their underlying physics.

Some of the differences seen among the various types of AGNs are mostly due to the way

they are observed (Peterson, 1997). This section discusses the various types of AGN.

Seyfert Galaxies

Seyfert galaxies constitute the majority of AGNs with visible host galaxies. They are

named after Carl Seyfert, who discovered these objects in the 1940’s on photographic

plates. A Seyfert galaxy when observed through a large telescope looks like a normal

spiral galaxy with a high surface brightness nuclei at its centre, and are identified spec-

troscopically due to the presence of strong, high-ionization emission lines Peterson (1997).
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Khachikian & Weedman (1974) classified the Seyfert galaxies into two distinct classes

- Type 1 and Type 2 in terms of the width of their optical emission lines. Type 1 Seyfert

galaxies have two sets of emission lines - narrow lines due to the low density ionised

gas with widths corresponding to velocities of several hundred kilometres per second and

the broad lines due to high density gas corresponding to velocities upto 104 km s−1

(as shown in fig 1.8). The difference between the type 2 Seyfert galaxies and type 1 is

that, only the narrow lines are present in the spectra of type 2 Seyferts (as shown in

fig 1.9). The narrow line component in Seyfert 2 spectra is thought to originate from

a region of clouds at the outer edge of the active nucleus, which is illuminated by the

central ionising source, termed as the Narrow Line Region (NLR). On the other hand,

the Broad Line Region (BLR) observed only in Seyfert 1s lies closer to the black hole.

BLR plays an important role in the understanding of AGNs. It is a useful probe of the

central source because the BLR reprocesses the energy emitted by the central source at

ionising ultraviolet energies, which cannot be observed directly. Hence, the emission lines

of Seyfert 1s give information about this part of the continuum of the central source

(Peterson, 1997).

Figure 1.8: This is the optical spectrum of Type 1 Seyfert galaxy NGC 5548. The prominent broad and narrow lines are
shown, representing strong absorption features of the spectrum of the host galaxy. Image taken from Peterson (1997).
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Figure 1.9: Top panel shows the optical spectrum of a Type 2 Seyfert galaxy NGC 1667 and bottom panel shows the
spectrum of a LINER galaxy (which resembles the characteristics of a Seyfert 2 galaxy) except they have stronger ionization
lines, eg: [OI]λ6300, [OII]λ3727, [SII]λ6548,6583 and [NII]λ6716,6731. Image taken from Peterson (1997).

Quasars

Quasars constitute the most luminous class of AGN. From the radio surveys in the 1950’s

and 1960’s, the first quasars were discovered and described as star-like objects with radio

emission. Quasars are found at higher redshifts and therefore they can probe to the

early Universe and its evolution. Many of the quasar sources are surrounded by a halo

namely quasar fuzz of low surface brightness due to the starlight from the host galaxy.

Although, the quasar spectra are similar to that of the Seyferts, its stellar absorption

features are very weak and the narrow emission lines are weaker relative to the broad

lines in comparison to the spectra of Seyfert galaxies. A mean quasar spectrum, obtained

by averaging the spectra of over 700 quasi-stellar objects (QSOs) and indicating the
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prominent emission lines is shown in figure 1.10 (Francis et al., 1991).

Figure 1.10: A mean QSO spectrum from averaging spectra of 700 quasar candidates from the Large Bright Quasar Survey.
Image taken from Peterson (1997).

Radio Galaxies

Giant elliptical galaxies are generally identified as the optical counterparts of strong

radio sources, although some bright radio sources are identified to have AGN activity.

The development of unified theories of active galactic nuclei (AGN) showed that they can

be categorised into two in terms of the luminosity, i.e. radio-loud and radio-quiet. Some

of the differences between these two include:

• The radio-loud sources produce large scale radio jets and lobes with the kinetic

power of the jets being a big fraction of the entire luminosity, whereas the radio-

quiet sources have weaker jets which are energetically insignificant.

• The radio-loud AGNs are associated with elliptical galaxies, but the radio-quiets

have spiral hosts.
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Inspite of these differences, the thermal emissions (lines from X-ray to infrared wave-

lengths) of these two types when compared, look quite similar.

Blazars

Blazars constitute a subset of radio quasars with extreme properties that differentiate

them from the rest. The various properties include rapid variability at all frequencies

(on all timescales) and high polarisation at both optical and radio frequencies. The

blazar category includes BL Lac objects and OVVs (Optically violent variables which are

radio-quiet). In 1929, Cuno Hoffmeister published a catalog of 354 objects which were

thought to be variable stars including an object called BL Lacertae or BL Lac, named

after its constellation Lacerta (or the lizard). By the late 1960s and 1970s, astronomers

began to notice that although BL Lac got brighter and fainter as predicted of variable

stars, it emitted a lot of light in the radio wave regime which was unusual for stars.

Also, the characteristic optical variability fitted its feature more to a quasar than a star.

Eventually, in a speech given by Ed Spiegel at the Pittsburgh Meeting in 1980, the name

blazars was coined by combining BL Lac with quasars.

1.3 Accretion discs in AGN

1.3.1 Disc formation

The basic idea of forming an accretion disc is very simple: consider gas flows nearer the

centre of galaxies, where blobs of gas possessing angular momentum orbit around the

central massive black hole instead of falling directly into it. Over time, these orbits of

gas intersect which causes dissipation of orbital energy into heating and radiation. In

order to conserve the angular momentum in this process, the gas settles into an orbit of

lowest energy for the given angular momentum, i.e, a circle. As a result, the gas settles

into a rotating configuration, forming a disc. After settling into a disc shape, accretion
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proceeds through the redistribution or the outward transport of angular momentum such

that matter nearer the central black hole gives up angular momentum to outer parts of

the disc (Lynden-Bell & Pringle, 1974; Pringle, 1981).

Accretion discs are subjected to various instabilities such as: gravitational, thermal

and magneto-rotational instabilities (MRI) which cause turbulence in discs, resulting in

the outward transport of angular momentum. The effect of turbulence on the angular

momentum transport in a disc is defined by the turbulent viscosity. This viscosity plays a

dual role: firstly, it is responsible for the outward angular momentum transport i.e., disc

instabilities produced in a turbulent disc exert strong viscous torques which redistribute

angular momentum to its outer radii. Secondly, it provides a channel to convert gravita-

tional energy due to the infall of matter into thermal energy in a disc. This dissipated

energy contributes to the emitted radiation which can be observed and measured.

1.3.2 Vertical disc structure

The structure of a geometrically thin, axially symmetric accretion discs can be split into

two structures corresponding to a hydrostatic vertical configuration and a radial Keplerian

viscous flow. Firstly, let us consider the vertical structure of the disc as shown in figure

1.11.

Figure 1.11: This is the vertical structure of the disc. We consider an element of gas located at a height z above the
mid-plane, at a radius R from the central mass M.
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The vertical component of the gravitational acceleration is given by:

gz =
GM

r2
cos θ =

GM

r2
z

r
(1.29)

Considering z << R, the equation becomes:

gz ≈
GM

R3
z (1.30)

We assume that the disc is isothermal in the vertical direction with sound speed cs. Then,

the pressure is given by:

P = ρc2s (1.31)

The gravity force is balanced by the force produced by the pressure gradient given as

dP

dz
= −ρgz. (1.32)

The pressure gradient dP/dz using equation 1.31 gives

dP

dz
= c2s

dρ

dz
. (1.33)

Therefore,

c2s
dρ

dz
= −ρgz = −ρ

GM

R3
z. (1.34)

This gives

c2s
dρ

dz
= −Ω2ρz (1.35)

where Ω =
󰁴

GM
R3 is the angular velocity of the disc. Rearranging the above equation

gives

dρ

ρ
= −Ω2

c2s
z dz (1.36)
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Integrating equation 1.36 gives

󰁝
dρ

ρ
= −Ω2

c2s

󰁝
z dz (1.37)

and

ρ = ρ0e
−Ω2z2

2c2s . (1.38)

This can be rewritten as

ρ = ρ0e
−z2

2H2 (1.39)

where H is given as

H2 =
c2s
Ω2

. (1.40)

We know, Ω = v/R where the velocity v =
󰁳

GM/R and

H2 =
c2sR

2

v2
. (1.41)

Therefore,

H

R
≈ cs

v
(1.42)

where H is termed as the vertical scale height of the disc. A disc with H/R << 1 is

described as a geometrically thin disc. Thus, the thickness of the disc as a function of its

radius is equal to the ratio of the sound speed to the orbital velocity. It also follows that

H

cs
≈ 1

Ω
= tdyn (1.43)

where tdyn is the dynamical time scale of the disc.

1.3.3 Radial disc structure

The radial structure of an accretion disc is regulated by the conservation laws of mass

and angular momentum. We follow Frank et al. (2002) to derive conservation of mass and
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angular momentum equations. Consider an annulus in the disc at radius R and thickness

∆R. The rate of mass flow through the inner edge of the annulus is given by (also refer

to equation 1.69):

Ṁin = 2πR vR ΣR (1.44)

Similarly, the rate of mass flow through the outer edge of the annulus is:

˙Mout = 2π(R +∆R) vR+∆R ΣR+∆R. (1.45)

The rate of change of the mass in the annulus is given by the difference between these

quantities:

∂

∂t
(2πR∆RΣ) = (2πRΣvR)R − (2πRΣvR)R+∆R. (1.46)

We take the limit ∆R → 0 to get

R
∂Σ

∂t
+

∂

∂R

󰀕
RΣvR

󰀖
= 0 (1.47)

where Σ(R) is the surface density and vR is the radial velocity. This is also termed as

mass continuity equation. Similarly, if we consider the angular velocity Ω and the angular

momentum per unit mass to be ΣR2Ω, we obtain the conservation of angular momentum

as

R
∂

∂t

󰀕
ΣR2Ω

󰀖
+

∂

∂R

󰀕
ΣvRR

3Ω

󰀖
=

1

2π

∂G

∂R
(1.48)

with

G = 2πνΣR3Ω′ (1.49)

where G is the viscous torque and ν is the viscosity. Combining the two conservation

equations gives the diffusion equation which shows how the surface density Σ of a viscous
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disc evolves over time. From equation 1.47, we can write

∂Σ

∂t
= − 1

R

∂(RΣvR)

∂R
. (1.50)

We know that viscous torque G = 2πνΣR3Ω′, therefore

∂G

∂R
=

∂(2πR3νΣΩ′)

∂R
(1.51)

1

2π

∂G

∂R
=

∂(R3νΣΩ′)

∂R
. (1.52)

Substituting equation 1.52 in 1.48, gives

∂(ΣR2Ω)

∂t
+

1

R

∂(ΣvRR
3Ω)

∂R
=

1

R

∂(R3νΣΩ′)

∂R
. (1.53)

Therefore,

∂(ΣR2Ω)

∂t
+R2Ω

1

R

∂(RΣvR)

∂R
+

1

R
RΣvR

∂(R2Ω)

∂R
=

1

R

∂(R3νΣΩ′)

∂R
. (1.54)

The first two terms in the above equation sums to zero (from mass continuity equation),

thus

1

R
RΣvR

∂(R2Ω)

∂R
=

1

R

∂(R3νΣΩ′)

∂R
. (1.55)

Solving for RΣvR gives

RΣvR =
∂(R3νΣΩ′)/∂R

∂(R2Ω)/∂R
. (1.56)

This can be substituted in equation 1.47 to get:

∂Σ

∂t
= − 1

R

∂

󰀕
∂(R3νΣΩ′)/∂R
∂(R2Ω)/∂R

󰀖

∂R
, (1.57)

where angular velocity

Ω =

󰁵
GM

R3
. (1.58)
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Substituting the values of Ω and Ω′ in equation 1.57 gives:

∂Σ

∂t
=

3

R

∂

∂R

󰀕
R1/2 ∂

∂R
[νΣR1/2]

󰀖
. (1.59)

The above equation represents the diffusion equation for a viscous accretion disc. If we

compare this to equation 1.50, the radial velocity induced by the viscous torque is given

as

vR = − 3

ΣR1/2

∂

∂R

󰀗
νΣR1/2

󰀘
∼ ν

R
. (1.60)

The changes in the radial structure of an accretion disc or the viscous accretion in a disc

occurs over a time scale termed as the viscous time scale, tvisc.

tvisc =
R

vvisc
≈ R2

ν
≈ α−1H

cs

󰀕
H

R

󰀖−2

. (1.61)

The relation between viscous and dynamical timescales is1:

tvisc ≈ α−1

󰀕
H

R

󰀖−2

tdyn. (1.62)

This proves that the role of viscosity is very important in the evolution of a disc. During

the accretion process, the matter falls into the central object producing gravitational

energy. This gravitational energy is liberated as heat energy which contributes to the

emitted spectrum of the disc. This energy dissipated due to viscosity calculated per unit

area per unit time or the energy dissipation rate is given as (Frank et al., 2002):

Q(R) =
1

2
νΣ(RΩ′)2, (1.63)

1In chapter 4, we evaluate the viscous timescales (see table 4.2) at different radii of NGC 5548 to
study its time-variability across different (UV to optical) wavelengths.

29



1. INTRODUCTION

where the angular velocity Ω =
󰁴

GM
R3 . This gives

Q(R) =
9

8
νΣ

GM

R3
. (1.64)

1.3.4 Steady state disc structure

In this section, we consider how a viscous accretion disc settles to a steady state structure.

This can be studied by considering ∂
∂t

= 0 in conservation equations (equations 1.47 and

1.48). Firstly, the mass continuity equation for a steady disc gives

∂Σ

∂t
= 0. (1.65)

Therefore

∂

∂R

󰀕
RΣvR

󰀖
= 0, (1.66)

󰀕
RΣvR

󰀖
= constant. (1.67)

Multiplying the above equation by 2π gives

2πRΣvR = constant. (1.68)

Here, the conservation equation is derived by assuming the transport of material within

the two annuli of the disc at radii R and R +∆R with its total mass given as 2πR∆RΣ

(Frank et al., 2002). Using dimensional analysis, we have

2πRΣvR = L× M

L2
× L

T
=

M

T
= Ṁ (1.69)

where M,L and T are dimensions for mass, length and time respectively. Therefore

Ṁ = 2πRΣ(−vR) (1.70)
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The negative sign is due to the inward flow of matter due to accretion. Hence, the rate

of mass flow can be expressed in terms of the surface density. Furthermore, the first term

vanishes in the angular momentum conservation (equation 1.48) for a disc in its steady

state and therefore

∂

∂R

󰀕
ΣvRR

2Ω

󰀖
=

1

2π

∂

∂R

󰀕
2πνΣR3Ω′

󰀖
(1.71)

Integrating this equation gives

ΣvRR
3Ω = νΣR3Ω′ +

constant

2π
. (1.72)

Multiplying the above equation by 2π gives:

2πΣvRR
3Ω = 2πνΣR3Ω′ + constant. (1.73)

We know from mass continuity equation that:

2πRΣvR = −Ṁ (1.74)

Substituting equation 1.74 in 1.73 gives:

−ṀR2Ω = 2πνΣR3Ω′ + constant. (1.75)

To calculate the value of the constant, we use an assumption that the viscous force is zero

at the inner boundary. This is equivalent to assuming that either the surface density or

the radial derivative of the angular velocity (Ω′) goes to zero at the inner edge. Therefore,

−ṀR2
inΩin = constant. (1.76)
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Thus, we can express equation 1.75 as:

−ṀR2Ω = 2πνΣR3Ω′ − ṀR2
inΩin, (1.77)

Ṁ

󰀕
R2

inΩin −R2Ω

󰀖
= 2πνΣR3Ω′. (1.78)

The value for Ω =
󰁴

GM
R3 and its derivative can be substituted in equation 1.78, that gives

3πνΣ
√
GMR = Ṁ

󰀕
R2Ω−R2

inΩin

󰀖
, (1.79)

3πνΣ
√
GMR = Ṁ

󰀕√
GMR−

󰁳
GMRin

󰀖
. (1.80)

Therefore,

νΣ =
Ṁ

3π

󰀕
1−

󰁵
Rin

R

󰀖
. (1.81)

This equation represents the relation between the viscosity ν and accretion rate Ṁ . Using

equation 1.81 in 1.64 to calculate Q(R), we get:

Q(R) =
3GMṀ

8πR3

󰀗
1−

󰀕
Rin

R

󰀖 1
2
󰀘
. (1.82)

As mentioned earlier, the dissipated heat energy emitted as radiation from the disc surface

constitutes the disc’s spectrum. Assuming the disc behaves as a black body with effective

temperature Teff(R), and the disc’s temperature is calculated by equating the dissipation

rate Q(R) to the energy flux of a blackbody (Frank et al., 2002).

σT 4
eff(R) = Q(R) (1.83)

where σ is the Stefan-Boltzmann constant. Substituting the value of Q(R) from equation

1.82, we get:

T (R) =

󰀗
3GMṀ

8πR3σ

󰀕
1−

󰀕
Rin

R

󰀖 1
2
󰀖󰀘 1

4

(1.84)
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Therefore, the temperature profile for steady accretion discs from equation 1.84 is

T (R) ∝ R− 3
4 . (1.85)

1.3.5 Accretion disc viscosity

From the evaluations as previously discussed, it is understood that viscosity plays an

essential role in disc evolution. Viscosity acts as a main agent for proceeding the outward

transport of angular momentum (Lynden-Bell & Pringle, 1974; Pringle, 1981; Frank et al.,

2002). But, a major unresolved problem is the physical origin of viscosity. Standard

molecular viscosity does not give suitable timescales for the evolution of a disc since it is

far too small in comparison to the expected disc lifetime (106−107 years). To demonstrate

this, the standard molecular viscosity estimated as ν ∼ λcs (where λ is the mean free

path of the molecules) and the Reynold’s number

Re =
inertial force

viscous force
∼ ΩR2

ν
∼ tvisc

tdyn
(1.86)

is used as a parameter to measure the importance of viscosity (Frank et al., 2002). The

viscous force dominates the flow if Re << 1 and if Re >> 1 the viscosity is dynamically

unimportant. In the case of standard molecular viscosity, Frank et al. (2002) finds that:

Remol ∼ 0.2Nm
1/2
1 R

1/2
10 T

−5/2
4 (1.87)

where R10 is the distance from the centre of the accreting star (in units of 1010cm), T4

is the gas temperature (in units of 104K) and N (in cm−3) is the gas density. In an

accretion disc, Frank et al. (2002) assumes the values of m1/2 ∼ R
1/2
10 ∼ T

−5/2
4 ∼ 1 and

N to exceed a value of 1015 cm−3, such that Re > 1014. This means that the molecular

viscosity is too small to give an appropriate timescale for the disc’s evolution. Hence,

the molecular viscosity is weak to produce the viscous dissipation and the transport of
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angular momentum as expected.

It is learnt from laboratory experiments that if the Reynolds number is gradually

increased, the flow becomes turbulent when it reaches a critical value. This causes large

and chaotic variations in velocity over arbitrary short time scales. Similarly, in the case of

discs, it is natural to assume the disc flow to become strongly turbulent. This turbulent

flow is assumed to be characterised by size λt and velocity vt, thus producing large eddies.

Thus, we define the turbulent viscosity as

vt = λtvt. (1.88)

Since turbulence is a complex phenomenon, we do not know how to determine the sizes

and velocities of eddies without proper knowledge of the underlying physical mecha-

nisms causing the disc to be turbulent. So far its origin is assumed to be hydrodynamic

in nature; detailed studies have shown that turbulence in discs occurs mainly due to

magneto-rotational (Balbus & Hawley, 1991) and gravitational instabilities (see section

1.4.1 and 1.4.3). In order to set constraints on λt nd vt, firstly we assume that the size

of the edddies cannot exceed the disc thickness, i.e. λ < H. Secondly, it is unlikely that

the turbulence is supersonic and it is damped to subsonic values such that, vt < cs where

cs is the speed of sound. Based on these two basic assumptions, it is suggested that the

turbulent viscosity:

ν ∝ csH. (1.89)

Thus,

ν = αcsH (1.90)

where α is a constant expected to be less than unity. This formula is the famous α-

prescription for turbulent viscosity proposed by Shakura & Sunyaev (1973).
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1.4 Disc instabilities

In this section, we review the different disc instabilities which play an important role in

the outward transport of angular momentum, thus allowing accretion to occur.

1.4.1 Magneto Rotational Instability(MRI)

It has been a long standing problem in astrophysics to explain the nature of viscosities

in accretion discs. As mentioned before, molecular viscosity alone is weak and inefficient

to explain the angular momentum transport in accretion discs. Therefore, an effect due

to turbulence is needed to generate the expected degree of viscosity. In other words, an

instability is needed to drive the turbulence responsible for the infall of matter and the

outward transport of angular momentum in discs. However in the absence of magnetic

fields, no instabilities are produced to drive such turbulence in a disc. A breakthrough

in the discovery of MRI (or Magneto Rotational Instability) by Balbus & Hawley (1991)

explains how instabilities are produced by weak magnetic fields in differentially rotating

accretion disc systems.

Balbus & Hawley (1991) showed how accretion discs are subjected to a powerful

shearing instability due to the amplification of weak magnetic fields by differential rota-

tion, thus producing a turbulent viscosity which enables the outward angular momentum

transport. This idea of MRI is extended from the study of hydromagnetic instability

originally discovered by Velikhov (1959) and Chandrasekhar (1960).

Figure 1.12 illustrates the growth of MRI due to differential rotation in the disc. In

the presence of magnetic fields, the field lines within the disc act like springs connecting

the masses at the different annuli of the disc. Consider, two masses m1 and m2 connected

by a spring (representing magnetic force) orbiting around a central body of mass Mc. In

such a system, the velocity of circular orbits near the centre is higher than that of orbits
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away from the centre. However, the angular momentum is smaller for the orbits nearer

to the centre. If we assume, the mass element m1 has a higher velocity than m2, it means

that the connecting spring pulls back on m1 and drags m2 forward. A retarding torque

acts on m1 which loses its angular momentum and falls to a lower orbit corresponding

to a smaller angular momentum. On the other hand, m2 experiences a positive torque

gaining more angular momentum and moves to a higher orbit. As a result the spring

(magnetic force connecting m1 and m2) stretches more, the torques become larger and

form instabilities within a differentially rotating disc (Balbus, 2009).

Figure 1.12: Magneto rotational instability as shown with masses in the inner and outer rings, m1 and m2 respectively
(Image taken from Balbus (2009)).

1.4.2 Thermal instabilties

Accretion discs are known to be subjected to thermal-viscous instabilities which operate

in the inner regions of the disc where radiation pressure dominates. Such systems include

discs around young stars, AGNs and binary systems. Among the binaries, include a

subclass of cataclysmic variables termed as dwarf novae in which a low-mass companion

transfers mass onto a white dwarf. These systems undergo outbursts lasting a few days,

during which their brightness increases by several magnitudes (Warner, 2003). The basic
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idea is that if the inner disc is extremely opaque, it doesn’t efficiently radiate heat away.

This heats up the inner region, increasing its effective temperature (Teff) hot enough to

ionise hydrogen and its opacity to depend strongly on temperature, thus producing an

outburst (Lasota, 2001). Hence, the thermal-viscous instability triggers these outbursts

when the disc opacities strongly depend on temperature (Meyer & Meyer-Hofmeister,

1981). The thermal viscous instability of the dwarf novae can be understood by the limit

cycle of their outbursts in a diagram (an S-shaped curve) that plots the temperature (T )

versus the disc surface density (Σ) (Bath & Pringle, 1982; Faulkner et al., 1983).

Figure 1.13: S curve showing the limit cycle of the thermal disc instabilities in an accretion disc (Image taken from
Hartmann & Kenyon (1996)).

Figure 1.13 illustrates the S curve for the disc with the bend at a point where the

opacity causes the thermal instability. As shown in the figure, the locus shifts to the

right on the lower branch of the curve, when material is accumulated in the disc. As

it reaches the point A, a small perturbation in the temperature can cause the disc to

enter an unstable region where it jumps to the upper arm of the S-curve at position B.

At B, the surface density and the mass accretion rate or temperature is much higher.
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This elevated accretion onto the star removes the material from the disc moving down to

position C of the curve. At this point, the disc becomes stable following a low accretion

solution at point D. Furthermore, the timescale of these thermal instabilities (tth) is

shorter than the viscous timescale (tvisc) given by (Frank et al., 2002)

tth ∼
󰀕
H

R

󰀖2

tvisc. (1.91)

1.4.3 Gravitational instabilties

The gravitational field produced by the disc (or the disc’s self-gravity) is an important as-

pect in the modelling of several systems. The influence of self gravity in discs extends over

a large scale of protoplanetary discs associated with the formation of planetary systems,

up to AGN discs which are relevant to the formation and the feeding of supermassive

black holes.

One of the most important effects of the self gravity is the formation of gravitational

instability. The physical origin of gravitational instability is related to standard Jeans

instability for a homogeneous fluid, where pressure gradients cannot stabilise large scale

perturbations. These instabilities are one of the agents in the redistribution of angular

momentum, especially in the colder outer parts of the disc. In some cases, these insta-

bilities are strong enough to form gravitationally bound clumps within the disc, that

can lead to disc fragmentation. The stability of self gravitating discs is determined by a

dimensionless parameter Q known as the Toomre parameter (Toomre, 1964). The disc

becomes unstable against gravity when the value of Q is less than unity, i.e. Q < 1.

Toomre Q parameter is given as

Q =
csΩ

πGΣ
(1.92)

where cs is the sound speed, Ω is the angular velocity, G is the gravitational constant

and Σ is the surface density.
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1.5 Physics of warped discs

Accretion discs around astrophysical systems are often tilted and warped, where their

orbital planes vary with radius. In such accretion discs around black holes, the orbital

angular momentum is not always in the same direction as the angular momentum of

the spin of the black hole. The various reasons for the disc to be warped or misaligned

are: the Lense-thirring precession from a spinning black hole (Lense, 1918; Bardeen &

Petterson, 1975), gravitational torques from a companion (Lubow & Ogilvie, 2000) and

radiation from the central object (Pringle, 1996, 1997).

1.5.1 Lense Thirring Effect

The Lense-Thirring effect is due to general relativistic frame dragging which causes non-

equatorial orbits to precess around a spinning black hole, i.e. the angular momentum

of disc orbits precess around the angular momentum vector of the black hole. This rate

of precession is dependent on the distance from the black hole where Ωp ∝ R−3. The

differential precession produces a warp that propagates through the disc. As the inner

parts precess fastest, they are subjected to more dissipation on shorter timescales and

thus align quicker with the black hole spin. Therefore, the aligned inner part of the disc

remains connected to the misaligned outer part by a smooth warp. This is termed as the

Bardeen-Peterson effect (Bardeen & Petterson, 1975).

Planar or unwarped discs are evolved by an azimuthal shear which produces a turbu-

lent viscosity that transports the angular momentum radially. However, its not the same

in the case of warped discs. Early derivations of the evolution of warped discs produced

equations that did not conserve angular momentum (e.g. Bardeen & Petterson, 1975;

Hatchett et al., 1981) where they assumed the viscosity to be same in all directions. This

was resolved by Papaloizou & Pringle (1983) which considered a second viscosity (ν2),
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produced from the radial pressure gradients due to the misalignment of neighbouring

rings. The relation between the two viscosities is:

ν2 =
ν1
2α2

(1.93)

where α is the dimensionless viscosity parameter (Shakura & Sunyaev, 1973). There are

two types of warp propagation in discs. For the case of weak damping (referred to as

wavelike with α < H/R), the warp propagates as a wave (Papaloizou & Lin, 1995), while

for the case of strong damping (referred to as diffusive with α > H/R), the disc warp

evolves following a diffusion equation (Pringle, 1992; Ogilvie, 1999).

The warp radius can be derived for a disc warped due to the Lense-Thirring effect of a

spinning black hole (Natarajan & Pringle, 1998). The component of angular momentum

parallel to the spin of the disc at a radius R in the disc is transferred in a diffusive manner

over a timescale tR given by

tR ∼ R2

ν1
(1.94)

where ν1 = αcsH, α is the dimensionless viscosity parameter, cs is the sound speed and

H is the scale height of the disc. Also, Papaloizou & Pringle (1983) showed that the warp

is transferred within the disc on a timescale

twarp ∼ R2

ν2
(1.95)

where ν2
ν1

= 1
2α2 . The frequency at which misaligned rings precess due to the Lense-

Thirring effect is given by:

ΩLT =
ωp

R3
. (1.96)

Therefore, the Lense-Thirring timescale is given by

tLT =
1

ΩLT

=
R3

ωp

(1.97)
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where ωp is independent of radius. Scheuer & Feiler (1996) found that the radius at which

the disc is aligned to the spin of the black hole is equal to the radius corresponding to

the timescale at which the warp diffuses radially; i.e. twarp is of the order of tLT. Thus

equating the timescales, we get

R3
warp

ωp

=
R2

warp

ν2
(1.98)

Rwarp =
ωp

ν2
(1.99)

where ωp =
2GJ
c2

and J = acM

󰀕
GM
c2

󰀖
. This gives,

ωp =
2a

c
GM

󰀕
GM

c2

󰀖
. (1.100)

As the Schwarzschild radius is Rs =
2GM
c2

, the above equation becomes:

ωp =

󰀗
a

c
GM

󰀘
Rs. (1.101)

Therefore, equation 1.99 becomes

Rwarp =
ωp

ν2
=

aGMRs

c ν2
(1.102)

or

Rwarp

Rs

=
aGM

c ν2
. (1.103)

We have

ν2
ν1

=
1

2α2
, (1.104)

ν2 =
ν1
2α2

=
αH2Ω

2α2
=

H2Ω

2α
. (1.105)

Thus, equation 1.103 gives:

Rwarp

Rs

=
a

c

GM

ν2
=

a

c
GM.

2α

H2Ω
(1.106)
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Rwarp

Rs

= 2αa

󰀕
GM

c

󰀖
.

1

H2Ω
(1.107)

Multiplying and divinding the equation by R3,

Rwarp

Rs

= 2αa

󰀕
GM

c

󰀖
.

1

H2Ω
.
R3

R3

= 2αa
GM

cR3
.
R3

H2Ω

= 2αa
Ω2

c
.
R3

H2Ω

= 2αa

󰀕
R

H

󰀖2󰀕
RΩ

c

󰀖
. (1.108)

where Rs = 2GM/c2 is the Schwarzschild radius, we also find

RΩ

c
=

1√
2

󰀕
Rs

R

󰀖1/2

(1.109)

Substituting this in equation 1.108 (evaluating at Rwarp) gives

Rwarp

Rs

= 21/3(αa)2/3
󰀕
R

H

󰀖4/3

. (1.110)

The radius Rwarp corresponding to the timescale of the radial diffusion of the warp (twarp)

is thus derived (also shown by equation 2.6 of Natarajan & Pringle (1998)).

1.5.2 Propagation of warps

The azimuthal shear acting in a planar accretion disc produces a turbulent viscosity which

transports angular momentum, whereas in a warped disc there is a second vertical type

of shear such that rate of orbital shear is not parallel to the local disc normal l and is

given as (Ogilvie & Latter, 2013)

s = R
∂s

∂R
= R

dΩ

dR
l +RΩ

∂l

∂R
(1.111)
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where the local orbital angular velocity s(R, t) = Ω(R)l(R, t). The evolution of a warped

disc is dependent on two torques which control the angular momentum along and normal

to the local orbital plane respectively (Nixon & King, 2016). The planar disc viscosity is

controlled by a turbulent α viscosity that radially transports the angular momentum. The

second viscosity associated with the warp is caused by radial pressure gradients due to the

misalignment of neighbouring rings in a disc as shown in the figure 1.14. Therefore, the

dynamics of a warped disc differ from that of a planar disc primarily due to a resonance

between the orbital motion and the radial pressure gradient produced by the warped disc

shape (Papaloizou & Pringle, 1983). This resonance leads to strong in-plane motions

which communicate the disc warp radially and are damped by the disc turbulence.

Figure 1.14: This shows how the radial pressure gradient is induced by a warp. The top and bottom panels show cross-
sections of two neighbouring rings of gas, at different values of azimuthal angle, φ . The shaded regions represent the higher
pressure regions around the local mid-plane, and the arrows show the resultant pressure gradient due to the misalignment
of the rings. The azimuthal angle around a ring is measured in the direction of the flow from the descending node at φ =
0. The mid-planes are in aligned contact when the tilted rings cross at the nodes. But, the ring mid-planes do not fully
line up at all other azimuths, and thus form a region of overpressure above or below the mid-plane which results in an
oscillating pressure gradient as a gas parcel orbits in the warp (Image taken from Nixon & King (2016)).

The coordinates to describe a warped disc are defined by cylindrical polars and Euler

angles. A local annulus is described by cylindrical polars (R,φ,z) and is tilted in three

dimensional space defined by the Euler angles β(R, t) and γ(R, t), termed as the local

disc tilt and twist respectively. Therefore, the disc unit tilt vector is defined as:

l = (cos γ sin β, sin γ sin β, cos β). (1.112)
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The local angular momentum vector for the disc is

L = ΣR2Ωl (1.113)

where Σ is the surface density and Ω is the angular velocity of the disc.

1.5.3 Evolution equations

In this section, we discuss the evolution equations of warped accretion discs which rep-

resent how discs evolve through the angular momentum vector, L = ΣR2Ωl . This was

derived by Papaloizou & Pringle (1983) and Pringle (1992) from the conservation of mass

and angular momentum equations. We consider a disc with surface density Σ, radial ve-

locity VR and angular velocity Ω. Consider, an annulus of gas in a disc between R and

R +∆R with mass 2πR∆RΣ. The rate of change of mass is related to the flow of mass

into and out of the annulus given by

∂

∂t
(2πR∆RΣ) = (2πRVRΣ)R − (2πRVRΣ)R+∆R. (1.114)

Rearranging using the limit ∆R → 0, gives the conservation of mass equation for a disc

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0. (1.115)

Similarly, the rate of angular momentum is related to the net flux of angular momentum

and the net torques, given by

∂

∂t
(2πR∆RΣR2Ωl) = (2πRVRΣR

2Ωl)R − (2πRVRΣR
2Ωl)R+∆R

+G(R +∆R)−G(R)

(1.116)
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where the angular momentum of the annulus is 2πR∆RΣR2Ω and G is the three dimen-

sional viscous torque. By taking the limit ∆R → 0, we get:

∂

∂t

󰀕
ΣR2Ωl

󰀖
+

1

R

∂

∂R

󰀕
ΣvRR

3Ωl

󰀖
=

1

2πR

∂G

∂R
(1.117)

The viscous torque G has three components. The torque G1 acts in the direction of l

given by:

G1 = 2πRν1ΣRΩ′R l (1.118)

where ν1 is the azimuthal shear viscosity. The torque between two neighbouring rings

with l and l +∆l is

G2 = 2πR
ν2
2
ΣR2Ω

∂l

∂r
(1.119)

where ν2 is the vertical shear viscosity responsible for the radial communication of the

misaligned component of angular momentum. The third component of the viscous torque

is derived from the fluid analysis of Papaloizou & Pringle (1983) and Ogilvie (1999) given

by:

G3 = 2πRν3ΣR
2Ω l × ∂l

∂r
(1.120)

where ν3 is the effective viscosity responsible for the precessional torque between mis-

aligned rings in the disc. This torque is responsible for a ring to precess if it is inclined

with respect to its neighbours. Therefore:

G = 2πRΣR2Ω

󰀗
ν1

󰀕
Ω′

Ω

󰀖
l +

1

2
ν2

∂l

∂R
+ ν3l ×

∂l

∂r

󰀘
. (1.121)

Substituting this in equation 1.117 gives:

∂

∂t

󰀕
ΣR2Ωl

󰀖
+

1

R

∂

∂R

󰀕
ΣvRR

3Ωl

󰀖
=

1

R

∂(ν1ΣR
3Ω′l)

∂R
+

1

R

∂

∂R

󰀕
1

2
ν2ΣR

3Ω
∂l

∂r

󰀖

+
1

R

∂

∂R

󰀕
ν3ΣR

3Ωl × ∂l

∂r

󰀖 (1.122)
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where the radial velocity vR is given by (Pringle, 1992),

vR =
∂
∂r
(ν1ΣR

3Ω′)− 1
2
ν2ΣR

3Ω| ∂l
∂r
|2

RΣ ∂
∂R

(R2Ω)
. (1.123)

When we substitute vR in equation 1.122, the evolution equation (also refer equation 27

in Nixon & King (2016)) becomes

∂L

∂t
=

1

R

∂

∂R

󰀫
(∂/∂R)[ν1ΣR

3(−Ω′)]

Σ(∂/∂R)(R2Ω)
L

󰀬

+
1

R

∂

∂R

󰀗
1

2
ν2R|L| ∂l

∂R

󰀘

+
1

R

∂

∂R

󰀫󰀗 1
2
ν2R

3Ω|∂/∂R|2
(∂/∂R)(R2Ω)

+ ν1

󰀕
RΩ′

Ω

󰀖󰀘
L

󰀬

+
1

R

∂

∂R

󰀕
ν3R|L| l × ∂l

∂R

󰀖
.

This equation is similar to the evolution equation derived in Pringle (1992), with the

addition of the last term demonstrating the precessional nature of the disc included in

Papaloizou & Pringle (1983) and Ogilvie (1999).

1.5.4 Disc tearing

Accretion discs act as the feeding ground for supermassive black holes. These discs are

often tilted and warped due to the Lense-Thirring effect. If the warp is too large, it

causes the breaking of discs into two or more distinct planes. As mentioned earlier,

the initial evolution equations of warped discs by Bardeen & Petterson (1975) couldn’t

conserve the angular momentum, which was later derived by Papaloizou & Pringle (1983).

This evolution equation (as shown earlier in section 1.5.3) comprised of the torques due

to radial and vertical components of viscosities in a linear regime. Also, Ogilvie (1999)

derived the same using torque coefficients in a non linear regime. These analyses marked

a great advancement in the study of warped discs.
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From the conservation laws used in Ogilvie (1999), it is shown that the viscous torques

in the disc doesn’t effectively communicate the Lense-Thirring precession to produce a

smooth warp in discs at high inclinations and spin, and at low values of the viscosity

parameter α (Nixon & King, 2012). Instead, the disc is found to break between the aligned

inner regions and the misaligned outer regions forming individually precessing rings.

Tearing of discs in the diffusive regime is tested with simulations using the smoothed

particle hydrodynamics (SPH) code phantom (Nixon et al., 2012a). This study derives

the criterion for the radius at which the disc tears. The breaking criterion assumes the

torque resulting from Lense-Thirring effect to be greater than the local viscous torques.

In other words, the disc orbits precess faster than the time required for viscosity to

communicate with the precession. Therefore, if the viscosity is dominant, the whole disc

precesses as a rigid body. On the contrary, if the viscosity is negligible, the orbits at

different radii precess at different rates and the disc breaks into many rings.

Firstly, we examine how the breaking radius Rbreak is derived in Nixon et al. (2012a).

The viscous force per unit area is given by

fν = µR
dΩ

dR
(1.124)

where µ is the dynamical viscosity, RdΩ/dR is the rate of shear, R denotes the radial

coordinate and Ω is the disc angular velocity. If the area of the disc is 2πRH where H is

the disc vertical thickness, the viscous force in the azimuthal direction is given as:

Fν = 2πRHµR
dΩ

dR
= 2πRνΣR

dΩ

dR
(1.125)

where we have µ = ρν and Σ = ρH. The viscous torque Gν is given as:

Gν = |R× Fν | = 2πRνΣR2(−Ω′) (1.126)
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where Ω is:

Ω =

󰁵
GM

R3
. (1.127)

Therefore,

Gν = 3πνΣ(GMR)1/2. (1.128)

On the other hand, the Lense-Thirring precession induces a torque given by:

GLT = 2πRH|Ωp × L| = 2πRHΩpΣR
2Ω| sin θ| (1.129)

where Ωp is the Lense-Thirring frequency given by Ωp = 2GJh/c
2R3, L is the angular mo-

mentum density given by |L| = ΣR2Ω, and θ is the angle between the angular momentum

of the black hole and the disc. The disc breaking criterion requires the Lense-Thirring

torque to be greator than the viscous torque, thus:

GLT ≥ Gν . (1.130)

If we consider the standard α-disc approximation (Shakura & Sunyaev 1973) with Jh =

aGM2/c, the radius at which the disc likely breaks can be derived as (also shown in

equation 7 of Nixon et al. (2012a))

Rbreak ≤
󰀕
4

3
| sin θ| a

α

R

H

󰀖2/3

Rg (1.131)

where the gravitational radius, Rg = GM/c2.

It can be inferred from equation 1.131 that the breaking radius is governed by the

values of spin (a), viscosity (α), inclination angle (θ) and the value of H/R. Hence, at

a value of large viscosity, low values of spin (at values closer to a = 0) or at smaller

inclinations, the disc cannot break since Rbreak < Rg. On the other had, the disc is

likely to break into rings at a low viscosity value, high spin and at large inclinations since
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Rbreak > Rg.

The criterion of Rbreak can be used to predict the results of SPH simulations and

investigate tearing of discs at different values of inclinations. In addition, it also enables

to study the rate of mass flow checking if disc tearing can result in a rapid accretion rate

in discs and cause a dynamical infall of matter in in AGNs (in case of couter-rotating

discs around SMBHs (Nixon et al., 2012a) and SMBH binaries (Nixon et al., 2012b).

Nixon et al. (2012a) considers a disc with Shakura & Sunyaev α = 0.1, H/R = 0.01

and inner and outer radii set at 50 Rg and 250 Rg respectively. Firstly, at an initial

inclination of 10◦, at which the value of Rbreak is calculated as 40 Rg. But since the

breaking radius lies within the inner radius, the disc is not expected to break (as shown

in figure 1.15).

Figure 1.15: 3D simulation of the disc inclined at 10◦ to the hole, with no initial warp. As expected, the disc doesn’t break
since its Rbreak is less than the inner radius of the disc. Image taken from Nixon et al. (2012a).

Secondly, at an inclination of 60◦ where the calculated value of Rbreak = 110 Rg, the

disc is expected to break. It agrees well with the simulation which shows the tearing of

disc, forming multiple inclined rings of gas (as shown in figure 1.16).
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Figure 1.16: 3D simulation of the disc inclined at 60◦ to the hole, with no warp. The disc tearing is clearly evident at a
higher inclination. Image taken from Nixon et al. (2012a).

1.6 What we don’t understand?

In this section, we summarise some of ongoing challenges from the various observational

and numerical investigations of accretion discs.

1.6.1 Size-variability in discs

Accretion discs around SMBHs serve as dominant sources powering active galactic nuclei.

As demonstrated earlier in equation 1.84, the temperature across the disc varies as T (r) ∝

R−3/4. It is an ongoing challenge testing several theoretical models of accretion discs to

measure the overall size scale or the slope of the temperature profile. The disagreement in

the observed values on sizes, luminosities as well as the temperature profiles of the AGN

discs in comparison to their results from theoretical models still remains unresolved.

Reverberation mapping (e.g. Edelson et al. (2015), Starkey et al. (2017)) along with

gravitational microlensing (e.g. Morgan et al. (2010), Schechter et al. (2014)) are con-

sidered as two powerful techniques for probing the regions around AGNs. Reverberation

mapping (RM) gives an insight into the structure of AGN accretion discs and is a stan-

dard tool to study AGN discs over the past years (Clavel et al., 1991; Peterson, 1993;
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Edelson et al., 2015; Starkey et al., 2017). The basic principle of RM is the difference

in the emissions at two different wavelengths such that the time delay (or lag) in their

light curves represents the light-travel time within the system. This time delay is used

to obtain the measurement of the systems physical size (as shown in section 1.2.3).

There are several observational papers (Edelson et al., 2015; Starkey et al., 2017)

examining the reverberating disc models for Seyfert 1 galaxy, NGC 5548 (also detailed

in chapter 4). Starkey et al. (2017) discusses the variability in continuum light curves

of NGC 5548, and examine the temperature structure of its accretion disk. This study

includes 19 overlapping continuum light curves (1158 Å to 9157 Å) combining data from

Hubble Space Telescope (HST ), Swift, and ground-based observations over a period of

180 days from January to July, 2014. This model yields a temperature versus radius

slope (T (R) ∝ R−α) of α = 0.99 ± 0.03. This is not in agreement to the standard thin

disc model where the value of α = 0.75 (as T (R) ∝ R−α).

Furthermore, gravitational microlensing of quasars addresses the disagreement seen

in disc sizes between the theory and observational models. Microlensing studies find that

disc sizes appear larger (factor of 3 - 4) than predicted by thin-disk theory (Morgan et al.,

2010). Also, some microlensing results show uncertainties in the temperature profiles

compared to the predictions of thin-disk theory (Blackburne et al., 2011). Although,

there are studies (McHardy et al., 2016) which explain the ultraviolet (UV) variability in

disc models, the physical origin of the source of continuum variability remains unclear.

This highlights the requirement of good theoretical explanations to study the variability

in accretion discs and bridge the gap between the current theory models and observations.

1.6.2 Large amplitude, short timescale variability

Large amplitude variability at optical to X-ray wavelengths is observed in an increasing

number of Seyfert galaxies and quasars. These variations imply that a change in accretion
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power is too rapid to be communicated by inflow through an accretion disc if one assumes

the standard thin disc model. Therefore, it will be difficult to explain the observed

optical/UV emission from active galactic nuclei in case of these structures.

Furthermore, a recent crisis in the variability problem is the extreme variability (in

factors of a few over a decade) in some quasars and AGNs at optical and UV wavelengths

(Lawrence, 2018). Although, these changes are seen in many low luminosity objects, a

recent comparison of data from the Sloan Digital Sky Survey (SDSS) and the Panoramic

Survey Telescope and Rapid Response System (PanSTARRS) exhibited observations of

extreme variability in AGNs and quasars at high luminosities termed as changing look

AGNs (MacLeod et al., 2016). Therefore, the wide variability in their optical and far UV

emissions concludes that the outer parts of the disc is undergoing a large physical change

on a timescale which is not compatible to the viscous timescale.

Lawrence (2018) also suggests the idea of extreme reprocessing as a solution to explain

this variability (also detailed in 4). Here, one assumes a disc with a very low viscosity,

passively heated by the central source. The energy emitted from the central quasi point

heats the disc, forming the viscous inner region (3−10Rs) with a much shorter timescale

than the outer disc (30 − 100Rs). However, the erratic variations of the central source

may impose complications in this scenario that makes it difficult to study the optical

source size and the amplitude of variability of the discs at different wavelengths. Dexter

& Begelman (2019) also addressed this issue of extreme variability in AGN and quasars,

and suggested the idea of accretion discs supported vertically by strong magnetic fields

(magnetically elevated discs) to provide an explaination. This study proposes how mag-

netically elevated discs can explain the large temperature fluctuations and provide an

alternative scenario of extreme reprocessing in AGN discs. These studies suggest why

its essential to investigate more theory models that can efficiently explain this viscosity

crisis and discuss the physical origin of these changing look events.
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1.6.3 Angular momentum transport

As we know, disc turbulence driving the angular momentum transport allows the mass to

spiral inwards through the disc (Lynden-Bell, 1969; Pringle, 1981). Shakura & Sunyaev

(1973) suggested the α-prescription by parameterising the strength of disc turbulence in

terms of a dimensionless parameter α. King et al. (2007) discusses the large discrepancy

between the α values required to model observations of fully ionized, time-dependent

accretion discs (where α ≃ 0.1 - 0.4) and those obtained from numerical MHD simulations

without including a superimposed magnetic field (where α ≤ 0.02). Furthermore, Martin

et al. (2019) extended this work to study the nature of viscosity in accretion discs. The

estimated values of viscosity α from the observations is found in agreement with King

et al. (2007). It is concluded that for fully ionized discs, estimates on the values of α

are consistent with α ≃ 0.2 - 0.3. In the case of partially ionized discs, the estimates

of α are smaller than those found for fully ionized discs by an order or several orders of

magnitude. This study also points out that the main difference between fully ionized and

partially ionized discs lies not in its hydrodynamic, but in their magnetic properties i.e., a

less ionized disc has a low electrical conductivity which reduces its ability to interact with

magnetic fields. These studies highlight the importance of a detailed understanding on

the main driving mechanism of turbulence and angular momentum transport in viscous

accretion discs.

1.7 Numerical methods

Along the side of observations and analytic theory, numerical simulations constitute the

backbone to study astrophysics. From an astrophysical point of view, there are two types

of numerical simulations: grid-based codes (Fromang & Papaloizou, 2006; Paardekooper

& Mellema, 2006) and particle based Smoothed Particle Hydrodynamics (SPH) codes
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(Monaghan & Lattanzio, 1985; Monaghan, 1992). This section gives an overview to

Smoothed Particle Hydrodynamics, the numerical method employed in this thesis.

1.7.1 Smoothed Particle Hydrodynamics

SPH, the acronym for Smoothed Particle Hydrodynamics was firstly introduced as a

numerical approach in Gingold & Monaghan (1977) and independently in Lucy (1977) to

resolve the non-axisymmetric problems involving fluid dynamics. As shown in Gingold &

Monaghan (1982), SPH is a Lagrangian method allowing the conservation of linear and

angular momentum and other physical invariants which cannot be easily assured from

grid codes. There are many excellent papers, which review SPH (e.g. Monaghan, 1992;

Cossins, 2010; Springel, 2010; Price, 2012).

There are two principal ways to develop computational simulations to facilitate the

numerical simulations on fluid dynamics. Firstly, the Eulerian method that uses geo-

metric grids either fixed or adaptive (the so-called AMR or Adaptive Mesh Refinement

codes) which evaluates the fluid parameters over the grid cells. This concept was used

in developing Computational Fluid Dynamics (CFD) in the late 1960s and early 70s and

still remain a widely used approach. Such codes are widely used in the automotive and

aerospace sectors to study industrial aerodynamics, to stress calculations and solid me-

chanics for civil engineering and architecture, to model chemical reactions and protein

folding in biomolecular models (Cossins, 2010).

Secondly, we have Lagrangian numerical methods that evaluate fluid properties in a

co-moving frame. This method uses the approach of having discrete particles that are

carried with the flow - hydrodynamic properties are calculated at the particle positions

and evaluated from a weighted average of the values on other local particles. This way,

each particle is smoothed over a finite volume of fixed mass, thus termed as Smoothed

Particle Hydrodynamics or SPH codes. Although SPH codes are extensively used in
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astrophysics, it has also found applications in a range of fields, like studying dam breaks

and atomised oil lubrication flows in engineering as well as designing computer games

(Cossins, 2010).

Density and Fluid Quantities in SPH

The main idea employed in SPH is to define a set of mass-particles, each with a proper

mass and position to evaluate the values of a set of parameters (such as velocity, density,

etc.) at that particular point in space. Thus, instead of discretising space in small cells

as carried out in grid-based codes, SPH discretises the mass of the fluid particles. The

evolution of the quantities in time and space is determined by a set of partial differential

equations obtained from a function that smoothes the discreteness due to point particles.

This interpolation calculates the quantities for each particle, thus allowing the system

to evolve in time using a temporal integrator. Figure 1.17 shows the common methods

evaluating the density from a collection of point mass particles.

Figure 1.17: The left panel in the figure shows the particle mesh method where the density is calculated by interpolating
the mass to a grid thus dividing mass by the volume. But in this method, the clustered or sparse regions in the grid aren’t
well resolved. The middle panel demonstrates a method which solves the clustering problem, calculating density without
a mesh but by constructing a local volume around a sampling point. This scales the volume in terms of the local number
density of the particles. The third panel shows the method employed in SPH, where the density is calculated from the
weighted sum over the neighbouring particles. The weight decreases with distance from the sample point by a scale factor
of h termed as the smoothing length. Image taken from Price (2012).

Discrete Approximations of a Continuous Field

To compute continuum quantities from point particles, let us consider a mathematical

method to express a continuum function starting from a discrete set of points in space.

Each point of this set gives information about position, and values of other arbitrary
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quantities, e.g. density and velocity, in that position. We consider:

f(r) =

󰁝
f(r′)δ(r − r′)dr′ (1.132)

where f(r) is a function on a three-dimensional coordinate system r over a volume V , δ(r)

is the Dirac delta function and r′ is the dummy variable ranging over V . If we generalise

the delta function to a smoothing kernel W in terms of smoothing length h, it gives:

lim
h→0

W (r − r′, h) = δ(r − r′). (1.133)

Therefore,

f(r) =

󰁝
f(r′)W (r − r′, h)dr′ +O(h2). (1.134)

The kernel function is normalised as:

󰁝
W (r − r′, h)dr′ = 1. (1.135)

If we discretise for a series of particles of mass mb, equation 1.132 becomes:

f(r) =

󰁝
f(r′)

ρ(r′)
W (r − r′, h)ρ(r′)dr′ +O(h2) ≈

N󰁛

b=1

mb

ρb
f(rb)W (r − rb, h) (1.136)

where mb and ρb are the mass and density of the bth particle, range over a total of N

particles. Hence from equation 1.136, we estimate the density as:

ρ(r) =
N󰁛

b=1

mbW (r − r′, h(r)). (1.137)

The accuracy of this estimate of density relies on the good choice of the smoothing kernel.

The Smoothing Kernel

A good kernel has to satisfy some properties which include (Price, 2012)
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• it should be positively defined.

• it should monotonically decrease with distance.

• it should have a continuous and well defined first derivative.

• it should be symmetric with respect to r − r′, i.e. W (r − r′, h) = W (| r − r′ |, h).

• it should be bell-shaped, so that the density is not highly affected by a small change

in the position of the near particle. One of the first choices for the smoothing kernel

which satisfies these conditions is the Gaussian function.

W (r − r′, h) =
1

(h3π3/2)
exp

󰀗
− (r − r′)2

h2

󰀘
(1.138)

However, a Gaussian kernel has the disadvantage of being greater than zero for all r =|

r − r′ |. The computational cost of this kernel values as O(N2) where N is the number

of particles in the simulation. Assuming that the long range forces are negligible, it is

sensible to restrict the kernel with a compact support, i.e. the kernel needs to satisfy the

condition that W (| r − r′ |, h) = 0 where | r − r′ | /h > k for a constant value of k. This

makes the computational cost to be measured as O(NNneigh), where Nneigh is the average

number of particles within a sphere of radius r = kh. Therefore, a common choice in

SPH for the kernel are the B-spline functions (Monaghan & Lattanzio, 1985) defined as:

W (r, h) =
1

πh3

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

1− 3
2
x2 + 3

4
x3 0 ≤ x ≤ 1

1
4
(2− x)3 1 ≤ x < 2

0 x ≥ 2.

(1.139)

where x = r/h. This is the most commonly used kernel (termed as the cubic spline) in

which the kernel is truncated at 2h and is spherically symmetric and differentiable at all

r. The gradient of the kernel from the above equation is well defined at all values of x
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given by:

∇W (r, h) =
∂

∂r
W (r, h) =

1

πh4

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

9
4
x2 − 3x 0 ≤ x ≤ 1

−3
4
(2− x)2 1 ≤ x < 2

0 x ≥ 2.

(1.140)

In general, the form of the kernel only makes little overall difference in the computational

speed of the code. This is because, most codes tabulate the kernel and the derivatives

rather than computing them directly. Therefore, the kernel may take a simple or complex

form of a non-analytic functions (Cossins, 2010).

The Smoothing length

The smoothing length h(r) is adopted in SPH to better resolve spatial distances where

needed. In order to resolve the dense regions with respect to sparse regions, the smoothing

length follows the number density (Springel & Hernquist, 2002) as:

h(r) ∝ n(r)−1/d (1.141)

with

n(r) =
N󰁛

b=1

W (r − rb, h(r)) (1.142)

where n(r) is the number of particles per unit volume and d is the number of spatial

dimensions. Since n(r) ∝ ρ(r), the relation between the density and the smoothing

length for particle a is (Price, 2012):

ha = η

󰀕
ma

ρa

󰀖1/d

. (1.143)

where the constant η is a free parameter. As the density is approximately a constant over

the kernel radius, the number of neighbours can be calculated as a function of η in three

58



1. INTRODUCTION

dimensions as

Nneigh =
4

3
π(ζη)3 (1.144)

where ζ is the compact support radius in units of h (i.e. ζ = 2 for the cubic spline). At

η = 1.2, the number of neighbours ≈ 58 which is commonly adopted in SPH simulations.

SPH Equations

This section discusses how to obtain the SPH equations of motion through variational

principles and thermodynamics. We discuss how these equations are derived from an

appropriate Lagrangian.

The Discrete Lagrangian

The Lagrangian is equated as:

L = T − V (1.145)

where T is the kinetic and V is the potential or thermal energy of the system. For a

system of point masses with velocity v = dr/dt and an internal energy per unit mass u,

we get (Price, 2012)

L =
󰁛

b

mb

󰀗
1

2
v2b − ub(ρb, sb)

󰀘
(1.146)

where the internal energy u is a function of density ρ and entropy s respectively. This

discrete version of the Lagrangian is used to obtain the Euler-Lagrange equations, which

further derive the equations of motion.

Euler - Lagrange equations

The equations of motion can be derived from the principle of least action, given by

S =

󰁝
Ldt (1.147)
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such that δS =
󰁕
δL dt = 0 where δ is a small change with respect to the change in

the particle co ordinates δr. If we assume the Lagrangian as a differentiable function of

particle positions r and velocities v, we get (Price, 2012)

δS =

󰁝 󰀕
∂L

∂v
.δv +

∂L

∂r
.δr

󰀖
dt = 0. (1.148)

Using integration by parts, this becomes

∂L

∂v
.δr −

󰁝
δr.

d

dt

󰀕
∂L

∂v

󰀖
dt+

󰁝 󰀕
∂L

∂r
.δr

󰀖
dt = 0 (1.149)

which can be rewritten as :

δS =

󰁝 󰀝󰀗
− d

dt

󰀕
∂L

∂v

󰀖
+

∂L

∂r

󰀘
.δr

󰀞
dt+

󰀗
∂L

∂v
.δr

󰀘t

t0

= 0. (1.150)

Hence,for particle a:

− d

dt

󰀕
∂L

∂va

󰀖
+

∂L

∂ra
= 0, (1.151)

d

dt

󰀕
∂L

∂va

󰀖
=

∂L

∂ra
. (1.152)

Firstly, let us consider the LHS of the equation. Since ∂L
∂va

= mava, we get

d

dt

󰀕
∂L

∂va

󰀖
=

d(mava)

dt
. (1.153)

Since

L =
󰁛

b

mb

󰀗
1

2
v2b − ub(ρb, sb)

󰀘
, (1.154)

∂L

∂ra
= −

󰁛

b

mb
∂ub

∂ρb

󰀏󰀏󰀏󰀏
S

∂ρb
∂ra

(1.155)
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where ρb =
󰁓N

b=1 mbW (r − rb, h(r)) (from equation 1.142). In order to calculate ∂ub

∂ρb
, we

consider the first law of thermodynamics given by

dU = TdS − PdV (1.156)

where dQ = TdS is the heat added to the system and dW = PdV is the work done by

expansion or compression. Since dV = −m
ρ2
dρ, the internal energy for unit mass gives:

dU = TdS +
P

ρ2
dρ (1.157)

Hence, at a constant entropy:

∂ub

∂ρb
=

P

ρ2
. (1.158)

In order to derive ∂ρb
∂ra

, we assume the mass in the kernel volume to be a constant, i.e.

ρh3 = constant (1.159)

where ρ is ρ(ra) =
󰁓

b mbW (| ra − rb |, ha) and h is h(ra) = η

󰀕
ma

ρa

󰀖1/d

.

From equation 1.159, ρ = constant/h3 therefore,

3ρ

h
=

3 constant

h4
. (1.160)

Also,

∂ρ

∂h
=

−3 constant

h4
. (1.161)

In other words,

∂ρ

∂h
=

−3ρ

h
. (1.162)

Hence, we have

∂L

∂ra
= −

󰁛

b

mb
Pb

ρ2b

∂ρb
∂ra

(1.163)
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where

∂ρb
∂ra

= ∇aρb +
∂ρb
∂hb

.
∂hb

∂ra
(1.164)

where ∇aρb is the differentiation of ρb with respect to ra keeping smoothing length a

constant.

∂ρb
∂hb

.
∂hb

∂ra
− ∂ρb

∂ra
= −∇aρb (1.165)

∂ρb
∂hb

.
∂hb

∂ra

󰀗
1− ∂ρb

∂ra
.
∂hb

∂ρb
.
∂ra
∂hb

󰀘
= −∇aρb (1.166)

∂ρb
∂hb

.
∂hb

∂ra

󰀗
1− ∂ρb

∂hb

.
∂hb

∂ρb

󰀘
= −∇aρb (1.167)

Using 1.162, the above equation can be rewritten as:

∂ρb
∂hb

.
∂hb

∂ra

󰀗
1 +

3ρb
hb

󰀕
∂hb

∂ρb

󰀖󰀘
= −∇aρb. (1.168)

Therefore,

∂ρb
∂hb

.
∂hb

∂ra
=

−∇aρb󰀗
1 + 3ρb

hb

󰀕
∂hb

∂ρb

󰀖󰀘 . (1.169)

Substituting equation 1.169 in equation 1.164 gives:

∂ρb
∂ra

= ∇aρb

󰀕
1− 1

1 + 3ρb
hb

󰀕
∂hb

∂ρb

󰀖
󰀖

(1.170)

∂ρb
∂ra

= ∇aρb

3ρb
hb

󰀕
∂hb

∂ρb

󰀖

1 + 3ρb
hb

󰀕
∂hb

∂ρb

󰀖 (1.171)

Dividing the equation by 3ρ
hb
.∂hb

∂ρb
,

∂ρb
∂ra

= ∇aρb
1

1 + hb

3ρb

󰀕
∂ρb
∂hb

󰀖 . (1.172)
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Therefore

∂ρb
∂ra

= ∇aρb

󰀗
1 +

hb

3ρb
.
∂ρb
∂hb

󰀘−1

. (1.173)

If we assume, Ω = 1 + hb

3ρb
. ∂ρb
∂hb

, equation 1.173 can be written as:

∂ρb
∂ra

= ∇aρb.
1

Ωb

(1.174)

Using another index c, ∇aρb can be written as:

∂ρb
∂ra

=
1

Ωb

󰁛

c

mc
∂Wbc(hb)

∂ra
(δba − δca). (1.175)

Substituting equation 1.175 in 1.155 gives:

∂L

∂ra
= −

󰁛

b

mb
Pb

ρ2b

1

Ωb

󰁛

c

mc
∂Wbc(hb)

∂ra
(δba − δca) (1.176)

and

dva
dt

= −
󰁛

b

mb

󰀗
1

Ωa

Pa

ρ2a
∇aWab(ha) +

1

Ωb

Pb

ρ2b
∇aWab(hb)

󰀘
. (1.177)

Thus for a constant smoothing length, this equation can be simplified to a standard form,

dva
dt

= −
󰁛

b

mb

󰀕
Pa

ρ2a
+

Pb

ρ2b

󰀖
∇aWab. (1.178)

1.7.2 Dissipative Effects in SPH

So far, the fluid flow is assumed to be perfectly inviscid and therefore devoid of any

dissipation. But, the same assumptions cannot be used when modelling transonic and

supersonic flows. This problem occurs because of a shock wavefront, wherein the flow

properties such as velocity, pressure, density and entropy change very rapidly (Cossins,

2010). There are two methods to solve the shocked flows - one is the Riemann solver,

second is the technique of implementing an artificial dissipative term in the momentum
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and energy equations that is activated only in the presence of shocks.

Artificial viscosity

In order to resolve shocked flows, the majority of SPH codes use an artificial dissipative

term or artificial viscosity that broadens the shock across a number of smoothing lengths.

This will guarantee the flow gradients from not becoming infinite, and gives their accurate

behaviour away from the shock. Hence, we require artificial viscosity to obey to the

following rules (Cossins, 2010):

• flow equations should contain no discontinuities.

• the shock front should be smoothed over a number of smoothing lengths.

• the shock front should be of the order of a few times the smoothing length.

• the artificial viscosity should reduce to zero, at regions away from the shock front.

• the Rankine-Hugoniot conditions must be satisfied across the shock. They include

ρ0v0 = ρ1v1 (1.179)

P0 +
ρ0v

2
0

2
= P1 +

ρ1v
2
1

2
(1.180)

P0

ρ0
+ u0 +

v20
2

=
P1

ρ1
+ u1 +

v21
2

(1.181)

where the subscripts 0 and 1 refer to the pre-shock and post-shock regions respec-

tively.

• Although, the entropy increases when passing from a pre-shock region to a post-

shock region, the total momentum and energy will be conserved.

On dimensional grounds, artificial viscosity Π is given as:

Π ∝ v2

ρ
(1.182)
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for a local velocity scale v. Von Neumann & Richtmyer (1950) suggested a viscous term

dependent on the squared velocity divergence, represented in the SPH form given as:

(Πab)NR =
βSPHh

2 | ∇.vab |2
ρ̄ab

(1.183)

where h is the characteristic length scale (analogous to the smoothing length in SPH),

ρ̄ab is the average density of particles a and b and βSPH is a constant term of order unity.

The velocity divergence is given by:

| ∇.vab |=
| vab |
| rab |

≈ | vab.rab |
| r2ab + 󰂃h2 | (1.184)

where rab = ra − rb and if we assume

µ =
hvab.rab

| rab |2 +󰂃h2
(1.185)

(Πab)NR becomes

(Πab)NR =
βSPHµ

2

ρ̄ab
. (1.186)

With the inclusion of both bulk and shear viscosities, we can deduce a linear form to the

aritificial viscosity given by (Cossins, 2010)

Πab = −αSPHcsµ

ρ̄ab
(1.187)

where αSPH is a second constant of order unity. The negative on the RHS arises because

the viscous force should be non-negative (Πab > 0) and it should be present only for

convergent flows where vab.rab < 0. These two forms of the equation have different nu-

merical effects. At low Mach numbers (M ≤ 5), the linear form performs well (Monaghan

& Lattanzio, 1985) whereas fails for stronger shocks. In cases, when two streams pass

through each other at the shock front leading to a multi valued velocity field when two
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particles with different velocities try to occupy the same position, we use a quadratic

form for artificial viscosity given by:

Πab =

󰀻
󰁁󰀿

󰁁󰀽

−αSPHcsµab+βSPHµ2
ab

ρab
vab.rab < 0

0 otherwise.

(1.188)

This represents the standard solution to the SPH viscous term using the sum of the two

terms (Monaghan & Lattanzio, 1985). This general form of the viscosity can be added

in the momentum equation (as derived in equation 1.178) to give:

dvb
dt

= −
󰁛

a

ma

󰀗
Pb

ρ2b
+

Pa

ρ2a
+ Πba

󰀘
∇bWba. (1.189)

Therefore, the main aim of introducing a dissipative term is to capture the shock and

broaden across a few smoothing lengths. There are several improvements that can be

implemented to control artificial viscosity as briefly discussed in the next section.

Artificial Dissipation Switches

It is very important to control and make sure only sufficient dissipation is added, i.e. to

ensure the artificial viscosity is only activated at the shock front and reduces to zero away

from it. But in the case of discs where shear flows play a critical role, it is noted that shear

force varies with smoothing length and this component is resolution dependent (Cossins,

2010). This effect can be controlled with sensible choices of αSPH and βSPH (Lodato &

Rice, 2004).

Balsara Switch

Balsara (1995) introduced an attempt to reduce the induced viscosity in shear flows by

adding a correction term to the standard SPH artificial known as the Balsara switch.
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The standard artificial term Πab is assumed to reduce by the factor fab =
|fa+fb|

2
where

fa =
| ∇va |

| ∇va | + | ∇× va | +0.0001csh
. (1.190)

The curl of the flow field (vorticity) allows this form of viscosity to work better in shear

flows and obliquely shocked flows (Cossins, 2010).

Morris & Monaghan Switch

An adaptation to Balsara switch by Morris & Monaghan (1997) presented the idea of

a time variant viscosity such that, Πab remains unaltered from the standard form. The

value of α evolves for each particle by:

dα

dt
= −α− αmin

τ
+ Sv (1.191)

where αmin is a minimum value to which α decays in a time scale τ = kh/cs (where

k ∼ 0.1− 0.2 is a constant) and Sv = max(−∇.v, 0) is a source term activated only if the

flow is convergent. Even though the source term remains non-zero for pure shear flows,

it can be balanced to a certain extent by the decay term (Cossins, 2010). An improved

approach to Morris & Monaghan (1997) to detect and respond to shocks is suggested

in Cullen & Dehnen (2010). This study introduces a method of using the total time

derivative of the velocity divergence (i.e. d∇.v/dt) as a shock indicator to differentiate

between the pre shock and post shock regions.

Moreover, it is important to know how the artificial viscosity (αAV) is used to rep-

resent the Shakura-Sunyaev disc viscosity (α) in SPH code phantom. Lodato & Price

(2010) demonstrates the standard form of artificial viscosity in terms of a shear and bulk

viscosities as:

νAV =
1

10
αAV csh (1.192)
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and

ζAV =
1

6
αAV csh. (1.193)

The magnitude of the shear viscosity arising from the numerical viscosity is therefore

assumed as (Lodato & Price, 2010),

α =
1

10
αAV

〈h〉
H

(1.194)

where 〈h〉 is the averaged smoothing length (or shell averaged smoothing length) and H

is the scale height of the disc. Therefore, one can obtain a disc evolution with a single

uniform value of α throughout by setting up the disc with a surface density profile such

that 〈h〉/H is a constant. In our numerical analysis, we consider the shear viscosity

contribution from the linear SPH term due to the artificial viscosity derived in Meru &

Bate (2012) for a Keplerian disc given by

α =
31

525
αAV

〈h〉
H

. (1.195)

1.8 Outline of the thesis

The core of this dissertation is divided across four chapters. Chapter 2 discusses the in-

stability of warped discs around supermassive black holes. We use the Smoothed Particle

Hydrodynamics code phantom to model a warped disc (without Lense-Thirring preces-

sion) in the diffusive regime, similar to the model used in Lodato & Pringle (2007). Our

analysis uses the prediction by Doǧan et al. (2018) to test the criterion for discs to become

unstable and tear. This criterion, derived from the stability analysis and the resulting

dispersion relation infers that each disc becomes unstable at a critical warp amplitude

value |ψ|c, dependent on the α parameter. We connect this instability criterion to the

disc tearing behaviour in warped discs using numerical simulations of discs at different

68



1. INTRODUCTION

α values at different degrees of misalignment. In this analysis, the possibility of tearing

is studied in each disc by examining if its warp amplitude, (ψ = r|∂l/∂r| ) exceeds |ψ|c,

the criterion to find when and where the warped disc is likely to become unstable and

tear. Our numerical results not only agree with the theoretical criterion of tearing in

warped discs, but also demonstrate that these discs become unstable, and break at small

α values and higher inclinations as expected from previous studies (Nixon & King, 2012;

Nixon et al., 2012a).

The same analysis is extended in chapter 3 which investigates disc tearing in accretion

discs around supermassive black holes warped due to Lense-Thirring (LT) precession.

This chapter explains how the instability criterion predicted from Doǧan et al. (2018)

can be further examined in the numerical simulations of discs warped due to LT effect.

In a parameter sweep, we investigate if these diffusive, warped discs become unstable and

tear to form discrete rings of gas at different values of α, H/R and tilts. We check if

the values of warp amplitude in each of these discs exceed its critical value predicted by

Doǧan et al. (2018) and become unstable to disc tearing, and form individual, precessing

rings. Doǧan et al. (2018) also calculates the dimensionless growth rate of the warp

amplitude ℜ[s] in these discs, which is dependent on the value of α, i.e. the growth rates

are higher at lower values of α; our research extends to check if this holds true in discs at

smaller values of α and H/R. Moreover, we also examine if the maximum value, to which

the warp amplitude grows in the unstable regions of the disc, closely matches with the

predicted results. We draw the conclusions from finding the agreement of our numerical

results with the theoretical criterion for tearing in discs (Doǧan et al., 2018).

Chapter 4 highlights on the potential applications of the disc tearing behaviour in

warped AGN discs, and reviews how numerical models of these discs (as studied in chapter

3) can be used to explain the deviation of the observational results from the theoretical

predictions of a standard α disc model. We discuss the observational studies, such as the
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observed short timescale, large amplitude variability in the UV and optical wavelengths in

AGN discs (Lawrence, 2018). We analyse this further by studying the time variability of

NGC 5548 from the data reported in Edelson et al. (2015). This chapter also summarises

Starkey et al. (2017) that finds the disc of NGC 5548 to have a steeper fall in temperature

than the expected standard α disc model. We address these examples to illustrate why

its important to use theoretical and numerical models of AGN discs, and examine if

disc tearing dynamics in unstable warped discs can clarify the source of variability and

anomalous behaviour observed in them. In this chapter, we conclude the possibility of

disc tearing in warped accretion discs, which produces variable accretion flows around

supermassive black holes (Nixon et al., 2012a), to explain the source of observational

variability in AGN discs.

Chapter 5 outlines the numerical methodology for setting up the initial conditions

in disc simulations that employ Smoothed Particle Hydrodynamics (SPH) in phantom.

If the initial conditions used are not in dynamical equilibrium, we see unwanted pres-

sure waves across the discs which can be damped using numerical viscosity. At standard

resolution, these waves damp on a timescale that is comparable to the time taken for

the waves to traverse the disc. However, this leads to a scenario where higher resolution

simulations require a longer relaxing phase which is computationally inefficient. We show

that these waves can be removed, on a timescale independent of resolution by a suitable

velocity damping scheme that tapers to zero over timescale comparable with the disc’s

dynamical timescale. Thus, we provide an effective algorithm for injecting particles into

the disc at higher resolution, and study the long-term viscous evolution of accretion discs.
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Instability of warped discs

2.1 Introduction

Accretion discs are present around a wide range of astrophysical objects such as planets,

stars and supermassive black holes (SMBHs). Accretion discs are generally warped due

to different effects. Tilted discs around black holes experience a torque due to the gen-

eral relativistic Lense-Thirring (LT) effect, which causes differential precession at rates

dependent on the distance of each orbit from the black hole (Lense & Thirring, 1918).

This differential precession forms a warp where the inner part of the disc aligns with the

spin of the black hole (Bardeen & Petterson, 1975). This prediction is termed as the

Bardeen-Peterson effect.

For a warped disc, the local plane of the disc changes with radius (Nixon & King,

2016). As a result, there will be a displacement of the high pressure mid-plane region

from one ring of the disc to its neighbour which oscillates at an azimuthal angle φ. There

is no displacement when the rings cross at the descending node (with azimuthal angle

φ = 0) and at the ascending node (with φ = π). On the other hand, the displacement

is maximal at φ = π/2 and 3π/2 (shown in figure 1.14). Therefore, a fluid element in

the disc experiences an epicyclic motion due to the oscillating radial pressure gradient

induced by the warp. This epicyclic motion causes the propagation of warps in discs.
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Warps in discs are propagated in two distinct modes: wavelike if α < H/R or diffusive if

α > H/R.

A linearised fluid analysis to derive the evolution equation of a warped disc was firstly

done by Papaloizou & Pringle (1983). The analysis of the warped disc equations in the

non-linear regime was further studied by Ogilvie (1999, 2000) and Ogilvie & Latter (2013)

using non linear torque coefficients Q1, Q2 and Q3 which were found to be dependent on

the warp amplitude |ψ|. The effect of these viscous torques on the disc structure can

determine how the warps grow and become large enough to break the disc. Doǧan et al.

(2018) derived an instability criterion for Keplerian warped discs, in the diffusive regime

to become unstable and break. This general criterion to determine instabilities in discs

is represented by a dispersion relation which governs the effect of viscous torque on the

disc structure through the warp amplitude |ψ|. The key results of Doǧan et al. (2018)

include: (1) a critical warp amplitude at each α value for a disc to become unstable and

(2) the growth of instabilities in warped discs at different values of α.

The aim of this chapter is to test this analysis by Doǧan et al. (2018) using numerical

simulations. Prior to the complex numerical study of discs warped due to the LT effect,

a warped disc model the same as was used in Lodato & Pringle (2007) to study the

propagation of warps, can be utilised to test the disc-breaking criterion from Doǧan et al.

(2018). This chapter discusses how this instability criterion can be applied in numerical

simulations of warped discs without LT precession, for a range of α values, at different

degrees of misalignment.

2.2 Motivation

Numerous studies have been done to investigate the evolution of warped discs (Papaloizou

& Pringle, 1983; Pringle, 1992; Ogilvie, 1999, 2000; Ogilvie & Latter, 2013). The behaviour

of warped discs was tested numerically in the case of thick discs where the warp prop-
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agation is wave-like (Lubow & Ogilvie, 2000) as well as in thin discs with the diffusive

warp propagation (Lodato & Pringle, 2007; Nixon & King, 2012). Nixon & King (2012)

showed the evolution of tilted discs warped by the LT effect and examined if the warp

amplitude was large enough to break the disc for 0.2 ≤ α ≤ 0.5 (note that this paper

included the non-linear fluid constraints as explained in Ogilvie (1999)). The criterion

for warped discs to tear in the diffusive regime was examined using SPH simulations to

study tilted discs around a central black hole (Nixon et al., 2012a). This study calculated

the breaking radius for a disc by comparing the LT precession torque to the torque from

the azimuthal shear viscosity. This was extended to study disc tearing in circumbinary

discs (Nixon et al., 2013) and circumprimary discs (Doğan et al., 2015) around misaligned

binary systems. Doğan et al. (2015) highlighted the inclusion of effective viscosity from

the vertical shear in the criterion for disc breaking at small values of inclinations and α.

These studies emphasise the need for an instability criterion that can be applied globally,

to study disc tearing in many systems. Doǧan et al. (2018) derived a general criterion

for isothermal warped discs in the diffusive regime to tear, i.e. each α parameter cor-

responds to a critical value of warp amplitude above which the disc becomes unstable

and tears. This criterion needs to be tested numerically in discs around supermassive

black holes which underlines the motivation of this work. Firstly, we intend to test this

using 3D hydrodynamical simulations of warped discs at different α, H/R and tilts. The

warp amplitude |ψ| = r|∂l/∂r| is calculated from the simulations and is compared to the

corresponding critical warp amplitude as derived in Doǧan et al. (2018).

2.2.1 Stability analysis of warped discs

Here, we discuss how the evolution equation of warped discs is used to calculate the gen-

eral instability criterion for discs to break (also detailed in section 3.2.1). The evolution
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equation of a warped disc is given by (Pringle, 1992)

∂L

∂t
=

1

R

∂

∂R

󰀫
(∂/∂R)[ν1ΣR

3(−Ω′)]
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∂

∂R

󰀫󰀗 1
2
ν2R
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Ω
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󰀬
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R

∂

∂R

󰀕
ν3R|L| l × ∂l

∂R

󰀖
(2.1)

where ν1, ν2 and ν3 are effective viscosities, Ω is the local azimuthal angular velocity and

Σ is the surface density. The local angular momentum of the disc L = ΣR2Ωl and l is

the unit angular momentum vector defined as:

l = (cos γ sin β, sin γ sin β, cos β) (2.2)

where β(R, t) is the local angle of the disc tilt with respect to the z-axis and γ(R, t) being

the disc twist measured from the x-axis. The first three terms in the evolution equation

are derived from the conservation of mass and angular momentum as explained in Pringle

(1992). The fourth term denotes the precessional torque used in the analysis of Ogilvie

(1999) which causes the rings to precess when tilted with respect to their neighbours.

Ogilvie (1999) uses torque coefficients (Q1, Q2 and Q3) and defines them in terms of

effective viscosities (ν1, ν2 and ν3) as:

ν1 =
Q1IΩ2

ΣR dΩ
dR

(2.3)

ν2 =
2Q2IΩ

Σ
(2.4)

ν3 =
Q3IΩ
Σ

(2.5)
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where I is the azimuthally averaged second vertical moment of the density which is

dependent on warp amplitude |ψ| = r|∂l/∂r| as I = f(|ψ|)Σc2s/Ω2 (Ogilvie, 1999). The

evolution equation was re-examined in Ogilvie & Latter (2013) which considered I =

Σc2s/Ω
2, and the |ψ| dependence was established with a change of definition in the Qi

coefficients. Ogilvie & Latter (2013) presented the evolution equation as:

∂

∂t
(ΣR2Ωl) +

1

R

∂

∂R
(ΣVRR

3Ωl) =
1

R

∂
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2
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2l)
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󰀖
(2.6)

The effective viscosities are related to the Qi coefficients as:

ν1 =
−Q1c

2
s

qΩ
(2.7)

where q = −d lnΩ
d ln r

.

ν2 =
2Q2c

2
s

Ω
(2.8)

ν3 =
Q3c

2
s

Ω
(2.9)

Consider the specific angular momentum h = R2Ω, h′ = dh/dr and by including the

equation for radial velocity, the evolution equation becomes

∂
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󰀘
. (2.10)

Doǧan et al. (2018) performs the stability analysis of the evolution equation by sub-

jecting it to linear perturbations similar to the analysis done in Ogilvie (2000). The

internal torque components gi(r,Σ,α,αb, q, |ψ|) in terms of the dimensionless basis vec-
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tors (l , r∂l/∂r, rl × ∂l/∂r) is defined as (Ogilvie, 2000):

gi = Qi(α,αb, q, |ψ|)Σc2sr2 (2.11)

where the bulk viscosity αb = 0, q = 3/2 (Keplerian discs) and Qi = Qi(α, |ψ|). Hence,

the evolution equation can be written as (or refer equation 71 in Ogilvie (2000)):

h
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󰀘
. (2.12)

The stability of the above equation can be examined by subjecting it to linear perturba-

tions (δΣ, δl). Hence, the perturbed form of the equation is given as1:
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where the perturbed quantities,

δgi =
∂gi
∂Σ

δΣ+
∂gi
∂|ψ|δ|ψ|, (2.14)

δ|ψ| = r2

|ψ|
∂l

∂r
.
∂δl

∂r
(2.15)

and l .δl = 0. The solution of the perturbations (δΣ, δl) is of the form2

exp

󰀕
− i

󰁝
ωdt+ i

󰁝
kdr

󰀖
(2.16)

where ω is the wave frequency and k is the wavenumber. The perturbed form of angular

momentum equation is defined in terms of orthonormal components (l ,m ,n) in the order

1The equation 2.12 is perturbed with Σ → Σ+ δΣ, l → l + δl and gi → gi+ δgi. We cancel the higher
order terms and keep only the first order terms, and subtract the resultant equation with equation 2.12
to obtain the perturbed form as shown by equation 2.13.

2The perturbations are assumed to vary more rapidly with radius and time than the unperturbed
solution, also shown by equation 75 in Ogilvie (2000).
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of k (also shown in equations 22-24 in Doǧan et al. (2018)) given as:

−iωhrδΣ = k2 h

h′ δg1 (2.17)

−iωhrΣδm = ik|ψ|δg2 − k2g2rδm+ k2g3rδn− ik|ψ| h
rh′ δg1 (2.18)

−iωhrΣδn = ik|ψ|δg3 − k2g2rδn− k2g3rδm (2.19)

These linear equations can yield a coefficient determinant (shown in equation 25 in Doǧan

et al. (2018)) which follows the dispersion relation given by
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where the prime on Q coefficients represents differentiation with respect to |ψ|, a =

h/rh′ = dln r/dln h= 1/(2−q) = 2 (for a Keplerian disc with q = 3/2). The dimensionless

growth rate s is calculated as:

s =
−iω

Ω

󰀕
Ω

csk

󰀖2

(2.21)

assuming that instabilities grow over time, if ℜ[s] > 0. The roots or solutions of the

dispersion relation explains the effect of each viscous torque coefficient Qi on the warp

amplitude of the disc |ψ|. The solution of the dispersion relation involving Q1, Q2 and Q3

gives the instability criterion for a warped disc to become unstable, given as s1(Q1, Q2, Q3)

3. The full criterion of instability is validated when ℜ[s1(Q1, Q2, Q3)] > 0.

A key result from Doǧan et al. (2018) demonstrates how the growth rate ℜ[s1(Q1, Q2, Q3)]

as a function of |ψ| behaves at different values of α as shown in figure 2.1. Therefore,

3The full criterion s1(Q1, Q2, Q3) is given as: s1(Q1, Q2, Q3) =
1
6 [2C1 +22/3(C2 +C3)

1/3 +24/3(C2 +

C
1/2
3 )−1/3C4] where C1, C2, C3 and C4 are expressed in terms of Q1, Q2 and Q3 given by equations 33-37

in Doǧan et al. (2018).
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the growth rate of instabilities ℜ[s] is found to be inversely proportional to α, i.e. the

growth rate of instabilities is higher for low values of α. The critical warp amplitudes for

instability is studied for discs at different values α, thus showing the stable and unstable

regions in the (α, |ψ|) parameter space as shown in figure 2.2. The analysis of Doǧan

et al. (2018) demonstrates that at each α parameter of the disc, there is a critical value

for the warp amplitude (say, |ψ|c) below which the disc remains stable and above which

the disc becomes unstable and tears. Therefore, it is important to test this criteria in

isothermal, Keplerian warped discs at various α parameters (in the diffusive case with

α > H/R) and check if it becomes unstable at its critical warp amplitude value. This

illustrates the motivation of this chapter to use SPH simulations and test this theory.

Figure 2.1: The dimensionless growth rate ℜ[s] is plotted as a function of warp amplitude ψ at different α values. In this
analysis, the growth rate for a disc with α = 0.1 is considered. The growth rate at α = 0.1 increases after a critical value
of |ψ|c = 3 and attains a steady growth rate value of ℜ[s] = 0.2 at values of |ψ| > |ψ|c as shown. Image taken from Doǧan
et al. (2018).
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Figure 2.2: Plot showing the stable (white) and unstable (green) regions in the (α, |ψ|) parameter space. This demonstrates
that, there is a minimum or critical value of warp amplitude for a disc at any α value (0.01 ≤ α ≤ 0.2) at which it becomes
unstable (Image taken from Doǧan et al. (2018)).

The solutions presented by Doǧan et al. (2018) represent necessary, but not sufficient,

criteria for instability, with the sufficiency supplied by the condition that the background

state evolve more slowly than the growth of unstable modes. Taking this into account,

our aims for the simulations presented in this paper are to show in agreement with the

analytical predictions of the warped disc instability, that

1. discs with |ψ| > |ψ|c for extended periods of time lead to instability,

2. discs with |ψ| < |ψ|c are stable, and

3. the growth rate of the warp amplitude in the unstable regions follow the general

trends of the predicted growth rates, i.e. the growth rates are generally higher for

smaller viscosity and depend on the warp amplitude.
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2.3 Numerical Results

The aim of this project is to explore the instability criterion as explained in Doǧan et al.

(2018) and test it using SPH simulations. We use the smoothed particle hydrodynamics

(SPH) code phantom to test how a warped disc behaves at different warp amplitudes.

In order to determine the instability of warped discs, we follow Lodato & Pringle (2007)

to model a warped accretion disc and use the criterion of disc tearing as explained in

Doǧan et al. (2018).

2.3.1 Simulations

To perform 3D SPH simulations of warped discs with no LT precession, we choose a disc

with Keplerian orbits around a central mass M = 1, the gravitational constant G = 1

and speed of light c = 1 that gives a gravitational radius Rg = 1 measured in code units.

The accretion radius as well as the inner radius of the disc is set at Rin = 4Rg and the

outer radius at Rout = 30Rg. The surface density of the disc behaves as Σ = Σ0(R/Rin)
−p

with a locally isothermal sound speed profile given as cs = cs0(R/Rin)
−q. At p = 3/2

and q = 3/4, the disc is uniformly resolved with a constant shell-averaged smoothing

length per disc scale-height, i.e. 〈h〉/H remains a constant (Lodato & Pringle, 2007).

The simulations use a disc viscosity parameter α = 0.1 and scale height H/R = 0.03.

The disc is composed of 10 million particles with 〈h〉/H ≈ 0.3 which implies that the

effective viscosity arising from the numerical viscosity is αAV = 0.017; cf. Meru & Bate

(2012) 4. The warped disc in the simulations is modelled the same way as used in Lodato

4Meru & Bate (2012) finds that the magnitude of the shear viscosity arising from the numerical
viscosity, includes a linear term controlled by αSPH and a quadratic term controlled by βSPH, which gives

αAV = 31
525αSPH

〈h〉
H + 9

70πβSPH

󰀓
〈h〉
H

󰀔2

(further discussed in section 3.4).
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& Pringle (2007) where the components of the disc tilt vector, l are given as:

lx =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

0 for R < R1

A

2

󰀗
1 + sin

󰀕
π
R−R0

R2 −R1

󰀖󰀘
for R1 < R < R2

A for R > R2.

In addition, the values of ly = 0 (no twist), and lz =
󰁳

(1− lx)
2. To set up the simulations,

we consider R0 = Rwarp = Rin+Rout

2
measured as 17Rg in code units. The extend of the

warp is determined by Rwarp±∆R, where we use a value of ∆R = 3Rg in our disc setups

which gives R1 = 14Rg and R2 = 20Rg respectively. The value of A corresponds to the

inclination at the outer disc.

Firstly, we examine how the disc behaves with the outer disc inclined at 10◦. The

total run time of the simulation is set at t = 8800 ≈ 20 orbits at Rwarp. Figure 2.3 shows

the 3D column density of the disc at t = 220 and 5500 which are 0.5 and 12.5 orbits at

Rwarp respectively. As shown in the figure, the disc shows no evidence of a break. But

this can be further verified from studying the behaviour of the surface density (where the

value of Σ = 0 in the unstable region) and tilt of the disc.

Figure 1:

1

Figure 2.3: 3D column density plots of the disc inclined at 10◦, α = 0.1 and H/R = 0.03 at 0.5 and 12.5 orbits at Rwarp.
There is no evidence of a disc tear at the later time as shown.

The change in the surface density as well as the tilt of the disc at times t = 0.5 (black

line) and 12.5 orbits (red line) at Rwarp are shown in figure 2.4a. The value of Σ doesn’t

reduce to zero anywhere in the disc at t = 12.5 orbits at Rwarp. Similarly, the tilt of the

disc also shows no evidence of a break.

81



2. INSTABILITY OF WARPED DISCS

In order to verify the stability criterion of this disc setup, the warp amplitude of the

disc is calculated and compared to a critical value |ψ|c = 3 corresponding to α = 0.1,

as shown in figure 2.4b. At both times, the warp amplitude of the disc remains much

smaller than |ψ|c, which shows that this warped configuration of the disc with the outer

disc aligned at 10◦ doesn’t break and remains stable. This can be further extended to

other disc setups with the outer part of the disc inclined at 30◦, 45◦ and 60◦.
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(a)

(b)

Figure 1
1

Figure 2.4: (a) The first plot shows the surface density profiles for a disc initially inclined at 10◦,α = 0.1 and H/R = 0.03
at 0.5 (black line) and 12.5 orbits (red line) at Rwarp. Although the disc evolves over time, there is no evidence of a disc
tear as there is no divide or split in the surface density plot. The second plot shows how the tilt changes for the same disc
setup at 0.5 (black line) and 12.5 (red line) orbits at Rwarp. The tilt profiles from the two times show no evidence of a disc
tear. (b) The plots show the warp amplitude |ψ| of a disc initially inclined at 10◦,α = 0.1 and H/R = 0.03, calculated at
0.5 and 12.5 orbits at Rwarp. The values are much lower than the critical value |ψ|c = 3 (red dashed line), thus proving
that this disc remains stable with no instabilities.

83



2. INSTABILITY OF WARPED DISCS

Figure 2.5 shows the 3D simulations of a warped disc inclined at θ = 30◦, α = 0.1 and

H/R = 0.03 at t = 220 and t = 5500 which are 0.5 and 12.5 orbits at Rwarp respectively.

Figure 1:

1

Figure 2.5: 3D simulations of a disc tilted at 30◦, α = 0.1 and H/R = 0.03 at 0.5 orbits and 12.5 orbits at Rwarp is shown.
The warped region of the disc doesn’t show any breaking at a later time in the simulation.

At the initial time, we can notice an aligned inner part connected to the misaligned

outer part of the disc through a warp. At the later time, the warped configuration

does not tear which can be investigated using surface density profiles and corresponding

changes in the tilt of the disc. The first plot of figure 2.6a shows the surface density

profiles at t = 0.5 (black line) and t = 12.5 orbits (red line) at Rwarp. If there is a disc

tear, it can be identified where the value of Σ = 0 which does not happen in this disc

at a later time. Similarly, the tilt of the disc as shown in the lower panel of figure 2.6a

demonstrates how the tilt of the disc behaves at t = 0.5 orbit (black line) and t = 12.5

orbits (red line) at Rwarp. Analogous to the surface density profiles, the tilt of disc does

not show an evidence of disc break.

In order to compare this result with that predicted from Doǧan et al. (2018), the

warp amplitude (ψ) of the disc is calculated at t = 0.5 and 12.5 orbits at Rwarp. As

shown in figure 2.6b, the values of the warp amplitude are lower than the critical value

|ψ|c = 3 which is denoted by the red dashed line. This once again proves that a warped

disc tilted at 30◦ for the simulated parameters, remains stable and does not form any

instabilities since the value of warp amplitude remains smaller than the critical value in

the simulation.
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(a)

(b)

Figure 1
1

Figure 2.6: (a) The first plot shows the surface density profiles for a disc initially inclined at 30◦,α = 0.1 and H/R = 0.03
after 0.5 (black line) and 12.5 orbits (red line) at Rwarp. At a later time, although the surface density is significantly
affected by the warp, its value doesn’t reduce to zero at any radii, thus showing that there is no disc break. The second
plot shows the tilt of the disc at 0.5 (black line) and 12.5 orbits (red line) at Rwarp which also indicates no evidence of a
disc break. (b) The warp amplitude |ψ| of the disc is calculated and plotted at times ≈ 0.5 and 12.5 orbits at Rwarp. The
values of |ψ| is compared to the critical value at |ψ|c = 3 shown by the red dashed line. The values of |ψ| lies well below
the critical value at both times, thus proving that this disc doesn’t become unstable.
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This analysis is extended to highly inclined warped discs at 45◦ and 60◦ respectively.

Unlike the previous cases, these discs show evidence of breaking at higher inclinations.

Firstly, the 3D simulations of a disc inclined at 45◦, α = 0.1 and H/R = 0.03 at times t

= 220 and t = 5500 which are 0.5 and 12.5 orbits at Rwarp are shown in figure 2.7.

Figure 1:

1

Figure 2.7: 3D simulations of a disc tilted at 45◦, α = 0.1 and H/R = 0.03 at 0.5 orbits and 12.5 orbits at Rwarp is shown.

While it is difficult to see the break in the column density plots, it can be explained

in the surface density and tilt profiles of the disc. The surface density and the tilt profiles

of the disc at t = 0.5 orbit (black line) and t = 12.5 orbits (red line) at Rwarp are shown

in figure 2.8a. There is a clear divide in the surface density plot when the value of Σ

reduces to zero at radius r = 18 at a later time. Similarly, in the second plot showing

the tilt of the disc becomes steeper at r = 18, at a later time which infers the possibility

of a disc tear 5.

The warp amplitude is calculated for this setup at times t = 0.5 and 12.5 orbits at

Rwarp and compared with the critical warp amplitude |ψ|c = 3 as shown in figure 2.8b.

At the earlier time, the maximum value of the warp amplitude ψ ≈ |ψ|c and thus the disc

might be unstable. The warp amplitude of the disc at radius r = 18 exceeds the critical

value at a later time, hence showing that the disc becomes unstable and tears.

5A similar analysis is examined in Nixon & King (2012), showing the change in the disc structures of
warped discs at values of α between 0.2 and 0.5.
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(a)
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Figure 2.8: (a) The first plot shows the surface density of the disc inclined at 45◦,α = 0.1 and H/R = 0.03 at 0.5 (black
line) and 12.5 orbits (red line) at Rwarp. At a later time, the value of Σ reduces to zero at r = 18, locating the point of
disc break. The second plot shows the corresponding change in the tilt of the disc at 0.5 (black line) and 12.5 orbits (red
line) at Rwarp and shows the possibility of a disc break at t = 12.5 orbits (red line) at Rwarp. (b) The warp amplitude |ψ|
of the disc is plotted at 0.5 and 12.5 orbits at Rwarp for a disc inclined at 45◦,α = 0.1 and H/R = 0.03. The red dashed
line denotes the critical value |ψ|c = 3. The maximum warp amplitude ≈ |ψ|c at the initial time, and thus the disc might
be unstable. At the later time, the value of |ψ| > |ψ|c at r = 18 showing that the disc becomes unstable.
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Figure 1:

1

Figure 2.9: 3D simulations of a disc inclined at 60◦, α = 0.1 and H/R = 0.03 at 0.5 orbits and 6.25 orbits at Rwarp. The
simulation at a later time shows the possibility of a disc break.

Figure 2.9 shows the 3D simulations of a warped disc tilted at 60◦ at times t = 220

and t = 2750 which are 0.5 and 6.25 orbits at Rwarp respectively. At a later time, the

disc shows evidence of a disc tear which can be examined from the change in the surface

density and tilt of the disc at t = 0.5 orbit (black line) and t = 6.25 orbits (red line) at

Rwarp as shown in figure 2.10a. At radius, r = 17 the value of Σ reduces to zero which

denotes the point of disc tear. A change in the slope of the tilt at the same radius validates

on the possibility of disc tear in this setup. In this case, we expect the warp amplitude

of the disc to exceed the critical value |ψ|c as examined in figure 2.10b.
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(a)

(b)

Figure 1
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Figure 2.10: (a) The first plot shows the surface density of the disc inclined at 60◦,α = 0.1 and H/R = 0.03 after 0.5 (black
line) and 6.25 orbits (red line) at Rwarp. There is a clear divide in the surface density at the later time when Σ reduces
to zero at r ≈ 17. The second plot shows the change in the tilt of the disc with the warp connecting the inner part of the
disc to its outer part tilted at 60◦ at 0.5 (black line) and 6.25 orbits (red line) at Rwarp. (b) The warp amplitude |ψ| of
the disc at 60◦,α = 0.1 and H/R = 0.03 is calculated at t ≈ 0.5 and 6.25 orbits at Rwarp. The values of |ψ| is compared to
the critical value |ψ|c = 3 denoted by the red dashed line. The value of |ψ| > |ψ|c at r ≈ 17 proving that the disc becomes
unstable at the later time.
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Depending on the inclination of the outer part of the disc, the warped region of the

disc between radii r = 14 and r = 20 generates a |ψ| value, either smaller or greater

than the critical value |ψ|c at the initial time. In the last three cases discussed at tilts

10◦ and 30◦, the value of ψ remains smaller than |ψ|c at an initial time. This is not true

at 45◦ and 60◦ as shown in figures 2.8b and 2.10b respectively. Figure 2.10b shows the

warp amplitude of the disc, inclined at 60◦, at times t = 0.5 and 6.25 orbits at Rwarp. At

t = 6.25 orbits, the value of |ψ| > |ψ|c at radius r ≈ 17. Once again, this agrees well

with the analysis of Doǧan et al. (2018) showing that the value of critical warp amplitude

measures the limit of stability in discs.

2.4 Warped discs at higher α values

The criterion for discs to become unstable, derived in Doǧan et al. (2018) shows that each

disc has a critical value of warp amplitude which increases with increasing values of α as

shown in figure 2.2. Thus, at higher values of α, it requires a larger critical value |ψ|c for

a disc to become unstable. This can be further tested using numerical simulations and

study how warped discs at different values of α (> 0.1) behave at different inclinations.

Firstly, let us consider a disc at α = 0.16 initially tilted at 10◦ with the same values

previously used for Rin, Rout, Rwarp and H/R. The total run time of the simulation is t

= 8800 ≈ 20 orbits at Rwarp. Figure 2.11 shows the 3D simulation of the disc at t = 220

and 5500, which are 0.5 and 12.5 orbits at Rwarp.

Figure 1:

1

Figure 2.11: 3D column density plots of a disc inclined at 10◦, α = 0.16 and H/R = 0.03 at 0.5 orbits and 12.5 orbits at
Rwarp.
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Figure 2.12: (a) The first plot shows the surface density profiles for a disc initially inclined at 10◦,α = 0.16 and H/R = 0.03
after 0.5 (black line) and 12.5 orbits (red line) at Rwarp. The second plot shows the corresponding tilt changes for the same
disc setup at 0.5 (black line) and 12.5 (red line) orbits at Rwarp. The two profiles present no evidence of a disc break as
shown. (b) The warp amplitude |ψ| of the disc inclined at 10◦,α = 0.16 and H/R = 0.03 is plotted at 0.5 and 12.5 orbits
at Rwarp as shown. The values are compared to the critical value |ψ|c = 4 denoted by the red dashed line.
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The corresponding changes in the surface density and the tilt of the disc at times t =

0.5 (black line) and t = 12.5 (red line) orbits at Rwarp is shown in figure 2.12a. From the

3D simulations and the parameter profiles of the disc, one can clearly verify that the disc

does not become unstable and shows no disc tearing. Furthermore, the warp amplitude

of the disc is calculated at times t = 0.5 and t = 12.5 orbits at Rwarp and is compared to

the critical warp amplitude |ψ|c = 4 for α = 0.16 as shown in figure 2.12b. At the two

times, the values of the warp amplitude remain less than the critical value, proving that

this agrees well with the expected criteria that the disc remains stable until |ψ| > |ψ|c.

The same is checked for a disc inclined at 60◦. The 3D simulations of the disc at t

= 0.5 orbit and t = 6.25 orbits at Rwarp is shown in figure 2.13. At a later time, the

simulation shows a clear break in the disc. This can be further verified from the surface

density and tilt of the disc at t = 0.5 orbit (black line) and t = 6.25 orbits (red line) as

shown in figure 2.14a. The surface density profile of the disc shows the value of Σ = 0 at

r ≈ 17. Similarly, the tilt plot also shows a break at a later time at r ≈ 17 in this setup.
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Figure 1:

1

Figure 2.13: 3D simulations of a disc tilted at 60◦, α = 0.16 and H/R = 0.03 at 0.5 orbits and 6.25 orbits at Rwarp.

The warp amplitude of the disc is calculated at times t = 0.5 and t = 6.25 orbits

at Rwarp and is compared with the critical warp amplitude |ψ|c = 4 denoted by the red

dashed line as shown in figure 2.14b. Initially, the value of |ψ| ≈ |ψ|c, so we expect the

disc to be unstable. At a later time , the value of |ψ| > |ψ|c at radius r = 17, where the

disc tears as observed in the surface density and tilt profiles.

93



2. INSTABILITY OF WARPED DISCS

(a)

(b)

Figure 1
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Figure 2.14: (a) The first plot shows the surface density of the disc inclined at 60◦,α = 0.16 and H/R = 0.03 after 0.5
(black line) and 6.25 orbits (red line) at Rwarp. The value of Σ at r ≈ 17 lowers to zero which denotes the point where
the disc becomes unstable. The second plot shows the change in the tilt of the disc with its outer part tilted at 60◦ at 0.5
(black line) and 6.25 orbits (red line) at Rwarp. The tilt of the disc shows a break at r ≈ 17 at a later time. (b) The warp
amplitude |ψ| of the disc at 60◦,α = 0.16 and H/R = 0.03 is calculated at t ≈ 0.5 and 6.25 orbits at Rwarp. The values
of |ψ| are compared to the critical value |ψ|c = 4 denoted by the red dashed line. Initially, the maximum value of warp
amplitude ≈ |ψ|c, so we expect the disc to be unstable. The value of warp amplitude at a later time peaks to |ψ| = 8 at
radius r ≈ 17, thus proving that the disc becomes unstable.

94



2. INSTABILITY OF WARPED DISCS

Figure 1:

1

Figure 2.15: 3D simulations of a disc tilted at 10◦, α = 0.18 and H/R = 0.03 at 0.5 orbits and 12.5 orbits at Rwarp. No
evidence of a disc tear is seen in this disc.

Now, we consider a disc with α = 0.18 and inclined at 10◦. Figure 2.15 shows the 3D

simulation of the disc at t = 220 and 5500, which are 0.5 and 12.5 orbits at Rwarp. The

3D simulations show no disc breaking at a later time, which is further verified from the

surface density and tilt plots of the disc as shown in figure 2.16a. It shows the changes

in the surface density and the tilt of the disc at times t = 0.5 (black line) and t = 12.5

orbits (red line) at Rwarp. These figures show no evidence of disc tearing and the criterion

of disc tearing can be further tested from the values of the warp amplitude at the two

times.

The warp amplitude of the disc is calculated at times t = 0.5 and t = 12.5 orbits at

Rwarp and is compared to the critical warp amplitude |ψ|c = 6 for α = 0.18 as shown in

figure 2.16b. At both times, the value of |ψ| << |ψ|c and hence the disc remains stable

without forming any instabilities.
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Figure 2.16: (a) The first plot shows the surface density profiles for a disc initially inclined at 10◦,α = 0.18 and H/R = 0.03
after 0.5 (black line) and 12.5 orbits (red line) at Rwarp. The second plot shows the corresponding tilt changes for the
same disc setup at 0.5 (black line) and 12.5 (red line) orbits at Rwarp. (b) The warp amplitude |ψ| of the disc inclined at
10◦,α = 0.18 and H/R = 0.03 is plotted at times 0.5 and 12.5 orbits at Rwarp respectively. The values are compared to
the |ψ|c = 6 denoted by the red dashed line.
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At the same viscosity parameter α = 0.18, this analysis is tested for a higher inclined

disc at 60◦. Figure 2.17 shows the 3D simulation of the disc at t = 0.5 and t = 6.25 orbits

at Rwarp. The surface density and the tilt of the disc at these times is examined as shown

in figure 2.18a.

Figure 1:

1

Figure 2.17: 3D column density plots of a disc tilted at 60◦, α = 0.18 and H/R = 0.03 at 0.5 orbits and 6.25 orbits at
Rwarp.

Unlike the other highly inclined warped discs studies so far, this disc shows no possi-

bility of a break as shown in the 3D simulations. This can be further studied by examining

the surface density and tilt of the disc as shown in figure 2.18a. The surface density does

not reduce to zero at any radii at a later time. Similarly, the tilt of the disc doesn’t show

any disc tear at a later time .

The theoretical criterion of disc tearing can be further examined by calculating the

warp amplitude at times t = 0.5 and t = 6.25 orbits at Rwarp. These values of |ψ| are

compared to the critical warp amplitude |ψ|c = 6 as shown in figure 2.18b. The value of

|ψ| is less than |ψ|c at both times, proving that the disc remains stable.
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Figure 2.18: (a) The first plot shows the surface density of the disc inclined at 60◦,α = 0.18 and H/R = 0.03 after 0.5
(black line) and 6.25 orbits (red line) at Rwarp. There is no divide in the surface density at any radii of the disc. The
second plot shows the change in the tilt of the disc at 0.5 (black line) and 6.25 orbits (red line) at Rwarp which also shows
no instabilities. (b) The warp amplitude |ψ| of the disc at 60◦,α = 0.18 and H/R = 0.03 is calculated at t ≈ 0.5 and 6.25
orbits at Rwarp. The values of |ψ| is compared to the critical value |ψ|c = 6 denoted by the red dashed line. The value of
|ψ| < |ψ|c thus proving that the disc remains stable.
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From figure 2.2, it is clear that the critical value of warp amplitude to become unstable

increases with α. The critical value at α = 0.2 is |ψ|c = 13.5 and it increases further as

α values go up. Hence, we can examine the behaviour of a warped disc at α = 0.3 and

prove that they remain stable and doesn’t become unstable at any critical value of the

warp amplitude. Firstly, for a disc inclined at 10◦, figure 2.19 shows the 3D simulations

at t = 0.5 orbits and t = 12.5 orbits at Rwarp. The surface density and the tilt of the disc

at these times are also studied as shown in figure 2.20a. The 3D column density as well

as the parameter (Σ and tilt) profiles of the disc show no evidence of instabilities. The

disc remains warped without any break, thus proving that it remains stable at higher α

values. This can be further proven by studying the changes in the warp amplitude as

shown in figure 2.20b.

Figure 1:

1

Figure 2.19: 3D simulation of a disc tilted at 10◦, α = 0.3 and H/R = 0.03 at 0.5 orbits and 12.5 orbits at Rwarp.

The warp amplitude of this disc at times t = 0.5 and t = 12.5 orbits at Rwarp is

calculated. The values of |ψ| are much smaller than the maximum value |ψ|c = 13.5 (for

α = 0.2) as shown in figure 2.20b. This proves that it is difficult for a disc at α = 0.3 to

achieve the critical value to become unstable.
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Figure 2.20: (a) The first plot shows the surface density profiles for a disc initially inclined at 10◦,α = 0.3 and H/R = 0.03
after 0.5 (black line) and 12.5 orbits (red line) at Rwarp. The second plot shows the corresponding tilt changes for the
same disc setup at 0.5 (black line) and 12.5 (red line) orbits at Rwarp. (b) The warp amplitude |ψ| of the disc inclined
at 10◦,α = 0.3 and H/R = 0.03 after 0.5 and 12.5 orbits at Rwarp. The values of |ψ| are very small at both times and
therefore it is difficult for the disc to become unstable at any |ψ|c value.
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Figure 1:

1

Figure 2.21: 3D column density plots for a disc tilted at 60◦, α = 0.3 and H/R = 0.03 at 0.5 orbits and 6.25 orbits at
Rwarp. The disc shows no breaking at the later time.

The behaviour of a warped disc at α = 0.3 is investigated at 60◦. The disc remains

stable in the 3D simulations at t = 0.5 and 6.25 orbits at Rwarp, and there is no disc tear

at a later time as shown in figure 2.21. The surface density of the disc is calculated at

t = 0.5 (black line) and t = 6.25 (red line) orbits at Rwarp as given in figure 2.22a. The

value of surface density Σ > 0 at all radii. The figure also shows the tilt of the disc at

both times, proving that the disc remains stable without any instabilities.

We calculate the warp amplitude of the disc and test the instability criterion at t =

0.5 and 6.25 orbits at Rwarp respectively. As shown in figure 2.22b, the ψ values lie below

any critical value at both times. This implies that the disc remains stable at α = 0.3.

Also, the growth rate of instabilities is smaller at higher α values which concludes that

it is difficult for this disc to achieve the critical value to give rise to instabilities.
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Figure 2.22: (a) The first plot shows the surface density of the disc inclined at 60◦,α = 0.3 and H/R = 0.03 after 0.5 (black
line) and 6.25 orbits (red line) at Rwarp. The value of Σ doesn’t reduce to zero which denotes that the disc remains stable.
The second plot shows the change in the tilt of the disc after 0.5 (black line) and 6.25 orbits (red line) at Rwarp. The tilt
of the disc doesn’t show a break at any radii at the later time. (b) The warp amplitude |ψ| of the disc at 60◦,α = 0.3 and
H/R = 0.03 is calculated at t ≈ 0.5 and 6.25 orbits at Rwarp. The values of |ψ| remains small at both times proving that
at α = 0.3, it is difficult for any disc to achieve the minimum value to become unstable.
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2.5 Growth of instabilities

Doǧan et al. (2018) calculates the growth rate of the instabilities given by the dimension-

less growth rate ℜ[s] where

s = − iω

Ω

󰀕
Ω

csk

󰀖2

. (2.22)

Furthermore, s is written in terms of the physical growth rate ℜ[−iω] as

−iω = sΩ

󰀕
csk

Ω

󰀖2

. (2.23)

The instabilities in discs are assumed to grow if ℜ[s] > 0 or decay if ℜ[s] < 0. Thus,

|ψ| = |ψ|0 exp[ℜ(−iω)t]. (2.24)

If csk/Ω ≈ 1, the equation becomes:

|ψ| = |ψ|0 exp[ℜ(−iω)t] = |ψ|0 exp[sΩt]. (2.25)

The dimensionless growth rate ℜ[s] as a function of ψ is plotted in Doǧan et al. (2018)

at different values of α (refer to figure 2.1). For a disc at α = 0.1, the value of growth

rate ℜ[s] = 0.2 for ψ values between 4 and 5. So far, we explained in detail the numerical

results at different disc setups where discs show instabilities at higher inclinations and

lower α values. In this section, we determine the rate at which the warp amplitude grows

in one such setup, i.e. we calculate the time taken for the warp to grow from ψ = 4 to

ψ = 5 in the numerical simulation and compare it to the time required for the instability

to grow as predicted by Doǧan et al. (2018) using equation 2.25.
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Figure 2.23: The maximum value of warp amplitude (peak value in |ψ| plot) is plotted over time for a disc inclined at 60◦,
α = 0.1 and H/R = 0.03.

The maximum warp amplitude is examined from the numerical simulations of the

disc with α = 0.1, H/R = 0.03 and tilted at 60◦ as shown in figure 2.23. Our aim is to

calculate the rate at which the warp amplitude grows from values of ψ = 4 to ψ = 5 6.

From this figure, we obtain time t1 corresponding to a value of ψ = 4 and t2 at ψ = 5.

The values of t1 = 880.8 and t2 = 990.9, which gives ∆t = t2 − t1 = 110.1. These two

values of warp amplitude correspond to radii r1 = 16.06 and r2 = 16.15 which gives a

mean value of r ≈ 16.105.

As demonstrated by equation 2.25, the time ∆t required for the warp amplitude to

grow from an initial value |ψ|0 is:

exp[sΩ∆t] =
|ψ|
|ψ|0

(2.26)

where |ψ|0 = 4, |ψ| = 5, s = 0.2, Ω = 1/
√
r3 with r = 16.105. This gives a value

of ∆t = 72.06. Therefore, the time taken for the instabilities to grow in this numerical

6We choose these values for warp amplitude at ψ = 4 and 5, to study the growth rate of instabilities
at values of ψ > ψc as shown in Doǧan et al. (2018) or see figure 2.1.
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model is 1.5 times more in comparison to the value expected from Doǧan et al. (2018).

2.6 Discussions and Conclusions

Doǧan et al. (2018) derives the theoretical criterion of disc tearing in Keplerian, diffusive

warped discs which is tested using SPH simulations as presented in this chapter. The

critical value of warp amplitude for a disc to become unstable is inspected at different

values of α. This project conducts a parameter sweep to test the instability of tilted

warped discs and check if the theoretical criterion holds true in each disc setups. In this

work, we consider a non precessing, warped disc model with no LT effect, similar to that

used in Lodato & Pringle (2007).

Firstly, a warped disc with viscosity parameter α = 0.1 and H/R = 0.03 is tested

at tilts 10◦, 30◦, 45◦ and 60◦ respectively. The 3D simulations of a disc composed of 10

million particles with α = 0.1 and H/R = 0.03 and the corresponding changes in the

surface density and tilt of the disc are examined. The disc showed evidence of tearing

at 45◦ and 60◦ but remained stable at lower inclinations of 10◦ and 30◦. The instability

criterion is further tested in each case, by calculating the warp amplitude of the disc

and comparing it to the critical value |ψ|c corresponding to the disc’s α parameter. At

a value of |ψ| > |ψ|c, the disc becomes unstable and tears as predicted in Doǧan et al.

(2018). At higher inclinations, one can identify the points of disc tear from the surface

density profiles where the values of Σ = 0. The warp amplitude of these unstable discs

form instabilities with values of |ψ| > |ψ|c at these exact points of disc tear. The same

analysis is extended at higher α = 0.16, 0.18 and 0.3 with higher |ψ|c values. The results

show that it is difficult to form instabilities in these disc setups, thus proving that highly

viscous warped discs remain stable in the simulation without any disc break. The disc

only becomes unstable when inclined at 60◦ for α = 0.16.

Therefore, we have demonstrated the key results of Doǧan et al. (2018) using hydro-
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dynamical simulations. Warped discs can be unstable and break into distinct planes. The

instability is most likely to occur for small α (≤ 0.1) at higher values of |ψ| (> |ψ|c). The

discs are found to remain stable at higher α (≈ 0.3) values and for smaller values of |ψ|

(< |ψ|c). We have also confirmed that the rate at which the warp amplitude grows in the

unstable regions is of the order of the rate at which it was predicted to grow (Ogilvie,

2000; Doǧan et al., 2018).
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A parameter study of disc-tearing

3.1 Introduction

Accretion discs are present around many astrophysical systems at scales ranging from

protostars to AGN. Due to several effects, these discs can form a warped configuration.

For example, discs can warp due to radiation (Pringle, 1996, 1997), due to winds (Schandl

& Meyer, 1994) or due to resonant tidal effects (Lubow & Ogilvie, 2000). Accretion discs

around spinning black holes can warp due to differential precession induced by the Lense-

Thirring (or LT) effect (Lense & Thirring, 1918). A resultant of the LT effect, is the

Bardeen Peterson effect which produces a warp that joins the aligned inner parts to the

misaligned outer parts of the disc (Bardeen & Petterson, 1975).

Previous studies have considered a torque balance formula to investigate the nature

of warped discs around supermassive black holes, and examine if they tear into distinct

rings using numerical simulations (Nixon et al., 2012a; Nixon et al., 2013). The physics of

warped discs depends heavily on how the effective viscosities and the associated torques

affect the disc structure. An instability criterion is analysed in Doǧan et al. (2018) which

attains a general condition for warped discs to break. This criterion is derived from a

dispersion relation and shows that the disc becomes unstable at a critical warp amplitude

(|ψ|c) dependent on the value of α. Furthermore, the growth rate of instabilities in discs
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as a function of the warp amplitude is plotted at different α values. Doǧan et al. (2018)

also derives the maximum warp amplitude achieved by a disc with tilt β and disc thickness

of H/R.

In this chapter, we test this instability criterion for discs warped due to LT effect

using numerical simulations. Following the discussion in chapter 2, we summarise the

key points for the stability analysis of warped discs and the general instability criterion

for discs to tear (Ogilvie, 2000; Doǧan et al., 2018). In a parameter sweep, the main

numerical results are investigated by applying and testing this criterion at different disc

variables. Finally, the conclusions are drawn by comparing these results to the expected

analysis.

3.2 Motivation

There are studies which show that accretion discs become unstable and may break or tear

into distinct rings when the disc viscosity is not strong enough to effectively communicate

the precession radially through the disc. An evidence of disc tearing in tilted discs around

a central black hole was previously established using 3D hydrodynamical simulations

(Nixon et al., 2012a; Nealon et al., 2015). The criterion for disc tearing in the diffusive

regime was examined by calculating the breaking radius, where the precession torque

is compared to the torque from the azimuthal shear viscosity as shown in Nixon et al.

(2012a). Thereafter, disc tearing in circumbinary discs around misaligned binary systems

was demonstrated using SPH simulations in Nixon et al. (2013). Doğan et al. (2015)

examined the same but in circumprimary discs and reckoned the inclusion of the effective

viscosity from vertical shear to study the criterion of disc tear at small values of α and

inclinations. Not long ago, Aly & Lodato (2020) used SPH simulations to examine the

nature of evolution in circumbinary discs composed of gas and dust and the results showed

the breaking of the gas component in thin discs and the forming of a smooth warp in
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thick discs. This highlights the importance of having an instability criterion which can

be applied globally to study disc tearing in many systems. Doǧan et al. (2018) focuses on

deriving a criterion for discs to become unstable by examining the behaviour of isothermal,

isolated warped discs in the diffusive regime. This study emphasises the effects of viscous

torques on an isolated warped disc and establishes the dependence of warp amplitude on

the criterion, thus helps us to concrete the understanding of instabilities in warped discs.

This demonstrates the motivation of this research work as it is vital to test the instability

criterion using numerical simulations. We aim to use 3D hydrodynamical simulations to

study discs around black holes warped due to LT effect. This chapter studies a parameter

sweep of discs at different values of α, H/R and tilts. The criterion is examined for each

disc by checking if the warp amplitude |ψ| calculated from our analysis exceeds its critical

value to become unstable and produce instabilities.

3.2.1 Dispersion relation & Stability analysis

In section 2.2.1, we presented the stability analysis and dispersion relation from the

warped disc equations. In this section, we review the important points of the analysis,

and further discuss the instability criterion for discs to break. The evolution equation is

derived from the conservation of angular momentum given as

∂L

∂t
=

1

R

∂

∂R

󰀫
(∂/∂R)[ν1ΣR

3(−Ω′)]
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∂
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This equation is used to derive a dispersion relation and its solution gives the criterion

for warp discs to grow instabilities as demonstrated in Doǧan et al. (2018) (refer equation
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28 in Doǧan et al. (2018) or section 2.2.1). This study performs the stability analysis

of the evolution equation by subjecting it to linear perturbations (motivated by Ogilvie

(2000)), thus producing solutions to the perturbation shown as:

exp

󰀕
− i

󰁝
ωdt+ i

󰁝
kdr

󰀖
(3.1)

where k is the wavenumber and ω is the wave frequency. This determines how fast

the perturbations move and how they grow or decay in comparison to the background

solution. The perturbation analysis (Ogilvie (2000); Doǧan et al. (2018); see also section

2.2.1) makes use of the dimensionless growth rate given by

s = − iω

Ω

󰀕
Ω

csk

󰀖2

(3.2)

where the perturbations grow if ℜ[s] > 0 or decay if ℜ[s] < 0, with the growth rate given

by ℜ[−iω]. A third order dispersion relation is derived from the coefficient determinant

given by (or refer equation 2.20 in section 2.2.1)

s3 − s2
󰀗
aQ1 − 2Q2 + |ψ|

󰀕
aQ′

1 −Q′
2

󰀖󰀘
− s
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2aQ1Q2 −Q2

2 −Q2
3
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′
2 −Q2Q

′
2 −Q3Q

′
3

󰀖󰀘
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󰀕
Q2

2 +Q2
3

󰀖
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󰀕
Q1Q2Q

′
2 −Q′

1Q
2
2 +Q1Q3Q

′
3 −Q′

1Q
2
3

󰀖󰀘
= 0. (3.3)

Doǧan et al. (2018) derives the instability criterion for a warped disc to become unstable

by finding the roots or solutions of this dispersion relation. It is essential to study the

effect of each of the Qi coefficients on the warp amplitude of a disc, how the coefficients

behave when a disc becomes unstable and most importantly determine if a disc becomes

unstable at a critical value of warp amplitude |ψ|c. The dimensionless growth rate of the

instability is attained as ℜ[s]. Some of the key results from this work show how the growth

110



3. A PARAMETER STUDY OF DISC-TEARING

rate ℜ[s] behaves at different values of α (discussed earlier in figure 2.1). This shows that

the growth rate of instabilities ℜ[s] is inversely proportional to α, i.e. the growth rate of

instability are higher for low values of α. Furthermore, critical warp amplitudes for discs

at different values of α are studied, which demonstrated the stable and unstable regions

in the (α, |ψ|) parameter space (shown earlier in figure 2.2). Therefore, it is important

to test this criteria in discs at various parameters and check if they become unstable

and tear into discrete rings at their corresponding values of the critical warp amplitude.

These tests are important because: (1) the warped disc equations do not capture the full

hydrodynamical behaviour in discs (e.g. non-linear flows such as shocks, and evolution

on timescales that are short compared to the local dynamical timescale) (2) the stability

analysis is local to a patch of the disc, and therefore we must check whether the stable

or unstable behaviour occurs in a global simulation. This forms the motivation of this

research chapter to use numerical simulations and test the instability criterion of discs

around supermassive black holes warped due to LT effect.

Firstly, we check how SPH simulations behave for a disc at α = 0.1, H/R = 0.03,

initially inclined to the black hole spin vector by 10◦, 30◦, 45◦ and 60◦ as discussed in

the next section. In each case, the instabilities of the disc can be tested by checking the

variations in its surface density, tilt and twist profiles. In order to compare our results

with that predicted from Doǧan et al. (2018), it is important to calculate the disc’s warp

amplitude from our simulations and check if it exceeds the critical warp amplitude |ψ|c.

As shown in section 3.4, this analysis is also examined in thinner discs at H/R = 0.01

where the values of artificial or numerical viscosity αAV can’t be ignored. As predicted

by Doǧan et al. (2018), the growth rate of instabilities is higher at low α values which

can be investigated from numerical simulations (at α = 0.05), further shown in section

3.5.

The growth rate of instabilities from our simulations is calculated and compared to the
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theoretical analysis as explained in section 3.6. Doǧan et al. (2018) derives an equation

for the maximum value of warp amplitude for a disc at tilt β and scale-height H/R given

as:

|ψ|max = β
R

H
(3.4)

This is examined in our analysis as detailed in section 3.6.1. We also test the point of

instability at |ψ|c in highly inclined discs, and show that each disc becomes unstable and

tear to form rings exactly when the warp amplitude exceeds its critical value.

3.3 Numerical Results

Our aim is to perform 3D simulations using the smoothed particle hydrodynamics code

phantom and test the analysis predicted by Doǧan et al. (2018). We follow Nixon et al.

(2012a) to simulate discs around spinning supermassive black holes and check the criterion

of disc tearing explained by Doǧan et al. (2018). This section details how these simulations

are set up to examine the structure of an accretion disc around a spinning black hole

inclusive of the effects of Lense-Thirring precession, in the diffusive regime with α > H/R.

3.3.1 Simulations

The parameters are chosen to produce a post Newtonian approximation for a rotating

black hole. We choose units of G = 1, c = 1 and black hole mass is also unity, M = 1.

We take the black hole spin to be a = 0.5 which corresponds to an inner stable circular

orbit at Rin = 4Rg where Rg = GM/c2 is the gravitational radius. Following Nelson &

Papaloizou (2000), we use the Einstein potential given by

ΦE =
−GM

R

󰀕
1 +

3Rg

R

󰀖
. (3.5)
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This potential provides a good description of the expected apsidal (Einstein) precession

rate of eccentric orbits. However, this potential does not produce an innermost stable

circular orbit at the correct radius (see e.g. Paczyńsky & Wiita (1980))1), so we impose

an accretion radius at 4Rg.

As shown by Nelson & Papaloizou (2000), the momentum equation is given as

dv

dt
= −1

ρ
∇P + v× h−∇Φ+ Svisc (3.6)

where v is the velocity, ρ is the density, P is the pressure, Φ is the gravitational potential

and Svisc is the viscous force per unit mass. The term (v × h) represents the gravito-

magnetic force which is used to induce the Lense-Thirring precession, with

h =
2S

R3
− 6(S.r)r

R5
(3.7)

where

S =
GJ

c2
(3.8)

and spin angular momentum J = aGM2k̂/c with k̂ being the unit vector in the direction

of the black hole spin. We note that the value of h in the gravito-magnetic term reduces

with radius, resulting in differential precession.

We set the inner boundary of the disc at Rin = 4Rg and the outer boundary is set

at Rout = 30Rg. The disc has a surface density given by Σ = Σ0(R/Rin)
−p with a

locally isothermal sound speed profile cs = cs0(R/Rin)
−q where, p = 3/2 and q = 3/4. In

this way, we obtain a uniformly resolved disc with a constant shell-averaged smoothing

length per disc scale-height, i.e. 〈h〉/H remains a constant (Lodato & Pringle, 2007).

The simulations use a disc viscosity with Shakura-Sunyaev α = 0.1 and a disc angular

semi-thickness of H/R = 0.03. The disc is composed of 10 million particles with 〈h〉/H
1The derivation of the last stable circular orbit at different gravitational potentials is shown in Ap-

pendix B.
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≈ 0.3 which infers that the effective viscosity arising from the artificial viscosity is αAV

= 0.017; cf. Meru & Bate (2012). The simulations are studied at different values of the

tilt (β) between the disc and the black hole spin.

Doǧan et al. (2018) predicted that the criterion for a disc to become unstable is

given by the critical warp amplitude |ψ|c, a value dependent on the α parameter (as

shown in figure 2.2). Therefore, at each value of α there is a critical value for the disc’s

warp amplitude (|ψ|c) below which it remains stable, and above which the disc becomes

unstable and tears. Here, we investigate this instability criterion by checking if the warp

amplitude of each disc setup with α = 0.1 exceeds the critical warp amplitude |ψ|c = 3

or not.

Firstly, we consider a disc initially inclined at 10◦. The total run time of the simulation

is set at t = 54000, which is two times the precessional timescale at the outer edge of the

disc. Due to Lense-Thirring (LT) precession proceeded by Bardeen Peterson effect, we

observe warps in the disc.

Figure 1:

1

Figure 3.1: 3D simulation of the disc initially inclined at 10◦, α = 0.1 and H/R = 0.03 at 1.4 and 15.8 orbits at Rout

respectively.

Figure 3.1 shows the 3D simulation of a disc inclined at 10◦, α = 0.1 and H/R = 0.03

at times t = 1485 and 16335 which are 1.4 orbits and 15.8 orbits at Rout. It is shown that
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the disc remains warped and does not tear at a later time. This is examined further by

checking the various profiles of the disc at t = 1.4 (black line) and 15.8 (red line) orbits

at Rout and check if there is an evidence of disc tear as shown in figure 3.2.

From the surface density profile of the disc, it is clear that the disc remains stable

and does not show any instabilities. Analogous to the surface density profiles, a disc tear

will be reflected by a change in the tilt of the disc. But as shown in the second panel of

figure 3.2, the tilt of the disc clearly shows no disc break at a later time. There is a warp

connecting the inner disc (between radii 4 and 6) to the outer part (at radii between 18

and 30) tilted at 10◦. At a later time, the outer part of the disc aligns with the inner

part without any break.

The behaviour of the disc’s twist can also be checked as shown in the third plot of

figure 3.2. The twist of the disc at t = 1.4 (black line) and 15.8 (red line) orbits at Rout

shows no presence of an individual precessing ring, thus showing no possibility of a disc

tear in this setup. To compare these results with the analysis from Doǧan et al. (2018),

we calculate the value of the warp amplitude (|ψ| = r|∂l/∂r|) from the numerical data.

The warp amplitude of the disc is compared to the value of the critical warp amplitude

|ψ|c as shown in figure 3.3. The red dashed line shows the value of critical warp amplitude

(|ψ|c = 3) corresponding to α = 0.1 (refer figure 2.2). It clearly shows that the values of

warp amplitude at both times remain below the critical value and this agrees well with

what predicted from Doǧan et al. (2018). Therefore, this disc remains stable and does

not tear to form individual rings.
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Figure 3.2: The first plot shows the surface density profiles of a disc initially inclined at 10◦,α = 0.1 and H/R = 0.03
after 1.4 (black line) and 15.8 orbits (red line) at Rout. The plots show evidence of disc evolving over time, but there is
no evidence of a disc tear. If the disc tears, there will be a clear divide or split in the surface density plot which is not
present in this case. The second plot shows how the tilt changes for the same disc setup at 1.4 (black line) and 15.8 (red
line) orbits at Rout. The third plot shows how the corresponding values of the disc’s twist behave at times ≈ 1.4 (black
line) and 15.8 (red line) orbits at Rout.

Figure 3.3: The warp amplitude |ψ| of the disc inclined at 10◦, α = 0.1 and H/R = 0.03 are plotted at times 1.4 and 15.8
orbits at Rout respectively. These values of |ψ| are compared to the critical value |ψ|c = 3 (red dashed line). The values of
the warp amplitude stay much lower than the minimum value required for instability, proving that this disc remains stable.
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The same analysis is studied at different inclinations of 30◦, 45◦and 60◦ respectively.

Figure 3.4 shows the simulations of a disc inclined at 30◦, α = 0.1 and H/R = 0.03 at t

= 1485 ≈ 1.4 orbits at Rout and t = 16335 ≈ 15.8 orbits at Rout. There is no disc tearing

at a later time, instead the disc settles in a warped configuration.

Figure 1: a

1

Figure 3.4: 3D simulations of a disc tilted at 30◦, α = 0.1 and H/R = 0.03 at 1.4 orbits and 15.8 orbits at Rout.

In addition, various profiles of the disc are also studied as shown in figure 3.5. The

first plot shows the surface density profiles after 1.4 (black line) and 15.8 orbits (red

line) at Rout. As inferred from the 3D simulations, the inner part of the disc shows some

changes in the surface density but the evidence of disc tear, where Σ = 0 is not seen.

This can be further examined by studying how the tilt varies over time as shown in the

second plot of figure 3.5. Once again, it strengthens a conclusion that the disc doesn’t

become unstable at the later time. The third plot of figure 3.5 also shows how the twist

of the disc changes at the two times, demonstrating no disc tear in this setup. These

results are extended to examine how the disc’s warp amplitude varies over time. Figure

3.6 shows how the warp amplitude values change in the simulations after 1.4 and 15.8

orbits at Rout.
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Figure 3.5: The first panel shows the surface density profiles for a disc initially inclined at 30◦,α = 0.1 and H/R = 0.03
after 1.4 (black line) and 15.8 orbits (red line) at Rout. The second plot shows how the tilt changes for the disc setup at
1.4 orbit (black line) and 15.8 orbits (red line) at Rout. The third panel shows how the corresponding values of the twist
of the disc behave at 1.4 (black line) and 15.8 (red line) orbits at Rout.

Figure 3.6: The warp amplitude |ψ| of the disc is calculated for a disc inclined at 30◦, α = 0.1 and H/R = 0.03. The warp
amplitude values are compared to the value of critical warp amplitude |ψ|c = 3 (red dashed line). The disc remains stable
and doesn’t show disc tearing since |ψ| < |ψ|c.
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The red dashed line at |ψ| = 3 corresponds to the critical warp amplitude of the disc

at α = 0.1. It clearly shows that the disc doesn’t show any instabilities as the values

of warp amplitude remain lower than the critical warp amplitude (|ψ|c), hence agreeing

with the analysis explained in Doǧan et al. (2018).

Furthermore, we extend our analysis and check the same at higher inclinations. Unlike

the behaviour of discs inclined at 10◦ and 30◦, the disc shows evidence of breaking in this

setup tilted at 45◦. Figure 3.7 shows the behaviour of disc initially tilted at 45◦ with

α = 0.1 and H/R = 0.03 at times t = 742.5 and t = 7425 which are 0.7 and 7.2 orbits

at Rout respectively. In the SPH simulations, one can notice the disc forming individual

precessing rings at the later time. This is further examined by checking the surface density

profiles for the same as shown in the first plot in figure 3.8.

Figure 1:

1

Figure 3.7: 3D column density profiles of the disc inclined at 45◦, α = 0.1 and H/R = 0.03. at t = 0.7 orbit and t = 7.2
orbits at Rout. This clearly shows the formation of a ring in the disc at a later time.
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Figure 3.8: The first panel shows the surface density profiles of a disc initially inclined at 45◦,α = 0.1 and H/R = 0.03 after
0.7 (black line) and 7.2 orbits (red line) at Rout. At r = 12, Σ reduces to zero forming a clear split in the surface density
profile of the disc thus showing an evidence of disc tear. The second and third plots in the figure show the corresponding
changes in the tilt and twist of the disc at 0.7 (black line) and 7.2 (red line) orbits at Rout.

Figure 3.9: This plot explains the comparison of warp amplitude for a disc inclined at 45◦, α = 0.1 and H/R = 0.03 to the
critical warp amplitude |ψ|c = 3 (red dashed line) at 0.7 and 7.2 orbits at Rout. The warp amplitude |ψ| remains lower
than |ψ|c at the initial time, but |ψ| at r = 12 peaks up to 7 times the value of |ψ|c at a later time .
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One can observe a drastic decrease in the value of Σ at radius r = 8 and Σ dropping to

zero at radius r = 12 which denotes where the disc tears. This can be further investigated

by studying the change in the tilt of the disc as shown in the second panel of figure 3.8. A

possibility of disc tear is seen as the disc’s tilt drops at r = 12. The corresponding change

in the twist of the disc is also examined and the presence of an individually precessing

ring is spotted at r = 12. Furthermore, we must check if the warp amplitude of this disc

setup at r = 12 exceeds its critical value.

The stability analysis of this disc setup is studied by examining the change in its warp

amplitude. The warp amplitude of the disc at t = 0.7 orbit and t = 7.2 orbits at Rout is

shown in figure 3.9. It can be clearly noted that the warp amplitude at r = 12 is much

larger than the critical warp amplitude, |ψ|c = 3. This proves that the disc becomes

unstable and tears into concentric rings when |ψ| > |ψ|c.

Figure 1:

1

Figure 3.10: 3D simulations of a disc inclined at 60◦, α = 0.1 and H/R = 0.03. at times t = 2 orbits and t = 21 orbits at
Rout is shown.

Furthermore, we check the same for a disc tilted at 60◦ as shown in figure 3.10. The

3D simulations for a disc tilted at 60◦ is examined at times t = 2227.5 ≈ 2 orbits and t =

22275 ≈ 21.5 orbits at Rout. These simulations show an evidence of tearing at the later

time. In addition, we examine the surface density profiles for the same as shown in the

first plot of figure 3.11. One can observe a drastic decrease in the value of Σ, dropping
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Figure 3.11: The first plot shows the surface density profiles for a disc initially inclined at 60◦,α = 0.1 and H/R = 0.03
after 2 (black line) and 21.5 orbits (red line) at Rout. A clear divide in the surface density profile is seen at r = 14. The
second and third panels show how the tilt and the twist of the disc change for the same disc setup at 2 (black line) and
21.5 (red line) orbits at Rout. The tilt and the twist plots show a discontinuity at r = 14 which locates the point of disc
tear.

to zero at radius r = 14. Disc tearing can be further investigated by studying the change

in the tilt of the disc as shown in the second plot of figure 3.11. Similarly, an analogous

change in the twist is examined in the last panel of figure 3.11. These plots confirm the

possibility of a tear in the disc at r = 14. We also check if the warp amplitude for this disc

setup exceeds the critical warp amplitude at the estimated point of disc tear at r = 14.
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Figure 3.12: The warp amplitude is calculated for a disc inclined at 60◦, with α = 0.1 and H/R = 0.03. These values are
compared to the critical warp amplitude |ψ|c = 3 (red dashed line) at 2 orbits and 21 orbits at Rout. At the initial time,
we note that |ψ| < |ψ|c. On the other hand, at a later time the warp amplitude |ψ| exceeds to ≈ 7 times |ψ|c at r = 14.

From figure 3.12, it is shown at a later time that the warp amplitude of the disc,

ψ ≈ 25 at r = 14, much larger than the value of critical warp amplitude at |ψ|c = 3.

Therefore, this setup demonstrate that a highly inclined disc becomes unstable and tears

to form rings when its warp amplitude |ψ| > |ψ|c, thus agreeing with the predicted

analysis of Doǧan et al. (2018).

3.4 Effect of αAV on |ψ|c

The instability criterion predicted by Doǧan et al. (2018) to check the possibility of disc

tearing is further examined in thinner and unstable discs at smaller values of H/R and α.

Even for discs composed of 10 million particles, one must consider the effect of artificial

viscosity since the value of 〈h〉/H for a disc at a smallerH/R, contributes to an increase in

the value of artificial viscosity αAV . Therefore in our numerical analysis, the criterion for
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thinner discs to become unstable is estimated at the critical warp amplitude |ψ|c, which

corresponds to a value of α given by the sum of the physical and artificial viscosities.

Initially, we examine the parameter study of a thin disc with H/R = 0.01. Discs are

studied at different inclinations and the criterion for discs to tear is examined in each

case. The possibility of disc tearing in each disc setup is examined from the change in

the disc’s warp amplitude in comparison to its critical value. In the numerical analysis

of thinner discs at H/R = 0.01, we use the value of |ψ|c corresponding to an α value

inclusive of the artificial viscosity 2.

First, let us consider a disc comprising 10 million particles, at α = 0.1, H/R = 0.01

and initially inclined at 10◦. Figure 3.13 shows the SPH simulations of this disc at t =

1485 = 1.4 orbits and t = 31185 = 30 orbits at Rout. At a later time, there is no evidence

of a disc tear and instead the disc settles into a warped configuration. The surface density,

tilt and twist profiles of the disc at 1.4 orbits (black line) and 30 orbits (red line) are

shown in figure 3.14. These results agree with the 3D simulations, and show no evidence

of a disc tear.

Figure 1:

1

Figure 3.13: 3D simulations of a disc tilted at 10◦, α = 0.1 and H/R = 0.01 at times t = 1.4 and t = 30 orbits at Rout is
shown.

2The artificial viscosity in SPH calculations is controlled by the linear term αSPH which accounts for
the viscosity that dissipates kinetic energy to reduce particle oscillation as particles approach each other.
This contribution of the linear term in the artificial viscosity can be compared to the Shakura-Sunyaev

viscosity (Meru & Bate, 2012) as αSS,lin = 31
525αSPH

〈h〉
H .
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Figure 3.14: The first plot shows the surface density profiles of a disc initially inclined at 10◦,α = 0.1 and H/R = 0.01 at
1.4 (black line) and 30 orbits (red line) at Rout. It shows no split in the surface density at the two times where Σ reduces
to zero. The second plot shows how the tilt changes for the same disc setup at 1.4 (black line) and 30 (red line) orbits at
Rout. The third plot shows the corresponding change in the twist of the disc. The plots shows how disc evolves over time,
but there is no evidence of a disc tear.

In addition, we examine the artificial viscosity in this disc setup and check if it is

smaller or comparable to the value of the physical viscosity αSS = 0.1. If the artificial

viscosity (αAV ) is less than αSS, we can ignore αAV and assume α ≈ αSS. On the other

hand if the value of αAV is comparable to the value of αSS, the total value of α =

αSS + αAV . The values of numerical viscosity for this disc lie between 0.03 and 0.05 (as

shown in fig. 3.15) which gives a mean value of 0.04, lesser than αSS = 0.1. Hence,

the effect of artificial viscosity is ignored for this disc and we consider the critical warp

amplitude |ψ|c = 3 corresponding to α = 0.1.

The change of warp amplitude in the simulation at t = 1.4 and 30 orbits at Rout

is examined as shown in figure 3.16. The results show that the values of ψ are smaller

than |ψ|c at both times. This agrees well with the predicted analysis that the disc does
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not tear until its warp amplitude exceeds the critical value. The same analysis can be

extended to discs at higher inclinations of 30◦, 45◦ and 60◦ respectively.

Figure 3.15: The artificial viscosity is calculated and plotted for a disc inclined at 10◦, α = 0.1 and H/R = 0.01. The value
of αAV ∼ 0.03− 0.05 as shown in this plot.

Figure 3.16: The warp amplitude of the disc is calculated after 1.4 orbits (left) and 30 orbits (right) at Rout. It is then
compared to the critical warp amplitude |ψ|c = 3 denoted by the red dashed line. The disc remains stable and does not
show disc tearing since |ψ| < |ψ|c throughout.

The same disc setup at an inclination of 30◦ is examined. Figure 3.17 shows the
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3D simulation of this disc at t = 742.5 and t = 7425 which are 0.7 and 7.2 orbits at

Rout respectively. It clearly shows an evidence of disc tearing at the later time. This

is established further by checking the surface density profiles as shown in the first plot

of figure 3.18 . Tearing of the disc is observed at radii r = 9 and 11, where the values

of Σ reduce to zero. Similarly, the tilt and the twist of the disc are studied as shown

in the second and third plots in figure 3.18. Just as observed from the surface density

profiles, one can also notice the changes in the tilt and twist of the disc at r = 9 and 11

which show an indication of disc tearing. Furthermore, these results are compared to the

analysis from Doǧan et al. (2018) by studying the changes in the disc’s warp amplitude.

Figure 1:

1

Figure 3.17: 3D column density plots for a disc inclined at 30◦, α = 0.1 and H/R = 0.01 at 0.7 and 7.2 orbits at Rout is
shown.

The value of the artificial viscosity for this disc setup is calculated and as shown in

figure 3.19, αAV lies around 0.08 which is comparable to the value of the physical viscosity

at 0.1. Hence, the total value of α = 0.18 (αSS + αAV ) is used to find the corresponding

value of critical warp amplitude to examine the instability criterion of the disc.
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Figure 3.18: The first plot shows the surface density profiles for a disc initially inclined at 30◦,α = 0.1 and H/R = 0.01
after 0.7 (black line) and 7.2 orbits (red line) at Rout. There are two points at r = 9 and r = 11, where the surface density
Σ drops to almost zero which marks where the disc breaks. The second figure shows the corresponding change in the tilt of
the disc at 0.7 (black line) and 7.2 (red line) orbits at Rout. The third figure shows how the twist of the disc at 0.7 (black
line) and 7.2 (red line) orbits at Rout. As mentioned in the surface density profiles, the tilt and the twist values also show
a break at r = 9 and r = 11.

Figure 3.19: The artificial viscosity of the disc inclined at 30◦,α = 0.1 and H/R = 0.01 is calculated and is found to lie
between 0.05 and 0.1 thus giving an average value of αAV = 0.08.
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Figure 3.20: The warp amplitude |ψ| of the disc is calculated and compared to the critical warp amplitude |ψ|c = 3 (red
dashed line) and the critical warp amplitude |ψ|c = 6 corresponding to α inclusive of artificial viscosity. At a later time,
the disc shows instabilities at r = 9 and 11 where the warp amplitude values |ψ| > |ψ|c which confirms where the individual
rings are formed in the disc.

In figure 3.20, the warp amplitude of the disc is studied at t = 0.7 orbits and t

= 7.2 orbits at Rout where we compare and check how the warp amplitude changes in

comparison to the critical warp amplitude |ψ|c. The figure shows a red dashed line that

corresponds to |ψ|c = 3 for α = 0.1 (without the artificial viscosity) and the green dashed

line at |ψ|c = 6 for α = 0.18 (with the artificial viscosity). The figure clearly shows that

|ψ| values at radii r = 9 and 11 exceed |ψ|c = 6 at the later time, thus demonstrating

where the disc tears.

Furthermore, we check how the disc behaves when inclined at 45◦. Figure 3.21 shows

the 3D simulations of a disc inclined at 45◦, at times t = 742.5 = 0.7 orbit and t = 7425

= 7.2 orbits at Rout. The simulation at a later time clearly shows an evidence of disc

tear. This can be investigated from the change of surface density, tilt and twist of the

disc as shown in figure 3.22. The three profiles find the possibility of disc tearing at radii,
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r = 7 and r = 10.

Figure 1:

1

Figure 3.21: 3D simulations of a disc inclined at 45◦, α = 0.1 and H/R = 0.01 at 0.7 and 7.2 orbits at Rout.

As shown in figure 3.23, the artificial viscosity is calculated and αAV lies between 0.05

and 0.13, which gives an average value of 0.09 comparable to the physical viscosity at

α = 0.1. Therefore, we consider the total value of α = 0.19 (αSS+αAV ) in this disc setup.

The value of critical warp amplitude corresponding to α = 0.19 is |ψ|c = 8. Thus, the

warp amplitude of the disc is calculated at t = 0.7 (black line) and 7.2 (red line) orbits at

Rout as shown in figure 3.24. The figure shows the red dashed line at |ψ|c = 3 for α = 0.1

(without the artificial viscosity) and the green dashed line at |ψ|c = 8 corresponds to

α = 0.19 (inclusive of αAV ). The |ψ| values at radii r = 7 and 10 exceed |ψ|c at a later

time, thus agreeing with the disc’s predicted criterion to become unstable.
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Figure 3.22: The first plot demonstrates the surface density profiles for a disc initially inclined at 45◦,α = 0.1 and
H/R = 0.01 after 0.7 (black line) and 7.2 orbits (red line) at Rout. The surface density at r = 7 and r = 10 drops to
zero denoting where the disc breaking occurs. The second plot shows the change in the tilt of the disc at 0.7 (black line)
and 7.2 (red line) orbits at Rout. The third figure shows how the twist of the disc at 0.7 (black line) and 7.2 (red line)
orbits at Rout. Similar to the surface density profiles, the tilt and the twist values also show a break at r = 7 and r = 10
symbolising individually precessing rings.

Figure 3.23: The artificial viscosity of the disc inclined at 45◦,α = 0.1 and H/R = 0.01 is plotted as shown. The values lie
between 0.05 and 0.13, which gives a mean value of 0.09.
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Figure 3.24: The warp amplitude |ψ| of the disc is calculated and checked with the critical warp amplitude values cor-
responding to α values with and without adding the artificial viscosity. The red dashed line denotes the critical warp
amplitude |ψ|c = 3 for α = 0.1 and the green dashed line denotes the critical warp amplitude |ψ|c = 8 corresponding to
α inclusive of artificial viscosity. At a later time, the disc shows instabilities at r = 7 and 10 where the warp amplitude
values |ψ| > |ψ|c which confirms the point where individual rings are formed.

Finally, we examine how the disc behaves at an inclination of 60◦. The 3D simulations

of the disc is examined at t = 742.5 and 7425 which are 0.7 orbits and 7.2 orbits at Rout

as shown in figure 3.25. The disc tears and forms individual rings at a later time. In

addition, the possibility of disc tear is also demonstrated in the surface density profiles

at the same times, as shown in the first plot of figure 3.26. The surface density profile

shows disc tearing at r = 8 and 11. The variation of the disc tilt and twist, given by

the second and third plots of figure 3.26 also agree well with the surface density profiles.

The tilt and twist profiles of the disc breaks at radii r = 8 and 11 indicating the points

of tearing in the disc. The criterion of disc tear is examined by checking the changes in

the warp amplitude of the disc at the two times.
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Figure 1:

1

Figure 3.25: 3D simulations of a disc inclined at 60◦, α = 0.1 and H/R = 0.01 at 0.7 and 7.2 orbits at Rout.

Figure 3.26: The surface density profiles for a disc initially inclined at 60◦,α = 0.1 and H/R = 0.01 after 0.7 (black line)
and 7.2 orbits (red line) at Rout is shown in the first figure. The surface density at r = 8 and r = 11 drops to zero where
the disc tears. The second figure shows the change in the tilt of the disc at 0.7 (black line) and 7.2 (red line) orbits at
Rout. The third figure shows how the twist of the disc at 0.7 (black line) and 7.2 (red line) orbits at Rout. The tilt and
the twist values of the disc also indicate a clear evidence of disc tear at r = 8 and r = 11.
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The artificial viscosity calculated for this disc has a mean value of αAV = 0.09 as

shown in figure 3.27. This value is comparable to the physical viscosity α = 0.1 that

gives a total value of α = 0.19. The critical warp amplitude is |ψ|c = 8 for α = 0.19. The

variation of warp amplitude is studied at times t = 0.7 and 7.2 orbits at Rout as shown in

figure 3.28. The red dashed line at |ψ|c = 3 corresponds to α = 0.1 and the green dashed

line at |ψ|c = 8 matches with α = 0.19 inclusive of αAV . At radii r = 8 and 11, the values

of |ψ| are much higher than |ψ|c. At a later time, an instability growing at radii between

r = 12 and 14 exceeds |ψ|c = 3 (red dashed line) but remains less than |ψ|c = 8 (green

dashed line). This indicates the forming of a ring in the disc which is not fully broken

until its value of |ψ| exceeds the critical value required for instability.

Figure 3.27: The artificial viscosity of the disc inclined at 60◦,α = 0.1 and H/R = 0.01 is plotted and is found to lie
between 0.05 and 0.13 giving a mean of 0.09.
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Figure 3.28: The warp amplitude |ψ| of the disc is checked with the critical warp amplitude values corresponding to the
value of α with and without adding the artificial viscosity. The red dashed line denotes the critical warp amplitude |ψ|c = 3
for α = 0.1 and the green dashed line denotes the critical warp amplitude |ψ|c = 8 corresponding to α inclusive of artificial
viscosity αAV = 0.19. At a later time, the disc shows instabilities at r = 8 and 11 where the warp amplitude |ψ| is much
larger than |ψ|c which confirms the point of disc break where individual rings are formed.

3.5 Warped discs at low α values

The criterion for breaking in isolated warped discs is derived by Doǧan et al. (2018) where

the growth of instability is dependent on the warp amplitude. As shown in figure 2.2, the

critical warp amplitudes at which the discs become unstable is smaller at lower values of

α. As a result, the growth rate of instabilities is higher at low α values. In this section,

we perform the numerical analysis to check the instability criterion for a disc comprising

of 10 million particles at α = 0.05, H/R = 0.01 when initially inclined at 10◦ and 60◦

respectively.

At an inclination of 10◦, the disc behaves as shown in figure 3.29. It shows the 3D

simulations of the disc at t = 1485 = 1.4 orbits and t = 31185 = 30 orbits at Rout.

Furthermore, the surface density profiles and the changes in the tilt and twist of the disc
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at both times are shown in figure 3.30. These plots show no evidence of tearing in the

disc. Hence, we expect the disc to remain stable at 10◦, with α = 0.05 and H/R = 0.01.

This result needs to be verified by checking how the warp amplitude changes in the disc.

Firstly, the value of artificial viscosity is calculated (as shown in figure 3.31) to deter-

mine the total value of α and the corresponding value of the critical warp amplitude for

the disc to become unstable. The value of αAV = 0.05 for this disc setup which gives a

total α value of 0.1, and its critical warp amplitude is at |ψ|c = 3. The warp amplitude

of the disc is studied at t = 1.4 orbits and 30 orbits at Rout as shown in figure 3.32. The

red dashed line corresponds to a critical warp amplitude value at |ψ|c = 0.5 for α = 0.05

(without αAV ) and the green dashed line denotes |ψ|c = 3 for α = 0.1 (with αAV ). The

values of ψ remain smaller than the critical value |ψ|c = 3 at both times, thus show-

ing that the disc remains stable. As expected from Doǧan et al. (2018), this confirms

that it is difficult to tear discs at smaller inclinations where the disc’s warp amplitude

remains small, and therefore it is not likely to exceed the criterion to become unstable at

|ψ|c. However, it may be possible for even smaller α values, that we cannot produce in

numerical simulations.

Figure 1:

1

Figure 3.29: Figure shows the 3D column density of a disc initially tilted at 10◦, α = 0.05 and H/R = 0.01 at 1.4 and 30
orbits at Rout. The disc shows no evidence of a disc tearing at a later time.
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Figure 3.30: The figure shows how the different parameters behave in a disc initially inclined at 10◦,α = 0.05 and
H/R = 0.01 at 1.4 (black line) and 30 orbits (red line) at Rout. The first plot represents the surface density profiles for a
disc. At both times, the disc shows no divide in the surface density where Σ lowers to a value of zero. The second plot
shows the corresponding change in the tilt of the disc at 1.4 (black line) and 30 (red line) orbits at Rout. It clearly shows
how the warp connects misaligned outer part of the disc to the aligned inner part of the disc without any disc tear. The
third plot shows how the twist of the disc behaves at 1.4 (black line) and 30 orbits (red line) at Rout. The twist also shows
no evidence of the disc, tearing to form rings.

Figure 3.31: The artificial viscosity of the disc inclined at 10◦,α = 0.05 and H/R = 0.01 is plotted and is found to be equal
to 0.05. The artificial viscosity αAV is of the order of the physical viscosity αSS which gives a total α = 0.1.
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Figure 3.32: Figure shows how the warp amplitude |ψ| of a disc inclined at 10◦,α = 0.05 and H/R = 0.01 behaves at 1.4
(left) and 30 orbits (right) at Rout. The warp amplitude is checked with two values of the critical warp amplitude |ψ|c
represented by the dashed lines. The red dashed line denotes the critical warp amplitude |ψ|c = 0.5 for α = 0.05 and the
green dashed line denotes the critical warp amplitude |ψ|c = 3 corresponding to a value of α = 0.1 inclusive of artificial
viscosity αAV = 0.05. The values of |ψ| remain below the green dashed line, i.e. |ψ| < |ψ|c proving that the disc remains
stable. This demonstrates the need to account for the value of numerical viscosity in the analysis.

This analysis is extended at a higher inclination of 60◦ as shown in figure 3.33. This

demonstrates the 3D simulations of the disc at t = 742.5 ≈ 0.7 orbits and t = 7425 ≈

7.2 orbits at Rout. The disc tears to form independent, precessing rings at a later time as

shown in the figure. The surface density profiles and the plots of the tilt and twist of the

disc at t = 0.7 and 7.2 orbits at Rout are shown in figure 3.34. At a later time, we can

notice a possibility of tearing in the disc where Σ = 0 at radii r = 8, 10 and 13. A similar

change is demonstrated at radii r = 8, 10 and 13 in the tilt and the twist profiles of the

disc as shown in the second and third plots of figure 3.34. Thus, a disc inclined at 60◦ for

a small α parameter tears into individual precessing rings at r = 8, 10 and 13. Also, we

expect a higher growth of instabilities in this case, which can be further examined from

the change in the warp amplitude of the disc.
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Figure 1:

1

Figure 3.33: 3D simulations of a disc initially tilted at 60◦, α = 0.05 and H/R = 0.01 at 0.7 and 7.2 orbits at Rout is
shown. The disc tears and forms three independently precessing rings at a later time as shown.

The artificial viscosity for this disc setup is calculated (as shown in figure 3.35) to

determine the critical warp amplitude for instabilities to occur. The value of αAV lies

between 0.05 and 0.16 with a mean value of 0.11, that gives a total α = 0.16 (α =

αSS + αAV ). The critical warp amplitude (|ψ|c) is 4 at α = 0.16. The warp amplitude is

calculated at times t = 0.7 orbits and 7.2 orbits at Rout and are compared to the critical

warp amplitude as shown in figure 3.36. The red dashed line corresponds to a critical

warp amplitude value at |ψ|c = 0.5 for α = 0.05 and the green dashed line is at |ψ|c = 4

for α = 0.16. In figure 3.36, one can see that the values of |ψ| exceed the critical warp

amplitude |ψ|c = 4 causing instabilities to occur at a later time. As shown in the figure,

the values of |ψ| >> |ψ|c at r = 8, 10 and 13 denoting the points where the disc tears

to form rings. This agrees well with the predicted results from Doǧan et al. (2018), and

conclude that instabilities grow faster in highly inclined discs at lower values of α and

H/R.
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Figure 3.34: The figure shows how the various profiles behave in a disc initially inclined at 60◦,α = 0.05 and H/R = 0.01
at 0.7 (black line) and 7.2 orbits (red line) at Rout. The first plot represents the surface density profiles for a disc. The
disc shows clear evidence of disc tearing where Σ reduces to zero at radii r = 8, 10 and 13. The second plot shows the
change in the tilt of the disc at 0.7 (black line) and 7.2 (red line) orbits at Rout. It agrees well with the surface density
profiles showing break in the tilts at r = 8, 10 and 13 that denote the forming of three rings in the disc. The same analysis
is done to check how the twist of the disc looks like at 0.7 (black line) and 7.2 orbits (red line) at Rout, as shown in the
third figure. As expected, the twist of the disc also shows a divide at r = 8, 10 and 13.

Figure 3.35: The artificial viscosity is plotted for the disc inclined at 60◦,α = 0.05 and H/R = 0.01. The value of αAV is
found to lie between 0.05 and 0.16 giving a mean value of 0.11.
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Figure 3.36: Figure shows the change in the warp amplitude |ψ| of a disc inclined at 60◦,α = 0.05 and H/R = 0.01 at
0.7 (left) and 7.2 orbits (right) at Rout. The warp amplitude is checked with two values of the critical warp amplitude
|ψ|c represented by two dashed lines. The red dashed line denotes the critical warp amplitude |ψ|c = 0.5 for α = 0.05
and the green dashed line denotes the critical warp amplitude |ψ|c = 4 corresponding to a value of α = 0.16 inclusive of
artificial viscosity αAV = 0.11. The values of |ψ| doesn’t exceed the green dashed line at the initial time (left), thus shows
no disc tearing at 0.7 orbit at Rout. But at a later time, the warp amplitude values are much greater than the critical warp
amplitude |ψ|c = 4 at radii r ≈ 8, 10 and 13.

3.6 Growth of instabilities

Doǧan et al. (2018) gives the dimensionless growth rate ℜ[s] given by:

s = − iω

Ω

󰀕
Ω

csk

󰀖2

(3.9)

where s is related to the physical growth rate ℜ[−iω] given as:

−iω = sΩ

󰀕
csk

Ω

󰀖2

, (3.10)

assuming that the perturbations grow (ℜ[s] > 0) or decay (ℜ[s] < 0) exponentially as

exp[ℜ(−iω)t].
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Doǧan et al. (2018) plots the dimensionless growth rate ℜ[s] as a function of |ψ| for

different values of α as shown in figure 2.1 in the previous chapter. From figure 2.1, it

can be noted that when α = 0.1, the value of s ≈ 0.2 for warp amplitudes |ψ| between

4 and 5. In this section, we investigate the growth rate of instabilities in our numerical

simulations.

It can be noted that the warp amplitude increases slowly over time in a disc due to

LT precession. As soon as the warp amplitude exceeds the the critical warp amplitude

|ψ|c, the disc becomes unstable, and the value of ψ grows quickly to reach its peak value

and thereafter decays over time. We aim to calculate the growth rate of these instabilities

and compare it to the expected analysis from Doǧan et al. (2018). As mentioned earlier,

the instabilities are expected to grow as

|ψ| = |ψ|0 exp[ℜ(−iω)t]. (3.11)

The growth rate can thus be rewritten as s = (−iω/Ω)(Hk)−2. The strongest instability

at s ≈ 1 corresponds to dynamical timescales and length scales of the order of the scale

height H, and this requires the wavenumber k ≈ 1/H. But, this may not hold true if

tested in a numerical analysis.

It can be seen from the numerical simulations that typically the discs become unstable

on a radial scale ≈ H. In this case, we expect k ≈ 1/H and therefore csk/Ω ≈ 1 (where

scale-height H = cs/Ω). Therefore from equation 3.10, we can rewrite 3.11 as:

|ψ| = |ψ|0 exp[sΩt] (3.12)

This can be tested from the disc tearing behaviour seen in our numerical simulations, by

investigating how the maximum warp amplitude of the disc changes over time. Firstly,

we consider a disc inclined at 45◦, H/R = 0.03 and α = 0.1. We follow the start time
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(t1) of an instability when it begins to grow, and the end time (t2) when the instability

finishes its decay, noted as t1 = 3593.7 and t2 = 23195.7 respectively. The radial limits of

this growing instability are also noted, at values of r between 10 and 14. The maximum

warp amplitude of the instability, |ψ|max from t1 to t2 is calculated and plotted over time,

as shown in figure 3.37.

Figure 3.37: The maximum warp amplitude of an instability in a disc inclined at 45◦, α = 0.1 and H/R = 0.03 is plotted
over time. The growth of instability is studied from start time t1 = 3593.7 to t2 = 23195.7 located at radii between 10 and
14.

From the data shown in the figure, the values of time at |ψ|1 = 4 and |ψ|2 = 5, are given

as t1 = 5405.4 and t2 = 5583.6 respectively. Then, the time required for the instability

to grow from |ψ|1 to |ψ|2 is given by the time difference ∆t = 178.2. Furthermore, the

mean of radii corresponding to |ψ|1 and |ψ|2 is 12.369. Therefore, equation 3.12 can be

written in terms of |ψ|1 and |ψ|2 as:

|ψ|2 = |ψ|1 exp[sΩ∆t] (3.13)

143



3. A PARAMETER STUDY OF DISC-TEARING

where ψ|1 = 4, |ψ|2 = 5, s = 0.2 (obtained from figure 2.1) and Ω = 1/
√
r3 with

r = 12.369. The above equation calculates ∆t = 48.535, which infers that the growth

time for instabilities in our simulations is slower, in comparison to that expected from

Doǧan et al. (2018). In other words, the rate of growth of instabilities obtained from

the numerical simulations is 1/3.67 times the value expected from the analysis in Doǧan

et al. (2018).

Similarly, the growth of instabilities is studied for a disc inclined at 60◦, H/R = 0.03

and α = 0.1. In this case, the values of t1 and t2 are set at 19602 and 23581.8 respectively.

The warp amplitude is calculated at radii r between 12 and 18. The plot of the maximum

warp amplitude over time is shown in the figure below.

Figure 3.38: The maximum warp amplitude of an instability in a disc inclined at 60◦, α = 0.1 and H/R = 0.03. The
instability is examined at radii r between 12 and 18 over time t1 = 19602 to t2 = 23581.8.

In figure 3.38, the value of t1 = 19928.7 at |ψ|1 = 4 and the value of t2 = 20077.2

at |ψ|2 = 5, giving ∆t = 148.5. As done previously, the value of ∆t from equation 3.13

is calculated. We consider, |ψ|1 = 4 and |ψ|2 = 5 and the mean of radii corresponding
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to these values of warp amplitude is at r = 14.524, where we assume growth rate s =

0.2. From equation 3.13, the predicted value of ∆t = 61.716 for this disc. Therefore,

the rate of growth of instabilities obtained from the numerical simulations is 1/2.4 times

the value predicted from Doǧan et al. (2018). Once again, we show that the instabilities

grow slower in numerical simulations, in contrast to what is expected theoretically.

From our numerical analysis, we studied the change in the warp amplitude of discs

(|ψ| vs r plots), proving that the disc becomes unstable when |ψ| > |ψ|c and produce in-

stabilities. To learn why instabilities grow slower in numerical simulations in comparison

to what is expected from Doǧan et al. (2018), we examine the exponential component

exp(−iω)t in equation 3.11 where

−iω = sΩ

󰀕
csk

Ω

󰀖2

. (3.14)

Since scale-height H = cs/Ω, we get

−iω = sΩ(Hk)2. (3.15)

Thus, the exponential term exp(−iω)t can be written as:

exp(−iω)t = exp(sΩt(Hk)2). (3.16)

From the |ψ| vs r plots of the two disc setups, the value of ∆r is noted for the instability.

Using this value of ∆r, the wavenumber k = 1/∆r and equation 3.16 becomes:

exp(−iω)t = exp(sΩt(Hk)2) = exp

󰀕
sΩt

󰀕
H

∆r

󰀖2󰀖
(3.17)

Furthermore, the value of ∆r/H in each disc setup is calculated. Firstly, for the disc

inclined at 45◦ with α = 0.1 and H/R = 0.03, the value of ∆r = 0.55 (∆r = r2 − r1)

where r1 and r2 are 12.1 and 12.65 respectively, and they give a mean radius of 12.375.

145



3. A PARAMETER STUDY OF DISC-TEARING

To calculate the value of H at r = 12.375, we know the sound speed

cs(i) =
H

R

󰁵
GM

Rin

󰀕
R

Rin

󰀖−q

(3.18)

where H/R = 0.03, Rin = 4, q = 3/4 and G = M = 1. This gives

cs(i) = 0.042R−0.75. (3.19)

We know, disc thickness H = cs/Ω and thus,

H(i) =
cs(i)

Ω(i)
= 0.042R0.75. (3.20)

Hence, at radius r = 12.375, the value of scale-heightH = 0.277. This gives∆r/H = 1.98.

This value of ∆r/H in equation 3.17 accounts for an increase in its value by a factor of

four. This explains why the instabilities grow slower in our simulations. Therefore, once

we have accounted for the length scale of the unstable region of the disc, ∆r, which

determines the wavenumber k ≈ 1/∆r, we see that the simulations and predicted growth

rate agree well.

In addition, we can also check the same for the disc setup with inclination at 60◦,

α = 0.1 and H/R = 0.03. The value of ∆r = 0.65 (∆r = r2 − r1) where r1 = 14.2

and r2 = 14.85 with a mean radius value of 14.525. The value of H at r = 14.525 is

0.312, which gives a value of ∆r/H = 2.08. The exponential growth of instabilities is

dependent on ∆r/H as shown in equation 3.17. As before, once the wavelength of the

unstable region is accounted for, there is agreement between the numerical results and

that predicted from Doǧan et al. (2018).
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3.6.1 Maximum warp amplitude

As previously described from the simulations, it is difficult to tear discs at low inclinations,

and at higher values of α and H/R. This is because the maximum warp amplitude in the

disc remains smaller than its critical warp amplitude for instabilities to occur. The value

of the maximum warp amplitude for a disc with tilt β and H/R is calculated as (Doǧan

et al., 2018)

|ψ|max = β
R

H
. (3.21)

In this section, we investigate if the above equation for the maximum warp amplitude

agrees well in our numerical analysis. The values of maximum warp amplitude in discs

at α = 0.1, H/R = 0.03 and inclined at 45◦ and 60◦ are shown by figures 3.37 and

3.38 respectively. For a disc with tilt β = 45◦, α = 0.1 and H/R = 0.03, equation 3.21

becomes

|ψ|max = 45× π

180
× 1

0.03
= 26.167. (3.22)

The peak value of |ψ|max from the simulation (as shown in figure 3.37) is 23.016. This

result is only 12% less than what is expected, thus in agreement with the predicted value

of |ψ|max from Doǧan et al. (2018). Similarly, the value of maximum warp amplitude

from equation 3.21 at β = 60◦, α = 0.1 and H/R = 0.03, gives:

|ψ|max = 60× π

180
× 1

0.03
= 34.889. (3.23)

As shown in figure 3.38, the peak value of the disc’s warp amplitude from our simulation is

|ψ|max = 32.556. This result varies from the expected by 6%, and therefore in agreement

with the value predicted by Doǧan et al. (2018).
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3.7 Testing the point of instability

In section 3.3, we conducted the numerical analysis of warped discs at different values of

α (0.05 − 0.1), H/R (0.01 − 0.03) and initially inclined at different tilts. We tested the

instability criterion and examined whether the discs are most likely to become unstable

and tear when the disc’s warp amplitude exceeds the critical warp amplitude (dependent

on the value of α). In this section, we check further if the unstable warped discs tear into

discrete rings exactly at the point where its warp amplitude exceeds the critical value

|ψ|c.

Figure 3.39 shows the 3D simulations as well as the change in the warp amplitude of

a disc inclined at 45◦, α = 0.1 and H/R = 0.03 at successive times t = 2.9 and 3.1 orbits

at Rout respectively. The plot of ψ at the initial time shows two peaks at r = 6 and 9.

Lets focus on the instability in the warp amplitude profile at r = 6. At the initial time,

the disc’s warp amplitude |ψ| ≤ |ψ|c which corresponds to the forming of an inner ring in

the 3D simulation. But at the following time, the value of |ψ| exceeds the critical value

and an independent, precessing ring in the inner disc can be seen in the 3D simulations

of the disc. This infers that the disc becomes unstable and tears exactly when the warp

amplitude exceeds its critical value. The same is checked for a disc initially inclined at

60◦ for the same values of α and H/R at times t = 14.3 orbits and t = 14.5 orbits at Rout

as shown in figure 3.40.
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Figure 1:

1

Figure 1:

1

Figure 3.39: Shows the 3D column density plots and the corresponding warp amplitude profiles of a disc inclined at 45◦,
α = 0.1 and H/R = 0.03 at times t = 2.9 and 3.1 orbits at Rout. The critical value |ψ|c = 3 is denoted by the red dashed
line.

In figure 3.40, we observe the formation of a ring in the 3D simulation of the disc at

t = 14.3 orbits at Rout that matches with the an increase in the warp amplitude at radii

between r = 6 and r = 8. Here, the ring isn’t completely broken as the warp amplitude

|ψ| remains lower than the critical value |ψ|c = 3. On the other hand at t = 14.5 orbits at

Rout, the ring breaks completely in the simulation. Here, the warp amplitude exceeds the

critical value thus strongly agreeing with the criterion presented in Doǧan et al. (2018).
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Figure 1:

1

Figure 3.40: 3D simulations and the corresponding warp amplitude profiles of a disc inclined at 60◦, α = 0.1 andH/R = 0.03
at times t = 14.3 and 14.5 orbits at Rout. The red dashed line in the |ψ| vs r plots represent the critical value |ψ|c = 3.

Furthermore, the numerical analysis of a disc inclined at 45◦, α = 0.1 and H/R = 0.01

after t = 4 orbits and t = 4.2 orbits at Rout is shown in figure 3.41. At the initial time,

the warp amplitude peaks at r = 5, 7 and 9. If we focus on the instability at r = 9, it

surpasses the red dashed line (|ψ|c = 3 for α = 0.1) but is below the green dashed line

(|ψ|c = 8 for α = 0.19) at the initial time. The 3D simulation at this time shows that the

ring is not completely broken at r = 9, and is still connected to the outer part of the disc.

But at a later time, the warp amplitude at r = 9 exceeds the green dashed line which
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indicates where the ring is fully broken, as observed in the corresponding 3D simulation.

Figure 1:

1

Figure 3.41: Shows the 3D simulations and the plots of warp amplitude for a disc inclined at 45◦, α = 0.1 and H/R = 0.01
at times t = 4 orbits and 4.2 orbits at Rout. The red dashed line in the |ψ| plots shows the critical value |ψ|c = 3 at α = 0.1
and the green dashed line represents |ψ|c = 8 at α = 0.19.

Figure 3.42 shows the 3D column density and the warp amplitude plots of a disc

initially tilted at 60◦, α = 0.1 and H/R = 0.01 after t = 4 orbits and t = 4.1 orbits at

Rout. As shown in the warp amplitude plots, there are growing instabilities at r ≈ 5 and

r ≈ 9. The green and red dashed lines in these plots represent the critical warp amplitude

for α values, with and without the numerical viscosity αAV. Although, the value of |ψ|

at r ≈ 9 surpasses the red dashed line at t = 4 orbits at Rout, it is well below the green
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dashed line which shows that the ring is not fully broken in the disc as shown in the 3D

simulation. But at a later time, the value of |ψ| exceeds the green dashed line and the

corresponding 3D simulation demonstrates that the disc is fully broken. Once again, we

find that the criterion |ψ|c for disc tearing must correspond to the α value inclusive of the

numerical viscosity, in discs (at smaller H/R values and higher tilts) to become unstable.

Figure 1:

1

Figure 3.42: Shows the 3D simulations and the warp amplitude profiles for a disc inclined at 60◦, α = 0.1 and H/R = 0.01
at times t = 4 and 4.1 orbits at Rout. The red dashed line in the |ψ| plots denotes the critical value |ψ|c = 3 at α = 0.1
and the green dashed line represents |ψ|c = 8 at α = 0.19.
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Figure 1:

1

Figure 3.43: 3D column density and the corresponding warp amplitude plots for a disc inclined at 60◦, α = 0.05 and
H/R = 0.01 at times t = 2.4 and 2.6 orbits at Rout. The red dashed line in the plot shows the critical value |ψ|c = 0.5 at
α = 0.05 and the green dashed line represents |ψ|c = 0.16 at α = 0.16.

Furthermore, we also examine unstable discs at values of α = 0.05, H/R = 0.01 and

inclined at 60◦. Figure 3.43 shows the 3D column density and the warp amplitude profiles

at times t = 2.4 orbits and t = 2.6 orbits at Rout respectively. There are two peaks in

the warp amplitude plots at radii r = 5 and r = 7 which denote where the disc tears

to form rings. If we focus on the value of ψ at r = 7 at the initial time, the value of
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ψ is well above the red dashed line but below the green dashed line. Similarly, the 3D

disc simulation shows a ring still unbroken and attached to the outer disc. But at a later

time, it is well above the green dashed line at |ψ|c = 0.16 which shows the possibility of

disc tear at r = 7. Once again this result agrees well with the predicted criterion from

(Doǧan et al., 2018), i.e. a warped disc is most likely to become unstable and tear when

|ψ| exceeds |ψ|c. It can also be concluded that the disc becomes easily unstable at smaller

values of α due to their smaller |ψ|c values.

3.8 Discussions and Conclusions

In this work, theoretical analysis on the criterion of disc tearing is tested using SPH

simulations. A parameter sweep is conducted for diffusive discs (α > H/R) at different

values of α (0.05− 0.1) and H/R (0.01− 0.03) and the criterion of disc tearing is checked

in each of these disc setups.

Firstly, we examined a disc composed of 10 million particles, with α = 0.1 and H/R =

0.03. We find the effect of numerical viscosity to be negligible in this disc setup. The

behaviour of the disc at various inclinations (from 10◦ to 60◦) is examined using SPH

simulations. The changes in the surface density profiles as well as the tilt and twist of the

disc are also studied to verify if the disc becomes unstable and tears to form discrete rings.

At low inclinations of 10◦ and 30◦, the disc doesn’t show any tearing and remains warped

throughout the simulation. On the other hand, we observe tearing in highly inclined discs

at 45◦ and 60◦ respectively. We investigate the predicted criterion of disc tearing from

Doǧan et al. (2018) to show if the disc becomes unstable at a critical warp amplitude,

|ψ|c. Our numerical results find that the values of |ψ| >> |ψ|c at points where tearing

occurs in discs tilted at 45◦ and 60◦. We also show that it is difficult to observe disc

tearing at low inclinations (10◦ and 30◦) as their warp amplitude remains much smaller

than |ψ|c.
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The same analysis is extended to smaller values of α and H/R where the value of

artificial viscosity is expected to play a crucial role. The ratio of the shell averaged

smoothing length to the scale-height (〈h〉/H) contributes highly to the artificial viscosity

at smaller H/R values. In these disc setups, we consider the value of the critical warp

amplitude |ψ|c for the α parameter inclusive of the artificial viscosity αAV . As explained

in Doǧan et al. (2018), this value of |ψ|c gives the criterion to form instabilities in a

disc. Our results agree with the predicted criterion, and find that thinner discs become

unstable at low α values and at higher tilts. We also find that the critical warp amplitude

values are smaller and the growth rates of the instability are higher at low values of α.

Doǧan et al. (2018) showed that the instabilities grow as |ψ| = |ψ|0 exp[ℜ(−iω)t],

where |ψ|0 = 4 and |ψ| = 5 are assumed to be the initial and final values of the warp

amplitude where the dimensionless growth rate ℜ[s] = 0.2. The value of ∆t is calculated

from the simulations and compared to the expected time required for the instabilities to

grow. This is examined for a disc setup with α = 0.1 and H/R = 0.03 at inclinations, 45◦

and 60◦ respectively. It is found that ∆r/H ≈ 2 in both disc setups, and therefore the

growth rate of instabilities is found to be in agreement with that predicted from Doǧan

et al. (2018).

Doǧan et al. (2018) gives the maximum value of warp amplitude for the instabilities

to grow in a disc as |ψ|max = β R
H

(at disc tilt β). The values of |ψ|max calculated for a

disc with parameters α = 0.1, H/R = 0.03 at inclinations 45◦ and 60◦, are 26.167 and

34.889 respectively. The values of |ψ|max calculated from our numerical analysis for the

two disc setups are 23.016 and 32.556, which vary from the expected values by a few

percent. Therefore, the theoretical prediction of |ψ|max from Doǧan et al. (2018) holds in

agreement with our numerical analysis. Furthermore, we test the point of instability in

each of the unstable and highly inclined warped discs, to demonstrate that these discs

tear to form individual, precessing rings exactly at the point when its warp amplitude
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exceeds the critical value, |ψ|c.

We have therefore confirmed, the main properties of the warped disc instabilities in

this chapter. These include

1. that warped discs with |ψ| < |ψ|c remains stable,

2. that warped disc with |ψ| > |ψ|c can become unstable and break into discrete rings,

and

3. we have also confirmed that the rate at which the warp amplitude grows in the

unstable regions of the disc closely matches the predicted growth rate from the

stability analysis.
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Implications of tearing in AGN discs

In our previous chapter, we used numerical simulations of diffusive warped discs around

SMBHs and revealed when they become unstable and break into precessing discrete

rings. We use the instability criterion proposed by Doǧan et al. (2018) and show that

there is a critical warp amplitude for each disc (that depends on the value of α) at which

the disc becomes unstable, and we connect it to the disc tearing behaviour observed

in the numerical simulations. In this chapter, we will discuss potential applications

of this disc tearing behaviour to AGN discs. We note that, warped discs have been

found around a variety of astrophysical systems. The most direct evidence now exists

from spatially resolved observations of protoplanetary discs (e.g. Andrews (2020)), and

recent observations in this area have connected the disc behaviour with the disc tearing

instability (Kraus et al., 2020). Discs that are misaligned to the spin plane of a Kerr

black hole precess due to the Lense-Thirring effect. This rate of precession depends on

the radius of the disc orbits from the black hole, and thus over time the disc acquires a

differential twist and becomes warped. A significant evidence of warps in discs around

black holes comes from water masers (Miyoshi et al., 1995; Greenhill et al., 1995, 2003).

In this chapter, we review studies on the extreme variability of AGN discs such as,

large deviations in the luminosities and temperature profiles in comparison to the ex-

pected standard α disc model. Firstly, we discuss Lawrence (2018) which highlights the
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large amplitude variability across the various wavelengths from optical to X-ray, observed

in an increasing number of AGNs and quasars. He points out (and which Antonucci (2018)

argues was already well-known; cf., e.g. the discussion of Alloin et al. (1985)) that these

variations are too rapid to be due to viscous inflow of matter as predicted by the stan-

dard α disc model. In the next section, we theoretically analyse what Lawrence (2018)

suggests on the idea of extreme reprocessing using the AGN STORM data of NGC 5548

from Edelson et al. (2015). Thereafter, we review Starkey et al. (2017) that showed a

steep fall in the temperature profile observed in NGC 5548, and we aim to explore how

good numerical models of warped discs can be found useful to explain this deviation

observed in AGN discs. We review how this observed disc behaviour can be connected to

the possibility of disc tearing in warped discs and how it can vary the X-ray reprocessing

from the inner to the outer parts of the disc.

4.1 Quasar viscosity crisis

One of the major puzzles provided by observations is the time variability across the

different wavelengths in discs around supermassive black holes. An observational study

of the nucleus of a type 1 Seyfert galaxy NGC 5548 by Clavel et al. (1991), has shown

that the ultraviolet continuum emissions across several bands varies simultaneously over

timescales of the order of weeks to months as shown in figure 4.1, This demonstrates the

UV light curve of the nucleus of NGC 5548, showing the timescale variations observed at

three different wavelengths.
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Figure 4.1: Variations at the AGN nucleus of NGC 5548 at three different wavelengths with changes in amplitude observed
over a short timescale (Clavel et al., 1991). Image taken from Lawrence (2018).

This demonstrates that AGNs vary on short-timescales in the UV bands, and this

variation is also observed in X-rays and optical emission. Since different wavelengths

originate from different radii of the disc, these variations in time extend through the disc.

The phenomenon of X-ray reprocessing can shed some light to explain the time variability

in accretion discs. It states that the X-ray part of the disc heats and varies more quickly

than the UV or optical regime of the disc. An important inference from observational

studies on X ray reprocessing, is the consistency in the light travel delays at the different

wavelengths on a scale of hours to days (Edelson et al., 2015; McHardy et al., 2016).

However, a recent crisis in the variability problem is the extreme variability (in factors

of a few over a decade) in some quasars and AGNs at optical and UV wavelengths

(Lawrence, 2018). Although, these changes are seen in many low luminosity objects, a

recent comparison of data from the Sloan Digital Sky Survey (SDSS) and the Panoramic

Survey Telescope and Rapid Response System (PanSTARRS) has shown observations of

extreme variability in AGNs and quasars at high luminosities as well (MacLeod et al.,

2016), and these are termed as changing look AGNs or quasars. Therefore, the wide

variabilities in their optical and far UV emissions conclude that the outer parts of the

disc is undergoing a large physical change on a timescale which is not compatible with
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the viscous timescale.

Lawrence (2018) also suggests that the idea of extreme reprocessing can find a solu-

tion to this variability. Here, the disc is assumed to have a very low viscosity, passively

heated by the central source. The energy emitted from the central source heats the disc,

making the inner region (3 − 10Rs) more viscous, with a much shorter timescale than

the outer disc (30 − 100Rs). However, the erratic variations of the central source may

impose complications in this scenario, making it difficult to study the optical source size

and the amplitude of variability of the discs at different wavelengths. However, we can

theoretically analyse what Lawrence (2018) suggests on the idea of extreme reprocessing

in NGC 5548 as discussed in the next section.

4.1.1 Timescales

In this section, we provide a discussion of the relevant timescales on which we can expect

the AGN discs to show variability. The standard accretion theory by Shakura & Sunyaev

(1973) predicts the basic timescale on which an accretion disc evolves or the viscous

timescale on which angular momentum is transported and matter diffuses through the

disc, given by (Pringle, 1981)

tν =
R2

ν
= (αΩ)−1

󰀕
R

H

󰀖2

(4.1)

where ν is the viscosity, Ω is the local disc angular velocity and H/R is the scale height

of the disc. Using the disc equations from Novikov & Thorne (1973) which accounts for

the radiation pressure in the disc, Dexter & Begelman (2019) gives the equation for the

viscous timescale

tν = 500

󰀕
α

0.02

󰀖−1󰀕
κ

κT

󰀖−2󰀕
M

108M⊙

󰀖󰀕
ṁ

0.1

󰀖−2󰀕
R

50Rg

󰀖7/2

yr, (4.2)
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where α ≈ 0.1−0.3 for fully ionised discs (King et al., 2007; Martin et al., 2019), κ is the

opacity, κT is the electron scattering opacity with M being the black hole mass and ṁ is

the mass accretion rate of the disc. At first, the large amplitude variability was believed

to be due to the intrinsic variation in the accretion rate within the inner regions of the

disc, assuming its inner radii ranged within R ≤ 10− 20Rg and equation 4.2 infers that

the viscous time flow in discs may be of the order of months at very small radii. But,

at large radii (R ≈ 50 − 100Rg), the viscous timescale is way too long to explain any

variability observed across the different wavelengths of discs (Cannizzaro et al., 2020).

A broad discussion of several other mechanisms to explain the variability is addressed

in Cannizzaro et al. (2020). Some of the main ideas to explain this variability within discs

were also assumed to be related to the fluctuations in the disc flow rate. This included

thermal fluctuations within the disc or fluctuations in the local magnetic processes due

to flares in corona. But, King et al. (2004) pointed out the major drawbacks of these

ideas since the timescale of these fluctuations were too short and much smaller than the

disc’s viscous timescale, and as a result these fluctuations would not propagate to larger

distances radially. This was further explored in Sniegowska et al. (2020) who argue that

the source of the variability lies in instabilities operating in the accretion disc.

If we expect the disc to show variability due to the effect of disc warping, the other

basic timescale is the time taken for disc orbits that are misaligned to the black hole spin

to precess around the black hole spin vector, i.e. the nodal (or Lense Thirring) precession

timescale given as

tLT =
1

ΩLT

=
c2R3

2GJh
=

1

2a

󰀕
R

Rg

󰀖3
GM

c3
(4.3)

where ΩLT is the precession frequency, R is the disc radius, Jh is the black hole angular

momentum, a the black hole spin, and Rg = GM/c2 is the gravitational radius of the

black hole. Therefore, if we assume the disc to be warped, we can expect the variability
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in the precession time scale (tLT) to manifest through the disc. In the following section,

we can analyse the time variability of NGC 5548 from the data reported in Edelson et al.

(2015), as a part of the AGN STORM series (detailed further in section 4.2).

4.1.2 Study of NGC 5548

We consider the data of NGC 5548 reported in Edelson et al. (2015), with its central peak

wavelength observed in the UV and optical bands using Swift and Hubble Space telescopes

(HST ). Although, the different regions of the disc contributes at all wavelengths, it is

important to understand the radial extent of the disc that contributes to the emission

in each waveband. For example, each part of the disc may have a certain percentage of

emission in the UV or optical band. For simplicity we approximate the radial location of

the emission in a given waveband to be the radial location of the temperature given by

Wien’s displacement law.

From the temperature profile, we aim to learn the radial extent of the UV and optical

regions in the disc. Also, we know that the timescale of precession and viscous timescale

are both functions of radius. Therefore, from the value of the radius corresponding to

each wavelength, the values of the timescale of precession and viscous timescale can be

calculated.

From the observed values of central peak wavelength, we can calculate the temperature

from the Wien’s displacement law given by:

λT = 2.9× 10−3mK. (4.4)

The quantified equation of temperature as a function of radius (refer equation 3.20 in

Peterson (1997)) is

T (r) = 6.3× 105
󰀕

Ṁ

ṀEdd

󰀖1/4

M
−1/4
8

󰀕
r

Rs

󰀖−3/4

K (4.5)
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where T (r) is the temperature at radius r, Ṁ/ṀEdd is the Eddington mass accretion rate,

assuming a radiative efficiency of η = 0.1 andM8 is the blackhole mass in units of 108 M⊙.

From the observed data of central peak wavelengths given by Edelson et al. (2015), we can

calculate the temperatures corresponding to each wavelength using equation (4.4). This

value of temperature is further used to calculate the radius in units of the Schwarzschild

radius (Rs) using equation 4.5. The radii values are calculated, assuming a black hole

of mass ≈ 3.2× 107 M⊙ and at a value for Ṁ/ṀEdd = 0.03 (the values used in Edelson

et al. (2015)). Thus, we can tabulate (as shown in table 4.1) the central peak wavelengths

observed at different bands, along with their calculated values of temperature and radii

(in units of Rs).

Band λ(Å) T(Kelvin) R(Rs)

HST 1367 2.12 × 104 41.8
UVW2 1928 1.5 × 104 64.9
UVM2 2246 1.29 × 104 79.4
UVW1 2600 1.11 × 104 96.9

U 3465 8.37 × 103 144.4
B 4392 6.6 × 103 193.5
V 5468 5.3 × 103 265.9

Table 4.1: Table representing the various UV and optical bands used for observing NGC 5548, with the corresponding value
of their central wavelength (in Angstrom). Also, included are the calculated values of temperature (in Kelvin) along with
the radius of each wavelength band (in terms of Rs, where Rs = 2GM/c2). HST (Hubble Space telescope), UVW2, UVM2,
UVW1 and U represent the different ultra-violet (UV) wavelengths, whereas B (Blue) and V (Visual) bands represent the
optical filters used for observing NGC 5548.

The precessional timescale of an orbit at radius R (in units of Rg) is given as (or refer

equation 4.3)

tp =
1

2a

󰀕
R

Rg

󰀖3
GM

c3
(4.6)

where a is the dimensionless spin parameter and Rg is the gravitational radius (Rg =

Rs/2 = GM/c2). Also, the viscous timescale at radius R is

tvisc =
R2

ν
(4.7)
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where

ν = αcsH =
αc2s
Ω

(4.8)

with

Ω =

󰁵
GM

R3
. (4.9)

From the value of radius at each band (obtained from equation (4.5)), we now calculate

the precessional timescale, the viscous timescale and the light travel time (tc = R/c) at

each radius as shown in table 4.2.

Band R(Rs) tp(years) tvisc(years) tc(mins)

HST 41.8 1.4 9.5 × 103 3.6
UVW2 64.9 5.4 1.8 × 104 5.6
UVM2 79.4 10 2.4 × 104 6.8
UVW1 96.9 18.2 3.3 × 104 8.4

U 144.4 60.4 6.1 × 104 12.6
B 193.5 1.4 × 102 9.5 × 104 17
V 265.9 3.7 × 102 1.5 × 105 23.2

Table 4.2: Table representing the radius of each wavelength (in terms of Rg) and the calculated values of the timescale of
precession (in years), where we assume the black hole spin to be maximal, i.e. a = 1) and viscous timescale (in years) and
the light travel time (in minutes) at different wavelength regimes of the disc of NGC 5548. HST (Hubble Space telescope),
UVW2, UVM2, UVW1 and U represent the different ultra-violet (UV) wavelengths, whereas B (Blue) and V (Visual)
bands represent the optical filters used for observing NGC 5548.

It can be concluded from this table, that the value of the precessional timescale varied

between 1.4 years in the lower UV wavelengths to 100 times more in the optical band

of the disc. This proves that it is difficult to see over an observational period of several

months, a significant variability in the UV/optical wavelengths. It is also clear that

the viscous timescale at these radii is far too long to explain the variability in discs.

Numerical models of warped discs can be proven useful, to explain such cases of extreme

variability. One idea is by using accretion rate in discs as a proxy to energy dissipation

rate and thus luminosity (further detailed in section 4.3). A prominent example by Nixon

et al. (2012a) used SPH hydrodynamical simulations to study disc tearing in warped discs

around AGNs. As the precession timescale is shorter than the standard viscous timescale
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in a warped disc, the effect of precession can increase the accretion rate on to the central

object by transferring matter to inner radii faster than that due to the viscous torques.

The efficiency of this process is dependent on the misalignment angle between the disc

and the black hole. For small angles, the accretion rate may be enhanced by a factor of

order unity, whereas at larger angles the gas can fall a considerable distance in radius

and increase the accretion rate by several orders of magnitude (Nixon et al., 2012b). In

a subsequent work, we aim to extend our work on the numerical analysis to study disc

tearing in warped discs (presented in chapter 3) and examine their accretion rate curves

to examine the evidence of any aperiodic behaviour, i.e. investigate if they show short or

longer timescale variability. In the next section, we review another example of variability

in the temperature profiles of NGC 5548. We discuss, Starkey et al. (2017) that finds a

steeper slope at α = 0.99 in the temperature-radius profile of NGC 5548, contrary to the

value for a standard disc predicted by theory, where α = 0.75 (T (r) ∝ r−α).

4.2 Anomalous temperature profiles

Reverberation mapping of accretion discs act as a probe to examine their structure.

The discs around AGN vary in their luminosities across the different wavelengths. The

observations demonstrate that these variations at different wavelengths show a lag which

increases with wavelength (Shappee et al., 2014; Edelson et al., 2015). The light-travel

delay originates as the photons from the source, first travel to a reprocessing site on the

accretion disc before being re-emitted to the observer (also explained in section 1.2.3).

It has been a continuing challenge to use different models to study variability in

accretion discs and measure their sizes, logarithmic slope of the temperature or their

inclination with respect to the observer. A simpler model to study the accretion-disc

variability is the lamppost model, which assumes that the disc around a compact point

source irradiates as a black body accretion disc (Frank et al., 2002). In this model, the
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temperature profile of the disc declines as T (r) ∝ r−3/4 and the wavelength varies with

temperature as λ ∝ T−1. Therefore, if we consider the light-travel delay time given by

〈τ〉 = R/c, it increases with wavelength as 〈τ〉 ∝ λ4/3.

A large scale observing campaign named the AGN Space Telescope and Optical Re-

verberation Mapping Project (STORM) was set up to research on NGC 5548 with it

being one of the most thoroughly studied AGNs. The first paper in this project series by

De Rosa et al. (2015) demonstrated light curves observed from Hubble Space Telescope

(HST ) and determined the time lags in the CIV and Lyα light curves using a cross core-

lation analysis. Paper II in the series by Edelson et al. (2015) studied the optical and

UV lightcurves from Swift and inferred the dependence of time lags on the wavelength,

〈τ〉 ∝ λ4/3. Paper III by Fausnaugh et al. (2016) included ground-based observations

and analysed the data using cross-correlation (White & Peterson, 1994) and JAVELIN

(Zu et al., 2011). Paper IV by Goad et al. (2016) identified and studied the changing

behaviour in the broad emission lines also termed as BLR holiday (see also the discussion

in Goad et al. (2019)). These emission lines tracked the variations in the continuum in the

first 1/3 of the AGN STORM campaign, but went fainter than expected in the latter 2/3

of the campaign. This behaviour deviated from the expected nature of the emission lines

to reverberate with time delays relative to the continuum wavelengths. This anomalous

behaviour might be either due to the partial obscuring of the Broad Line Region (BLR)

or due to a change in the shape of the disc structure (Goad et al., 2019). Paper V (Pei

et al., 2017) examined the optical spectroscopic data to measure the velocity delay maps

of Hβ and HeII light curves. Paper VII by Mathur et al. (2017) detailed the analysis

of X-ray observations. Paper VIII by Kriss et al. (2019) explored the time variability

of the emission and absorption lines and paper IX by Horne et al. (2020) examined the

velocity-delay maps resulting from the spectral variations. In this section, we discuss

paper VI of the AGN STORM series by Starkey et al. (2017) that analysed how to fit
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19 overlapping continuum light curves from Hubble Space Telescope (HST ), Swift, and

ground-based observations of NGC 5548 to the lamp-post model using a Monte Carlo

Markov Chain code, CREAM.

CREAM (Continuum REprocessing AGN MCMC) is a model, firstly introduced

in Starkey et al. (2016) to fit the AGN light curves using the lamp-post model and

deduce the posterior probability distributions for temperature T , inclination i, slope of

the temperature radius profile α and the lamp-post light curve X(t). CREAM analyses

the lamp-post light curve as a sum of Fourier sine and cosine terms. The continuum light

curve at a wavelength λ is given as:

Fν(λ, t) = F̄ν(λ) +∆Fν(λ)

󰁝 ∞

0

ψ(τ |λ) X(t− τ)dτ (4.10)

where F̄ν(λ) and ∆Fν(λ) are the constant and variable components of the light curve.

The contribution of the light curve at earlier time X(t−τ) is represented by the response

function ψ(τ |λ), normalised as:

󰁝 ∞

0

ψ(τ |λ) dτ = 1. (4.11)

Starkey et al. (2016) explains how CREAM parametrises the response function and shows

the dependence of ψ(τ |λ) on T , i and α. This study is further explored in Starkey et al.

(2017) which uses the CREAM fitting code to check the convergence of the parameters

in 19 AGN STORM continuum light curves of NGC 5548 with the lamp-post model.

The posterior probability distributions for i, T of the linearised α disc or lamp post

model (labelled as model 1) with α = 3/4 is calculated. Starkey et al. (2017) runs the

simulation using CREAM to fit the slope of the temperature-radius profile which obtains

α = 0.99± 0.03, i = 36± 10◦ and T = (4.71± 0.46)× 104 K as shown in figure 4.2.

Therefore, this study finds that the disc of NGC 5548 shows a steeper fall in tem-
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perature than the expected standard α disc model. Starkey et al. (2017) also addresses

theories which may likely explain this anomalous behaviour in the temperature profile of

the disc. Firstly, the two stage reprocessing model proposed by Gardner & Done (2017),

where the disc is considered to have a second reprocessing region or a puffed Comptonised

region.

Secondly, when the disc is warped (Nixon et al., 2012a; Nealon et al., 2015), i.e. if

the inner part of the disc is misaligned to the outer disc. It is a possibility that the

observed light curves may be a resultant of reprocessing and emission from the tilted

inner disc. Therefore, the presence of a warp in the disc can alter the X-ray reprocessing

from the inner to the outer part of the disc as shown using a sketch, in figure 4.3. This

sketch shows the reprocessing model in a warped disc, and finds how the presence of a

warp in the disc can affect the reprocessing of light from the inner parts, which is further

re-emitted at the outer parts of the disc.

Figure 4.2: This figure from Starkey et al. (2017) demonstrates the posterior distributions of inclination i, temperature −
radius slope α and temperature T1. Model 1 (blue) denotes the theoretical fit for a steady state disc with α = 0.75. Model
2 (red) indicates the fitted parameters using CREAM, which discovers a steep temperature profile with α ∼ 1.

Furthermore in figure 4.3b, we show that the presence of the warp in the inner part
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(a) (b)

Figure 4.3: Figure (a) shows the reverberating disc model where the photons from the inner part of the disc are reprocessed
at the outer parts of the disc, further re-emitted to the observer. Figure (b) shows the reverberation disc model for a
warped disc where the inner disc is misaligned to the outer disc. This figure clearly shows how the presence of a warp can
cause a variability in the photons reprocessed and re-emitted at the outer parts of the disc.

of the disc can affect the amount of light reprocessed, re-emitted and observed from the

outer parts of the disc. If we consider the scenario of disc tearing in the inner regions of

the disc, which forms precessing rings of gas (e.g. due to LT effect in AGN discs), the

effect of precession will not only alter the amount of light reaching the outer parts, but

can also vary the time lags observed at different wavelengths of the outer disc, with time.

4.3 Variability from disc tearing

It is important that we discuss the implication of disc tearing in warped AGN discs which

may explain the variations in the timescale of large amplitude optical/UV fluxes observed

in AGN. Numerical simulations of tilted warped discs have revealed that they can break

into discrete rings that can subsequently precess independently, and showed how they

may provide a source of variability in black hole accretion (Nixon et al., 2012a). The

simulation behaviour, which sees rings of matter break off from the rest of the disc in

regions where the warp amplitude is high, thus hints at the formation of an underlying

instability. Doǧan et al. (2018) explored this instability in detail (using the stability

analysis of warped disc equations by Ogilvie (2000)) and showed that for α ≤ 0.2, there

is always a critical warp amplitude ( |ψ|c that depends on the value of α) at which the

disc becomes unstable. We can connect the instabilities in warped discs with the disc
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tearing behaviour, further tested using numerical simulations (refer chapter 3). As the

precession timescale (given by equation 4.3) must be shorter than the standard viscous

timescale (equation 4.1) in the disc to produce a substantial warp (Nixon et al. (2012a)

or refer chapter 3), this process enhances the accretion rate on to the central object by

delivering matter to small radii faster than viscous torques could do so. We demonstrate

the variability in the accretion rates with time (as shown in figure 4.4), from one of our

simulations presented in chapter 3.

The black line in figure 4.4 corresponds to the accretion rate in the simulation with

α = 0.1, H/R = 0.01, and β = 10◦, where β is the initial angle between the disc and

black hole spin. The red line corresponds to the accretion rate for the same parameters,

except the value of β = 60◦. Our simulations show that, the disc inclined at 10◦ remains

stable with no disc tear, and achieves a mild warp which does not strongly impact the

disc structure (refer figures 3.13 and 3.16 in chapter 3) and therefore, its accretion rate

remains low. On the other hand, a disc at 60◦ showed an evidence of disc tear (shown

by figures 3.25 and 3.28 in chapter 3), thus forming individual, precessing rings in the

unstable disc regions. Furthermore, the accretion rate of the disc tilted at 60◦ showed

substantial variability, as the disc becomes unstable due to disc tearing. As shown in

the figure, the inner disc is unstable at early times, resulting in periodic accretion of

rings of matter. Therefore, we can conclude that the variations in the accretion rate on

to supermassive black holes are induced by the tearing instability in warped discs. We

also expect that, this variability reflects highly on the rate of generation of energy from

the accretion flow, in the inner regions of the disc. Moreover, this alters the amount of

energy reprocessed and remitted from the outer parts of the disc which may be a good

explanation to the observed UV/optical variability in AGN discs (Lawrence, 2018).
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Figure 4.4: The two curves represent the change of accretion rate with time, in discs (refer chapter 3) with α = 0.1,
H/R = 0.01, and at tilts 10◦ (black line) and 60◦ (red line) respectively. The change in accretion rate is plotted at times
t = 104 ≈ 10 orbits at Rout to t = 3.61 ×104 ≈ 35 orbits at Rout and the fraction of disc considered for both cases lie
at radii between 9Rg and 22Rg (where G = M = c =1). The disc inclined at 10◦ does not show much variability in its
rate of accretion and remains low, analogous to a planar accretion disc. But the tilted warped disc at 60◦ shows large
variability in the accretion flow rates, which are produced due to its disc tearing instability and form discrete, precessing
rings of matter. The peak value of the rate at which mass is accreted when the disc is tilted at 60◦ is 28 times more than
rate of accretion at a tilt of 10◦.

The disc dynamics resulting from the instability or disc tearing of warped discs can

produce different scenarios. If the innermost regions of the disc are unstable, then we

expect the variability to manifest on the precession timescale of the inner disc regions,

and the disc matter plunges directly into the hole. If, instead, the disc is unstable further

out such that the mass flow from the unstable region does not reach the ISCO, then the

matter circularises at a new smaller radius. Therefore, once the material is circularised at

the new smaller radius, a strong increase in disc luminosity follows over a timescale of the

order of the viscous timescale given by Dexter & Begelman (2019) (refer equation 4.2)1.

These results may be potentially consistent with the short timescales to explain the large

variations in optical/UV fluxes observed in the AGN lightcurves (Lawrence, 2018).

Furthermore, numerical models of disc tearing in warped discs can also be used to

1If we assume the matter to circularise at a new smaller radius, say R ≈ 20Rg, then it follows the
viscous timescale given by Dexter & Begelman (2019), i.e. tν ≈ 1.3 yrs.
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examine how the orientation of a disc with respect to the oberver can impact the observ-

able properties. In general, the angle between the black hole spin and the accretion disc

angular momentum is expected to decrease over time through dissipation between neigh-

bouring rings; Lense-Thirring precession of each ring maintains the inclination angle with

respect to the black hole, and subsequent interaction between neighbouring rings that oc-

cupy different planes reduces the inclination to the black hole spin. This means that a

line-of-sight that is closer to the black hole spin axis than the original disc misalignment

always has a clear view of the disc centre. However, if the line-of-sight to the black hole

passes through the disc, then additional variability due to obscuration effects is possible.

If the disc warp move into (or out of) the line-of-sight, then the emission properties may

vary significantly as the inner regions of the disc are blocked (or revealed). In figure 4.5,

we show an example from the 3D hydrodynamic simulations of a disc (α = 0.03, H/R =

0.02 and β = 60◦) viewed at the same time, but from different orientations. The black

hole spin axis is in the z-direction, and the reference views are in the x − y plane, and

therefore the black hole spin points out of the page in the left-most panels. The top row

of panels, from left to right, are views of the disc starting with the x− y plane, which are

subsequently rotated by an angle X around the x-axis. The bottom panels are the same,

but now the rotation is performed by an angle Y around the y-axis. In some configura-

tions, the central regions are clearly visible, and in others they are largely blocked from

view either by the outer disc or a precessing ring which is crossing the line-of-sight to the

disc centre. Therefore, we note that while the geometry may be important for determin-

ing which parts of the disc are seen by the observer, it is also important for determining

which parts of the disc are available to be seen by the material that makes up the broad

line region (which assumed to be clouds orbiting near the outer disc regions as shown

in figure 1.5 in chapter 1). As the matter comprising the broad line region is typically

expected to orbit close to the disc, it is plausible that precessing rings in the unstable
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region of the disc may act to block the central disc emission from fully illuminating the

broad line regions. Thus, the flux arriving at the broad line regions may be time variable

due to a disconnect between the continuum and emission lines. This may thus offer a

potential cause for the recently observed broad line holidays (Goad et al., 2016; Goad

et al., 2019).

X = 0 X = 30 X = 60 X = 90 X = 120 X = 150

Y = 0 Y = 30 Y = 60 Y = 90 Y = 120 Y = 150

Figure 2: 3D renderings of the gas distribution in disc tearing simulation with α = 0.03, H/R = 0.02 and θ = 60◦ (Raj et al., 2020). Each panel depicts the same simulation
at the same time, viewed from different orientation. The left-hand top and bottom row panels both show the same view—that of the x-y plane—where the black hole spin
axis, which coincides with the z-axis points out of the page. Then, from left to right, the top row shows the disc view with the disc rotated by an angle X around the x-axis
where the value of X in each case is given in the panel. In contrast, the bottom row is rotated from the x-y plane by an angle Y around the y-axis. In some cases the
majority of the disc is visible and pointed predominantly towards the ‘observer’. While in other cases, the inner disc regions are highly inclined, or obscured by either the
warped outer disc or an interloping ring of matter in the unstable region.

In general, the angle between the black hole spin and the accretion disc angular momentum is expected to decrease over time through
dissipation between neighbouring rings; Lense-Thirring precession of each ring maintains the inclination angle with respect to the black
hole, and subsequent interaction between neighbouring rings that occupy different planes (e.g. ones that have precessed apart) reduces the
inclination to the black hole spin. This means that a line-of-sight that is closer to the black hole spin than the original disc misalignment
always has a clear view of the disc centre.10 In this case, any observed variability is caused by either emission from the shocks occurring
between precessing rings in unstable regions of the disc or from the variable accretion rate caused by the time-dependent mass flow rates
from the unstable regions.

However, if the line-of-sight to the black hole passes through the disc (i.e. θobs > θdisc) then additional variability due to obscuration
effects is possible. If the disc warp (i.e. the outer disc regions that remain stable to disc tearing) move into (or out of) the line-of-sight
then the emission properties vary significantly as the inner regions of the disc are blocked (revealed), and the timescales for such changes
are long – relying upon precession at large radii (cf. equation 4) or slow decay of the disc warp. However, if the interloper is instead
a ring of matter in the unstable region of the disc, then we can expect the precession timescale at that radius to be imprinted on the
emission as the ring blocks some of the flux from the central regions reaching the observer. The presence of multiple such rings with
different inclinations blocking different parts of the disc at different times may erase a simple periodic signal, but the generic timescale
for variability from a ring at a given radius is governed by equation 4. In Fig. 2 we show an example of the effect different orientations
may have on the system properties. Each panel in the figure is the same disc model (α = 0.03, H/R = 0.02 and θ = 60◦) viewed at the
same time, but from different orientations. The black hole spin axis is in the z-direction, and the reference views are of the x-y plane (the
top and bottom left-most panels; which are the same) and thus the black hole spin points out of the page in the left-most panels. The top
row of panels, from left to right, are views of the disc starting with the x-y plane, which are subsequently rotated by an angle X around
the x-axis. The bottom panels are the same, but now the rotation is performed by an angle Y around the y-axis. In some configurations
the central regions are clearly visible, and in others they are largely blocked from view – either by the outer disc or a precessing ring
which is crossing the line-of-sight to the disc centre.

Finally, we note that while the geometry may be important for determining which parts of the disc are seen by the observer, it is also
important for determining which parts of the disc are available to the material that makes up the broad line region (typically assumed
to be clouds orbiting near the outer disc regions). As the matter comprising the broad line region is typically expected to orbit close to
the original disc plane, it is plausible that precessing rings in the unstable region of the disc may act to block the central disc emission
from fully illuminating the broad line regions. Thus an observer looking unobstructed at the disc central regions may see a constant flux,
but the flux arriving at the broad line regions may be time variable. This could cause a disconnect between the continuum and emission
lines, and may thus offer a potential cause for the recently observed ‘broad line holidays’ (Goad et al., 2016, 2019).

10However, there are exceptions to this. For example, if one includes the effects of radiation warping, it is possible for the disc to achieve a shape in which the entire
sky—as seen from the black hole—is covered by the disc surface (Pringle, 1997). Alternatively, if the total disc angular momentum dominates the angular momentum
of the black hole and the disc is initially closer to counteralignment (i.e. the disc-black hole angle is θ > 90◦) then while the inner disc regions initially counteralign
(θ → 180◦) with the black hole spin, the outer regions (on a longer timescale) align (θ → 0◦) with the black hole spin (King et al., 2005; Lodato & Pringle, 2006) and thus
any line of sight may become blocked over time.

6

Figure 4.5: 3D simulations which show disc tearing in a warped disc at β = 60◦,α = 0.03 and H/R = 0.02. Each panel
depicts the same simulation at the same time, viewed from different orientation. The left-hand top and bottom row panels
both show the same view (in the x-y plane) where the black hole spin axis which coincides with the z-axis pointing out
of the page. Then, from left to right, the top row shows the disc view with the disc rotated by an angle X around the
x-axis where the value of X in each case is given in the panel. In contrast, the bottom row is rotated from the x-y plane
by an angle Y around the y-axis. In some cases the majority of the disc is visible and pointed predominantly towards the
observer. While in other cases, the inner disc regions are highly inclined, or obscured by either the warped outer disc or
an interloping ring of matter in the unstable region.

4.4 Discussions and Conclusions

We have reviewed studies that discuss the evidence of extreme variability in AGNs and

quasars in the UV and optical wavelengths. The disagreement in the observed values on

sizes, luminosities and the disc temperatures of AGN discs and the expected values from

a standard α disc model still remains an unresolved issue. This emphasises why numerical

analysis of AGN disc models is essential to understand the disparity between theoretical

and observational results.

Firstly, we discuss Lawrence (2018) which highlights the issue concerning the timescale

of large amplitude luminosity variations in AGN. This study implies that if one calculates

the radius in the disc which encompasses enough mass to drive the observed increase
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in luminosity (i.e. an increase in accretion rate), then the viscous timescale from this

radius is typically orders of magnitude larger than the observed variation timescale. We

establish this further, from the data analysis of Edelson et al. (2015) to calculate the

temperatures and the corresponding radial extent of the disc at each wavelength observed.

The timescale of precession and the viscous timescale are also calculated at each radii.

Our results show that these timescales are too long to explain the extreme variability in

the UV/optical wavelengths observed over a period of few months. We also summarised

Starkey et al. (2017) which details the fitting of light curves observed in NGC 5548 with

a linearised α disc model. This analysis yields a steeper temperature fall with a slope of

α = 0.99± 0.03 which can cause a resultant decline in the surface brightness of the disc.

These examples of observational variability exhibited in AGN accretion discs illustrate

why its important to use good theoretical and numerical models of evolving accretion

discs and obtain a better understanding of these structures.

In this chapter, we explore the possibility of disc tearing in warped accretion discs and

investigate whether it plays an important role in producing variable accretion flows around

supermassive black holes, and explain their observational variability. Here, we discuss

the possibility of how the dynamics of disc tearing may provide a source of variability in

black hole accretion, the timescales on which variability might manifest in the observable

properties, and how the disc geometry can affect what we see. We also discuss how

accretion rate is a reasonable proxy to study the rate at which energy can be extracted

from the disc orbits in disc tearing events. The accretion rate/energy dissipation changes

for some disc parameters show that the disc tearing instability can occur predominantly

at the disc inner edge. In future work, we will develop more sophisticated simulation

models to connect in more detail with the observational data and examine if these cases

show similarity with the quasi periodic eruptions observed in Seyfert 2 galaxy GSN 069

(Miniutti et al., 2019) and RX J1031.9+2747 (Giustini et al., 2020) or the heartbeat
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modes observed in some X-ray binaries (e.g.GRS 1915+105) (Zoghbi et al., 2016).

175



5

Accretion discs in SPH

Accretion discs occur on many scales in astrophysics, from star and planet formation to

supermassive black hole accretion (Pringle & Rees, 1972; Pringle, 1981). We know that

accretion discs are formed because gas has angular momentum with respect to the central

object it orbits. An initial disc formed from the infalling gas generates an eccentric disc.

Angular momentum is conserved within the disc, as it radiates orbital energy and the disc

orbits settle into the configuration of least energy for a given angular momentum which

is a circle. This circularisation is often assumed to occur faster than the radial evolution

of the disc, and thus most discs are considered circular. Sometimes, these orbits may

not all be in the same plane and in this case the disc is initially warped (Papaloizou

& Pringle, 1983; Ogilvie, 1999). The radial evolution of the disc is enabled by viscosity,

caused due to disc turbulence from the magneto-rotational instability (Balbus & Hawley,

1991) which facilitates the spreading of the disc. As a result, angular momentum of the

disc is transferred outwards, allowing the mass to flow inwards (Pringle, 1981). This

angular momentum transport can be characterised by the turbulent viscosity ν = αcsH

in the disc (Shakura & Sunyaev, 1973).

In many cases the dynamics of discs are complex, and numerical simulations are

utilised to make progress. One such method which studies simulating accretion flows

in discs is Smoothed Particle Hydrodynamics (SPH; Lucy 1977; Gingold & Monaghan
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1977). SPH is a Lagrangian particle based method for solving the equations of motion

of a fluid (also detailed in section 1.7). In the next section, we discuss the equations and

methods that are employed to create discs of SPH particles for numerical simulations. The

initial conditions used in setting up these discs are adequate at the resolution typically

employed for SPH discs. However, at higher resolution a lack of dynamical equilibrium in

the initial conditions leads to the formation of unwanted pressure waves in the simulations.

Although, this lack of equilibrium was previously known, there are past works which argue

that no self-consistent analytical disc structure exists when radial pressure gradients are

taken into account (Hoshi & Shibazaki, 1977). In this chapter, we summarise a method

which is independent of the disc parameters to damp these waves, and importantly a

method that does not rely on artificial viscosity - allowing the relaxation time to be

independent of resolution.

5.1 Disc density structure

The surface density evolution for the disc is given by:

∂Σ

∂t
=

1

R

∂

∂R

󰀣
∂
∂R

[νΣR3 (−Ω′)]
∂
∂R

(R2Ω)

󰀤
+ Σ̇ , (5.1)

where R is the cylindrical radius coordinate, Σ is the disc surface density, ν is the disc

viscosity and Σ̇ defines the rate at which mass is added to the disc given as:

Ṁadd = 2π

󰁝 Radd+wadd

Radd−wadd

Σ̇(R)RdR , (5.2)

where mass is added in the interval [Radd − wadd, Radd + wadd]. The surface density can

be written in terms of the volume density, ρ as

Σ =

󰁝 z=+∞

z=−∞
ρdz . (5.3)
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In a steady state, a Keplerian disc has a surface density profile given by:

νΣ ≈ const ≡ Ṁ

3π
(5.4)

where we assume a Shakura & Sunyaev (1973) viscosity with a constant α and cs = cs0R
−q,

thus H = H0R
−q+3/2 expressed as power-law functions of radius. Therefore, we have

Σpl =
Ṁ

3πν
= Σ0R

2q−3/2 . (5.5)

However, equation (5.5) does not take account of any radial boundary conditions. The

standard approach is to assume a zero-torque inner boundary condition (i.e. dΩ/dR =

Ω′ = 0 at Rin) such that the surface density goes to zero there. In this case the standard

conservation equations (cf. Appendix A) give

Σsmoothpl =
Ṁ

2πν

[R2
inΩin/R

2Ω− 1]

R (Ω′/Ω)
(5.6)

=
Ṁ

3πν

󰀥
1−

󰀕
Rin

R

󰀖1/2
󰀦

.

This represents the most often used equation for the initial disc surface density in SPH

simulations. It is often assumed that it is not worth smoothing the outer edge of the disc,

since there is too little mass there and any propagating pressure waves have too little

momentum to drive significant density perturbations in the disc. Furthermore, we can

derive the full solution for a disc with mass added at some radius (Radd) and a defined

inner (Rin) and outer boundary (Rout). If we apply zero-torque inner and outer boundary

conditions, the surface density profile of a steady disc structure is given by

Σsteady =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

fṀadd

2πν(1 + f)

[R2
inΩin/R

2Ω− 1]

R (Ω′/Ω)
for R ≤ Radd

Ṁadd

2πν(1 + f)

[1−R2
outΩout/R

2Ω]

R (Ω′/Ω)
for R > Radd .
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where f is given by

f =
R2

addΩadd −R2
outΩout

R2
inΩin −R2

addΩadd

(5.7)

The derivation of this steady disc surface density is given in Appendix A. For a disc with

e.g. no mass flow off the outer boundary, the solution is given by

Σsteady =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

Ṁ

3πν

󰀥
1−

󰀕
Rin

R

󰀖1/2
󰀦

for R ≤ Radd

Ṁ

3πν

󰀥󰀕
Rout

R

󰀖1/2

− 1

󰀦
for R > Radd .

(5.8)

The disc is assumed to be in a vertical hydrostatic equilibrium which allows us to calculate

the density structure from the surface density equations. For a disc with a vertically

isothermal equation of state (also given by equation 1.39 in section 1.3.2 ), the density is

given by

ρ(R, z) = ρ0 exp

󰀕
− z2

2H2

󰀖

=
Σ(R)

H
√
2π

exp

󰀕
− z2

2H2

󰀖
, (5.9)

where H = cs/Ω. Thus, we have a density profile for the disc which can be created by

a set of particles, and this is represented by determining particle positions and velocities

in the disc.

5.2 Determining particle positions

In this section we discuss how to position particles to achieve the required density dis-

tribution. This is done by a Monte-Carlo method, where particles are drawn from the

relevant distribution. Firstly, let’s discuss the method and then how it is used in this

case.
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5.2.1 Monte-Carlo method

For a given function f(x), with total integral
󰁕 x2

x1
F (x)dx where F (x) = f(x)g(x) (with

g(x) being the relevant Jacobian), we must define Fmax = max {F (x)} for x ∈ [x1, x2].

Then the method proceeds as:

fx = 0

ftest = 1

do while (ftest > fx)

set ran1,ran2

x = x1 + (x2-x1)*ran1

ftest = Fmax*ran2

fx = F(x)

enddo

where ran1 & ran2 are random numbers ∈ [0, 1] which are newly generated at each step

of the loop. Once a value of the function is found to be less than a random fraction of

Fmax, the do loop is exited and the value of x is accepted for this iteration (e.g. for a

particular particle). The likelihood of acceptance is then given by F (x)/Fmax and thus

more particles are placed where F (x) is largest to achieve the desired function f(x). This

method can be extended for the surface density distribution of particles at a given radius

that corresponds to Σ(R), where Md = 2π
󰁕 Rout

Rin
Σ(R)RdR with F (R) = RΣ(R). This is

given as

fx = 0

ftest = 1

do while (ftest > fx)

set ran1,ran2

R = rin + (rout-rin)*ran1
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ftest = Fmax*ran2

fx = R*sigma_func(R)

enddo

where sigma_func(R) returns the value of Σ(R). The particles at x and y positions are

represented by a random angle φ ∈ [0, 2π], thus assigning (x, y) = R(cosφ, sinφ). The z

position is also produced using the Monte-Carlo method given as:

zmin = -3.0*H*sqrt(2)

zmax = -zmin

Fmax = 1

fx = 0

ftest = 1

do while (ftest > fx)

set ran1,ran2

z = zmin + (zmax-zmin)*ran1

ftest = Fmax*ran2

fx = exp(-(z/(sqrt(2)*H))**2)

enddo

where H is calculated at the pre-determined radius R. An initial estimate of the particle

smoothing length is also needed and this can be determined from the particle density

(5.9), where the smoothing length h is given by (e.g. Price, 2012)

h = η

󰀕
mp

ρ

󰀖1/3

, (5.10)

where mp is the mass of each particle and η is the smoothing length in units of the mean

particle spacing (e.g. η = 1.2 with the cubic spline kernel is the default in phantom).

In the case of the power-law and smoothed power-law setups, the values of Σ0 and
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Fmax can be found analytically. However for the steady disc, it is calculated by integrating

the diffusion equation 5.1 in time. The value of Σ0 is evaluated by calculating the surface

density without normalisation and then calculating the disc mass and rescaling it to the

requested value. To calculate Fmax, the computed Σ function is used to create an array

of values for RΣ and find its maximum value.

5.2.2 Setting particle velocities

From the previous section, we now have a set of particles with cartesian positions which

map out the disc’s density profile. Next, we must set the particle velocities appropriate

to the disc properties. For most accretion discs (circular), we have VR = Vz = 0 in the

initial conditions. But, we can calculate Vφ from radial force balance equation given by:

V 2
φ

R
=

1

ρ

∂P

∂R
+

∂Φ

∂R
, (5.11)

where P is the pressure and Φ is the gravitational potential.

5.3 Code

We can briefly describe the working of the disc setup routine in this section, assuming

that appropriate parameters have been set.

1. The first step is to calculate the values of the normalisation constants for the re-

quested sound-speed and surface density power-laws.

2. Next the surface density and mass accretion rate are calculated.

3. We then calculate the derivatives to set up the particle velocities, i.e. dP/dR and

dΦ/dr.
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4. We then set the particle positions and velocities following the methods as outlined

in the previous section.

5.4 Simulation Tests

In this section, we discuss the initial particle distributions and their properties, and

how we test the disc evolution with the SPH code phantom. Firstly, we consider a disc

composed of one million particles with a central gravitating body of unit mass. We impose

an inner boundary at Rin = 1Rg and outer boundary Rout = 10Rg where Rg = GM/c2,

and we assume G = c = 1. We also assume that any mass passing these boundaries is

removed from the simulation. For the simulations which include mass input, we assume

the mass is added at Radd = 7.0. We assume that the gas is not self-gravitating, and

follows a simple locally isothermal equation of state where cs = cs0R
−0.75 where the

constant cs0 is set by choosing H/R = 0.03 at Rin. We also consider a Shakura-Sunyaev

viscosity set at α = 0.3.

5.4.1 Discs with no mass added

Here, we plot examples of the surface density of a disc composed of SPH particles against

radius where we consider the power law, smoothed power law and steady surface density

profiles. Then, evolve these initial conditions to t = 104 with no injection of mass to

examine the stability of the setups. This timescale is ≈ 1600 orbits at Rin, and 50 orbits

at Rout. The viscous timescale in the inner disc is ≈ 3 × 103 and the outer disc ≈ 106.

The bulk of the disc follows the initial conditions for the duration of these simulations.

We expect to see noticeable evolution of the inner disc regions, and on timescales

faster than predicted by the imposed physical viscosity. In the inner disc regions where

the surface density goes to zero, there is little mass and therefore has a smaller resolu-

tion. This means the numerical viscosity becomes large and disc evolves faster than it
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should. We may also see some evolution in the outer parts of the disc in the power-law

and smoothed power-law cases. This is because, the boundary conditions applied in the

simulations do not match with those assumed in the analytical set up. In figure 5.1, we

show the surface density plot (power law setup) for a disc composed of 1 million SPH par-

ticles. Although, the bulk of the disc follows the initial conditions for the duration of the

simulations, there is noticeable evolution in the inner and outer regions. Since this setup

does not take account of boundary conditions, we consider a standard approach to assume

a zero torque inner boundary condition given by the smoothed power law. Therefore, we

study the surface density profiles with smoothed powerlaw setups comprising of 100,000

(as shown in figure 5.2) and 1 million SPH particles (as shown in figure 5.3). In the inner

regions, the surface density evolves faster than it should, which implies an increase in the

numerical viscosity. Therefore, the evolution seen here is predominantly due to numerical

viscosity near the boundaries where the numerical viscosity is larger than the imposed

physical viscosity. At higher resolution, the deviation from the expected surface density

shape is lessened. This is shown in figure 5.4 with a disc composed of 10 million particles.

However, on close inspection of figure 5.4 (as shown in fig 5.5), there are initially some

density waves propagating from the inner boundary which are expected to form due to

the divergence between the numerical simulations and the analytical setup.
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Figure 5.1: The disc surface density profile for a power law case with 1 million particles. There is no mass added and no
boundary conditions included in this case. Here, the surface density profile changes in the inner and outer regions, with
the inner edge evolving more quickly than the outer edge.

Figure 5.2: The disc surface density profile for a smoothed power law case with 100,000 particles with no mass added. A
zero torque inner boundary condition is added. The surface density profile changes in the inner and outer regions, with the
inner edge evolving more quickly than the outer edge. The evolution seen here is predominantly due to numerical viscosity
near the boundaries where the resolution is the poorest and therefore the numerical viscosity is larger than the imposed
physical viscosity.
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Figure 5.3: The disc surface density profile for a disc obeying smoothed power law and composed of 1 million particles
with no mass added. A zero torque inner boundary condition is added. The bulk of the disc follows the initial conditions
for the duration these simulations. There is noticeable evolution in the inner disc regions, resultant of the the numerical
viscosity being larger than the imposed physical viscosity.

Figure 5.4: The surface density profile for a smoothed power law disc setup composed of 10 million particles with no mass
added. In comparison to the simulation with 100,000 or 1 million particles, this simulation is better resolved. There is
noticeable evolution in the inner disc regions, with the bulk of the disc following the initial conditions for the duration
these simulations.
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1

Figure 5.5: This shows how the surface density behaves at the initial time steps in the simulation of a disc with a smoothed
power law setup. The disc is composed of 10 million particles and the figure shows density waves propagating from the
inner edge towards the outer edge of the disc.

Furthermore, we can check if these waves are present in a steady case. Here we apply,
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zero torque conditions at the inner and outer boundaries where the surface density Σ is

zero. The simulations are set at different values of disc thickness for 1 million particles.

Figure 5.6 shows the surface density evolution for a disc of thickness H/R = 0.03 and

α = 0.3 at consecutive time steps. In addition, the same analysis is considered for a

thicker disc at H/R = 0.1 (as shown in figure 5.7). One can distinctly see the waves

propagating towards the outer edge. Moreover, to examine if the waves are removed at

higher resolution we check the same for a disc composed of 10 million particles. Figure

5.8 shows the surface density profile for a disc at H/R = 0.03 and α = 0.3. We also check

the same for discs with 10 million particles at H/R = 0.1 and α = 0.3 as shown in figure

5.9. These surface density profiles at higher resolution also showed the presence of waves,

and it brings us to an important question: how are these waves formed?

The waves are formed because the radial pressure gradient goes to infinity at the

boundaries of the disc since the density at the boundary smoothes to zero. Furthermore,

when studying the surface density profiles of discs using SPH, the particle velocities di-

verge at the boundaries where the surface density goes to zero with the pressure correction

becoming infinite (as shown in equations 5.9 and 5.11). In SPH calculations where the

resolution follows the mass, these boundaries are always under-resolved, leading to an un-

derestimate of the pressure gradients and thus an underestimate of the velocity required

for radial balance. However, this small difference between the analytical equations and

the numerical solution leads to the production of small amplitude waves at the start of the

simulation. For a disc at standard resolution, these waves are damped due to numerical

viscosity at a timescale comparable to the time taken for the waves to traverse the disc.

But, at higher resolution, a longer relaxing phase is required to damp these waves. This

highlights the importance of a method to remove these waves on a timescale independent

of resolution and the level of physical viscosity employed, by using a suitable velocity

damping scheme that tapers to zero over timescale comparable with the disc’s dynamical
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timescale.

1

Figure 5.6: This shows the surface density profile of a steady disc setup with zero-torque boundary conditions added, at
values of α = 0.3, H/R = 0.03 and composed of 1 million particles. It shows the formation of small amplitude waves at
the start of the simulation, resulting from an infinite pressure gradient (or zero surface density) at the boundaries.
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1

Figure 5.7: This shows the surface density profile for a steady disc setup with zero-torque boundary conditions. The
simulation is run for a disc with α = 0.3, H/R = 0.1 and composed of 1 million particles. It shows the formation of
unwanted pressure waves at the start of the simulation. The waves advances quicker in this case, in comparison to a
thinner disc at H/R = 0.03.
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1

Figure 5.8: Here we show the surface density profile against radius for a steady disc at α = 0.3 and H/R = 0.03 for 10
million particles. Even at higher resolution, radial pressure waves are seen at the start of the simulation, due to zero-torque
boundary conditions with Σ set to 0.
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1

Figure 5.9: Here we show the surface density profile against radius for a steady disc at α = 0.3 and H/R = 0.1 for 10
million particles. The radial pressure waves are seen at the start of the simulation, resulting from zero-torque boundary
conditions with Σ = 0 at the boundaries.
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5.5 Damping of pressure waves

To efficiently damp the pressure waves, without affecting the disc structure, we must damp

the correct component of the velocity of the particles. We do not damp vφ as this would

alter the disc orbits. There is no need to damp vz as the disc is in vertical hydrodynamic

equilibrium. However, the unbalanced radial pressure gradient at the boundaries creates

radially propagating waves, so we must damp vR. We find that an appropriate method is

to apply damping at the start time t1 to calm the initial pressure waves, then smoothly

taper it to zero over a time t2 and then continue the relax phase with zero damping for a

time t3. We find that a cosine smoothed tapering function will provide a good choice to

damp the pressure waves in our numerical simulations.

Our aim is to provide an efficient way of correcting the radial pressure waves generated

by inducing a damping acceleration over the shortest damping time scale possible. This

damping time represents the relaxed phase of the disc prior to setting up the disc to

study its viscous evolution. For a disc with inner and outer radii given by Rin and Rout,

the time required for the pressure wave to propagate across the disc is given as:

twave =

Rout󰁝

Rin

dR

vwave
≈ Rout

cs
. (5.12)

Since cs = HΩ, equation (5.12) becomes:

twave =
R

H

1

Ω
. (5.13)

This represents the time taken for the waves to traverse the disc. The aim of our work is to

damp the wave-velocities on a time scale (say tdamp) comparable to the wave propagation

time. The idea is to include a damping factor that damps the wave velocities over a time

(tdamp) which produces a damping acceleration. For an ith particle with radial velocity
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vi, the acceleration is given as

adamp = − 1

twave
vi. (5.14)

In the absence of other effects, this leads to exponential damping as follows:

v̇i = −kvi, (5.15)

dvi
dt

= −kvi. (5.16)

This can be integrated to yield,

vi = v0 exp(−kt) (5.17)

where k is the damping factor that can be added to damp the velocities. The next step

is to choose an ideal value (or a function) for k such that it can smoothly taper the wave

velocities to zero. In our numerical setup, we use a cosine smoothening term f(t) such

that:

f(t) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

1 for 0 < t < tdamp

1

2

󰀕
1 + cos

π(t− tdamp)

tdamp

󰀖
for tdamp < t < 2tdamp

0 for t > 2tdamp

(5.18)

By using this function, we initially calm the initial pressure waves upto a time tdamp,

smoothly reduce it to a value of zero until 2tdamp and continue with zero damping there-

after. In our numerical simulations, we now need to check how the disc behaves with

the damping correction added. It is also very important to make sure that this damping

correction added must be sufficient enough to get rid of the waves over a timescale long

enough to damp the waves upto the outer edge.
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5.5.1 Numerical results

In the numerical study, we assume total damping correction added to be given by:

damp = kdamp f(t) (5.19)

where kdamp is a dimensionless constant that determines the rate at which damping is

added and f(t) is the cosine smoothening term added. As previously mentioned, it is

important to make sure that sufficient damping is added. This is because, the damping

added measures the acceleration (damping acceleration) applied on the radial pressure

waves, i.e.

adamp = damp. Ω(R). VR. êR = kdampf(t). Ω(R). VR. êR (5.20)

where Ω(R) =
󰁳

GM/R3 at G = M = 1, VR is the radial velocity of the particles and

êR is the unit vector in the direction of R. This will make sure that needful amount of

damping is added at every radii. We add this damping over a total time of 2tdamp which

represents the relaxed phase of the disc. We assume that the damping time is of the order

(or a factor) of the dynamical time of the disc at its outer radius (Rout).

tdamp = Adamp tdyn(Rout) (5.21)

where Adamp is a dimensionless constant. Now we need to test using simulations at

different values of kdamp and Adamp, and investigate if we can effectively damp the waves

in the disc, thus achieving the relaxed phase of the disc. Thereafter, we set the disc in

the post-relax phase for its viscous evolution.

Figure 5.10 shows the simulation of a disc comprising of 1 million SPH particles at

H/R = 0.03 and α = 0.3. Here, damping is added with values of kdamp = 0.3 and Adamp =

6.28. We compare the surface density profiles of the disc with and without the damping
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correction. The surface density at the post-relaxed (or damped) phase of a disc looks

more evolved than for a disc with no damping added. Also, we can carry out the same

comparison for a disc at H/R = 0.1 (as shown in figure 5.11). In this case, the damped

disc setup shows an evident decrease in the surface density since ν = αcsH and therefore

the disc evolves quicker on the damping timescale for a thicker disc.

Figure 1: (Color online) xxxxx

1

Figure 5.10: Here we show the surface density profile against radius for a steady disc setup with zero-torque boundary
conditions at α = 0.3 and H/R = 0.03 for 1 million particles. The damping correction is added at kdamp = 0.3 and for
a damping time determined by Adamp = 6.28. The black line shows the profile with no damping added (with the waves
present) and the red line is the surface density profile after adding the damping correction.
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Figure 1: (Color online) xxxxx

1

Figure 5.11: Here we show the surface density profile against radius for a steady disc setup with zero-torque boundary
conditions at α = 0.3 and H/R = 0.1 for 1 million particles. The black line is the profile with no damping added and the
red line with damping added. After allowing it to relax for a time tdamp, we clearly see a considerable evolution for the
disc with damping added (thick discs evolve quicker).

In addition, we extend and carry out the comparisons for discs composed of 10 million

particles with and without damping added. Figures 5.12 and 5.13 show the surface density

profiles of discs at a value of α = 0.3 and H/R at 0.03 and 0.1 respectively. Much thinner
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discs can also be simulated efficiently at higher resolution and therefore we use a 10

million disc setup to study damping in a thin disc at H/R = 0.01 (as shown in fig 5.14).

These results prove that the waves can be effectively damped (at kdamp = 0.3 and Adamp =

6.28) for thinner discs (upto H/R = 0.01) by relaxing the disc at a timescale comparable

to its dynamical time at the outer edge1.

Moreover, we can also do disc simulations at different viscosity values. For a given

thickness of the disc, we can see how the disc evolves at different α values. Consider, a

disc with H/R = 0.03 and α values of 0.1 and 0.3 respectively. We expect the disc at a

higher α to evolve quicker, and is demonstrated by figure 5.15 for a disc with H/R =

0.03. We can repeat the same for a thicker disc at H/R = 0.1 as shown in figure 5.16.

In our analysis, we tested simulations at values of kdamp between 0.1 and 3, and Adamp

varying between 3 and 10. From table 5.1, we can conclude that Adamp = 6.28 is a suitable

choice for tdamp which is long enough to damp the waves present in the disc-simulations

used in our analysis. Furthermore, we also check how effectively this value of tdamp can

be used in discs at different damping rates (kdamp) from a smaller value of 0.1 to higher

values at 1 and 3. It was found that 0.1 is too small to effectively damp the waves.

Moreover, values of kdamp at 1 and 3 damp the waves to a large extent that changes the

shape of the density profile. But a value of 0.3 for kdamp at tdamp = 6.28 is found to work

efficiently as discussed from our results.

1For much thinner discs with H/R ∼ 10−3, the disc needs to be damped over a longer period, i.e. at
a higher value of Adamp
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1

Figure 5.12: This shows the comparison between the surface density profiles against radius for a steady disc setup at
α = 0.3 and H/R = 0.03 for 10 million particles, with (red line) and without (black line) the damping correction.
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1

Figure 5.13: This shows the comparison between the surface density profiles against radius for a steady disc setup at
α = 0.3 and H/R = 0.1 for 10 million particles, with and without the damping correction. As mentioned before, the disc
with the damping added (red line) over time tdamp is found to evolve quicker.
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Figure 1: (Color online) xxxxx

1

Figure 5.14: Comparison of disc profiles for a steady disc setup at α = 0.3 and H/R = 0.01 for 10 million particles is
shown. The profile in black line shows the presence of waves but the disc profile with damping correction added (red line)
shows that the radial pressure waves can be eliminated even for thinner discs at an effective value of kdamp and tdamp,
long enough to damp the waves upto the outer edge of the disc.

201



5. ACCRETION DISCS IN SPH

1

Figure 5.15: Surface density profiles are studied for discs composed of 1 million particles, at different viscosities. This
shows the comparison of surface density profiles with damping added for a disc with H/R = 0.03 at values of α = 0.1 and
0.3 respectively. As expected, the disc with α = 0.3 (black line) has a shorter viscous time in comparison to the disc with
α = 0.1 (red line).
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1

Figure 5.16: Surface density profiles are studied for a disc composed of 1 million particles, with H/R = 0.1 at different
viscosities. This shows the comparison of surface density profiles with damping added for a disc at values of α = 0.1 and
0.3 respectively. As expected, the disc with α = 0.3 (black line) has a shorter viscous time in comparison to the disc with
α = 0.1 (red line).
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Simulation tests
kdamp Adamp H/R α Damping
0.1 3 0.03 0.3 ×
0.1 3 0.1 0.3 ×
0.1 6.28 0.03 0.3 ×
0.1 6.28 0.1 0.3 ×
0.3 2 0.03 0.3 ×
0.3 2 0.1 0.3 ×
0.3 3 0.03 0.3 󰃀
0.3 3 0.03 0.1 󰃀
0.3 3 0.1 0.3 󰃀
0.3 3 0.1 0.1 󰃀
0.3 5 0.01 0.3 ×
0.3 5 0.03 0.3 󰃀
0.3 5 0.03 0.1 󰃀
0.3 5 0.1 0.3 󰃀
0.3 5 0.1 0.1 󰃀
0.3 6.28 0.01 0.3 󰃀
0.3 6.28 0.01 0.1 󰃀
0.3 6.28 0.03 0.3 󰃀
0.3 6.28 0.03 0.1 󰃀
0.3 6.28 0.1 0.3 󰃀
0.3 6.28 0.1 0.1 󰃀
0.3 7 0.01 0.3 󰃀
0.3 7 0.03 0.3 󰃀
0.3 7 0.03 0.1 󰃀
0.3 7 0.1 0.3 󰃀
0.3 7 0.1 0.1 󰃀
0.3 10 0.01 0.3 󰃀
0.3 10 0.03 0.3 󰃀
0.3 10 0.03 0.1 󰃀
0.3 10 0.1 0.3 󰃀
0.3 10 0.1 0.1 󰃀
1.0 6.28 0.03 0.3 ×
1.0 6.28 0.1 0.3 ×
3.0 6.28 0.03 0.3 ×
3.0 6.28 0.1 0.3 ×

Table 5.1: Table showing the values of kdamp, Adamp, α and H/R used, in the simulations to examine the damping of
waves in discs. The last column shows if the effective damping of waves can or cannot be established for the values of
kdamp and Adamp used.

5.5.2 Disc with mass added

From figures 5.11 and 5.13 (also fig. 5.16), we notice that when damping correction is

added in thicker discs, there is a significant disc evolution in the relaxed phase. The
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figures show a considerable decrease in the value of surface density in the post relaxed

phase. This set up can be further modelled to study the long term evolution of such discs

at higher resolution. One way to resolve this is, by injecting mass in the disc at radius

Radd. Therefore, we check how the disc’s surface density looks like in a post relaxed

phase with mass input continuously added over time. Figure 5.17 shows the surface

density profiles of a disc composed of 1 million particles at values of α = 0.3 and H/R =

0.1, without any damping as well as with damping correction added (with and without a

mass input).

As shown in figure 5.17, the surface density profile with no mass and no damping

added (black line) shows waves propagating through the disc and it evolves quickly over

time. The surface density denoted by the red line shows the disc in the post-relaxed

phase with no mass added, but with damping correction included. Although, it shows

no waves, there is a significant evolution observed in the disc. The surface density of the

disc (the green line) represents the post relaxed phase with damping correction as well as

mass added at Radd. This setup retains the surface density profile as expected from the

initial conditions, since mass is continuously added over time. Thus it can be concluded

that, the post relaxed disc simulations with an injection of mass can effectively be used

to study the long term viscous evolution of accretion discs.
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1

Figure 5.17: The black line shows the surface density profile without any damping added and no mass added for a disc
comprising of 1 million SPH particles at H/R = 0.1 and α = 0.3. The red line shows the evolution of density for a disc
with damping added with no mass added. The surface density profile with mass added over time is depicted in green. Over
time, we see the profiles depicted in black and red change over time, but for a disc with mass added the disc retains its
initial surface density profile throughout the simulation.
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5.6 Discussions and Conclusions

As shown in figure 5.17, we examined the three cases on how the surface density profiles

change for a disc with α = 0.3 and H/R = 0.1: a disc with neither damping nor mass

added, a disc with damping added but no mass added and a disc with both damping and

mass added. We further check the disc’s column density plots in these three cases, at a

time step, say t = 100 ∼ 16 orbits at Rin as shown in figure 5.18. The corresponding

surface density profiles for the three cases at t = 100 ∼ 16 orbits at Rin is shown in figure

5.19.

(a) (b)

(c) (d)

1

Figure 5.18: Shows how the column density profiles for a disc with α = 0.3 and H/R = 0.1, at different scenarios: (a) a
disc with neither damping nor mass added, (b) a disc with damping added but no mass added at t = 0 (c) a disc with
damping added but no mass added at t = 100 and (d) a disc with both damping and mass input added at t = 100.
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Figure 5.19: Shows how the surface density profiles for a disc with and without mass added at timestep t = 100 ∼ 16 orbits
at Rin.

In figure 5.18:

• (a) shows how the undamped setup of the disc at t = 100 ∼ 16 orbits at Rin. As

expected we can see the presence of a wave or the ring like feature. In figure 5.19

for an undamped profile (the black line), we see the trough of the wave at R ≈ 5.

Thus, the density profile clearly traces out the presence of the wave.

• (b) represents the beginning of the post relaxed phase of the disc, i.e. at t = 0 for

a disc with damping added. This is how the particle density of the disc looks like

after relaxing it over a damping time, tdamp. There is no mass added in this disc,

therefore we expect a viscous evolution of density over this damping timescale. But

as shown, this phase of the disc is devoid of any pressure waves.

• (c) represents how the disc, after damping looks like at t = 100 (also shown by the

red line in figure 5.19). The disc at this time looks more evolved in comparison to

figure (b) for a disc at t = 0. For a disc with H/R = 0.1, it evolves quicker with a

considerable decrease in surface density as shown.
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• (d) represents the post relaxed phase of the disc at t = 100 with mass added over

time at Radd = 7 (analogous to the green line in figure 5.19). The advantage of

this analysis is that, not only we retain the initial shape of the disc as mass is

continuously added over time but also damp any unwanted pressure waves with the

damping correction added.

In summary, we have outlined the methodology to create discs of SPH particles for

numerical simulations. We have provided a method for injecting particles into the disc to

mimic a larger disc and run the simulation to achieve a steady state at which more detailed

dynamical calculations can be done. We show that when sufficiently high resolution is

employed, SPH accurately models the expected disc evolution and when appropriate

boundary conditions are taken into account, the surface density behaves as expected. We

showed how the divergence in the initial conditions between the numerical and analytical

setups of discs can be resolved by including a damping correction. This numerical analysis

is a generic case, which can be further extended to a wide range of astrophysical systems

from the large scales of accretion discs around supermassive black holes (SMBHs) down

to the small scales of planet forming discs.
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Conclusions & Future work

In this thesis, the main research circles around the complex behaviour of accretion discs

around supermassive black holes. Using 3D hydrodynamical simulations, we examine how

these discs become unstable and tear into many distinct rings. Here, I give a summary

of the main conclusions from each chapter in this thesis.

6.1 Instability of warped discs

In chapter 2, we explored the instability of diffusive and Keplerian warped discs with no

precession added. Using the analysis of Doǧan et al. (2018), we assume that each disc

has a critical warp amplitude value dependent on the viscosity parameter α, to become

unstable and break. We conduct a parameter sweep which utilises a warped disc model

similar to the model used in Lodato & Pringle (2007), and test the criterion for discs to

form instabilities and break.

In our study, we consider warped discs at different values of α (0.1− 0.3) and H/R =

0.03, at different inclinations. The instability criterion is investigated in each case, by

calculating the warp amplitude of the disc that is compared to the critical value |ψ|c,

dependent on the disc’s α parameter. We conclude that the disc becomes unstable and

break at small α values and at higher inclinations. The variation in surface density of the

disc is consistent with the change in the disc’s warp amplitude with values of |ψ| > |ψ|c,
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where the disc becomes unstable and breaks. However, in warped discs at higher α values,

the disc remains stable and doesn’t break as the values of |ψ| << |ψ|c, thus proving that

it is difficult for instabilities to form in these discs.

6.2 A parameter study of disc tearing

In chapter 3, we test the disc tearing criterion in precessing discs around supermas-

sive black holes warped due to LT effect using numerical simulations. We conduct the

numerical analysis of diffusive discs (α > H/R) at different values of α (0.05 − 0.1),

H/R (0.01 − 0.03) and initially inclined at different tilts. The criterion of disc tearing

derived from Doǧan et al. (2018) is tested in each disc by examining if the warp amplitude

of the disc exceeds its critical value or not. From the 3D simulations and the correspond-

ing surface density, tilt and twist plots of the disc, we observe the possibility of tearing

in these discs at higher inclinations. The warp amplitude of the disc is calculated and

it shows an agreement with the expected results, i.e. |ψ| > |ψc| at the exact points on

the disc where it tears to form distinct rings. We also prove from our numerical analysis

that the critical warp amplitude at which a disc becomes unstable is dependent on the

value of α, i.e. the value of |ψ|c| is smaller for smaller values of α and our analysis also

presents a higher growth rate of instabilities at low α values. Hence, our results are found

in agreement with the theoretical prediction by Doǧan et al. (2018).

Furthermore, the maximum value of warp amplitude (|ψ|max) for the instabilities to

grow in a disc at tilt β is also studied. Our results show that discs which are thin and

highly tilted become unstable, as their maximum warp amplitude is higher than the

critical warp amplitude required for instability. However, discs which are thick and close

to alignment has a maximum warp amplitude value less than the critical warp amplitude

for instabilities to occur.
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6.3 Implications of tearing in AGN discs

In chapter 4, we discuss two observational studies which examine the extreme variability

in the luminosities of the disc in the UV/optical wavelengths and the slope of temperature-

radii profiles in the disc of a changing look AGN, namely NGC 5548. We also review

how numerical models of accretion discs can be used to explain the deviation of the

observational results from the theoretical predictions of a standard α disc model.

The study by Edelson et al. (2015) explains the variability in the UV/optical wave-

lengths observed over a period of few months for NGC 5548. In addition, the analysis

of Starkey et al. (2017) calculates a steeper slope at α = 0.99 in the temperature-radius

profile of NGC 5548, contrary to the value for a steady disc predicted by theory where

α = 0.75. These studies also highlight how theoretical and numerical models of evolving

accretion discs can explain their anomalous behaviour and yield a better understanding

of their complex dynamics. We have suggested that the large amplitude, short timescale

variability exhibited by AGN may be explained by the possibility of the disc tearing

instability in warped accretion discs (Nixon et al. (2012a); Doǧan et al. (2018), or refer

chapter 3), which plays an important role in producing variable accretion flows around

black holes. As mentioned earlier in chapters 2 and 3, we presented the numerical sim-

ulations of disc tearing instability in warped discs and their resulting dynamics. In this

chapter, we discussed the implications of this dynamics for accretion on to black holes,

with particular focus on the variability of Active Galactic Nuclei (AGN). We examined

the timescales on which variability might manifest in the observable features of these

systems, and the impact of the observer orientation with respect to the black hole spin.

In addition, we investigated the variations in the accretion rate on to supermassive black

holes which are induced by the tearing instability in warped discs. These variations affect

the rate of generation of energy from the accretion flow, especially in the inner regions of
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the disc. As future work, we aim to examine if our numerical models show similarity with

the recent quasi periodic eruptions observed in GSN 069 and in the galactic nucleus of

RX J1301.9+2747 or the eruptions (or heartbeat modes) observed in some X-ray binaries.

6.4 Accretion discs in SPH

In chapter 5, we discuss the numerical methodology of creating discs composed of SPH

particles. The zero torque boundary conditions applied in the setting up of discs of SPH

particles cause the particle velocities to diverge at the boundaries. This lack of equilib-

rium in the initial conditions of the disc forms radial pressure waves in the surface density

profiles of these discs. We find that in cases of discs at higher resolution with 10 million

particles, the numerical viscosity is not capable of damping these waves at a timescale

comparable to the time for these waves to propagate through the disc. Thus, we propose

a method which employs an initial relaxing phase to damp these waves using damp-

ing correction that tapers to zero over timescale comparable with the disc’s dynamical

timescale.

Our results show, how a sufficient damping correction can be used to get rid of the

unwanted radial pressure waves over a timescale, long enough to damp these waves and

achieve the relaxed phase of the disc. This damping correction sets the disc to continue

with zero damping in the post relaxed phase where we can effectively model the long

term viscous evolution of the disc.

6.5 Future work

• The analytical work on disc tearing has made use of the assumption that the viscos-

ity is a form of the Navier-Stokes fluid viscosity. Pringle (1992) remarks that this

may not be a case for viscosity driven by magnetic effects. In particular, Pringle
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(1992) notes that while ν1 that corresponds to (R,φ) shear is secular, the (R, z)

shear that corresponds to ν2 is oscillatory. Therefore, it is important to compare

numerical simulations that employ a Navier-Stokes viscosity with the simulations

that model MRI driven turbulence explicitly. Such a comparison was performed by

Nealon et al. (2016) who found good agreement between the two methods in mod-

elling warped discs. Recently, Liska et al. (2020) have argued that magnetic fields

alter the properties of disc tearing when strong magnetic fields are included. In the

future, it would be useful to directly compare using the sane numerical method and

the same numerical parameters, the differences created between a Navier-Stokes

and a magnetic viscosity.

• The numerical analysis to test disc tearing in accretion discs around SMBHs, warped

due to Lense-Thirring precession can be extended to larger discs at higher values of

the outer radius Rout (Raj et al. (2020) in prep). We can examine the stability of

these discs (assuming the discs are Keplerian with the rate of orbital shear q = 1.5)

by studying how the warp amplitude changes in the SPH simulations, similar to

the study explained in chapter 3. The criterion of each disc is tested by assuming

that the disc remains stable until |ψ| > |ψ|c (Doǧan et al., 2018).

• Recently, the instabilitiy criterion for discs (at 1.5 < q < 2) to become unstable is

derived in Doğan & Nixon (2020). The criterion for instabilities to occur in non-

Keplerian discs at different values of the orbital shear parameter q, is investigated

in the diffusive case where α > H/R. The critical warp amplitudes for instabil-

ities to occur are demonstrated at α = 0.01, 0.03 and 0.1 for discs at various q

values. I would like to test this instability criterion in non-Keplerian discs using

SPH simulations.
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APPENDIX A

Steady disc surface density

Following Frank et al. (2002), we use mass conservation and angular momentum conser-

vation for a steady state disc. The mass conservation equation is given as:

R
∂Σ

∂t
+

∂

∂R
(RΣVR) = 0 . (A.1)

where the radial velocity,

VR = − 3

ΣR1/2

∂

∂R
(νΣR1/2). (A.2)

Using the steady-state assumption (∂/∂t = 0) in equation A.1 gives

∂

∂R
(RΣVR) = 0 =⇒ RΣVR = const. (A.3)

Dimensionally this constant is a mass flow rate, and we can define the mass accretion

rate through the disc as

2πRΣ (−VR) = Ṁ , (A.4)

As the disc is time steady, Ṁ must be a constant with radius and time. The angular

momentum conservation equation is

R
∂

∂t

󰀃
ΣR2Ω

󰀄
+

∂

∂R

󰀃
RΣVRR

2Ω
󰀄
=

1

2π

∂G

∂R
(A.5)
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where

G = 2πRνΣR2Ω′ . (A.6)

Using a steady state assumption gives

RΣVRR
2Ω =

G

2π
+

C

2π
, (A.7)

where C is a constant. Rearranging gives

−νΣΩ′ = Σ (−VR)Ω+
C

2πR3
. (A.8)

To evaluate the constant C, we must apply a boundary condition at Rin. For black hole

accretion, matter typically accretes at Rin and plunges dynamically into the hole (see

Appendix B), and thus the torque is zero (i.e. Ω′ = 0). This gives

2πRΣ (−VR)R
2Ω+ C = 0 =⇒ C = −ṀR2

inΩin. (A.9)

where we have used (A.4) to replace VR. Putting this into (A.8) and rearranging gives

νΣ =
Ṁ

2π

[R2
inΩin/R

2Ω− 1]

R (Ω′/Ω)
, (A.10)

and

νΣ =
Ṁin

2π

[R2
inΩin/R

2Ω− 1]

R (Ω′/Ω)
for R < Radd . (A.11)

This provides the solution for Σ inside the radius at which mass is added in the disc, at

a radius Radd. For R > Radd, we must use a different boundary condition. We can apply

the zero-torque outer boundary condition at Rout and we define Ṁout = 2πRΣVR (in this

part of the disc, mass is flowing outwards). Zero-torque at Rout gives

−ΣVRΩ+
C

2πR3
= 0 =⇒ C = ṀoutR

2
outΩout . (A.12)
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Therefore,

νΣ =
Ṁout

2π

[1−R2
outΩout/R

2Ω]

R (Ω′/Ω)
for R > Radd . (A.13)

We require Σ(R) to be continuous at Radd, and we use the fact that the total mass added

must equal the mass leaving the two boundaries, i.e.

Ṁadd = Ṁin + Ṁout . (A.14)

Continuity at Radd implies

Ṁin

2π

󰀅
R2

inΩin/R
2
addΩadd − 1

󰀆
=

Ṁout

2π

󰀅
1−R2

outΩout/R
2
addΩadd

󰀆
. (A.15)

This implies

f =
Ṁin

Ṁout

=
R2

addΩadd −R2
outΩout

R2
inΩin −R2

addΩadd

, (A.16)

and this can be combined with (A.14) to give

Ṁout =
Ṁadd

1 + f
& Ṁin =

fṀadd

1 + f
. (A.17)

Therefore, the final disc structure is given by

νΣ =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

fṀadd

2π(1 + f)

[R2
inΩin/R

2Ω− 1]

R (Ω′/Ω)
for R ≤ Radd

Ṁadd

2π(1 + f)

[1−R2
outΩout/R

2Ω]

R (Ω′/Ω)
for R > Radd
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Innermost Stable Circular Orbit

The innermost stable circular orbit or ISCO is a key concept considered when studying

circular orbits around black holes. Consider a blob of gas or matter at a large radii in an

accretion disk spiralling in through a sequence of circular orbits as it viscously loses its

angular momentum. When the gas reaches the ISCO, no more stable circular orbits are

available and the gas free falls into the black hole. Therefore, the ISCO serves effectively

as the inner edge of the accretion disc.

1 Paczynski-Wiita Potential

Paczynski realized that a properly chosen gravitational potential is needed to accurately

model the general relativistic effects that determine motion of matter near black holes.

Therefore, the Paczynski-Wiita potential was proven to be a practical choice (Paczyńsky

& Wiita, 1980), used by numerous researchers in the black hole accretion theory. The

energy equation for a test particle orbiting a point mass is given as

E =
v2

2
+ Φ (B.1)
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where E is the total energy, v2

2
and Φ represent the kinetic and potential energies. Using

cylindrical polars (R, θ) we have

v2 = ṙ2 + r2θ̇2 (B.2)

with specific angular momentum h given as

h = r2θ̇. (B.3)

We have

h2

r2
=

r4θ̇2

r2
= r2θ̇2. (B.4)

Hence,

v2

2
=

ṙ2

2
+

h2

2r2
. (B.5)

where ṙ = 0 for a circular orbit. Therefore,

v2

2
=

h2

2r2
. (B.6)

Thus, equation (B.1) for a circular orbit becomes,

E =
h2

2r2
+ Φ. (B.7)

Furthermore, the equation for the Paczynski-Wiita potential is given as:

ΦPW = − GM

r −Rs

(B.8)

where Rs is the Schwarzschild radius,

Rs =
2GM

c2
. (B.9)
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Energy equation for the Paczynski-Wiita potential is given by

E =
h2

2r2
+ ΦPW . (B.10)

Substituting equation (B.8) in equation (B.10) gives

E =
h2

2r2
− GM

r −Rs

. (B.11)

For a circular orbit, the total energy is a constant and ṙ = 0. We have E = Veff and

therefore dVeff

dr
= 0. Thus,

Veff =
h2

2r2
− GM

r −Rs

(B.12)

and

dVeff

dr
= −h2

r3
+

GM

(r −Rs)2
= 0, (B.13)

h2

r3
=

GM

(r −Rs)2
. (B.14)

Therefore,

h2 =
GMr3

(r −Rs)2
(B.15)

where h is the specific angular momentum of a point mass particle at Paczynski-Wiita

potential. To check if the Paczynski-Wiita potential has a point of local minima and

calculate its location of the innermost stable orbit, we perform the second derivative test.

If the first derivative of the effective potential is zero at a certain point, then we have

a circular orbit there. Its second derivative at the same point determines if the orbit is

stable or unstable via

• < 0 : This gives the local maximum value where the orbit is unstable.

• > 0 : This is local minimum value where the orbit is stable.
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Therefore, the second derivative of equation (B.12) is given by

d2Veff

dr2
=

3h2

r4
− 2GM

(r −Rs)3
. (B.16)

Substituting equation (B.15) in equation (B.16) gives

d2Veff

dr2
=

3GM

r(r −Rs)2
− 2GM

(r −Rs)3
, (B.17)

d2Veff

dr2
=

3GMr − 3GMRs − 2GMr

(r −Rs)3
=

GMr − 3GMRs

(r −Rs)3
. (B.18)

We do the second derivative test (where d2Veff

dr2
≥ 0), which gives

GM(r − 3Rs)

(r −Rs)3
≥ 0 (B.19)

and

r ≥ 3Rs. (B.20)

The radius of the innermost stable orbit for Paczynski-Wiita is therefore, RISCO = 3Rs =

6GM/c2 same as that of a Schwarzschild black hole. This conveys that stable orbits exist

at values ≥ 3Rs and orbits are unstable at values of r < 3 Rs.

2 Einstein Potential

Einstein potential ΦE is given as:

ΦE =
−GM

r

󰀕
1 +

3Rg

r

󰀖
(B.21)

where Rg is the gravitational radius. Energy equation in this case is given by:

E =
h2

2r2
+ ΦE, (B.22)
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Since E = Veff and dVeff

dr
= 0, we have

Veff =
h2

2r2
− GM

r
− 3GMRg

r2
(B.23)

and the first derivative gives

dVeff

dr
= −h2

r3
+

GM

r2
+

6GMRg

r3
= 0, (B.24)

1

r3

󰀕
6GMRg − h2

󰀖
= −GM

r2
, (B.25)

6GMRg − h2 = −GMr. (B.26)

Hence,

r =
h2

GM
− 6Rg. (B.27)

This proves that for Einstein potential, circular orbits are possible at any radius. In order

to determine if the orbits are stable or not, we consider the second derivative test. Our

aim is now to check, if the second derivative of the effective potential with respect to the

radius is less than or greater than zero at a value with

h2 = 6GMRg +GMr. (B.28)

The second derivative of equation B.23 gives,

d2Veff

dr2
=

3h2

r4
− 2GM

r3
− 18GMRg

r4
. (B.29)

Substituting equation B.28 in B.29 gives

d2Veff

dr2
=

3(6GMRg +GMr)

r4
− 2GM

r3
− 18GMRg

r4
. (B.30)
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This becomes,

d2Veff

dr2
=

18GMRg

r4
+

3GMr

r4
− 2GM

r3
− 18GMRg

r4
. (B.31)

Therefore,

d2Veff

dr2
=

GM

r3
> 0 (B.32)

which is therefore the local minimum value. This concludes that, stable circular orbits

are possible in the Einstein potential for any value of radius. As discussed in chapter 3,

the Einstein potential is useful as it provides a good description of the apsidal precession

rate for a disc around a black hole (Nelson & Papaloizou, 2000). However, a drawback

of the Einstein potential is that it cannot produce ISCO.
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