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Abstract 

This thesis seeks to add to the study of the relationship between land surface temperature 

(LST) and urban land cover by presenting a method to project Landsat LST data from the 

satellite overpass time (9:40 am) to a local peak of temperature (estimated to be around 1:15 

pm locally), to investigate the impact of the time of image acquisition on modelling the 

spatial and temporal variations of LST. Additionally, it would also verify the effects of 

extreme temperature to reach more representative seasonal images.  

The study uses remote sensing data extracted from Landsat 5 and 8 (30 m resolution) and the 

Spinning Enhanced Visible and Infrared Imager LST products (SEVIRI 3 km resolution), in 

addition to LST-based measurements collected from the ground. The study presented a 

method to convert Landsat images to be estimated during local peaks in LST with an 

accuracy of: standard error of 1.7°C and an R of 0.82 in comparison with actual ground-based 

measurements. This allowed an investigation of the effects of time of day on the spatial and 

temporal variation of LST, where it was found that this factor has clearly affected the 

relationship between LST and urban land cover. Similarly, the time of day has caused 

differences in estimating LST change over several years. It is also found that the extreme 

values of temperature can affect the trend of LST temporal variation, and which can be 

minimized by using the images in the form of the average of seasonal images for each year 

rather than images being used in a standalone manner. This study contributes to the improved 

study of LST by minimizing the uncertainty that can occur because of the angle of the sun 

and associated factors such as shadows, which has long been a controversial issue among 

researches due to the lack of appropriate satellite data.    
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This part of the research presents an overview of the existing knowledge of land surface 

temperature (LST) to provide readers with a reasonable background about the topic and set its 

importance in context. This begins with definition of the scientific area under study, the 

rationale for studying LST, earth surface heat budget, the relationship between the angle of 

solar radiation and LST, the impact of a changing LST on the environment, remote sensing 

and LST measurement and, finally, a description of the thesis structure.  

 Definition of Land Surface Temperature (LST) 

The study of land surface temperature has become one of the contemporary environmental 

issues that has experienced a recent, and considerable, increase in scientific interest. In recent 

decades, many cities around the world have witnessed rapid developmental transitions, 

especially cities in developing countries, which have recently begun to achieve urban growth 

rates that are several times greater than those of cities of developed countries (López et al., 

2001). Changes in land use, especially in urban areas, have contributed significantly to 

subsequent changes in the original characteristics of local environments, perhaps one of the 

most important of which is the increase in land surface temperature (LST) (Deng and Wu, 

2013). Remote sensing can quantify the average surface temperature of the image pixel that, 

for succinctness, can be referred to as the land surface temperature (LST). LST has been 

described as being at least partially responsible for regulating the air temperature in the lower 

layer of the atmosphere, and it is the main factor in defining surface radiation and the weather 

(Weng, 2009). The LST is an important indicator that allows one to understand and interpret 

various other issues associated with environmental degradation, with some scholars 

accordingly describing it as the ‘earth’s skin temperature’ (Weng et al., 2014). Other studies 

describe LST in cities as an ‘artificial temperature’ due to the impact of human activities that 

result in artificially induced increases in LST (Chakraborty et al., 2015). Land surface 

temperature LST has been shown to be useful for agricultural applications, such as estimating 

the extent of frost damage in orange groves, and has become a key variable in monitoring the 

intensity and spread of UHIs (Peng et al., 2012). The sensitivity of LST to soil moisture and 

vegetation has been used as a sensitive means of detecting land cover changes, such as the 

tendency towards desertification (Sobrino and Raissouni, 2000). LST is applied to a number 

of ice-related studies such as mapping snow and its melt rate and the depth to which 

permafrost is thawing (Westermann et al., 2011). Additionally, the long-term climatology of 

accurate LST products could be used as an identifier of climate trends, as has been done with 

sea surface temperature (SST) climatologies (Veal et al., 2013). 
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Over land, LST is the primary driver of radiative heat loss into the atmosphere and the rate of 

evaporation, such that the LST-air temperature relationship plays a highly significant role in 

atmospheric convection currents (Bastiaanssen, et al., 1998). Furthermore, LST itself is 

heavily dependent on the absorption of incident energy by the surface and the rate at which 

that surface subsequently dissipates energy (Liang, et al., 1999). Therefore, precise 

observations of LST are required for a number of earth-system applications such as 

Numerical Weather Prediction (NWP), long-term climate models, and 

ecological/hydrological models (Ghent et al., 2011).  

 The Impact of Increase in Urban LST. 

Due to a lack of proper planning in land use for sustainable development, rapid population 

growth has been a major cause of problems related to the ecosystem, especially with regard to 

LST and ambient air temperature. 

 Increased Energy Consumption 

An increase in LST can result in serious negative environmental impacts, not only on urban 

environments but also on the ecosystem in a given area (Arrau and Pena, 2010), as it is 

known that higher summertime temperatures in cities often result in the need for increased 

energy consumption due to a higher demand for air conditioning. This, in turn, often requires 

increased use of fossil fuel-powered plants, increasing emissions of greenhouse gases such as 

carbon dioxide (CO2) into the atmosphere. In addition, urban electricity demands are known 

to be rising (Santana, 2007; EPA, 2009). 

 Air Quality 

The increase in energy demand associated with elevated summer temperatures also often 

results in higher levels of air pollution as fossil fuel-powered plants (which currently provide 

about 66% of global electricity) emit nitrogen oxides (NOx), mercury (Hg), carbon monoxide 

(CO), sulphur dioxide (SO2), and particulate matter (PM) into the atmosphere. These 

pollutants are known to have a detrimental effect on air quality, contributing to acid rain and 

as well as global warming  (EPA, 2009a; WWF, 2010). 

 Human Health 

Since UHIs tend to exacerbate the impact of heat waves, heat-related fatalities are another 

consequence of increased urban temperatures. High night-time temperatures during heat 

waves are associated with increased mortality, even more so than high daytime temperatures 
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since there is no break from the heat, giving people no significant relief at any time 

(Kalkstein, 1991). In addition to heat-related mortality, increased urban temperatures may 

also contribute to heat cramps, exhaustion, non-fatal heat stroke, and general discomfort 

(EPA, 2009). 

Urbanisation is considered one of the key reasons for the relative difference in the 

temperature of cities compared to their surrounding areas in LST, the so-called urban heat 

island (UHI) phenomenon (Weng and Fu, 2014). There are different categories of UHIs, 

which are as follows.  

 Surface Urban Heat Island (SUHI):  

A SUHI is defined by the higher temperatures of urban surfaces compared to their (rural) 

surrounding surfaces. Studies of SUHI generally use LST images that are obtained from 

airborne and satellite thermal infrared remote sensing (Srivanit and Hokao, 2012). In contrast 

with Atmospheric Urban Heat Islands (AUHIs), SUHIs are at their greatest during the day 

when solar inputs are at their greatest, and lowest at night when long-wave losses occur (Roth 

et al, 1989). As a result of the variation in the sun’s intensity, land cover and weather, the 

intensity of SUHIs changes with the seasons and is typically, and somewhat unsurprisingly, 

greatest in the summer (EPA, 2009) 

 Canopy Layer Urban Heat Island (CLUHI): 

A CLUHI is defined by the higher the air temperature of the urban canopy layer compared to 

its (rural) surroundings. CLUHI refers to the air near the surface, which expands to 

approximately the height of buildings (Voogt, 2004). Patterns of air temperature inside the 

city are strongly correlated with the latter’s development (Roth et al., 1989). 

 Boundary Layer Urban Heat Island (BLUHI): 

A BLUHI is defined by a higher air temperature of the urban boundary layer compared to its 

(rural) surroundings. This is another type of AUHI and is located above the CLUHI. During 

the day, its thickness can reach 1 km or more, while it shrinks to only 100 m or less during 

the night (Voogt, 2004). This type of UHI is potentially more visible at night. It can be measured 

and observed using specific remote sensing platforms such as long towers, radiosonde, balloons, 

and aircraft (Voogt and Oke, 2003). 
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 Surface Urban Cool Island (SUCI):  

In some cases, and perhaps somewhat counterintuitively, LST tends to be lower in cites than 

their surroundings due to the presence of a dry desert environment, which can make urban 

areas somewhat cool relative to their surroundings; indeed, the same applies when comparing 

the LST for a body of water to its surroundings, such as oases in desert areas (Rasul et al., 

2015) 

 Earth Surface Heat Budget  

The exchange of heat energy with the earth is important to our understanding of its short-term 

effects on weather and climate (NASA, 2009). The sun provides virtually all of the energy 

received by the earth, where it drives biophysical and geophysical processes such as 

photosynthesis, evaporation and heat exchange between the earth’s surface and the 

atmosphere. This exchange of energy is widely known as the surface energy balance (Figure 

1-1).  

Figure 1-1: The earth’s heat budget and how incident energy is processed by the earth’s 

surface (Trenberth et al., 2009).  

Atmosphere limit 
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In general, approximately 48% of the shortwave energy incoming from space passes through 

the atmosphere to reach the earth’s surface as incident energy. When this radiant energy is 

incident on some given body (or bodies), then three different scenarios can occur: reflection, 

absorption, and transmission, as depending on the properties of the surface(s) in question. At 

the same time, the earth’s surface dissipates the absorbed energy back into the atmosphere 

through three principle mechanisms: convection, evaporation, and long-wave radiation, 

where all of these processes vary depending on the properties of the surfaces on the earth, 

which are themselves determined by the bodies’ constituents. The physical properties of 

objects are therefore responsible for determining their behaviour (reflectivity, transmissivity, 

absorptivity, and emissivity), which in turn control the spatial distribution of the energy 

exchange process and, accordingly, the spatial variation of the LST. 

 Reflectivity 

Reflectivity is the ratio of reflected radiation to incident radiation, which takes values as per 

the following expression. 

 0 ≤ reflectivity ≤ 1. 

 Transmissivity  

Transmissivity is defined as the transparency of an object, where radiation can also be 

transmitted by bodies that are transparent; only an opaque material has a surface response that 

shows no transmission such that it takes the following values:  

0 ≤ transmissivity ≤ 1 

 Absorptivity 

The part of the incoming radiation absorbed by a surface defines that object’s absorptivity, 

and is mathematically the ratio of absorbed energy to incident radiation, and thus takes the 

following values:  

0 ≤ absorptivity ≤ 1 

 Emissivity 

It is defined as the amount of the energy radiated from an object’s surface to that radiated 

from a black body (a perfect emitter), and thus takes values defined by: 

0 ≤ emissivity ≤ 1 
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 The Electromagnetic Spectrum  

The electromagnetic spectrum (EM) can be categorized into different wavelength regions 

known as ‘optical’ and ‘microwave’ (amongst others). The optical remote sensing detects 

waves reflected and emitted by surfaces, which ranges between 0.4 and 14 mm. Microwave 

remote sensing targets much longer wavelengths, between 1 mm and 1 m, as per Figure (1-3) 

(Woody et al., 2003). 

 

 Figure 1-3: Diagram showing the electromagnetic spectrum (Woody et al., 2003).  

The electromagnetic spectrum (EM) describes the complete set of wavelengths of light, 

which commences from the shortest wavelengths (gamma rays and X-rays) to the longest 

wavelengths that are used in telecommunications (microwaves). There is a series of terms 

that are commonly used in remote sensing to label the various spectral regions (Chuvieco and 

Huete, 2010). 

Normally, the names and spectral ranges are as follows: 

The visible radiation (VIS) region ranges approximately from 0.4 to 0.7 μm. This spectral 

region corresponds to the small fraction of electromagnetic radiation that can be detected by 

the human eye. It includes the three main colours, blue from 0.4 to 0.5 μm, green from 0.5 to 

0.6 μm and red from 0.6 to 0.7 μm (Chuvieco and Huete, 2010). 

The near infrared (NIR) region ranges approximately from 0.7 to 1.2 μm. This part of the 

spectrum is just beyond the region apparent to the human eye, but its ability to discriminate 

green vegetation results in it being of spatial interest. In this region, healthy vegetation has a 

high reflectance that decreases with plant-related disease and its associated damage (Tempfli 

et al., 2009). 

The mid-infrared (MIR) region ranges approximately from 1.2 to 8 μm. The MIR is situated 

between the NIR and thermal infrared regions. The range between 1.2 to 3 μm is referred to 

as the shortwave infrared (SWIR) region. The region from 1.3 to 2.5 μm is mainly useful for 
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estimating soil and vegetation moisture content, while the 3 to 5 μm range is useful for 

perceiving high-temperature sources (Tempfli et al., 2009). 

The thermal infrared (TIR) region typically ranges from 8 to 14 μm. This region characterizes 

the energy emitted from the earth’s surface, which is useful when mapping surface 

temperatures. The peak wavelength of thermal emission from the land surface at 300 K is 

situated at around 10 μm. Indeed, the human body releases ‘heat energy’ with a maximum at 

𝜆 ≈ 10 μm. The thermal region is useful in the detection of vegetation stress and clouds, and 

in the assessment of environmental contamination (Tempfli et al, 2009; Chuvieco and Huete, 

2010). 

The microwave region (> 1 mm) is a relatively long wavelength region which can passes 

cloud cover. It is useful in the analyses of soil moisture and surface roughness (Chuvieco and 

Huete, 2010). 

 Satellite Observations of LST  

Remote sensing refers to the detection of different electromagnetic radiations from using 

different platforms such as aircraft or satellites, as per Figure (1-4) (Gibson and Power, 

2000). The advantages of using remote sensing are that it is possible to cover large areas in 

relatively little time, and of course that it is relatively cheap compared to field measurements 

(Song et al., 2002). Recently, the employment of multispectral image data to the detection 

and monitoring of change is an effective and powerful method for the detection and analysis 

of such changes (Dewidar, 2004). 

Satellites offer a convenient platform from which to observe LST consistently and regularly 

over large regions. Over the last few decades, satellite observations of LST have become 

increasingly prominent. These developments were largely driven by the success of satellite-

retrieved products. 

To meet end-user requirements, a number of space-borne sensors have been developed that 

allow for observations of LST (and indeed SST) as their primary objective. These instruments 

make use of top-of-atmosphere (TOA) radiances in the infrared (IR) or microwave (MW) 

bands of the electromagnetic (EM) spectrum. The basic principal is to correct TOA radiances, 

or Planck function equivalent Brightness Temperatures (BTs), for the effects of the 

atmosphere and the non-unity of the earth’s surface’s emissivity such that an estimate of LST 

(or SST) can be made (Dash et al., 2002). 
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Figure 1-4: The different remote sensing platforms and the various heights at which they 

operate (modified from Gibson and Power, 2000). 

IR sensors are generally preferred to MW sensors as the earth emits radiance peaks in the IR, 

as per Figure 1.1. In addition, IR signal is more sensitive to changes in the earth’s 

temperature. Both of these features are a result of the Planck function component of the RT 

process. As a result, MW sensors struggle to match the accuracy achievable by IR sensors 

(Dash et al., 2002). Furthermore, MW sensors have a comparatively poorer spatial resolution 

than IR sensors, i.e., 25-50 km for MW sensors and 60 m – 5 km for IR sensors (Noyes, 
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2005). One advantage of MW sensors is that, unlike IR signal, MW signal penetrates clouds 

and hence MW sensors provide a more continuous LST dataset.  

There are a number of satellite instruments which provide IR datasets suitable for LST 

retrieval. In a broader sense, these instruments can be split into two types based on their 

satellite platform, namely polar orbiting platforms and geostationary platforms.  

Instruments on board polar orbiting satellites, which are generally sun-synchronous, give vast 

amounts of global data specific to the overpass time of the satellite such as:  

Landsat: since the early 1970s, Landsat has continuously and consistently archived images of 

the earth. The Landsat programme has collected spectral information from Earth, creating a 

historical archive that gives scientist the ability to assess changes in the earth’s landscape. 

Landsat sensors record reflected and emitted energy from the earth for various wavelengths 

of the electromagnetic spectrum. The electromagnetic spectrum includes all forms of radiated 

energy, from tiny gamma rays and X-rays all the way to huge radio waves, whilst Landsat 

sensors record blue, green, and red light in the visible spectrum as well as wavelengths in the 

near-infrared, mid-infrared, and thermal-infrared at a resolution of 30 m. Landsat 4 and 5 

carried both the Multispectral Scanner (MSS) and Thematic Mapper (TM) instruments. 

Landsat 7 uses the Enhanced Thematic Mapper (ETM+) scanner. Landsat 8 uses two 

instruments, the Operational Land Imager (OLI) for optical bands and the Thermal Infrared 

Sensor (TIRS) for thermal bands, the satellites travelling on the descending (daytime) node 

from north to south cross the equator at 10:00 am ± 30 minutes mean local time on each pass. 

To provide maximum illumination, they cross every point on earth once every 16 days 

(http://www.usgs.gov/landsat). 

The Advanced Very High Resolution Radiometer (AVHRR): AVHRR uses the upper 

surfaces of clouds or the surfaces of water bodies to remotely monitor the surface of the earth 

with a four- or five-channel scanner, sensing in the visible, near-infrared, and thermal 

infrared regions of the electromagnetic spectrum. This sensor is run by the National Oceanic 

and Atmospheric Administration’s (NOAA’s) Polar Orbiting Environmental Satellites 

(POES). There are three variants of this satellite, which were launched between 1978 and 

1998. The highest ground resolution that can be obtained from the current AVHRR 

instruments is 1.1 km. The AVHRR’s orbit allows two views per day for any point on the 

earth, using two AVHRR satellites, one with a morning/evening overpass and one with an 

http://www.usgs.gov/landsat
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afternoon/night-time overpass, with a view that is obtained approximately every six hours 

(AVHRR Level 1b Product Guide 2011). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the principal 

instruments aboard the Terra (originally known as EOS AM-1) and Aqua (originally known 

as EOS PM-1) satellites. Terra’s orbit around the earth is timed so that it passes from north to 

south across the equator in the morning, while Aqua passes south to north over the equator in 

the afternoon. Terra MODIS and Aqua MODIS thus image the entire earth’s surface every 1 

to 2 days, acquiring data across 36 spectral bands with spatial resolutions between 250 m for 

the shortwave to 1000 m for the longwave (250 m for bands 1-2, 500 m for bands 3-7, and 

1000 m for bands 8-36) (http://www.modis.gsfc.nasa.gov). 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery has 

been available since 2000 from the NASA Terra satellite. This sensor is a joint venture by 

NASA and the Japanese Ministry of Economy, Trade, and Industry (METI). ASTER covers a 

wide spectral region with 14 bands ranging across the visible to the thermal infrared with 

high spatial, spectral, and radiometric resolution (visible and infrared 15 to 30 m, thermal 

imagery 90 m). The orbit is sun-synchronous with a local time of 10:30 am and with a 

recurrent cycle of 16 days (ASTER User Handbook). 

The Advanced Along-Track Scanning Radiometer (AATSR) 

AATSR was one of the instruments on the European Space Agency’s (ESA’s) environmental 

satellite, ENVISAT (ESA, 2007). AATSR provided global TOA-BTs which could be used 

for LST and SST estimation with a spatial resolution of 1 km corresponding to a local 

overpass time of 10:00/22:00. Furthermore, AATSR provided unmatched levels of 

radiometric precision (< 0.1 K) such that AATSR measurements have provided SST datasets 

with accuracies of around ± 0.1 K (Veal et al., 2013). AATSR makes observations at two 

specific local times (10:00 and 22:00) and at equatorial latitudes may observe a location as 

infrequently as once every three days, or worse in the instance of pixel contamination, such 

as in the instance of cloud contamination or channel saturation (ESA, 2007). This infrequent 

snapshot-type data is of only limited use, and which generally requires a sub-day temporal 

resolution at the threshold level. 

The Spinning Enhanced Visible Infrared Imager (SEVIRI) on board the geostationary 

Meteosat Second Generation (MSG) satellites. These sensors can provide vast amounts of 

data, throughout the day and night. For the fixed earth image it observes SEVIRI provides 

http://www.modis.gsfc.nasa.gov/
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3712 ⨉ 3712 pixel images encompassing the earth’s disk visible from the MSG geostationary 

position at 0⁰ longitude every 15 minutes, hence it captures the diurnal cycle of LST. 

However, the disk image only covers ~40% of the earth’s surface with a sampling distance 

3.1 km (9 km2) at nadir, which degrades to 12 km (40-140 km2) at the rim of the observable 

disk (Merchant et al., 2009) 

 The Approach used to Extract LST from Satellite Data 

Remote sensing can quantify the average surface temperature of the pixel that, for 

succinctness, can be referred to as the land surface temperature (LST). Table (1-1) gives an 

illustration of typical infrared sensors. There are three main LST retrieval methods: the 

single-channel algorithm, the split-window algorithm, and the multichannel algorithm.  

 The Single-Channel Algorithm  

A single-window algorithm was proposed by Qin et al. (2001) to retrieve the LST from a TM 

image. The upward and downward radiance was expressed in an approximate manner by 

introducing the average atmospheric temperature. From the linear approximation of the 

Planck function, it is possible to calculate this at room temperature assuming that the average 

temperature of the atmospheric upward radiance and downward radiance are equal (Liang et 

al., 2012) 

 Generalised Single-Channel Algorithms  

A generalised single-channel algorithm was proposed by Jiménez-Muñoz and Sobrino 

(2003). The advantage of this approach is it can be used with any thermal infrared data to 

retrieve the LST. 
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Table 1-1: Different satellite sensors with the ideal algorithm for estimating LST (Rasul et al, 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Satellite Typical Algorithm 

L
an

d
sa

t 

8 Split-window algorithm 

7 Split-window algorithm 

4-5 
Split-window algorithm 

AVHRR/NOAA 
Split-window algorithm 

TISI algorithm 

MODIS/Aqua;Terra 
Split-window algorithm  

Day/night algorithm  

ASTER/Aqua TES algorithm  

AATSR/ENVISAT Split-window algorithm  

SLSTR/Sentinel-3 Split-window algorithm 

ABI/GOES-R Split-window algorithm  

SEVIRI/MSG Split-window algorithm  

IRMSS/CBRES-1 Single-channel algorithm  

MERSI/FY-3 Single-channel algorithm  

IRMSS/HJ-1B Multi-channel algorithm  

S-VISSR/FY-2 Split-window algorithm  

VIRR/FY-3 
Split-window algorithm  

TISI algorithm  
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 Split-Window Algorithms  

The split-window algorithm was first proposed by McMillin (1975) for estimating sea surface 

temperature. The influence of the atmosphere is removed through the combination of 

brightness temperature from two channels (McMillin, 1975). 

 Multichannel Algorithms  

Multichannel algorithms can estimate LST and LSE from sensors with multiple thermal 

infrared channels such as MODIS, ASTER, AVHRR and Landsat 8. These approach 

algorithms are capable of retrieving LSE and LST concurrently. 

 Temperature-Independent Spectral Index Method  

Temperature-independent spectral indices (TISI), as defined by Becker, can be used to 

retrieve LST and LSE from the day and night data from channels 3, 4, 5 of NOAA AVHRR 

Li (Becker and Li, 1990). 

 MODIS Day/Night Algorithm  

A physical algorithm was proposed by Wan and Li (1997) to retrieve LST and LSE from 

MODIS day and night data. Based on day/night observations of the seven infrared MODIS 

channels, in order to gain the solutions for land-surface and atmospheric parameters, 14 

equations are created from which LST and LSE can be ultimately derived. Geometric 

corrections are necessary to reference the two scenes in the day and night observations (Liang 

et al., 2012). 

 Integrated Retrieval Algorithm  

An integrated retrieval or the two-step retrieval algorithm was proposed by Ma et al. (2000) 

for the MODIS airborne simulator (MAS), and was then applied to MODIS data (Ma et al., 

2002). In the first step, the values of various parameters are derived using a regression 

method; in the second step, the initial values of the above are adjusted using Tikhonov’s 

regularised method (Hansen, 1998). 

Landsat and SEVIRI products, in addition to ground-based measurements are the remotely 

sensed data used in this study to prepare the images that are required for the analysis and 

presenting the results. 

LST has long been a topic of interest among scholars. Although remote sensing techniques 

have facilitated the study of LST, the fact that high spatial resolution thermal data is only 
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normally acquired at a specific time of the morning such as the data provided by Landsat. 

This may in turn affect the accuracy in estimating the variation in the spatial domain of LST, 

 The Main Aim of the Study 

This study aims to find a method to covert Landsat LST images to be estimated during a local 

peak of temperature rather than being in the morning, which would improve the investigation 

of the relationship between LST and urban land cover by minimizing uncertainties that can be 

caused by shadow. This can be shown in detail in terms of the following objectives. 

 Objectives 

1. Using SEVIRI LST products and properties of pixels to convert Landsat LST data from 

being representative of morning (satellite overpass time) to a local peak of the 

temperature. 

2. Apply a comparative study of the effect of urban land cover on the variation of LST 

between morning time and during a local peak of temperature to investigate the role of 

time of day in terms of its influence on this relationship.  

3. To improve the representation of the data when studying changes in LST over the years 

(multi-temporal images). 

4. To investigate how the temporal variation in LST can be affected by time of day 

 Thesis Structure 

This thesis consists of seven chapters. The chapters can be generally categorised into five 

main parts. The first part includes Chapters 1 to 3 which give appropriate context and 

background information to the study. The second part focusses on the main chapters of the 

thesis which include the data analyses and present the results. The third part provides a 

discussion and conclusions, as shown below. 

 Background which includes: 

Introduction, Literature review and the study area chapters 

 Chapter 4- Converting Landsat LST data from morning to a local peak of the temperature 

(9:40 am to 1: 15 pm) 

 Chapter 5- Assessing the effect of the time of day on the spatial variation of LST 

 Chapter 6- Assessment and enhancement of analysing the temporal variation of LST over 

a time series 
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 Chapter 7- Discussion and conclusions 

Chapter 1: presents general information about land surface temperature (LST) and describes 

the thesis structure as an introduction to the research, and includes the definition of LST, the 

rationale for studying LST, earth surface heat budget, the relationship between the angle of 

solar radiation and LST, the impact of LST change on the environment, remote sensing and 

LST measurement, and the thesis structure.  

Chapter 2: presents a literature review of LST, which discusses the findings of previous 

studies in this field as an initial step to act as a basis or starting point for this research, which 

can contribute to improving or addressing certain aspects of these studies. The chapter 

concludes by describing the current gaps in knowledge in the literature, and the objectives 

and research questions of the study.  

Chapter 3: defines the geographical features of the study area including the location, 

topography, soil type, and climatic elements of the city including temperature, air pressure, 

wind, relative humidity, cloud cover, demography, and population.  

Chapter 4: improves Landsat LST measurement time using SEVIRI data. This chapter 

presents a technique which can be used to convert LST data derived from Landsat from 

morning time (Landsat overpass time) to during the zenith (peak temperature) using a 

combination of ground measurements and SEVIRI data. 

Chapter 5: investigates how the relationship between LST and urban land cover can be 

affected by the time of day. By obtaining an estimate of LST data at zenith for Landsat data 

with a resolution of 30 m as shown in chapter 4, this part of the study investigates whether 

the relationship between LST and urban land cover is influenced between the morning and at 

zenith, and how significant this is through the difference in the relationship between these 

two periods. 

Chapter 6: improves the analyses of the comparisons of the multitemporal LST images. This 

chapter seeks to reduce the probability of monthly and daily thermal extremes when 

analysing trends in LST over a number of years. 

Chapter 7: this final section of the study presents a summary of and conclusions for the 

results found in this study. 
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 Introduction 

Cities are environments where most of the landscape has been replaced with anthropogenic 

elements which can reflect a picture of the extent of the impact of human activities on the 

ecological balance. Previously, urban areas differed from the surroundings and countryside 

due to various human-related characteristics, such as population density, human activities, 

and land use patterns. However, recently some differences in natural features have also been 

constructed in many cities as a result of urbanisation. 

In recent years, scientists have begun to witness noticeable changes in worldwide 

temperatures as a result of various human activities, which are increasing rapidly (Jiang and 

Tian, 2010). Until the beginning of the nineteenth century, urban growth was characterised by 

gradual changes and simple global transformations, both in terms of population growth, or 

the development of the means of production, and the consumption of raw materials (Seto, et 

al, 2012). However, compared with the past few decades, this picture has dramatically 

changed to the point where many countries in the world have started to witness excessive 

population growth, particularly in urban areas. This has resulted in increased pressure on the 

land use and the weakened ability of the environment to accommodate these developments 

(Zhang et al., 2013). This increase in population has also resulted in widespread changes in 

patterns of land use, where many existing cities have been extended and many villages have 

turned into cities as a result of the phenomenon of urbanisation. Studies have indicated that 

the urban population at the beginning of the twentieth century was only around 10% of the 

total world population. Now, at the beginning of the twenty-first century, the urban 

population represents more than the half of the world’s population, and because of this this 

century has been described as a century of urbanisation (Zhou, et al, 2011). In this urbanised 

world, the urban land surface temperature has started to gradually rise, mainly as a result of 

urbanisation processes. According to Dewan and Yamaguchi (2009), urban zones are the 

biggest source of factors affecting ecological balance, and indeed are simultaneously the most 

affected by it. The constant urban consumption of natural resources and the continuing 

changing of the natural features of the Earth’s surface have resulted in cities’ environmental 

conditions differing from the surrounding areas, especially in terms of the temperature As a 

product of the energy exchange process carried out by surfaces, which can be appeared more 

affected in light of rapid urban growth in the absence of good urban planning, as is the case in 

many cities of the developing world. Therefore, the earth surface need to be monitored 
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frequently to detect the extent of the impact of land cover changes on the environmental 

elements. 

 Relationship between LST and Land Cover 

In recent decades, many cities around the world have experienced dramatic urban growth, 

especially in the cities of developing countries which have recently been developing several 

times faster than cities in developed countries (López et al., 2001). As a result of land use 

changes, which are more concentrated in urban areas, LST has become increasingly high, 

whereby it has been estimated that the average global LST rose by about 0.8oC between 1950 

and 1993 (Jones et al., 1999). The simultaneous removal of natural land cover and the 

introduction of urban materials changed the surface energy balance, with a consequent 

increase in heat flux (Lo et al., 2010). This is consistent with Kalnay and Cai (2003), who 

concluded that the land surface temperature in the USA between 1980 and 1990 increased by 

0.31°C for urban sites compared to only 0.13°C in more rural areas. Changing the absorption 

function of the land surfaces and decreasing its reflectivity as a result of urban expansion can 

led to different effects such as less sunlight being reflected into space, which has an effect on 

the global climate, and regional atmospheric conditions can occur, creating so-called local 

climate (heat and cool islands) (Brian et al, 2005). Land cover changes are a major concern in 

many countries, regardless of whether in developed or developing countries. The rapid 

change in urban land cover is mainly the result of economic development, population growth 

and urbanization (Fan et al, 2007). In some countries, accelerated economic development and 

a rapidly increasing population has caused, or requires, abrupt changes in land cover. Urban 

sprawl, expressing its stresses on the environment has, of late, been witnessed in developing 

countries in particular (Kumar et al, 2009). 

Peng (2012) states that from a worldwide report of 419 cities with more than a million 

residents, the increase of urban temperature compared with the surroundings has become 

increasingly evident with an average of about 2.3°C in North America, 2.0°C in Europe, and 

0.9°C in Africa. This illustrates how cities of the world are becoming sources for generating 

heat, which in turn exacerbates global warming. Which is supported by Kalnay and Cai 

(2003), who has observed that the land surface temperature in some cities in the USA over 

the ten years between 1980 and 1990 increased significantly compared to the rural areas. 
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Several studies confirmed that areas that are covered by natural landscapes have not 

experienced an increase in LST over time, unlike those subjected to land cover changes 

resulting from anthropogenic activities. Oke (1982), cited by Weng et al., (2004), noted that 

the greatest levels of latent heat exchange are found where there is greater vegetation cover, 

while the sensible heat exchange is increasingly active with lower vegetation density as in 

built-up areas. When the majority of the surface cover within a certain area is more 

homogenized, the LST values will become less spatially varied due to the similarity of land 

surface behaviour for processing the incoming and outgoing heat energy (Xiao et al., 2007). 

According to Weng and Lu (2008), urbanization has resulted in an adverse relationship 

between impervious and vegetation regions, and because of LST correlations with both 

impervious and vegetation coverage, new LST patterns have been created. Xiong et al. 

(2012) concluded that the highest temperatures in Guangzhou, China were positively 

associated with built-up areas, whereby the hot spots or UHI distributions mainly followed 

the expansion of built-up areas during the study period. In the same context, city temperatures 

were generally higher than in the suburbs, which promotes the role of urban vegetation 

coverage as to whether trees or grasses can be used to mitigate the city’s temperature in order 

to maintain temperatures at around those of the local environment. According to Wu et al. 

(2014), the variation in LST in cities depends on the distribution of land use patterns, which 

might explain the increase in LST in the direction of suburbs to city centres; however, this is 

not in keeping with the findings of Feyisa et al. (2016), who indicated that there is no 

considerable difference in LST between Addis Ababa city, the capital of Ethiopia, and its 

surrounding areas across the study years, as per Figure (2-1), where most of the suburbs of 

the city have been almost barren soil for long seasons, taking on a similar thermal behaviour 

between the urban and the surrounding land cover, which shows the importance of vegetation 

in minimizing excessive increases in LST. As Maimaitiyiming et al. (2014) claimed, even the 

planting of trees on the edges of roads in cities would have a role in reducing the rise of local 

LSTs. This was also found by Chakraborty, Kant and Mitra (2015), in that the highest LSTs 

in the city of Delhi were recorded over its barren land area, industrial, and built-up areas, 

respectively, as well as no clear temporal changes being shown between the years 2000 and 

2010. 

 

 



  

21 

  

 

 

Figure 2-1: The spatial variation of land surface temperature intensity between the city of 

Addis Ababa and its surroundings during different years between 1985 and 2010 (Feyisa et 

al., 2016). 

In other cities where the land cover is more diverse, the variation of LST can be effected  

significantly, with the difference reaching about 35°C in some tropical dry regions (for 

example in Tehran, Iran), as water bodies represented the lowest temperatures, while the 

highest appeared above barren surfaces (Bokaie et al., 2016). In contrast, when applying this 

variation in different areas which are more moderate and abundant in rainfall and vegetation 

cover, it was revealed that the variation in LST was much lower and did not exceed 13°C 

among the different land use patterns (Rotem-Mindali et al., 2015). These indicators could 

lead to one major factor behind the effects (different land use) on LST, which is the 

evaporation factor. It was found that the impact of this factor on reducing air temperature can 

be as much as 5°C in some dry regions (Bokaie et al., 2016). However, this is not considered 

a fixed value, as it is possible that it can be influenced by the quantity and type of evaporation 

sources. This view is supported by Guo et al. (2015), who found that the relationship between 
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LST and the vegetation index is a negative one, while it appeared to be positive for the built-

up index. Thus, the relationship between LST and air temperature is a positive one, where an 

increase in LST means that the air temperatures will be increased, and vice versa. This 

depends on a number of factors, the most important of which are geographical location and 

the availability of evaporation sources, such as vegetation cover and bodies of water. The 

difference between surface temperature and air temperature is not usually as big, typically 

ranging between 5°C – 6°C (Shen et al., 2015). The relationship between LST and land use is 

not only an effected relationship, but also an affected relationship, where LST can affect the 

land surface in some areas through its influence on soil moisture. In this respect, it was found 

that areas with high LSTs are characterised by a lack of soil moisture (Cai et al. 2016; Jiang, 

Fu and Weng, 2015). In contrast, wetter lands are characterised by a stronger impact in terms 

of reducing LST (Cai et al., 2016). The relationship between surface moisture and LST can 

be an inverse one through the role played by evaporation in reducing temperatures, as 

supported by Rasul et al. (2015). Thus, estimating LST during the rainy seasons can result in 

greater uncertainty than in other seasons; indeed, this same reasoning also applies between 

morning and zenith, whereby the morning hours are wetter than at around noon. 

According to Morabito et al. (2016), there is a link between built-up areas and an increase in 

LST, where it was found that the highest LST indicators were generally noted in areas that 

were known to have a high percentage of impervious surfaces. Therefore, it appears that the 

expansion in urban areas can lead to an increase in LST whether in terms of values or 

breadth. This is in line with the view of Fu and Weng (2016), according to which any 

changes of any kind of land pattern to built-up cover can contribute to an increase in LST. 

This is supported by Chaudhuri and Mishra (2016), who noted that pre-existing urban areas 

during their study time experienced a stable LST index, while areas that had recently been 

converted to build-up areas registered a noticeable increase in LST within the study area. 

Impervious surfaces, such as buildings and paved roads in cities, represent the highest LSTs, 

but these surfaces differ in terms of the possibility of heat reflection. 

As Connors et al. (2012) have shown, industrial and commercial areas within cities generated 

the highest LSTs compared to other urban areas, such as residential areas. In the same 

context, vegetation type also varies in its impact on LST, especially with regard to plants’ 

seasonal greenness, where the vegetation cover’s impact on LST is almost non-existent 

during these seasons. This could be the reason for the high temperatures in the suburbs of the 
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city of Erbil, the capital of Iraq’s Kurdistan region, compared to the city centre during the 

summer season (Rasul et al, 2015).  

The reflectance spectra of natural and artificial surfaces are highly variable. Dry leaves can 

be clearly differentiated from green leaves, for instance. The absorption of the healthy 

vegetation cover is particularly strong in visible range, though less intense in the green (~550 

nm). In the red, it increases again but toward 670 nm decreases (Tupin et al., 2014). The 

spectral signature of soil depends on surface conditions because, in contrast to vegetation, 

only a small amount of electromagnetic energy is transmitted from the soil (Chuvieco and 

Huete, 2010). Soil that is wet and contains a large amount of humus is dark. From the blue to 

the red, the reflectance of soil increases only very slowly, and in the NIR region attains a 

plateau. Several white soils and artificial materials, such as concrete and asphalt, have a 

higher reflectance in the blue range (Tupin et al., 2014). 

 The Use of Satellite Thermal Data in the Study of LST 

Remote sensing technology provides a unique way to detect the thermal characteristics of 

land surface rather than relying on ground-based measurements, especially in geographical 

and environmental studies, where it acts as a record of visible data of areas that are covered 

by images during a certain time (Jones et al., 1999). Employing this technology in 

environmental studies has enabled an increase in the flow of related data and the ability to 

monitor different variables, including in inaccessible places and for invisible phenomena. An 

increasing awareness is being experienced among scholars with regard to the fact that remote 

sensing can play a role in providing the data needed to identify ecosystem conditions and to 

detect changes on spatial scales (Avdan and Jovanovska, 2016). Through the development of 

satellite technologies and the availability of satellite data with a high spatial resolution, 

remotely sensed data remains the most effective means that can be adopted to measure LST 

over wide areas with sufficient spatial resolution and that is completely spatially averaged 

rather than giving point values (Isaya and Avdan, 2016). This has helped the study of LST 

become a fertile field for research aiming to obtain a much greater understanding of its 

characteristics (Voogt and Oke, 2003). NOAA AVHRR satellite data are the primary source 

for studying LST (Weng et al., 2004). The first urban temperature observations (from 

satellite) were reported by Rao (1972), since when a series of sensor-platform combinations 

(satellite, aircraft, ground-based) have been applied (Weng et al, 2004). At present, there are 

a number of satellites that can be used to monitor geographical variables with various high-

resolution sensors, some of them obtaining a less than 50 cm/pixel resolution, such as the 
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Worldview satellites. However, in spite of this, a few of these satellites have a thermal 

infrared bands which provide the ability to detect thermal electromagnetic spectrum (Earth 

radiation) that can be used to measure changes in LST. The Landsat thermal data are the most 

commonly used as a means of studying LST, where the literature review survey found that 

most of the research on LST has used Landsat data as a method of detecting the change in 

this variable. According to Zhang et al. (2013), Landsat sensors can produce more persuasive 

findings for studying LST and with much greater accuracy in comparison to other satellite 

thermal infrared data, such as AVHRR and MODIS.As Chakraborty, Kant and Mitra (2015) 

found over 10 years of studies (2000 to 2010 in Delhi), the average change in LST found by 

Landsat was 1.4°C, while for MODIS data this same change was 3.7oC, where the LST 

values estimated by Landsat had a standard error of ± 2°C, whilst those of MODIS had a 

standard error of ± 3°C which gives preference to the results obtained by the Landsat data. 

Both infrared and microwave sensors have been used to detect LST. Infrared thermal sensors 

provide high spatial resolution, such as 30 m for Landsat, but are limited in the sense that 

they are only capable of imaging under transparent sky situations. In contrast, passive 

microwave sensors provide lower spatial resolutions and lower precisions while being 

capable of use in all-weather situations because they are only slightly affected by atmospheric 

influences. Since the size of atmospheric particulates such as smoke and biomass burned 

aerosols are usually smaller than microwave or infrared wavelengths, the atmospheric effects 

of small particles in this region are generally relatively insignificant (Chuvieco and Huete, 

2010). However, the 1 km retrieval precision that is required in practical applications cannot 

be attained by any one of these sensor types. The most reliable LST data are from MODIS, 

which can only attain this precision for homogeneous surfaces such as water surfaces and 

sandy areas of land, while in reality 1 km of homogeneous land surface is quite a rare 

occurrence (Liang et al, 2012). The spatial resolution of satellite thermal images can differ 

depending on the sensor that takes the image of the earth’s surface with different sizes of 

pixels, which in turn determines the resolution and the details of a scene. At present, only a 

few space-borne sensors can provide the relatively high-resolution thermal data that is 

required to identify urban LST, such as with the Landsat and ASTER data. However, these 

satellite sensors typically have low temporal resolutions due to the long-repeat cycle of these 

satellites. Thus, researchers have also used LST data from TIR sensors with low spatial 

resolution but can provide high temporal resolutions from geostationary platforms such as 

MODIS and SEVIRI. The use of high-resolution satellite images is important to a further 
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understanding of the LST and in allowing researchers to gain more accurate results (Biro et 

al., 2013). The sources of remote sensing in providing visible data with high resolution 

images are still not seen as an important development in terms of resolution (Rozenstein et 

al., 2014) where the 30 m spatial resolution provided by the Landsat sensors is still the most 

detailed data compared with other satellites such as AVHRR (8 km), SEVIRI (3 km), MODIS 

(1 km), HJ-1B (Huan Jing) (300 m) or ASTER (90 m) (Zhang et al., 2013) table (1). Landsat 

8 Operational Land Imager (OLI) is different to the other previous Landsat sensors, where it 

has nine spectral bands and a Thermal Infrared Sensor (TIRS) with two thermal bands (10 

and 11), though the National Aeronautics and Space Administration (NASA) recommend 

using band (10) for surface temperature retrieval (Zhu et al., 2016). 

Most thermal satellite data is regularly taken during the morning time, which is a relatively 

long time from the time at which maximum temperatures occur, normally at or around zenith. 

A number of authors (Guo et al., 2015; Li et al., 2016) favoured this view, and mentioned 

that the satellite overpass times for Landsat and ASTER do not coincide with peak surface 

temperature when surfaces can be at a maximum for generating heat, which can in turn affect 

the spatial variation of LST. While In contrast, the other satellites which can provide data 

during times of peak temperature cannot show sufficient details due to its spatial resolution, 

such as SEVIRI which provides data every 15 minutes with a 3,000 m resolution (Ghent et 

al., 2010). 

In contrast, the other satellites which can provide data during times of peak temperature 

cannot show sufficient detail due to its spatial resolution, such as SEVIRI which provides 

data every 15 minutes with a 3,000m resolution (Ghent et al., 2010). According to Coops et 

al. (2007), who investigated the difference between the morning and afternoon MODIS 

thermal data to estimate the spatial variation of LST over a range of land cover classes, the 

results showed a statistically significant differences between the two sensors’ data, 

considering that the afternoon MODIS data is more suitable due to it is more closer to the 

maximum daily LST than the other data acquired during the morning time. 
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Table 2-1: Specifications for the Infrared satellite sensors (Rasul et al, 2015). 

Satellite 
Channels 

or bands 

Spectral range (𝝁𝒎) Spatial Resolution 

(m) 
 

L
an

d
sa

t 8 
10 

11 
10.6-11.2 30 

7 6 11.5-12.5 30 

4-5 6 10.4-12.5 30 

AVHRR/NOAA 

3 

4 

5 

3.55-3.93 

10.30-11.30 

11.50-12.50 

1100 

1100 

1100 

MODIS/Aqua;Terra 

20 

22 

23 

29 

31 

32 

33 

3.66-3.84  

3.929-3.989  

4.02-4.08  

8.4-8.7  

10.78-11.28  

11.77-12.77  

13.185-13.485  

1000 

1000 

1000 

1000 

1000 

1000 

1000 

ASTER/Aqua 

10 

11 

12 

13 

14 

8.125-8.475  

8.475-8.82  

8.925-9.275  

10.25-10.95  

10.95-11.65  

90 

90 

90 

90 

90 

AATSR/ENVISAT 

6 

 

7 

Central wavelength: 

10.85 & 12.0  

Channel width: 0.9 & 

1.0  

1000 

 

1000 

SLSTR/Sentinel-3 

S7 

 

S8 

 

S9 

Central wavelength: 

3.74, 10.85 & 12.0  

Channel width: 0.38, 

0.9 & 1.0  

 

1000 

 

1000 

 

1000 

ABI/GOES-R 
14.15 Central wavelength: 

11.2 & 12.3  

2000 

SEVIRI/MSG 
9.10 Central wavelength: 

10.8 & 12.0  

3000 

IRMSS/CBRES-1 9 10.4-12.5  300 

MERSI/FY-3 
5 Central wavelength: 

11.25  

1000 

IRMSS/HJ-1B 4 10.5-12.5  300 

S-VISSR/FY-2 
IR1 

IR2 

10.3-11.3  

11.5-12.5  

5000 

5000 

VIRR/FY-3 

3 

4 

5 

3.55-3.93  

10.3-11.3  

11.5-12.5  

1100 

1100 

1100 
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Other research has been conducted to estimate the effects of the daily temperature cycle on 

the study of LST using ground-based measurements, as per Figure (2-2). This research found 

that the spatial distribution of LST is considerably affected by the time of day (Aneesh et al, 

2018).  

Figure 2-2: Shows daily spatial variations of LST over different land cover classes estimated 

by using ground-based measurements (Aneesh et al, 2018). 

 

This is also supported by Petropoulos et al. (2009), who state that although the Landsat 

satellites provide higher resolution data, morning time is not ideal in terms of identifying the 

LST when the temperatures reach a maximum. Li et al. (2016) recommended future research 

examine other summer days and times, foremost during the noontime when maximum 

temperatures are typically achieved, as there is a link between maximum spatial variation of 

LST and solar insolation peak time. 

Studying LST and analysing its relationship with urban land cover is an important aspect of 

understanding and monitoring a number of phenomena including evaporation, climate 

change, the hydrological cycle, vegetation monitoring, and urban climate. In addition, it has 

been found that LST is useful for environmental applications, as in monitoring plant damage 

and health, the dynamics of urban heat islands, and also those studies interested in ice cover 

(Weng, 2009). Urbanisation influences local climate and ecosystem functions, as well as 

biodiversity and quality of life through the expansion of increasingly impervious surfaces at 

the expense of the more natural landscapes. Vegetation and impervious surfaces are two key 
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urban components; transpiration from plants plays an important role in mitigating the effects 

of built-up areas on increasing LST (Li et al., 2011). 

Despite the variety of findings that have been achieved when studying LST, the data 

available is not suitable either in terms of time, such as Landsat (morning time), or resolution, 

such as with SEVIRI, which provides data at a 3 km resolution every 15 minutes (Aminou, 

2002). 

It has been mentioned that the analysis of LST can provide more suitable results if the 

measurement is made when temperatures are at a maximum (midday) rather than during the 

morning (the satellite overpass time), where most urban land cover has a relatively similar 

thermal response and surface temperature differences are minimal (Mathew et al., 2018; 

Zhou et al., 2013). Other researchers have reported that the morning time is not appropriate 

for urban surfaces to absorb and generate the energy sufficient for use in recognising the 

relationship between LST and different urban classes (Coops et al., 2007; Nichol, 1998). In 

addition, wet surfaces, as a result of the night dew and shade that are mostly prevalent in the 

morning time, can play an important role in reducing ground heat flux (Rinner and Hussain, 

2011).  

According to Guillevicababa et al. (2013), the angle of incoming solar radiation plays an 

important role in the spatial distribution of LST over a given location when the sun’s 

radiation strikes the earth’s surface more perpendicular to the ground (midday time) the 

incoming solar radiation becomes more focussed, and therefore more amount of incident 

energy per area unit, in contrast to when the sun is at a more inclined angle, will be reduced, 

thus resulting in lower temperatures, which will exposed to further decline in some spaces 

due to the shadows effect, as per Figure (2-3). The author motioned that, in a similar manner 

to this diurnal sun elevation, cites that are located at lower latitudes can show higher surface 

temperatures during a particular time of the day. It is frequently recommended that LST 

might better studied during times of peak solar insolation when temperature is normally at its 

greatest, so that the ability of surfaces to absorb and emit will be at a diurnal maximum, and 

hence the spatial variation of LST will be more recognisable during this period than others, or 

in other words the relationship between LST and different land cove will be stronger (Zhou et 

al., 2011, 2013).  This is in agreement with Weng et al. (2004) who argue that the spatial 

variation of LST can be greater around midday than in the morning, which means more 

opportunity for investigating the effect of land surface materials on LST. 
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Figure 2-3: Schematic illustrating the effect of the sun elevation on the process of heating the 

surfaces through the difference in the concentration of the incident heat radiation and the 

intensity of the shadows. 

It is noted that cities located within a dry region and surrounded by non-vegetated suburbs 

they are tend show lower LST values than its surrounding areas, this variation can be at the 

greatest during the sunrise time as a results of some factors related to the angle of the sun 

such as building shadows and the amount of the incident energy, while the opposite can be 

seen in those cities are surrounded by more vegetation cover because of the role of the 

vegetation for mitigating the temperature. This might be an important reason for the 

incompatible results between studies interested in LST, where it has been found that built-up 

areas can be cooler than the surrounding areas, leading to what is known as the urban cool 

island phenomenon (Rasul et al, 2015), whilst at the same time other studies have found that 

built-up areas have higher LSTs than their surroundings, resulting in urban heat islands 

(Imhoff et al., 2010). As Frederic and Albert (2005) found, the reflected radiation from 

surfaces is clearly affected by the sun angle, where it was lower around zenith than during 

morning and sunset, which in turn determines the amount of the incoming irradiation from 

the total incident energy, see Figure (2-3). This means that the ability of a terrestrial surface 

to absorb and emit reaches its peak when the sun’s angle is more perpendicular to the ground, 

and vice versa (Lukeš et al, 2013). 

Sun zenith  

Sun rise   
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Figure 2-4: The effect of the sun angle on surface reflectivity using airborne data over a field 

(5 km²) located in the southeast of France (Frederic and Albert, 2005)  

Studies have also shown that the use of different satellites to study LST does not give the 

same or similar values, which may reduce the credibility of the results reached. For example, 

Landsat and MODIS thermal images were applied to measure LST for the same area and over 

the same period, and it was found that LST, which was measured by MODIS, increased over 

the 10 years of the study by around five times that measured by Landsat. However, the results 

that were derived from Landsat remain more convincing given the difference in the resolution 

and the land cover changes that occurred during this period (Chakraborty et al., 2015), and 

hence the clear preference for the use of Landsat thermal data in the study of LST. 

Previous studies in this field have attempted to analyse the temporal variation of LST using 

remote sensing data with a different resolution. Shen et al. (2015) used five Landsat images 

to find the relationship between LST and ULUC over a 35-year study period. This resulted in 

certain difficulties in distinguishing between land patterns that have similar characteristics as 

a result of a relatively low accuracy of 70 to 75%. Landsat data may be useful in determining 

LST, however, in terms of finding the relationship between LST and ULUC, higher 

resolution data is needed in order to distinguish between the classes correctly and then to 

identify their impact on LST (Shen et al., 2015). Other studies have used high-resolution 

satellites, such as IKONOS and QUICKBIRD, to classify urban land use and its relationship 

with LST as derived from thermal data. However, this was not sufficient to gain further 

insights into LST and ULUC because this high-precision data was not used for more than a 
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year such as to coincide with the thermal data collected for LST. The high cost of such data 

makes it difficult to use. As such, many authors have admitted facing difficulties in 

accurately classifying ULUC in certain areas, which they referred to as a particular weakness 

of their studies (Jiang and Tian, 2010; Dewan and Yamaguchi, 2009; Biro et al., 2013; Shen 

et al., 2015). In line with the view of Dewan and Yamaguchi (2009), some of the classes 

were not categorised correctly, with certain residential areas being misclassified as landfill 

sites due to having similar spectral characteristics. Most studies recommend the use of higher 

resolution data to obtain a greater understanding of LST and its relationship with urban land 

use. However, this can also be achieved using a higher number of images, where multiple 

images can give a greater opportunity to follow variables of interest instead of relying on 

more disparate pieces of data. Previous research continued to follow the same approach in 

terms of the collection of satellite images. According to Fu and Weng (2016), two Landsat 

images (EM and ETM+) were taken in 1984 and 2011 to analyse the change in the LST over 

this period. A long period of time in such studies can be helpful to further understanding, but 

it is perhaps unreasonable to rely on such a small number of data points in terms of 

generating a valid representation. To follow the changes in LST in a certain area over a 

number of years requires enough data to at least represent the seasons. Another recent study, 

for instance, investigated the change in LST in the US Midwest between 2000 and 2006 using 

only two Landsat EM images (Jiang, et al, 2015).  

Similarly, a study carried out to reveal the relationship between LST and urban vegetation 

cover using one satellite image (ETM+) concluded that the findings were consistent with the 

urban development in the study area and recommended further work that consisted of more 

than one area for comparative purposes (Asgarian et al., 2014). 

It is important to obtain the cloud-free data for standing LST. However, using only one single 

image to represent a certain season will be more vulnerable to unusual changes, such as 

extreme values of temperature or saturating buildings with moisture as a result of rain or fog 

or other weather fluctuations. In such cases, the thermal data can be significantly influenced 

by temporal variations in temperature. Hence, one cannot rely on one image to represent a 

certain season; the risk of misinterpretation of anomalous or erroneous results is far too 

significant to do so. 
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 Knowledge gaps.  

A review of the literature dealing with the issue currently under study shows that there are 

gaps in relation with high spatial resolution need further investigation and understanding, 

which in turn would help to improve the study of LST; these points will be the focus of this 

work.  

1. Landsat LST data can be improved in terms of the measurement time being during times 

of peak temperature instead of morning time to minimize uncertainties associated with 

factors that can be more impactful in the morning period such as lower amount of 

incident irradiation and higher intensity of shadows.  

2. There is a necessity to identify the relationship between urban land cover and LST during 

a local peak of temperature when LST spatial variation reaches the greatest, and how this 

relationship is affected by time of day. 

3. The effect of time of day on the LST temporal variation across years has not been 

investigated.  

4. Monthly variation in temperature is not normally taken into account, which can influence 

the representation of the seasons, especially for multitemporal studies which have 

previously relied on single seasonal datasets to represent each year. 

 Research Questions. 

1. To what extent does the use of SEVIRI LST products (geostationary satellite) and 

properties of pixels have on converting LST data retrieved by Landsat during morning 

time on being more representative of that during a local zenith? 

2. How is the relationship between LST and urban land cover influenced by time of day? 

3. To what extent does using a seasonal (June, July, and August) average temperature, in 

terms of improving upon single data observations, constitute a more representative 

dataset? 

4. To what extent does time of day affect the temporal variation of LST? 
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Chaper 3. Study Area 
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This chapter provides an overview of the features and characteristics of the study area for the 

purposes of giving a background on the nature of the area. 

Study Area Selection 

The characteristics of a study area can play an important role in reaching a more accurate 

understanding of the relationship between land cover and local LST. Areas within dry and hot 

regions are more suitable than those within cold and rainy regions, as they can help to obtain 

cloud-free satellite data and are less effected by soil moisture, as well as higher temperatures 

showing a greater spatial variation of LST. Equally important, the structure of an area 

containing a variety of land cover can show more homogeneous classes, such as built-up 

areas, vegetation cover and open barren land, which helps achieve a better understanding for 

the spatial variation of LST, especially when the spatial resolution of satellite data is not 

sufficient to detect the changes over a very small area.   

The city of Tripoli has been chosen as a field of this study based on several considerations 

that make this city an ideal area for conducting this research, which can be summarized as 

follows:  

 The city is characterised by high temperatures in the summer as well as low-speed winds 

which can led to broadening the spatial variations of LST over the different classes and 

thus can contribute reaching a clearer understanding of the relationship between LST and 

the land cover. 

 The city is normally free of cloud cover that enables access clear thermal remotely sensed 

data especially in the summer where the weather is sunny most of the time. 

 There will be minimal soil moisture impact, especially that resulting from rain, where this 

factor can have a significant effect on the relationship between LST and the urban land 

cover (Karnieli et al., 2010). 

 Shadow is minimised during the summer season due to the angle of the sun, especially 

during the local noon time. 

 The high intensity of solar radiation in the summer as a result of the location of city 

within the low latitudes can led to maximizing the spatial variation of LST, which can 

facilitate the understanding of the relationship between LST and the land cover (Weng et 

al, 2004)      
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 As noted above, the landscape structure of the city helps to obtain the required data where 

it provides a range of homogenised classes such as vegetated areas and wide unused 

areas, as well as the presence of built-up areas with different densities, designs, and 

direction which can help to detect the effect of the shadows on LST.   

The context below presents further descriptions of natural and human characteristics of the 

study area including the location, geological structure, soil, topography, climate, the structure 

of the city, and population. 

 Geographical Location 

Tripoli is located between 32° 49' to 32° 55' north and between 13° 05' to 13° 22' to 13.05 

east. On the geographical side, the city is situated in the north-western part of Libya at the top 

of the Jaffara plain, and it is bordered to the west by the junction of the highway with the 

Ghut al-Shaal road and the Karkarish road (Geyran), to the south is the Abu-Sleem, and to the 

east are the Souq al-Jum'ah and Tajoura districts, as per Figure (3-1). The city occupies an 

area of approximately 180 km2 (Department of Surveying, Tripoli)  

Figure3-1: The regional and global location of the study area (Tripoli, the capital of Libya) 
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 Topographic area:  

The city of Tripoli covers a plain that is generally characterised by a gradual decline from the 

southern direction of the sea in the north. However, from the analytical studies of the 

topography of Tripoli, there are some minor differences that lead to some of the residential 

neighbourhoods rising above sea level to a greater extent than other neighbourhoods, which 

range between 15 to 20 m above sea level (Centre for Industrial Research, Explanatory Book 

of the Tripoli Plate, Libya Geological Map, 1970) 

 The geological structure:  

Tripoli is geologically an integral part of the sandstone plain, which extends from the coast to 

a distance of 10-20 km to the south. However, from a geological perspective, it appears that 

the formation of the inner Jaffara area differs slightly from that of the city of Tripoli. The 

southern region of the Jaffara plain is geologically older. This is due to the decline of the sea 

in the ancient geological ages from the southern region of the plain first and then to the lower 

part of the central region. The coastal area to which the city of Tripoli belongs is at a later 

stage, relatively speaking. As the geological studies indicate, the area of Tripoli began to 

emerge in the late second and third periods. This was reinforced by a study carried out by 

Hanis in 1962. It was found that the most recent marine sediments in the Hamada al-Hamra 

were deposited in the Pliocene era and, by the beginning of the Eocene era, a large part of 

Tripoli had become land (Jaudat, 1975). 

The geological formations of Tripoli are the latest geological formations belonging to the 

fourth geological epoch, which is Pleistocene deposits with marine origin Miocene rocks, 

represented by the composition of Karkarach and the sediments of the Jaffara formation, in 

addition to the coastal sand dunes. The geological formations scattered in and around the 

study area are divided into two periods: the Pleistocene and the modern Holocene, as shown 

in Table (3-1) and Figure (3-2) (Jaudat, 1975).  

These geological formations contain deposits of economic importance such as beach sand and 

igneous rocks which are used in concrete mixtures and in the stabilisation of building stones, 

and paving roads. The geological formation of the city has helped ensure the abundance of 

groundwater, throughout the previous historical periods, where the rocks of the Pleistocene 

and the other Mayosian marine and continental have the ability to retain groundwater and 

possibility allow its storage (Al-Hajjaji, 1989). 
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Table 1: The geological formations of the study area (Al – Hajjaji, 1989). 

  

 

 

 

 

 

 

 

 

 

Figure 3-2: The distribution of geological formations of the study area (Al – Hajjaji, 1989). 

 

 

Age  Name  Type of geological formations 

P
leisto

cen
e 

Configuration of Jaffara 

 

 

The composition of 

Karkarash 

This covers the plain of the Jaffara and consists of 

sandy and silt deposits with different levels of 

igneous. 

They form beach slopes, such as granite, which are 

used on a wide scale for the extraction of building 

stones. 

H
o
lo

cen
e 

Sedimentary deposits 

 

Water sediments 

 

Sand dunes 

 

Sediments of modern 

valleys 

These appear in the coastal area between the towns 

of Sabratha and Zuwara, which is a saline crust 

mixed with sand. 

These cover the lower parts of the Jaffara plain, 

which is soft sand. 

The middle part of the Jaffara plain is covered, as it 

sometimes appears at the shoreline and consists of 

limestone sand. 

This is gravel and soft sand. 

The composition of Karkarash 

Modern Sediments 

Windy 

Configuration of Jaffara 

Salt marsh 
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 Soil 

Soil is the surface layer of the earth's crust that is formed and can be prepared for plant 

growth, each of which has a distinctive area to the physiological horizons, which differ from 

the original material that consists of morphological, natural, chemical and biological 

properties. It is the fragmented layer that allows plants to root, and whose fertility depends on 

its natural and chemical composition (Bin Mahmoud, 1995). 

The soil in the city of Tripoli falls into five categories, which are as follows: 

1. Sandy soil: This is a soil that has lost most of its natural properties because it is mixed 

with calcareous soils and is therefore brownish. It is generally poor in organic and non-

organic matter and is based on marine limestone, this type of soil is found in the Old City 

(Ministry of Housing and Utilities: Tripoli Municipality in 100 years, Tripoli 1970). 

2. Light sandy soil: The origin of this type of soil goes back to the wind sediments. The 

distinctive feature of this type of soil is that it is sandy; thus, it is poor in organic matter 

content and often contains more than 85% sand grains ranging in size from 0.5 to 2 mm. 

It does not exceed the proportion of clay to 10%, and the quality of ventilation is not good 

due to the widening of pores, which makes their ability to retain water weak as it is poor 

in the essential nutrients, such as nitrogen and phosphorus and potassium (1). However, 

the degree of interaction (PH) in alkaline ranges between 7 and 9 (2). This type of soil is 

found in the south and south-east of the city of Tripoli, and in large parts outside the Old 

City, including West Street and Abi Khair Street and Corner Street, as well as the 

Fashloum, Zawiya Dahmani and Manshiyeh areas (Bin Mahmoud, 1995). 

3. Sedimentary soil: This type of soil consists of deposits of valleys and sediments from 

watercourses at successive intervals of time. The main feature of this soil is the presence 

of different sedimentary layers of different characteristics of the ages between the three, 

which is one of the most fertile types of agricultural soils in the city, including Wadi al-

Majinin at the southern border of Tripoli, as well as in large areas of Ain Zara, Al-Hadbah 

al-Khadra, Bab al-Aziziyah, Bab al-Salam, and Abu Salim (Bin Mahmoud, 1995). 

4. White sandy soil: This is a fragile and incoherent soil mixed with calcareous deposits and 

marine fossils. This soil spreads along the northern coast of Tripoli and in most of the 

resorts and beaches (Ministry of Housing and Utilities: Tripoli Municipality in 100 years, 

Tripoli 1970). 
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5. Red brown soil: This is composed of carbonate with a percentage of salts and gypsum, as 

it sometimes appears in the form of saline and surface gypsum crusts, which gives it a pH 

of 8.0 to 8.6 and is quite fertile. The red brown soil, which has a small percentage of 

phosphorus and iron, is widespread across the Al-Jaffara plain and parts of the area of the 

Janzour and east of Tripoli. In general, most of the soil in the city of Tripoli has lost its 

ability to act as agricultural soil, due to urban encroachment and its transformation into a 

residential land (Abu Lakma and Al-Qaziri, 1995) 

 The climate 

Climate is the state of the atmosphere in a region over a long period of time, or in other words 

the average weather conditions in a particular place, which might be a for a season, a year, or 

a number of years. It is agreed that 35 years is the minimum time period to best describe 

climate (Mqaily, 1993). 

It is known that climatic elements such as temperature, air pressure and wind are affected by 

a variety of factors, such as location, topography, land, and water distribution, etc. However, 

the climate is being severely affected by human activities that have recently led to changes in 

the radiative and thermal balance at both local and global levels, such as climate change, 

pollution, and global warming (Shehata, 1983). 

Tripoli has a Mediterranean climate as a result of its location on the southern bank of this sea, 

which is generally hot and dry in the summer and rainy in the winter. Through the statistics 

and data available, one can identify the main features of the climate in the city of Tripoli as 

follows: 

 Temperature 

Temperature is one of the most important elements of the climate through its direct and 

indirect influence on all other weather-related elements such as precipitation, evaporation, 

humidity, and atmospheric pressure, as well as all living organisms. Also, it has been found 

that whether it is high or low, temperature is affected by various factors such as the angle of 

solar radiation, the degree of transparency of the atmosphere, and the density of vegetation 

(Shehata, 1983). Figure (3-3) shows the average monthly maximum and minimum 

temperature between 1980 and 2010 distributed during the months of the year in Tripoli. 

There is a gradual rise in temperature at the beginning of the spring, with the quarterly 

average reaching 19.3°C, with the highest temperature in this season being observed during 

April and May. The reason for this is the low air pressure in the Mediterranean, which leads 
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to the so called Alkebly winds. These are hot and dry winds that can lead to a significant 

increase in temperature, which then continues to increase gradually through the summer 

months, reaching its peak during July and August. 

 

Figure 3-3: The average monthly maximum and minimum temperature between 1980 and 

2010 distributed during the months of the year in Tripoli  

 

The latter are the hottest months of the year in this city, with an average of about 30.9°C, and 

with a temperature that frequently exceeds 40°C. This can be explained by the angle of the 

sun, the clarity and dryness of the weather, as well as the length of the day (approximately 14 

hours), resulting in the arrival of large amounts of highly concentrated solar energy on the 

land surface. The temperature rises in the early autumn, especially in September, because of 

the southern hot winds, with the average temperature in this season reaching about 22.2°C. 

Soon after, the temperature begins to decline gradually until reaching its lowest level in the 

winter, specifically in January, which is the coldest months of the year. This is ascribed to 

exposure to polar air masses, resulting in cold northern winds, with an average temperature in 

this season of 14.1°C (Abu Lakma and Al-Qaziri, 1995). 
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 Air pressure 

Air pressure is the weight of a column of air with a base area of 1 cm extending from the 

surface of the earth to the top of the atmosphere. This element is directly responsible for the 

formation of wind in terms of its direction, strength, duration, and distribution (Mqaily, 

1993). In the winter, the sun is aligned above the southern hemisphere and thus the radiation 

reaches the study area at a slight angle causing the temperature to drop at the surface, which 

in turn leads to a pressure increase according to the climatic rule that states that the lower the 

temperature the higher the pressure of air, and vice versa. As the relationship between them is 

inverse in nature, accordingly most of the country will experience high pressure Azouri, 

which moves south by 5-10 degrees in latitude (Mqaily, 1993). 

Figure (3-4) shows that air pressure increases in January to about 1,021.8 mbar, while the 

Mediterranean Sea is the centre of low pressure due to warm water and air humidity. By 

spring, the high-pressure zone shrinks to the north, while the low air pressure dominates over 

the Sahara Desert, causing the local hot winds known as Alkebly, with the average air 

pressure in this season ranging from 1014.5 to 1016.7 mbar. In the summer, the surface 

temperature begins to rise, while atmospheric pressure drops to 1014.7-1015.3 mbar in June 

and August, respectively. In the autumn, the difference between the characteristics of the air 

masses increases, resulting in low air drops on the Mediterranean moving from the west to 

the east (Abu Zeid, 1998). The data show the average pressure in the autumn varies between 

1016.5 and 1018.0 mbar. 

 

Figure 3-4: The average distribution of air pressure within the study area throughout the 

year. 
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 Wind 

Tripoli is characterized by low wind speeds as shown in Figure (3-5), where in the winter, 

especially in December, the southern and south-western winds increase due to the 

concentration of depressions in the Mediterranean Sea. When these winds are close to the 

cold, air masses change their direction due to low temperature and high atmospheric pressure, 

then their general trend is north and north-westerly (Abu Zeid, 1998). As these winds pass the 

Mediterranean Sea, they are saturated with moisture, resulting in rain during this season of 

the year. The average speed of these winds ranges from 7.2 to 7.9 knots in January and 

February, while the average season is 7.55 knots. During the summer, the north and north-

eastern winds start to blow, with a seasonal average of 7.2 knots; and being dry helps to 

soften the temperature which reaches its impact to a latitude 18 north. 

 

Figure 3-5: The average monthly wind speed in Tripoli 

Consequently, this could increase the southern tribal wind, which is a strong wind laden with 

dust, causing an increase in the temperature accompanied by a relatively decreased and 

sudden humidity, with temperatures rising above 45°C. It also leads to dehydration of soil 

and crops, which affects air traffic and reduces visibility, as well as people’s psychological 

states (Abu Zeid, 1998). The average speed of these winds during the autumn season is about 

6.6 knots, with the highest average being the month of September (about 7.6 knots). As for 

the exceptional records of wind speed in the city, wind speed was registered at 70 m/s in 

October 1966 and 66 knots in November 1987, causing the uprooting of a large number of 

trees, disruption to the electricity supply and communications, and various other physical 

damage (Abu Zeid, 1998).  
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 Humidity 

Tripoli is characterised by high relative humidity throughout the year due to high evaporation 

rates from the sea.  

Figure (3-6) show that the overall humidity is 65.87%. In addition, the difference between the 

highest monthly rates and the lowest is not significant, at no more than 7%. In the winter, the 

relative humidity rises to a season average of 66.16% due to the low temperature, and the 

humidity rises in the summer due to the high rate of evaporation from the sea. 

 

Figure 3-6: The average monthly humidity in Tripoli during the period between 1980- 2010 

 Rainfall 

The amount of rain falling on Tripoli is affected to a large extent by only two factors, namely 

the shape of the coast and the recurrence of air depressions in the Mediterranean Sea. 

1. Coastal form: This factor leads to the control of the amount of rain falling, as the coast of 

the region rises towards the north; therefore, the winds coming from the west collide with 

the coast and rain falls there to a greater extent than on the area located to the east of the 

city where the coast curves towards the south. Thus, the chances of rainfall are greater in 

Tripoli than its neighbouring cities. 

2. The recurrence of depressions: The rain falling on Tripoli in general is of cyclical type, 

and these depressions arise from the convergence of two sets of air; one continental, 

coming from the Sahara, and the second polar, coming from the north. The rain is 

concentrated in very short periods where it does not fall regularly during the rainy season, 

but randomly for different periods of between one hour and a few hours or, sometimes, 
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continuously for days. This reduces their actual value and at the same time increases the 

risks to the environment. In 1985, the amount of rain falling on the city of Tripoli from a 

single storm was 115 mm, which is equivalent to one-third of the total annual rainfall, at 

340 mm (Abu Lakma and Al-Qaziri, 1995).The estimated number of rainy days in Tripoli 

is between 55 and 60 days a year, which means that there are approximately 305 days in 

the year that are rain-free. 

Distribution of rainfall during the year 

Figure (3-7) shows the following results: 

The rainy season starts in October and then the rain gradually increases until reaching the 

peak in December and January where the average rainfall during these two months is about 

67.9 and 63.16 mm, respectively, while the winter amount is about 166.67 mm. The rainfall 

begins to decrease during the spring due to the emergence of spring air depressions, which 

often causes a little rainfall, especially in May. This month marks the end of the rainy season, 

where the average rainfall is about 50 mm of the total season (about 51.33 mm). On the other 

hand, the seasonal total of precipitation in the summer does not exceed 2.08 mm due to the 

high surface temperature, as well as the lack of difference between the air masses. 

The total annual rainfall in Tripoli is approximately 342.65 mm. If this quantity is divided 

over the four seasons, the winter months would account for about 166.67 mm at 48.64%, 

while the autumn months would follow with 122.57 mm at 35.78%. As for the spring months, 

they average of around 51 mm is 14 % of the total, with the summer months contributing 

only 0.6% of the annual rainfall. However, these averages are not constant, but fluctuate from 

one year to another and from one month to another.  
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Figure 3-7: The average monthly distribution of rainfall in Tripoli during the period between 

1980- 2010 

 Water sources 

Tripoli is based entirely on groundwater to cover the city’s water requirements, whether for 

household, agricultural, or other uses. As a result of the development of the city and the rapid 

population growth, especially after the discovery of oil, the city is experiencing a severe 

depletion of available water resources. 

The following are the most important sources of water in the city: 

First is surface water, which is water that appears on the surface in valleys and lakes, but 

which represents only a small proportion of the total water resources in the city because there 

is no constant flow. These are only seasonal at specific times depending on seasonal rainfall, 

such as Wadi al-Majinin, on which a dam was built in 1972 to protect the city from 

inundation, and to benefit from the associated water resources instead of it being lost to the 

sea. The dam is 75 km south of Tripoli, with a total area of 579 km². It has a storage capacity 

of about 58 million cubic metres per year. 

Second is groundwater, on which Tripoli relies to meet its agricultural, domestic and 

industrial needs. Groundwater is the primary source of water for the entire region. This water 

is available in the layers of Mayssonian limestone rocks based on solid rocks, such as igneous 

base. Due to the rapid development of the city, especially in recent decades, there has been a 

rapid agricultural, urban, industrial, and population growth. In addition to the low annual rate 

of rainfall, the focus continued to be on groundwater, which accounts for 99% of water 
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sources in Tripoli, resulting in severe depletion of water. Unfortunately, this situation is 

worsening by the day (Mqaily, etl, 1990). 

 The structure of the city  

 Tripoli enjoys a distinguished location, from many aspects administratively, economically, 

commercially, and industrially, with a growing land, sea, and air transportation infrastructure. 

The city consists of city centre and its branches in a number of suburbs, including Al-

Andalus, Ain Zara, Souq Al-Jum'ah and Abu Salim, all of which are densely populated areas 

(Ministry of Housing and Utilities: Tripoli Municipality in 100 years, Tripoli 1970). It is 

considered the most densely populated of Libya’s cities, inhabited by about a third of the 

country's population. It is generally composed of high percentage of buildings, most of which 

are for residential purposes, and which increase in density toward the city centre, as shown in 

figure (3-8). (This map was classified according to the main classes in the area: buildings, 

barren land and vegetation area using unsupervised classification-maximum likelihood 

reaching an accuracy of 0.91). The buildings in the city differ between the historical and the 

archaeological, which reflect the civilizational eras in which they were built, as well as 

modern constructions, but in general they are similar in terms of building materials, rocks and 

cement, as per figure (3-9), either on roads and streets, most of which are paved with asphalt. 

In terms of green areas, they range from gardens to parks with the largest vegetation area in 

the city being Annasr forest at about 1.5 km². (Ministry of Housing and Utilities: Tripoli 

Municipality in 100 years, Tripoli 1970). 
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Figure 3-8: The main land cover classes in the study area 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8: Some features of the structure of the city of Tripoli.  
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 Population 

Natural factors, especially the climate, as well as human factors, especially the economic 

factor, of the city of Tripoli have helped to make it the largest urban and service community 

in Libya. Since the beginning of population censuses, specifically in 1954, the population has 

significantly increased, as shown in Figure (3-9). 

Figure 3-9: The population growth in Tripoli during the period between 1954- 2015 

 

In 1954, the population was about 264,000. This figure had increased to about 405,000 

people by 1964, meaning that the difference between the two censuses was 141,000 with an 

annual growth rate of about 3.5%. In the following census, 1974, the population jumped to 

663,100 people at an annual growth rate of 14%, which was an unfamiliar increase at the time 

due possibly to the improvement in the city in many regards following the discovery of oil. 

The population growth continued to increase significantly until it reached about 1,183,762 

people in 1995 from 994,100 in 1984, with an annual growth rate of about 3.4%. Then, the 

population continued to increase, but at a slower pace. For example, in 2006, the population 

was about 1,234,345 with an annual growth rate of about 3%. The population was estimated 

to be around 1,767,544 in 2016. This continued increase in the population of the city 

witnessed during recent decades was not only the result of the improvement of living 

conditions and economic activities, but migration has also played an important role as the city 

witnessed a significant influx of immigrants, both internal and external. 

These various characteristics have played an important role in giving this city certain 

advantages that have historically made it an attractive area in which to settle. Recently, this 
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city began to witness an increasing urban expansion that has made it a fertile and interesting 

field for various different fields of study. 
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Chaper 4. Converting Landsat LST data from morning to peak 

temperatures (9:40 am to 1:15 pm) 
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 Introduction  

The study of LST and its spatial variation with land cover characteristics has long been an 

interesting area of research. Remote sensing technology has increased the flow of data and 

enabled the estimation of LST more effectively, including various sensors and platforms. The 

Landsat satellite data, especially that provided by sensors 5, 7 and 8, are widely used in 

monitoring the changes on the earth's surface, including LST. These sensors provide high-

resolution data with which to study the spatial distribution of LST and accompanying 

phenomena as a result of the impact of human activities, such as urban heat islands (UHIs). 

However, the lack of remotely sensed, high-resolution data measured in during a local peak 

of temperature has rendered the study of this variable an increasingly controversial issue. 

Through the literature review, it has become apparent that there is an urgent need to obtain 

LST images estimated when the temperature reaches a maximum in order to be able to 

investigate the effects that may occur because of the time of day and associated factors such 

as shadow on the spatial variation of LST, which is the rationale of this part of the study. The 

availability of a different number of satellites that include thermal bands with different 

features and specifications can provide the opportunity to compensate for this deficiency in 

this type of data by taking advantage of some of these characteristics offered by these 

satellites and integrating them. 

This chapter examines and addresses the possibility of overcoming the issue of the 

unavailability of high-resolution satellite thermal data measured in conjunction with the 

period of a local peak of temperature. Thus, this chapter seeks to find a method to convert 

Landsat LST data from the satellite overpass time (9:40 am) to 1:15 pm as it was estimated in 

the study figure (4-1), by redistributing the ΔLST (increasing value of land surface 

temperature) based on the properties of the pixels for responding the incident energy. An 

evaluation will then be applied to test the accuracy of this conversion process. 
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 Data preparation.  

This chapter uses remotely sensed data collected from a summer season (10th of September 

2017), where the date is predetermined to coincide with the overpass times of the Landsat 

satellite over the study area, with a preference for cloud-free data. This satellite data is 

represented in Landsat 8 (TIRS) at 9:40 am (Path 189, Row 37), pre-processed land surface 

temperature from SEVIRI produced at 9:40 am and 1:15 pm coinciding with the Landsat 

overpass time and a local peak temperature, in addition to LST ground-based measurements 

during the times specified above (around 9:40 am and 1:15 pm)  

4.2.1. LST retrieval from Landsat 8 

To retrieve LST from Landsat 8, there are a series of consecutive steps need to be followed 

(https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product).  

 The digital number DN value needs to be converted to spectral radiance using the 

following formula. 

Lλ = MLQcal + AL                                                                                                                     (1) 

Where 

Lλ = Spectral radiance (Watts/ (m2sradμm))  

ML = Band-specific multiplicative rescaling factor from the metadata 

(RADIANCE_MULT_BAND_x, where x is the band number)  

AL = Band-specific additive rescaling factor from the metadata 

(RADIANCE_ADD_BAND_x, where x is the band number)  

Qcal = Quantized and calibrated standard product pixel values (DN). 

 Converting spectral radiance to At-Satellite Brightness Temperature (TOA) using the 

following equation:  

𝑇𝑏 =
K₂

1n (
K1

Lλ
+1)

                                                                                                                      (2) 

Where:               

Tb = At-satellite brightness temperature (in Kelvin)  

Lλ = Spectral radiance (Watts/ (m2sradμm))  

K1 = Band-specific thermal conversion constant from the metadata (K1 = 774.89)  

K2 = Band-specific thermal conversion constant from the metadata (K2 = 1321.08) 

https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product
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 Land surface emissivity correction 

After TOA has been processed the next step is the emissivity correction from which we 

obtain the final ground surface temperature correctly derived by Landsat 

The land surface emissivity (LSE) or (𝜀) expresses the ratio of the radiating capacity of an 

object to that of a perfect black body. This correction process requires one to estimate LSE 

from the Landsat satellite using the NDVI method presented by Isaya and Avdan (2016), as 

per figure (4-1). The land surface emissivity LSE will also be used later in the equations to 

enable the conversion process. 

Figure 4-1: The land surface emissivity LSE retrieval for the study area to be used for both 

extracting LST from Landsat data and for the LST conversion process.  
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After preparing the earlier steps, equation (3) is used to retrieve the LST, which is the most 

commonly used formula for retrieving LST from Landsat (Isaya and Avdan, 2016): 

LST =
Tb 

1+(λ∗
Tb

p
)1𝑛ɛ

− 273                                                                                                   (3)                                                                                                   

Where LST is the land surface temperature in degrees Celsius, as per figure (4-2), Tb is the 

At-satellite brightness temperature (in Kelvin), λ is the wavelength of emitted radiance (11.5 

μm), P is a constant = 14380, ε is the surface emissivity and -273 is used to convert from 

Kelvin to Celsius 

Figure 4-2: The LST image retrieval from Landsat 8 for the study area during the satellite 

overpass (10/9/2017 at 9:40 local time). 

Besides the above Landsat images, the proportion of the vegetation (PV) and absorptivity 

LSA (1-abedo) images need to be prepared to be used later in the LST conversion process, 

which can be accounted for as follows.  
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According to Sobrino, Jiménez-Muñoz and Paolini (2004), the proportion of the vegetation 

(PV) can be estimated from Landsat data using the NDVI index which is a parameter that 

indicates the density of the vegetation cover within a certain area or pixel, as per the 

following expression. 

NDVI ≤ 0.20 = non-vegetated, PV = 0  

NDVI ˃ 0.20 NDVI ˂ 0.50 = partly vegetated PV= (NDVI- 0.20)/0.30 

NDVI ≥ 0.50 = fully vegetated PV = 1, Figure (4-3). 

The absorptivity (LSA) which is (1-albedo) can be obtained by Landsat 8 data using the 

following expression (Suherman et al, 2014). 

((0.356×B2) + (0.130×B4) + (0.373×B5) + (0.085×B6) + (0.072×B7)-0.0018)) / 1.016 

Where B represents the bands used. 

After albedo has been obtained, (1-albedo) needs to be determined to get the land surface 

absorptivity Figure (4-4) 

Figure 4-3: The proportion of the vegetation PV of the study area to be used later for 

converting Landsat LST from the morning to during peak temperature. 
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Figure 4-4: The absorptivity LSA (1- albedo) for the study area to be used later for 

converting Landsat LST from the morning to during peak temperature. 

 SEVIRI LST data 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor is on board the 

Meteosat Second Generation (MSG) geostationary satellite. This space-borne sensor provides 

12 spectral channels, including image data in four visible and near-infrared (VNIR) channels 

and eight infrared (IR) bands with a baseline repeat cycle of 15 minutes (Aminou, 2002). 

These data can be found in processed form through the LAND SAF website 

https://landsaf.ipma.pt/en/ which provides a variety of SEVERI products including LST 

covering the area of Africa, Europe, the western part of Asia, and part of eastern North 

America with a resolution of around 3000 m. The following images (4-5) shows the LST 

from SEVIRI for the area under study at 9:40 am and 1:15 pm local time. These images are 

used to estimate an average change in LST between 9:40 am and 1:15 pm using those pixels 

located within the land and excluding others that partly cover the water.    

 

https://landsaf.ipma.pt/en/
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Figure 4-5: LST images from SEVIRI at 9:40 am and 1:15 pm local time for the study that 

will be used to obtain a sample, and which shows an increase between the two target periods.  
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 Converting Landsat LST from Morning to Peak Time 

As has already been found, land surface is heated through the balance of incoming and 

outgoing energy, where each object on the earth has a different response to generating heat 

from incident radiation (Trenberth et al, 2009). When radiation is incident on a surface it is 

distributed according to three different possibilities depending on the properties of the body; 

see figure (4-6): part is reflected by the surface depending on its albedo (a), which is the 

percentage of the reflected radiation to the total incident energy, another part is absorbed by 

the body and then emitted depending on the emissivity LSE, and the final part is transmitted, 

which occurs in transparent bodies that can allow light to pass through them such as glass, 

where for non-transparent surfaces this part is zero, such as soil (Hanks, 1965; Krenzinger 

and de Andrade, 2007). An object that can absorb all the incident energy (absorptivity LSA = 

1 or albedo = 0) and emits all the absorbed energy (LSE = 1) with none transmitted, is 

referred to as a so-called perfect black body, which represents the maximum absorption and 

emission that can occur, and thus LST as well (Matsumoto et al., 2013). 

(Transparent body)                (Non-transparent body)                (Black body) 

  

  

 

 

Figure 4-6: The three different possibilities that can occur at surfaces where there is incident 

radiation, as depending on the properties of the bodies themselves. 

LST studies show that homogenous surfaces or pixels normally record similar LST values 

over the same time and under the same conditions, and the opposite for heterogeneous pixels 

which vary depending on composition (Lin et al., 2008). This means the pixel whose LST is 

increased by 10°C within a certain period, other pixels that have the same properties 

(absorption and emission power) and that are under the same conditions will show similar 

changes. Thus, the ability to absorb and emit energy (LSA and LSE) can be used to estimate 

the change (here, increase) in land surface temperature, ΔLST, from a pixel that has a longer 

time to absorb and emit energy to another which receives less as a result of being in the first 

object’s shadow or the difference between the peak in temperature compared to some earlier 

time. This can be obtained by converting the ΔLST of a certain pixel to the equivalent of 
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being a black body, ΔLSTb, by dividing it into the LSA and LSE for this pixel, where the 

output will then represents a maximum in LST in accordance with a particular case, and so 

another unknown LST increases associated with other pixels’ ΔLSTs can be derived from this 

ΔLSTb value by multiplying it by LSE and LSA of these pixels. 

ΔLST ÷LSE

LSA
 = ΔLSTb                                                                                                                  (4) 

ΔLSTb × LSE × LSA = ΔLST of a pixel                                                                                (5) 

However, this is in relation to non-vegetated areas or the image under the conditions 

mentioned earlier. However if there is a certain proportion of vegetation (PV) in the pixels, 

the LST value will be negatively affected by the role of the transpiration process which 

contributes to a decrease in LST (Deng and Wu, 2013). Therefore, in order to take this factor 

into consideration, the difference in the dynamics of the LST between vegetated and non-

vegetated classes between the morning (when the Landsat passes the area) and at midday 

(when the temperature reaches a maximum) must be observed to investigate the ability of the 

transpiration process to slow or reduce ΔLST for the vegetation that is assumed to be 

produced in the absence of this transpiration role. 

This observation requires ground-based measurements for LST to monitor the dynamics of 

LST over a full vegetated and non-vegetated class for the purposes of estimating the role of 

transpiration in reducing ΔLST. These measurements were collected on different days in the 

summer of 2017 (dry weather conditions and free of clouds) including a Landsat overpass 

time 10/9/2017, the morning measurements were collected between 9:35 and 9:45 am (5 

minutes before and after the Landsat overpass time) and in the early afternoon between 1:10 

and 1:20 pm (5 minutes before and after the SEVIRI capture time), where the daily LST 

values are likely to be at the highest level during this time figure (4-7). These measurements 

were taken from green leaves to represent the vegetated class and open land (dry soil) to 

represent the non-vegetated area, taking into account the effect of the shadow, so these 

measurements were taken from the sides that had been exposed to the sun throughout the 

time between the morning and the midday measurements.  
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 Results 

The local peak in LST needs to be estimated as a first step in processing the method, which is 

the time that the Landsat data need to be converted to, which the results showed to be around 

1:15 pm, as per figure (4-7). This was obtained by using a number of SEVIRI LST images to 

calculate the average LST for each daytime hour from a number of days collected randomly 

during the summer from the years under study (2005, 2009, 2013 and 2017). 

 

 

 

 

 

 

Figure 4-7: The time when the LST normally reaches a maximum during the a day in the 

study area determined using SEVIRI data as an average of a number of summer days 

collected from the years under study (2005, 2009, 2013 and 2017). 

The difference in ΔLST between the vegetated and non-vegetated areas was estimated in the 

results shown in the following table (4-1), which presents a number of actual ΔLST between 

morning at 9:40 am and early afternoon at 1:15 pm for from different days (August and 

summer).  

Table 4-1: Ground-based measurements for LST increase the ΔLST between 9:40 am and 

1:15 pm, collected from hot and cloud-free days (summer 2017) to estimate the ΔLST 

between vegetated and non-vegetated classes (dry soil). 
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Where ΔLSTv and ΔLSTn are ΔLST of vegetated and non-vegetated (dry soil), respectively, 

and ΔLSTb is estimated as the ΔLST of a black body (LSE=1, LSA=1, PV=0), L is estimated 

ΔLST of the vegetation as there is no transpiration effect; PLV is an estimated ratio for the 

effect of transpiration on reducing the ΔLST of the vegetation, P represents a percentage of 

the transpiration effect on reducing the ΔLST of a  ΔLSTb (black body increased LST value), 

The LSEs for the fully vegetated and non-vegetated pixels (dry soil) were 0.985 and 0.95, 

respectively, where 0.87 and 0.70 are the LSAs values for fully vegetated and non-vegetated 

pixels (dry soil), respectively, as provided by the Landsat data. 

It was found that there are similar ratios for the role of the transpiration process in terms of 

reducing ΔLST over the period between the morning and the peak temperature on different 

days, which shows that there is a clear relationship between the increase in the vegetation 

ΔLSTv and the other value that would otherwise be produced by its LSE and LSA. The 

ΔLST of the vegetation is lower than the value generated by its LSE and LSA by around 

51%, indicating the role of the transpiration process, which is also equivalent to around 44% 

of the value that would otherwise be produced by a perfect black body (LSE = 1, LSA = 1) 

over the same area, time and conditions. Therefore, to convert the ΔLST for a full or partly 

vegetated pixel to a value of a perfect black body which then can be redistributed to other 

pixels, the ΔLST needs to be estimated as it is supposed to be given by LSE and LSA by 

eliminating the effects of the property of the vegetation (transpiration) to reduce the ΔLST, as 

shown in figure (4-8).  

According to the SEVIRI images (4-6), the mean ΔLST between 9:40 am and 1:15 pm is 

11.5°C and its PV, LSE and LSA are 0.05, 0.96 and 0.78, respectively. In this case, in order 

to be able to redistribute this mean ΔLST value to the morning Landsat image (4-2), the 

following expressions (6, 7, 8 and 9) need to be applied. 

 Eliminate the effect of the vegetation on reducing ΔLST. 

ΔLST÷ (((1-(0.44 ÷ LSA ÷ (LSE))) × PV) + (1 - PV)) = L1                                                  (6) 

11.5 ÷ (((1-(0.44÷0.78÷ (0.96))) ×0.05) + (1-0.05)) = 11.85°C 

The output of this expression (11.85°C) represents the ΔLST as it is supposed to be given by 

LSE and LSA as a non-vegetation pixel. 
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Figure 4-8: The main steps for converting LST from Landsat overpass time (9:40 am) to the 

time when the temperature reaches its peak (1:15 pm)    
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 Converting to as a perfect black body (ΔLSTb). 

L1÷ LSA ÷ LSE= ΔLSTb                                                                                                        (7) 

11.85°C ÷ 0.78 ÷ 0.96= 15.75°C 

This output (15.75°C) represents the increase in LST of a perfect black body (ΔLSTb) for a 

part of the study area, which represents a key value for deriving the ΔLST of the Landsat 

pixels according to the properties of each pixel within the target area, so the next step is to 

redistribute this ΔLSTb across the Landsat pixels. 

 Redistribute ΔLSTb across the Landsat pixels using as follows. 

ΔLSTb × LSA × LSE = L2                                                                                                      (8) 

15.75 × LSA × (LSE) = L2 

The output here represents the ΔLST for each Landsat pixel as it is supposed to be given by 

the LSE and LSA of the pixel, where LSA and LSE are the absorptivity and emissivity 

images from Landsat. 

 Recalculate the property of the vegetation to reduce the ΔLST using the following 

expression. 

L2× (((1-(0.44 ÷ LSE÷ (LSA))) × PV) + (1 - PV)) = ΔLST2                                           (9) 

The ΔLST2 image is the LST increase between 9:40 am and 1:15 pm in Landsat resolution, 

so to obtain the final image which represents Landsat LST estimated at a maximum of the 

temperature, this output (ΔLST2) need to be added to the morning Landsat image figure (4-

8). 

ΔLST2 + LST1 (at 9:40 am) = LST2 (at 1:15 pm)                                                                (10) 
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Figure 4-8: The estimated Landsat LST image over the peak of the temperature (1:15 pm) for 

the study area.  

 

 Accuracy assessment  

As a results of the lack of actual data to be used to evaluate the accuracy of the different 

images are used in this method to generate both of LST images, the study evaluates the final 

images of the process which are the morning Landsat LST image and the converting LST 

image that represents a peak period of temperature. The two main LST validation approaches 

are through ground-based measurements or the determination of near-surface air temperature 

(Avdan and Jovanovska, 2016). This morning LST image and the final image converted to at 

a local peak of temperature are subjected to a validation via a number of LST ground based 

measurements for the same time in the study area. 

Figure (4-9) shows a validation of the Landsat morning image by testing the standard error 

and R of the variability between a number of LST points or pixels from Landsat images and 

their counterparts from the actual points. It is shown that the standard error or uncertainty of 

these selected points is around 0.7°C and R = 0.88, while figure (4-10) shows a validation of 

the Landsat image converted to at a local peak of temperature. It is shown that the standard 

error of these selected points is around 1.7°C and R = 0.82, which is considered a reasonable 
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result for this comparison and reflects high percentage acceptability (Avdan and Jovanovska, 

2016).  

 

 

 

 

 

 

 

 

Figure 4-9: An accuracy assessment of the Landsat morning image 9:40 am, where it shows 

the standard error and R of the variability between points from this image and their 

counterparts from the actual LST ground measurements.  

 

 

 

 

 

 

 

 

 

 

Figure 4-10: An accuracy assessment of the Landsat morning image converted to at a local 

peak of temperature (1:15 pm) which shows the standard error and R of the variability 

between points from this image and their counterparts from the actual LST ground-based 

measurements  
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 Discussion 

This chapter seeks to improve the time measurement for LST derived by Landsat as an 

important aspect for studying this variable and analysing its relationship with the spatial 

structure of the urban landscape, where high-resolution thermal satellite data such as that 

extracted from Landsat is only normally acquired at a specific time of the morning when 

factors related to sun angle is more impactful such as the amount of incoming and the 

outgoing heat energy as well as the intensity of  shadows of buildings, which in turn can 

affect the accuracy in estimating LST variation. This study addresses this controversial issue 

by providing a method to convert Landsat LST images to be estimated when the temperature 

reaches a maximum, rather than directly using data from the morning (the satellite overpass 

time) by distributing the increasing ΔLST between these two times using SEVIRI LST 

products (3 km resolution every 15 minutes) based on the properties for generating the heat 

of each pixel on the Landsat scene (absorptivity LSA, emissivity LSE and the property of the 

vegetation cover PV for reducing ΔLST due to transpiration, estimated by ground-based 

measurements) during the summer season in a semi-arid region.  

By observing the increase in LST from morning to midday in different classes, it was found 

that in non-vegetated open areas under dry conditions the ΔLST is strongly controlled by 

LSE and LSA. In contrast, the vegetative cover behaviour is affected by the transpiration 

process which reduces the ΔLST that is assumed to be generated by the LSA and LSE of this 

vegetated class, which is consistent with arguments stated earlier in the literature review 

(Oke,1982), (Weng et al, (2004) and (Chakraborty et al, 2015). This difference was found to 

vary coincide with the change of the diurnal temperature, this difference was appeared with a 

similar ratio when it was applied for different days, where it showed that the actual ΔLST of 

a vegetated class is lower than that assumed to be generated by an object such in a black body 

properties (PV = 0, LSA = 1 and LSE = 1) between 0.42% and 0.45% (0.44% as an average), 

which represents the role of the vegetation for reducing the heat beside LSE and LSA when 

estimating the ΔLST for each Landsat pixel. 

The presented method has allowed the estimation of an LST image during a local peak in 

temperature at a resolution of 30 m (Landsat), where it can be seen from the assessment of 

the accuracy using actual ground based measurements that the errors range between 1°C to 

3°C, and the standard error or uncertainty of this converted image is 1.7°C and R = 0.82. This 

can be used as an alternative solution to addressing the issue of the lack of high-resolution 

thermal satellite data recorded simultaneously with the local peak in temperature, which 



  

67 

  

 

would contribute to minimizing uncertainties when estimating LST and studying its 

relationship with urban land covers, and overcome the impasse caused by this issue which 

has long been recommended by many researchers interested in this field (Petropoulos et al., 

2009; Li et al., 2016).  

By obtaining this expression for converting Landsat LST time measurement, it would become 

possible to obtain more reasonable data for studying LST, which could pave the way to more 

profound studies in this field. This study recommends to improve the accuracy assessment 

method by allowing additional coverage to maximize the training points within the study area 

and not to be limited only in the final image, so that it can include the images used for 

processing the final image. 
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Chaper 5. Assessing the effect of the time of day on the spatial variation 

of LST. 
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 Introduction  

Studying the relationship between land surface temperature (LST) and urban land cover is an 

interesting topic in the field of remote sensing applications, where the use of satellite sensors 

with thermal bands has facilitated the associated data collection processes. Landsat products 

are widely used in this field due to the accessibility to relatively high spatial resolution 

thermal data, making this satellite more suitable for studying LST and its relationship with 

land cover than others. However, this remotely sensed data is not captured during times of 

local peak temperature to represent the greatest special variation of LST, which in turn has 

created a controversy among researchers due to the fact that morning time is not an ideal time 

to identify the relationship between LST and urban land cover. Similar to a number of 

previous research efforts (Zhou et al, 2011; Zhou et al., 2013), the presented study 

hypothesizes that analysing the relationship between LST and urban land cover during 

periods other than those of a local peak of temperature, as when using Landsat data, can 

affect the reliability of the final results due to the presence of shadows and other effects 

associated with the angle of the sun, such as the intensity of the radiation being greater 

around the time of solar zenith.  

This chapter seeks to investigate whether the time of day can affect the spatial variation of 

LST and to what extent this can affect the accuracy of the relationship between the LST and 

urban land cover over the study area, which in turn could provide the ideal time for 

conducting this study. This chapter uses Landsat 8 LST images from 10th of September 2017 

and converted Landsat LST images estimated via the method suggested in the previous 

chapter for estimating LST during the peak the temperature at 1:15 pm; in addition, this 

chapter further suggests another method to obtain an LST image that can give an estimate of 

LST in the event that the maximum incident heat energy is evenly distributed across surfaces 

throughout the day. 
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 Data Preparation. 

This section uses different resolution Landsat LST images that represent different times and 

cases for the study area; a normal LST image at 9:40 am, converted Landsat images at 1:15 

pm, and the LST estimated in the event that the maximum of the amount of incident heat 

energy is evenly distributed across surfaces throughout the day, in addition to land cover 

images representing vegetative and non-vegetative cover. The R programme (R Core Team, 

2017) is used in this chapter to apply the scatterplot technique to determine the correlation, if 

any, between the above images. 

 The Morning Landsat LST image. 

The Landsat LST image, as provided by the USGS website at the actual satellite overpass 

time, is shown in Figure (5-1). This image has already been processed in the previous 

chapter, which represents the LST in the morning time in the analysis provided in this 

chapter. 

Figure 5-1: The LST retrieval from Landsat 8 for the study area during the morning time 

(10/9/2017 at 9:40 am local time).   

 

 

 Landsat LST during times of peak temperature (1:15 pm local time). 
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Figure (5-2) below shows a Landsat image from the satellite overpass time (9:40 am) that has 

been converted to represent times of peak temperature (1:15 pm) which has already been 

processed as per the previous chapter, and will be used to conduct the analyses for the effect 

of time of day on LST.   

Figure 5-2: The estimated Landsat LST at peak temperature (1:15 pm) (10/9/2017) 
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 Landsat LST image estimated during a peak temperature (1:15 pm) in the event of 

the lowest shadow effect for each pixel. 

This is a hypothetical image extracted from the previous LST image (figure 5-2) in that all 

the homogenous pixels in terms of the properties should show similar LST values though this 

may not occur in reality, especially in urban areas, due to the shadow which effects the 

evenness of the amount of the incoming energy, creating disparities in the LST for this kind 

of pixel. The technique here considers the maximum LST within the bounds of certain types 

of land cover such as vegetation, buildings, paved roads or dry soil, and assumes a maximum 

absorption and emission of heat energy, in contrast to the lowest LST values which represent 

lower amounts and a maximum shadow effect. This image shows LST values for each pixel 

based on its property with the elimination or minimizing the effect of the shadow, which is 

achieved by using a maximum LST value for a particular pixel as it represents the lowest 

shadow effect, to make homogenous pixels that are unified within the maximum value that 

can be given based on their surface behaviour. Based on these considerations, this image can 

be extracted from the converted image (Figure 5-2) using the following expressions: 

1. When (PV = 1): in this scenario, the highest LST value of the full vegetated pixels 

(↑LSTv)  will be assigned  

2. When (PV = 0): in this scenario, a pixel is considered to be composed of non-vegetative 

cover such as rocks, bare soil, paved roads, and therefore the following expression will be 

used. 

(↑LSTn ÷ LSEn ÷ LSAn) × LSE × LSA  (11) 

3.  When (PV ˃ 0 and ˂ 1): in this scenario, a pixel is considered to show partial vegetative 

cover, in which case the following expression will be applied. 

((↑LSTn ÷ LSEn ÷ LSAn) × ((LSE - LSEv × PV) ÷ (1- PV) × ((LSA – LSAv × PV) ÷ (1-PV) 

× PV) + (↑LSTv × PV)                                                                                                          (12) 

Where ↑LSTv is the highest LST value recorded on the full vegetative cover pixels, ↑LSTn is 

the highest LST value recorded on a non-vegetative cover pixels over a particular open space 

(dry soil), LSEn and LSAn are the emissivity and absorptivity of the non-vegetative cover 

pixel used in the expression as the highest LST, LSEv × LSAv are the emissivity and 

absorptivity of the full vegetative cover pixels. The LST values shown in this output image 
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represent the maximum values for each land class under a particular weather condition 

(Figure 5-3). 

Figure (5-3). The estimated Landsat LST at around midday, as free of the shadow effect 

extracted from the converting image (1:15 pm). 
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 The effect of time of day on the relationship between LST and urban land cover  

The scatter plot model is performed in this chapter to analyse bivariate relationships. In 

addition, a sample of 80 LST points collected from equally different land cover (vegetation, 

buildings, asphalt roads, open land) will be used to identify the variation of LST among 

different classes.  

 Results 

 The effect of time of day on the relationship between LST and the density of 

vegetation 

The result shows a significant different between the below three figures (5-4), which 

represent the relationship between LST and the density of the vegetation cover under three 

different conditions related to the time of day. The proportion of the vegetation (PV) image is 

plotted here with the three different LST images which could allow more linkages between 

LST values and the different proportions of vegetation to be obtained, making the effect of 

time of day on the shadow in the morning image more detectable. In other words, it can 

contribute to maximizing the correlation between LST and PV to make the effect of time of 

day on the LST spatial variation between the images more comparable. Figure (A) presents 

the relationship during the morning time (9:40 am), which clearly indicates a weak positive 

correlation (y = 33.5x + 4.6 and R = 0.21), where the LST values tended to increase with 

increased vegetative cover. Figure (B) uses the converted Landsat LST image (at 1:15 pm 

when temperature is around its peak) to be plotted with the proportion of vegetation, the 

relationship between the variables in this figure is clearly opposite to that in figure (A), where 

the line-trend of this figure shows an obvious negative relationship between LST and the 

density of the vegetative cover (y = 44.9x + 0.092 and R= 0.12), where the temperature 

decreased with an increased percentage of vegetative cover, and vice versa. Figure (C) shows 

this relationship with the lowest effect of shadow for every single pixel, where it becomes 

strongly negative (y = 2.53x- 0.051 and R = 0.44).  
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Figures 5-4: The relationship between LST and the proportion of vegetation under three 

different conditions: (A) represents morning time, (B) represents a local peak in temperature, 

and (C) represents the minimum effect of the shadow for all pixels. 
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 The effect of time of day on the relationship between LST and different land cover 

classes  

Figure (5-5) presents further information about the effect of the time of day on the 

relationship between LST and different forms of urban land cover (building areas, full 

vegetative cover, asphalt roads, and open land area), represented in a sample of 80 points (20 

points for each class) collected randomly, including the minimum and the maximum values, 

to verify how these LST points are distributed and effected by changing land cover types at 

two different times of day (A represents 9:40 am and B represents 1:15 pm). Figure (A) 

shows there is an overlap between the boxes or classes, especially among those representing 

vegetation, buildings, and asphalt roads, which means there is a weak correlation between 

these forms of coverage and LST, while the open land area appeared more distinctive with 

regard to maximum levels of LST due to being exposed to a greater amount of incident 

radiation. In contrast, figure (B) gives significant different indications about the correlation 

between LST and these urban land during the peak in temperature (1:15 pm), which clearly 

shows the role or effect of different land classes on the spatial variation of LST, where the 

relationship between these land cover patterns and LST becomes more recognisable through 

the spaces between the boxes, especially the range of LST over vegetative cover which shows 

the minimum of LST. 

(A)                                                                            (B) 

 

Figure 5-5: The spatial variation of LST including mean, min, and max values for different 

land cover classes (buildings, asphalt, barren land, and vegetation) during two different 

times of day; at 9:40 am the Landsat overpass time, and at 1:15 pm, the time estimated to 

represents a local peak in LST. 
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 Discussion  

This chapter is dedicated to the investigation of the impact of time of day on the spatial 

structure of LST by comparing the spatial variation of LST derived during the morning time 

when the Landsat satellite normally overpasses the study area (9:40 am local time), and the 

spatial variation in LST derived at the time when the temperature is expected to reach a 

maximum using the converted Landsat image (1:15 pm local time), contribute to identify the 

impact of the sun angle and associated factors such as the intensity of the incident radiation 

and building shadows on the relationship between LST and land cover, which in turn can 

cause a misconception of this relationship. This impact can be minimized by determining the 

ideal time at which to estimate LST and observe its relationship with urban land covers. 

It was found that the spatial variation in the LST is affected significantly by the time of day, 

which is variable depending on the angle of the sun with the ground, so that LST variation 

can be shown to be more noticeable or at its greatest when temperature reaches a maximum 

and vice versa, supporting Mathew et al. (2018) and Zhou et al. (2013). Figure (5-4) shows 

the different LST images plotted with the proportion of the vegetation (PV) to reveal the 

extent of the effect of time of day on the relationship between these two variables, by 

influencing the amount of the incident solar radiation, which is normally more powerful 

during the morning due to the angle of the sun. During the morning, as per figure (5-4, A), 

the LST values are controlled less by the surface, resulting in an understandable variation in 

LST between vegetated and the non-vegetated pixels. By contrast, in figure (5-4, B), when 

the LST values are strongly distributed based on the surface patterns, the relationship 

between LST and PV became clear and sensible. For this reason, the relationship between the 

LST and the density of vegetation appeared to be clearly different between the morning (9:40 

am) and during the peak in temperature (1:15 pm), where during the morning this can be 

shown to be slightly positive with density of vegetation, while this clearly became strongly 

negative during a local peak in temperature which also coincides with a reduced effect of 

shadow. Figure (5-4, C) illustrates the impact of the shadow according to time of day, as 

hypothesised by Weng et al (2004). Unlike the spatial variation in LST during peak 

temperatures, the distribution of LST during the morning time was not clearly associated with 

the spatial variation in the land surface patterns, where the LST for a particular pixel might be 

significantly lower or higher than others, are shown similar surface properties, essentially due 

to the unequal distribution of the incident solar radiation during the morning; in other words, 

the areas that are more open to the sun, whether they are in a natural form such as dry soil or 
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in an unnatural form such as concrete surfaces (airport), show higher LST values of up to 

around 38°C regardless of their specific properties, which is in agreement with Coops et al. 

(2007) and Nichol (1998).  

The absence of a clear correlation between LST and urban land cover patterns during the 

morning indicates the weak role of surface properties in distributing LST and being 

responsible for generating the heat. Shadow and other accompanying factors such as surface 

moisture have a strong influence on the control of the special variation of LST during this 

period, which affects the trend line in the relationship between the surface cover and LST, 

and thus was not consistent with the prevailing belief that built-up areas, such as urban 

centres, show the highest LST values. This results in the phenomenon known as urban heat 

islands (UHIs) in a relationship that is otherwise supposed to have a negative correlation with 

the density of vegetation and not the opposite, as shown in Figure (5-5).  

The influence of land cover patterns on LST during the time estimated to represent a 

maximum in temperature was explored to be the highest, where LST values was clearly 

controlled by land coverage patterns. LST values were found to be similar across classes and 

pixels that were otherwise homogenous in their properties, and varied depending on the land 

surface type, whereby the sun being at a zenith and the minimal effect of shadow distribute 

the amount of the incident radiation more equally among the different classes than at earlier 

times. This effect was far more apparent over residential areas as these are affected to a 

greater extent by the angle of the sun compared with open areas, and it is therefore possible to 

say that when the majority of the surfaces in cities are covered by buildings, such as is the 

case for this study area, the sensitivity to the angle of the sun will be more obvious than for 

other areas. The open areas where there was no or a minimal shadow effect over a longer 

time showed the highest LST values, such as the airport runway and the surrounding grounds 

at around 49°C versus around 44°C in the city centre.  

The above also showed that despite the diversity in the land surface cover, the LST variation 

during the morning was not recognisable. However, by measuring LST during peak 

temperature to minimize the effects related to time of day one can reduce scatter or noise, 

where the differences in LST among the homogeneous pixels is minimized, which means the 

distribution of the LST values are controlled more by the surface behaviour of each pixel. 

This is also demonstrated by Figure (5-5), where the effect of time of day on the spatial 

variation of LST is apparent. The distribution of LST over different urban land covers was 

dramatically changed between the morning and at estimated peak temperature. For example, 
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the coolest class during the morning was over the built-up area, while during peak 

temperature the vegetation cover showed the lowest LST value. Despite the different patterns 

of land surface, the LST values during the morning appear similar or even intersect, while the 

variability between the different classes during peak temperature was greater than during the 

morning.  

Studying LST during peak temperature can reduce – though not eliminate – any associated 

uncertainty because of the difference in the duration of exposure to sunlight, which is the 

reason for the differences even though they represent the same day and area. In addition, 

measuring LST during a local solar zenith time can gave an opportunity for those surfaces 

which are hidden from the sun to absorb and generate heat energy in proportion to the ability 

or properties of the associated classes, which contributes to the associated reduction in LST 

differences within the homogeneous classes or pixels and increase in LST differences 

between heterogeneous classes or pixels. Furthermore, this time is the most convenient 

during daytime for identifying the relationship between LST and different land cover.  
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Chaper 6. Assessment and enhancement of the temporal variation of LST 

over a time series 
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 Introduction 

Studying the spatial and temporal variation in LST using thermal remote sensing data allows 

for an assessment of the magnitude of the impact of human activities on change in 

temperature, and indeed on the climate in general. However, in some cases, such as this study 

area, the temperature is characterised by extreme values, resulting in exceptional conditions 

that would otherwise affect the accurate determination of change in LST as a time series; in 

addition, similar to the effect of time on the spatial variation of LST, the lack of high-

resolution satellite thermal data to allow for an estimate of LST during the maximum in 

temperature can also provide questionable results when studying temporal variation of LST 

the due to shadow or weak solar irradiation during the morning, as compared to the peak 

period. Therefore, these two different aspects need to be investigated and taken into account 

when studying changes in LST over time.      

This chapter seeks to improve the study of the change in multitemporal LST images by 

investigating two different expects: the difference between using a single image and more 

than one image in the form of an average representing each year; and a consideration of the 

effect of the time of day by examining the differences between the use of LST images 

recorded in the morning at the Landsat overpass time of around 9:40 am, and images 

estimated at peak temperature (1:15 pm, using the processes presented in chapter 4 ). 

 Data preparation and methods 

This section presents the required data and the methods that are used to achieve the objective 

of this chapter.  

 Morning Landsat LST images (satellite overpass time) 

12 multitemporal Landsat LST images were extracted from Landsat 5 and 8, as collected 

from the summer months (July, August and September) for the years 2005, 2009, 2013, and 

2017, which were selected according to the start of the SEVIRI products and difficulties with 

using Landsat 7, so that three cloud-free satellite images from each year were collected, as 

provided by the United States Geological Survey (USGS) Earth Explorer website 

(http://earthexplorer.usgs.gov/). The processes presented in previous chapters for retrieving 

LST from Landsat and for obtaining estimated LST images during times of peak temperature 

are applied here to prepare the images required for this chapter, as shown in table (6-1). The 

Landsat LST images that are retrieved from both Landsat 5 and 8 will be considered later in 

this chapter.  
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Table 6-1: The LST images extracted from Landsat 5 and 8 for use in this chapter 

 

 

 

 

 

 

 

 

 LST images estimated during times of peak temperature (images converted for 

estimate at 1:15 pm). 

The processes used in Chapter 4 to convert Landsat LST from the satellite overpass time to 

one appropriate to the time of peak temperature are applied here to convert all the LST 

images reported in table (6-1).  

 Creating the average images for each year 

Three images for each year (July, August, and September) at both times of day (morning and 

at peak temperature) will be combined to obtain one image for each year as an average.  

 Normalized differenced LST index (NDLI). 

This chapter applies another method by which to identify changes in LST in terms of the 

changes of area covered by different LST rates, and further applies this to the LST values that 

need to be converted to a normalized LST index, which can be used to rearrange the LST 

values in the different images in the same template in order to make them range between 0 to 

1. The index enables the extent of the LST values to be normalized to make them comparable 

and allows the investigation of how NDLI rates cover the study area (in units of area of km²), 

and then how the time of day influences the changes in this distribution over the years. 

The averaged images at both times of day (morning and during peak temperature) are 

converted here to different normalized LST indexes using the following equation: 

LST* 
(LST−LST∘)

(LSTs+LST∘) 
                                                                                                                (12) 

                Details  

 

sensor  

Time 

clouds 
years 

Number 

of 

images 

Months 
Local 

time 

Landsat 5  2005 3 
July, August, and 

September 
9
:3

0
 am

 to
 9

:4
0
 am

 

0
 %

 clo
u
d
s 

Landsat 5  2009 3 
July, August, and 

September 

Landsat 8  2013 3 
July, August, and 

September 

Landsat 8  2017 3 
July, August, and 

September 
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Where LST* is the normalised LST. LST, LSTs and LST∘, represent the LST image, and the 

maximum and the minimum of the LST, respectively, for the study area of a particular image. 

By preparing the required LST data estimated at different times and conditions, the temporal 

changes in LST can be investigated over these different cases.  

As a first step, the effect of the extreme values of LST is examined in this chapter to identify 

and eliminate their effect when analysing the effect of time of day.    

 Investigating the effect of the extreme values of LST on its temporal changes 

The changes in LST over the years, as represented across single seasonal images (August) as 

a mid-season measurement, are applied for comparison with the changes over these years 

using the averaged images for the three months of July, August and September to assess how 

well the use of a single image represents the year when analysing change in LST as a time 

series (6-2). This change will be investigated in terms of two different approaches, as follows: 

 Results 

 In terms of the three main levels of LST (minimum, maximum and mean). 

 

Table 6-2: The three main levels of LST (minimum, maximum and mean) as single data (s) 

and as seasonal averaged from July, August and September (v) for several years (2005, 2009, 

2013 and 2017), to assess the role of using seasonal averaged data in providing more 

representative images, through comparing the changes in these levels across the years (rate 

of change). 

 

 

 

 

 

 

 

              LST levels 

Year min max mean 

2005s 23.0 35.0 30.0 

2009s 23.0 36.0 30.0 

2013s 29.5 41.0 35.0 

2017s 24.0 41.0 34.0 

Rate of change 0.24 0.57 0.42 

2005v 25.0 41.0 35.0 

2009v 22.5 38.0 32.0 

2013v 25.0 38.0 32.5 

2017v 26.0 42.5 35.0 

Rate of change 0.13 0.11 0.01 
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Figure 6-2: The changes in the three main measures of LST (minimum, maximum and mean) 

across the years when using a single image to represents each season. 

 

Figure 6-3: The changes in the three main measures of LST (minimum, maximum and mean) 

across the years when using seasonal averaged data from July, August, and September to 

represents each year. 
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Figure 6-4: Comparing the change (rate of change) in the main measures of LST (minimum, 

maximum and mean) for the years 2005, 2009, 2013 and 2017, provided by using the two 

earlier approaches (single and averaged image). 

By observing the details presented in Table (6-2) and Figures (6-2) to (6-4) it can be seen that 

there is a difference between using the single image and the average image method for 

studying LST changes over the years. The LST values, when using the single image method, 

show greater differences and more fluctuation over the years, as per Figure (6-2), compared 

to when using the average image mode which appeared more regular, as per Figure (6-3). 

Also, the first method showed that 2013 recorded the highest LST values, while in the second 

method these values were recorded in 2017; in addition, this difference was followed by a 

difference in the line trend for the years (gradient), so although both methods show an 

increase in LST values over the years, the single image method increases more obviously, 

especially for the maximum and the mean levels, as per Figure (6-4), which is not accurate 

where they showed an increase of several-fold compared to the increase shown by the 

average images method.  
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 In terms of the spatial distribution using normalized LST difference LST* categories 

in an area unit (km²). 

This demonstrates the effects of using the two earlier approaches (single and averaged image) 

on the changes in the spatial distribution of different 10 categories of normalized difference 

LST index (LST*) in an area unit (km²) over the four years (2005, 2009, 2013 and 2017) to 

assess the differences that may occur as result of using a single image to represent a season. 

 

 

Figure 6-5: The changes in spatial distribution of 10 different categories of LST* in km² 

when using a single image for representing each year of the four years (2005, 2009, 2013 

and 2017). 
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Figure 6-6: The changes in spatial distribution of 10 different categories of LST* in km² 

when using when using seasonal averaged data from July, August, and September to 

represent each year. 

 

Figure 6-7: Comparing the changes in spatial distribution of 10 different categories of LST* 

in km² for the years 2005, 2009, 2013 and 2017, provided by using the two earlier 

approaches (single and averaged image). 
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Similarly, these differences were also clear in terms of the spatial distribution of the spaces 

covered by different LST categories via the LST* index, where the values were not 

compatible. Both methods showed that the medium LST* categories covered the largest 

areas, as per Figures (6-5) and (6-6), while the low and the high LST* categories covered the 

small spaces around the study area. However, Figure (6-7), which differentiates between the 

changes showed by these two methods, the coverage of LST* categories was unevenly 

changed, while some categories in the single image method showed increasingly large 

changes over these four years, while there were negative changes when using the averaging 

method, with some categories showing an increase but at a different pace.     

 Investigating the effect of the time of day on the temporal variation of LST over the 

years 

The changes seen using the average images (July, August and September) for the years 2005, 

2009, 2013 and 2017 in the morning (Landsat overpass time) were compared with the 

changes in the other average images that represented the peak temperature (converted images 

at 1:15 pm). This comparison is applied in terms of the two different ways that were used 

earlier. 

 Result 

 In terms of the effect on the three main measures of LST (min, max and mean)  

 

Table 6-2 The three main levels of LST (minimum, maximum and mean) as seasonal 

averaged data during two different times of day for the years 2005, 2009, 2013 and 2017, to 

assess the effect of the time of day on the temporal variation (rate of change) of LST over the 

years. 

 

 

 

 

 

 

              LST levels Cº 

year min max mean 

M
o

rn
in

g
 t

im
e 

(9
:4

0
 a

m
) 

2005 25.0 41.0 35.0 

2009 22.5 38.0 32.0 

2013 25.0 38.0 32.5 

2017 26.0 42.5 35.0 

rate of change 0.13 0.11 0.012 

P
ea

k
 t

im
e 

(1
:1

5
 p

m
) 

2005 35.0 53.0 45.0 

2009 32.0 49.0 42.0 

2013 35.5 47.0 41.0 

2017 38.5 53.0 46.0 

rate of change 0.35 -0.05 0.5 
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Figure 6-8: The temporal changes in the three main measures of LST (minimum, maximum 

and mean) across the four years 2005, 2009, 2013 and 2017 when using morning images 

(Landsat overpass time 9:40 am). 

 

Figure 6-9: The temporal changes in the three main measures of LST (minimum, maximum 

and mean) across the four years 2005, 2009, 2013 and 2017, when using images estimated at 

a peak of temperature(1:15pm). 
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Figure 6-10: Comparing the temporal change in the main measures of LST (minimum, 

maximum and mean) across the years 2005, 2009, 2013 and 2017, provided by using images 

estimated during the morning and others estimated during the peak in temperature. 

Tables (6-4) and Figures (6-8) to (6-10) show the effect of the time of day on studying 

change in LST over the years, where the results clearly show that there is a significant effect 

on the temporal variation of LST due to time of day through the differences shown by 

observing the figures representing the morning images (Landsat overpass time 9:40 am) and 

others for the images estimated during peak temperature. The overall change for the main 

measures of LST (minimum, maximum and mean) is one of a slight increase, and similarly 

when using the morning images, as per Figure (6-8), while these LST levels were changed 

differently, showing positive and negative changes when using the peak temperature images. 

For example, for the morning images, the maximum LST shows an increase over the years; 

however, for the estimated images for 1:15 pm, this level shows a tendency to decrease. 

Equally important, the minimum LST for the morning images shows a smaller increase than 

is shown by the estimated images for 1:15 pm, as per Figure (6-9). In addition, these 

differences were followed by a difference in the line tend over the years, so although both 

times show approximately similar line graphs, Figure (6-10) shows that the change when 

using the images for the peak time are greater and more obvious then when using morning 

images, especially with regard to the mean values.  
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 In terms of the spatial distribution using normalized LST difference LST* categories 

in the area unit (km²). 

This demonstrates the effect of time of day on the changes in the spatial distribution of 

different 10 categories of normalized difference LST index (LST*) in the area unit (km²) over 

the four years (2005, 2009, 2013 and 2017), to assess the differences that may occur between 

using the morning Landsat LST images and the images estimated to represent the peak of 

LST. 

 

Figure 6-11: The changes in spatial distribution of 10 different categories of LST* in km², 

across the four years 2005, 2009, 2013 and 2017 when using morning images (Landsat 

overpass time 9:40 am).  

 

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72

≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8 ≤ 9 ≤ 10

≤1 ˃ 1, ˃ 2, ˃ 3, ˃ 4, ˃ 5, ˃ 6, ˃ 7, ˃ 8, ˃ 9,

K
m

²

LST* categories 

2005 2009 2013 2017



  

93 

  

 

Figure 6-12: The changes in spatial distribution of 10 different categories of LST* in km², 

across the four years 2005, 2009, 2013 and 2017, when using images estimated at a peak of 

temperature (1:15 pm). 

Figure 6-13: Comparing the changes in spatial distribution of 10 different categories of LST* 

in km² for the years 2005, 2009, 2013 and 2017, provided by using images estimated during 

the morning and others estimated during the peak in temperature. 
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Similarly, the effect of time of day was also clear in terms of the effect on the spatial 

distribution of the areas covered by the normalized different LST index LST* categories, 

which indicate that special distribution of LST was not compatible between the images in the 

morning and the others representing the peak in temperature. Both of these different times 

show that the medium LST* categories cover the largest areas, as pre Figures (6-11) and (6-

12), while the low and the high LST* categories covered small spaces around the study area. 

However, Figure (6-13) shows that this distribution changed unevenly over the years for the 

two different times of day, as is clearly seen though category (6), where this category 

increased for the morning images and decreased for the images representing the peak 

temperature. The differences are similar to the other categories; whilst an increase was 

observed in some categories for both times of day, they were at a different pace.     

 Discussion 

This chapter seeks to address certain controversial issues related to the study of the temporal 

variation of LST using satellite data, as represented in the investigation of the effect of time 

of day on the temporal change in LST that may result from the variability of the intensity of 

the incident sun radiation and the shadow, as achieved by comparing the changes in LST 

across the years 2005, 2009, 2013 and 2017 using two different time of day, the morning (the 

overpass time of Landsat 9:40 am locally) and the time when the temperature is estimated to 

be at its peak (Landsat images at 1:15 pm estimated by the presented conversion method). In 

addition to assessing the effect of the extreme in temperature on the dataset to represent 

seasons, by comparing the change in LST across the years 2005, 2009, 2013 and 2017 using 

one single image from each summer season of the year and the change by using the images in 

a form of average over the summer months. This analysis would examine and minimize the 

uncertainty caused by these issues and enhance the study of LST changes over years and 

identify its relationship with the changes in urban land cover.  

It was found that there is a distinct difference between the change shown by using the single 

images and the averaged images with regard to representing seasons when studying LST 

changes across the years. The LST values when using the single image approach showed 

greater differences and greater fluctuation between years compared with the averaged image, 

where they appeared more regular. Also, using the single images showed that 2013 recorded 

the highest LST values while in the second method these values were recorded in 2017. This 

difference is followed by a difference in the overall trend of the years, where it was clearly 

seen that although both approaches showed an increase in LST over the years, the use of 
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single images showed a greater increase, especially at the maximum and the mean levels of 

LST where they increased several times compared to the increase shown by the use of the 

average images. These differences can obviously explain the effects of the extreme values of 

LST on obtaining a representative dataset for studying temporal variation, which in turn 

could affect the validity of the findings. Studying temporal variation of LST needs to be 

conducted using the seasonal images in the form of averaged images rather than relying on 

single seasonal datasets to represent each year so as to minimize the uncertainty that can be 

caused by extreme values of LST. 

In terms of the effect of time of day on the temporal variation of LST, it can be hypothesized 

that using LST data estimated during the morning might not be accurate enough as a result of 

the angle of the sun and associated factors such as shade. The results found that the 

comparison in both period; the morning time (the local overpass time of Landsat 9:40am) and 

the time when the temperature is expected to be reached a peak (Landsat images at 1:15 pm 

estimated by the presented conversion method) showed that the time of day can significantly 

effect on the temporal variation of LST over the years, the overall change for the three main 

LST levels (minimum, maximum and mean) increase slightly and similarly when using the 

morning images while these LST levels were changed differently as positive and negative 

change when using the images for the peak time. The variation when using the images 

representing the peak time were greater and more obvious then when using the morning 

images. In addition, these differences were followed by a difference in the spatial distribution 

of the areas covered by the normalized different LST index LST* categories, where the 

figures were not compatible between the images for the morning and those representing the 

peak in temperature. 

The results prove whether there is a difference between using the single and the averaged 

image approach as well as using the morning images and the images estimated during the 

peak of temperature, it indicates to the inaccuracy that can be occurred in the results 

processed according to the available high spatial resolution thermal data and the approach 

used previously (single seasonal images), on the other hand the differences mean that the 

influencing factors can be minimized by enhancing the methods to achieve a minimum 

uncertainty in the results which is by using LST images estimated during the peak of 

temperature instead of being during morning time to reduce the effects associated to the sun 

angle, as it was clearly found in the figures (6-8) to (6-13), in addition to this the LST images 

of time series need to be used in a form of averaged seasonal images rather than being as 
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single images, for the purpose of obtaining more representative images through minimising 

the extreme in temperature, which in turn would affect the correct trend line of the LST 

change over time series as it was clearly shown in the figures (6-2) to (6-7).     
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This chapter is divided into four parts: The first section (1) gives an overall discussion, which 

presents the findings gained from the research questions addressed in Chapters 4, 5 and 6. 

The second section (2) identifies the contributions this research makes to current 

understanding. The third section (3) gives a set of concluding remarks to this study. Finally, 

the research presents directions for future research, which are recommended to build on the 

work from this study, as based on the present findings. 

 General discussion 

This study focussed on addressing the Landsat LST data in terms of the time measurement of 

the satellite by creating a method to covert images taken in the morning (the satellite overpass 

time) to those representative of the local zenith to allow investigation of the effects of time of 

day on the study of the spatial and temporal variation of LST. The satellite sensors, which 

include the ability to detect thermal wavelengths, have facilitated the study of LST, especially 

those that provide high spatial resolution data such as Landsat, which is the most commonly 

used in this regard. However, the lack of high spatial resolution data from which one can 

estimate LST at a local zenith when the temperature is at a maximum results in maximizing 

some effects such as shadow and the weak concentration of the incident solar radiation 

which, in turn, can affect the amount of incoming and outgoing energy and thus the reliability 

of the analysis when studying spatial and temporal variation in LST (Petropoulos et al. 2009). 

This research presented a method to improve the spatial and temporal study of LST derived 

by Landsat data across multiple years (2005, 2009, 2013 and 2017) in a large city setting in a 

southern Mediterranean climate system. The city of Tripoli in Libya was selected for this 

study. The research focussed on addressing two main issues which have long been 

weaknesses in the study of LST. The first is the impact of the time of image acquisition on 

modelling the spatial and temporal variations of LST. The second is to diagnose the effect of 

extreme values of temperature on the images representing seasons when studying LST 

changes over a time series. This method is based on converting Landsat LST data from the 

satellite overpass time (9:40 am) to a time estimated to be around a peak temperature (around 

1:15 pm). Furthermore, each image in the time series is calculated in a form of an average of 

three images from the summer months (July, August, and September) with the aim of 

reaching more representative images which can minimize the effects of extreme values of 

temperature rather than images being used in a standalone manner.  
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The study used remote sensing data extracted from Landsat 5 and 8 (30 m resolution) and the 

Spinning Enhanced Visible and Infrared Imager LST products (SEVIRI 3 km resolution), in 

addition to LST-based measurements collected from the ground. The method is based on the 

use of an increasing difference between the morning and peak in temperature (ΔLST), which 

taken as the difference between the mean value from Landsat at the satellite overpass time 

(9:40 am) resampled to SEVIRI resolution, and SEVIRI at a time when the temperature is 

around a maximum (1:15 pm). This value then need to be processed as a black body value 

(absorptivity LSA = 1, emissivity LSE = 1) and then redistributed to the Landsat LST image 

based on the pixel properties (being absorptivity (LSA), emissivity (LSE) and the 

transpiration effect estimated from ground measurements). The results of this conversion 

method showed an accuracy in the standard error of 1.7°C, and R = 0.82 is achieved when 

compared with actual ground-based measurements. The study found that the spatial and 

temporal variation of surface temperature when derived from daily Landsat morning overpass 

images was significantly different to the modelled LST taken at 1:15 pm. These differences 

are higher as a result of the angle of the sun and associated factors such as shadows (Mathew 

et al., 2018; Zhou et al., 2013), which result in the LST in the high density of buildings being 

cooler in the morning images compared with other surface classes, including vegetation 

cover, while this picture was changed significantly when using LST images estimated at the 

local peak in temperature. It was also found that extreme temperatures can affect the trend of 

LST change across the years, which can be minimized by using the images in the form of the 

average of seasonal images of each year rather than images being used in a standalone 

manner. The results positively answered the research questions and supported the hypotheses 

stated at the beginning of the study, which would also provide an answer to the uncertainty 

that has sparked controversy among researchers, as represented in the effect of the time of 

day on the relationship between LST and urban land cover (Coops et al., 2007; Nichol, 

1998). Therefore, this research ascertained that the relationship between LST and urban land 

cover is significantly affected by time of day, and that studies during morning hours alone are 

not sufficient to identify this relationship as a result of the impact of the angle of the sun and 

associated factors such as shadows. 

 Research contributions 

This thesis is considered an unprecedented piece of scientific research in the field of the study 

of land surface temperature (LST). It has developed methods for processing LST that are 

more reliable than in the current literature and presented associated new results. Different 
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sources of LST data were used in this study including Landsat, SEVIRI, and ground-based 

measurements. The main chapters of the study have addressed issues regarding the available 

thermal remote sensing data which have long been controversial; Chapter 4 provides an 

alternative solution to addressing the lack of high-resolution thermal satellite data during the 

local solar zenith, which would allow an investigation to identify the relationship between 

LST and urban land cover during a local peak of temperature. This is considered more 

reliable than studying other times of day, such as the morning hours (the Landsat overpass 

time). Chapter 5 presented evidence regarding the effect of time of day on the spatial 

variation of LST as an important factor that has to be taken into account when studying the 

relationship between LST and land cover, which has long been a subject of controversy. It 

has also been ascertained that the ideal time for studying LST is when the temperature 

reaches a maximum in order to minimize the effect of factors related to the time of day such 

as shadow, hence achieving maximum certainty. Similar to Chapter 5, Chapter 6 

demonstrated that time of day also can affect the study of temporal variation of LST, thus 

emphasizing the importance of conducting this study during the period when the temperature 

is at its diurnal peak, in addition to presenting an approach to minimizing the effects of 

extreme values of LST on the seasonal representation.  

 Conclusion 

This thesis focusses on demonstrating and addressing important influencing factors in the 

study of spatial and temporal variation of LST in a semi-arid region, where the main research 

questions that were asked in the second chapter of this thesis can be answered as follows.  

1- To what extent can the use of SEVIRI LST products (geostationary satellites) and the 

relevant pixel properties allow the accurate conversion of the LST retrieved by Landsat 

from that of morning time to that observed at zenith? 

This study proposed a technique to estimate LST at Landsat resolutions during a local solar 

zenith period when the temperature is at its peak, where this method is based on the use of an 

increasing difference between morning and the peak temperature (ΔLST), which is taken as 

the difference between the mean value from Landsat at the satellite overpass time (9:40 am) 

when resampled to SEVIRI resolution, and SEVIRI at a time when the temperature is around 

its maximum (1:15 pm). This value then needs to be processed as a black body value 

(absorptivity LSA = 1, emissivity LSE = 1) and then redistributed to the Landsat LST image 

based on the appropriate pixel properties (absorptivity (LSA), emissivity (LSE) and 
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transpiration effects, as estimated by ground measurements). The results showed that there 

are similar ratios for the role of the transpiration process in terms of reducing the increase of 

land surface temperature, ΔLST, for the vegetation on different days (Xiao et al., 2007), 

where the actual increase in ΔLST of the vegetation is lower than the value which is 

supposed to be generated according to its absorptivity and emissivity (LSE, LSA) by around 

50%. This gives an indication of the role of the transpiration process, which is also equivalent 

to around 44% of the value that which would otherwise be observed by a perfect black body 

(LSE = 1, LSA = 1) within the same area, at the same time, and under the same conditions. 

The output of this conversion process showed an accuracy with a standard error of 1.7oC, R = 

0.82, when compared with simultaneously recorded ground-based measurements. 

2- How is the relationship between LST and urban land cover influenced by the time of day? 

LST studies have indicated that there is a strong correlation between the spatial variation of 

LST and changes in urban land cover. However, this relationship can also be affected by time 

of day as a result of the solar angle and the accompanying factors such as shade which can be 

more impactful during sunrise, thus this relationship needs to be studied at zenith rather than 

during the morning (Landsat overpass time) to minimise the effect of these factors, which has 

long been a controversial point that needs to be taken into account when conducting LST 

studies. This research used an LST Landsat image at the satellite overpass time (9:40 am) and 

a converted LST Landsat image during peak temperature (1:15 pm) to differentiate the spatial 

distribution of the LST at these two different times. 

It was found that the relationship between LST and the urban land cover is variable 

depending on the time of day, where during the morning there was a weak positive 

correlation with the density of the vegetation cover, where the LST values are tend to 

increase with increasing proportion of vegetation cover, and indeed vice versa. The lowest 

LST values are centred over higher densities of buildings, especially the centre of the city, 

while the highest LST values were found in open areas, whether it is in natural forms such as 

dry soil or in unnatural forms such as concrete surfaces (e.g., airport runway). This 

relationship can explain the effect of the unequal distribution of the incident energy during 

the morning period when the sun is closer to the horizon or the ground and when there is 

more shadow and dispersion of solar radiation (Guillevic et al., 2013). Therefore, there is an 

obvious correlation between solar angle and the line trend of the relationship between land 

cover and LST. In contrast, this relationship appeared different at peak temperature (1:15 pm) 

in comparison to the morning (9:40 am), which showed a strong negative correlation with the 
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density of the vegetation cover, where the LST values decrease with increasing percentage of 

vegetation cover and vice versa for higher LST values. The lowest LST values were centred 

over higher densities of vegetation, while the highest were in open areas (e.g., the airport 

runway), which is an indication of a minimal effect of the angle of the sun and accompanying 

factors such as shadow and dispersion and weak sunlight on the spatial distribution of LST, 

which in turn can show a more accurate relationship between surface cover and LST.  

3- To what extent does using a seasonal (July, August, and September) average temperature 

improvement rather than single data observations constitute a more representative 

dataset? 

This research hypothesizes that when studying the temporal variation of LST over a number 

of years, the seasonal images used need to be in a form of an average rather than single data 

to minimise the possibility of the effects of extreme LST values, thus achieving a more 

representative image; where the temperature is a variable, it is often characterized by extreme 

values and exceptional conditions that might otherwise affect the representation of a season 

and that can then also affect the change of LST across a time series. This study used LST 

images derived by Landsat 5 and 8 for the summer seasons (July, August, and September) for 

the years 2005, 2009, 2013 and 2017 to investigate the difference between the temporal 

variation of LST over these years using a single image for each year and as an average of the 

above three months, which in turn can identify the effects of extreme values on the temporal 

variation of LST. 

The results showed that there is a difference between using the single image and the average 

image for studying LST changes over the years. The LST, when using the single image 

method, showed greater differences and greater fluctuation between years compared with the 

average image method, which appeared more regular; also the single image method showed 

that 2013 recorded the highest LST values while in the second method the highest LST was 

in 2017. This difference was followed by a difference in the overall trend over the years (rate 

of change), so although both methods show an increase in LST over these years, the single 

image method showed a clearer increase, especially at maximum, and the mean levels of LST 

where they showed an increase several times compared to the increase shown by the average 

images method, these differences can obviously explain the effect of the extreme values of 

LST on the temporal variation analysis, which can be minimized by using averaged images. 

4- To what extent does the time of day affect the temporal variation of LST? 
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Similar to the impact of the time of day on the spatial distribution of LST, this study assumed 

that the lack of high-resolution satellite data through which to estimate LST during a local 

zenith period can also cause issues when studying the temporal variation of LST over a 

number of years, considering that the spatial distribution of the LST using data estimated 

during the morning is likely to be inappropriate because of the effect of shade. Therefore, the 

study used LST images derived by Landsat 5 and 8 for the years 2005, 2009, 2013 and 2017 

as an average for the three summer months (July, August and September) for each year 

during the satellite overpass time (9:40 am). It also converted images extracted from these 

merged images to estimate LST during the peak temperature (1:15 pm) to investigate the 

difference between the temporal variation of LST over these years during the morning time 

(9:40 am) and at the maximum in temperature (1:15 pm), which in turn can improve the 

ability to identify the effect of the time of day on the temporal variation of LST over the 

years. 

The results showed that time of day significantly affects the temporal variation of LST over 

the years through the differences found between the changes in the images representing the 

morning (Landsat overpass time 9:40 am) and those representing the peak temperature (1:15 

pm). The overall change for the three main measures of LST (minimum, maximum and 

mean) increase slightly and in a similar manner when using the morning images, while LST 

changed differently, showing both positive and negative changes, when using peak 

temperature images. The variation when using the images representing the peak time were 

greater and more obvious than for the morning images. In addition, these differences were 

followed by a difference in the spatial distribution of the areas covered by the normalized 

different LST index LST* categories, where the figures that represent the images in the 

morning time were not compatible with those representing the images during the peak in 

temperature 

 Limitations 

This research is based on estimating data derived by remote sensing techniques with a 

relatively high thermal resolution of about 30 m, where the aim of the research is keen to 

achieve a high level of accuracy. However, this kind of data is not considered ground truth 

data, so that it cannot reflect the actual information on the ground surface, where the remote 

sensing data can be effected by noise, whether on the ground or in the atmosphere, which in 

turn affect the level of reliability of the data; for example, the spatial resolution of Landsat is 

not accurate enough to show detailed information about the land surface, especially in areas 
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with mixed or heterogeneous land cover. The use of a manual thermal camera to collect 

readings for LST from the field may be more accurate than those provided by satellite, but 

this does not give the opportunity to collect a sufficient number of training points distributed 

over different classes within the study area during the same time. Although this study has 

been able to develop an expression to create LST images for the study area during a local 

peak temperature by converting Landsat data, it lacks accurate data and methods for 

conducting accuracy encasement processes for the images, whether with regard to the 

accuracy of the images used in the LST equations or the final LST images resulting from 

these equations.  

 Future work. 

This research is a pioneering attempt to address important issues facing the study of LST; 

thus, it opens new horizons for future studies in this field. In general, it is recommended to 

consider the aforementioned limitations, which need to be addressed and improved. In 

addition, the study suggests verifying the applicability of the method suggested by this study 

for different areas with different properties, and investigating the impact of changes to an 

area’s conditions to allow for the comparison between two or more different study areas. It is 

also recommended to use this method to conduct researches in cities have already been 

studied to examine the similarities and differences between the results have already been 

found, and those will be found by the new study within the same date and time. Moreover, 

this study recommends to improve the accuracy assessment method by allowing additional 

coverage to maximize the training points within the study area and this assessment process is 

not to be limited only in the final results, but to include the images used for processing the 

final image. 
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