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Learning the Precise Feature for Cluster Assignment
Yanhai Gan, Xinghui Dong, Huiyu Zhou, Feng Gao, and Junyu Dong

Abstract—Clustering is one of the fundamental tasks in com-
puter vision and pattern recognition. Recently, deep clustering
methods (algorithms based on deep learning) have attracted
wide attention with their impressive performance. Most of
these algorithms combine deep unsupervised feature learning
and standard clustering together. However, the separation of
feature extraction and clustering will lead to suboptimal solutions
because the two-stage strategy prevents representation learning
from adapting to subsequent tasks (e.g., clustering according to
specific cues). To overcome this issue, efforts have been made in
the dynamic adaption of representation and cluster assignment,
whereas current state-of-the-art methods suffer from heuristically
constructed objectives with representation and cluster assignment
alternatively optimized. To further standardize the clustering
problem, we formulate the objective of clustering as finding
a precise feature as the cue for cluster assignment. Based on
this, we propose a general-purpose deep clustering framework
which radically integrate representation learning and clustering
into an individual pipeline for the first time. The proposed
framework exploits the powerful ability of recently progressed
generative models for learning intrinsic features, and imposes an
entropy minimization on the distribution of cluster assignment
by a variational algorithm. Experimental results show that the
performance of our method is superior, or at least comparable to,
the state-of-the-art methods on the handwritten digit recognition,
race recognition and object recognition benchmark datasets.

Index Terms—Deep clustering, representation learning, gener-
ative models, entropy minimization, variational algorithm.

I. INTRODUCTION

DEEP neural networks (DNNs) have demonstrated their
powerful ability in computer vision tasks, such as object

detection [1], classification [2], instance segmentation [3] and
scene understanding [4]. However, the training of a robust and
efficient DNN generally requires a large amount of annotated
data. For example, over one million labeled images divided
into 1000 categories are contained in the ImageNet dataset [5],
and more than 375 million noisy labels are assigned to the
300 million images in the JFT-300M dataset [6]. As known, it
is very time-consuming and labor-expensive to collect such a
large-scale annotation set [7], [8]. On the other hand, large
quantities of images, videos, and other types of data are
produced every day. It is indeed impractical to manually
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annotate these data. Therefore, it is crucial to develop methods
that can automatically exploit knowledge from unlabeled data.

Neuroscientists have shown that the naturalistic visual
experience plays a fundamental role in learning invariant
representations, and such an experience is important to de-
veloping a powerful visual system [9], [10]. This indicates
that unsupervised learning happens constantly in the human
perceptual system. Normally, unsupervised learning methods
model the underlying structure or distribution of the input
data without annotation [11]. As an unsupervised learning
paradigm, clustering aims to divide the input data into a
set of clusters according to the distributional attributes of
the data [12]–[19]. However, standard clustering algorithms
usually depend on some predefined distance metrics which
are usually difficult to identify for high dimensional data [12]–
[14], [20]–[24]. Furthermore, the time complexity of standard
clustering algorithms will dramatically increase when large-
scale datasets are encountered [25].

To mitigate these issues faced by standard clustering meth-
ods, researchers first embedded the input data into a new low-
dimensional space and then implemented a standard clustering
method in the embedding space [26]–[29]. Correspondingly,
the problem is divided into two phases: representation learn-
ing and clustering. In this scheme, representation learning
is agnostic to the following clustering task, and thus can
hardly produce the representative features for a specific task.
Therefore, some efforts have been made to dynamically adapt
the representation and cluster assignment [30]–[36]. These
methods generally assumes that the label of each cluster
can be used as supervisory signals to learn representations
and in turn the representations will be beneficial to image
clustering. Consequently, the core idea of these methods is to
apply a strategy to alternate between representation learning
and clustering [34]–[39]. Although such kind of methods
have produced promising clustering results, the heuristically
constructed objective lacks a principled characterization of
goodness of deep clustering, thus making the good perfor-
mance of deep clustering models customized [40], [41].

Rather than conducting representation learning and clus-
tering separately, humans tend to take into account these
two tasks as a whole. For instance, one is likely to perform
clustering according to the gender when he/she is asked to
divide his/her colleagues into two groups. Nevertheless, he/she
can also consider other characteristics, such as position, age
and income, for clustering in terms of desired groups. That is
to say, humans tend to discover the exactly matched features
with regard to the desired number of groups and perform
clustering accordingly. Inspired by this, we define the objective
of deep clustering as finding a precise feature as the cue for
cluster assignment. This objective provides a fresh avenue
of exploration – how to optimally select a deep clustering
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architecture and how to best design the optimization objective.
Meanwhile, this objective encourages the development of
solutions for dealing with general-purpose clustering tasks.

Further insight into the decision-making mechanism of
human provides us the intuition that representation learning
and clustering are collaborative tasks and must work together
to produce the desirable results. In the proposed framework,
we integrate representation learning and clustering into an
individual pipeline for joint optimization instead of alternating
between them as in previous methods [34]–[39]. To the best
of our knowledge, this is the first attempt which essentially
couples representation learning and clustering. The main con-
tributions of this work are summarized as follows:
• A principled deep clustering objective is proposed to find

a precise feature as the cue for cluster assignment.
• A necessary and sufficient condition is postulated to

enable a solution for accomplishing the stated objective.
• A general-purpose deep clustering framework that cou-

ples representation learning and clustering is introduced.
• The state-of-the-art clustering results obtained using the

proposed framework on several public datasets provide
the other researchers a set of benchmarks.

The remaining of this paper is organized as follows. In
Section II, we review the existing related work. The core ideas
of the proposed framework are introduced in Section III. In
Section IV, we present the experimental results. Finally, our
conclusions and future work are discussed in Section V.

II. RELATED WORK

Since standard clustering algorithms, e.g., K-means, usually
encounter difficulties when dealing with high-dimensional
and large-scale datasets [42]–[44], enormous kinds of two-
stage methods are explored [45]–[48]. These methods first
projected the data into a low-dimensional manifold, and
then applied standard clustering algorithms to the embedded
representations [49]–[53]. However, these methods normally
require the domain-specific architectural deliberation in order
to learn discriminative representations [54]–[56]. Although
such deliberation is necessary for obtaining the competitive
clustering performance, it is harmful to choosing a suitable
architecture for a given task. It makes state-of-the-art deep
clustering architectures become increasingly domain-specific
[27]–[29], [57]. In addition, after being optimized in the first
stage, the learned representation is fixed, so it cannot be further
improved to obtain better performance in the clustering stage.

In recent years, some efforts have been made in the dynamic
adaptation of representation and cluster assignment [30]–[36].
As an early work, deep embedded clustering (DEC) [33]
improves the clustering using an unsupervised algorithm that
alternates between two steps: 1) computing a soft assignment
between the embedded points and the cluster centroids, 2)
updating the deep mapping and refine the cluster centroids
by learning from current high confidence assignments using
an auxiliary target distribution. Analogously, Yang et al. [37]
formulate the successive operations in a clustering algorithm
as the steps in a recurrent process. The proposed framework
(JULE) works by alternating between two steps. One step

updates the cluster labels using the current representation
while another step updates the representation parameters based
on the current clustering results. Lately, Chang et al. [34] pro-
pose a deep adaptive clustering (DAC) algorithm that recasts
the clustering problem into a binary pairwise-classification
problem for judging whether or not pairs of images belong to
the same cluster. To further utilize the category information,
Wu et al. [58] develop a deep comprehensive correlation
mining (DCCM) method that is trained by selecting highly-
confident information in a progressive way.

Kamran et al. [38] introduce a multinomial logistic regres-
sion method on top of a multi-layer convolutional autoencoder
for the joint learning of representation and cluster assignment.
This method was referred to as deep embedded regularized
clustering (DEPICT). Similarly, Zhou et al. [35] form an ad-
versarial deep embedded clustering by combining adversarial
auto-encoder and k-means together, where the representation
parameters and clustering results are iteratively fine-tuned in a
form of self-training after the network has been pretrained. To
overcome the shortcomings of traditional spectral clustering,
Shaham et al. [39] propose a deep learning based method
(SpectralNet) that learns a map to embed input data points
into the eigenspace of their associated graph Laplacian matrix
and then performs the clustering operation. Based on the same
inspiration, Zhang et al. [36] combine convolutional networks,
self-expression module and spectral clustering module into
a joint optimization framework (S2ConvSCN ), where the
current clustering results are used to self-supervise the training
of feature learning and self-expression module.

Although these methods have devoted huge efforts to the
dynamical adaptation of representation and cluster assignment,
and have produced promising results, they usually employ
an alternative optimization strategy for representation learning
and clustering. As a result, these methods usually prefer certain
datasets and incorporate many exotic designs for learning
discriminative features. In contrast, we define the objective
of deep clustering in a principle way. Specifically, we are
committed to find a precise feature as the cue for cluster as-
signment. To this end, we radically integrate the representation
learning and clustering into an individual pipeline rather than
alternating between the two tasks. As a result, we discard those
exotic designs for the representation learning, and come up
with a general-purpose deep clustering framework that can be
generalized to common clustering tasks.

As our implementation involve the generative adversarial
networks (GANs) [59], we make a brief introduction to it.
Although Jürgen claims that the idea of adversarial learning
was introduced by his work in 1990s [60]–[62], most com-
monly, it is recognized that GANs was proposed by Ian J. et
al. in 2014 [59]. Compared to the blurry and low-resolution
outcome from other generative models [26], [63], GANs-
based methods [64]–[67] generate more realistic results with
richer local details and of higher resolution. However, training
GANs is well acknowledged to be delicate and unstable, with
most current papers dedicating to heuristically finding stable
architectures [64], [68], [69]. The problem is that JS distance,
which is essentially optimized by GANs, is not a continuous
loss function on model’s parameters under that the model
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manifold and the true distribution’s support do not have a
non-negligible intersection, which is rather common situation
where the true distribution is supported by low dimensional
manifolds. WGANs cure the main training problems of GANs
by continuously estimating the Earth Mover (Wasserstein)
distance, which makes it possible to learn a probability dis-
tribution over a low dimensional manifold by doing gradient
descent [70]. Whereas, WGANs sometimes still generate poor
samples or fail to converge due to the use of weight clipping
to enforce a Lipschitz constraint on the critic. To rescue
WGANs from the pathological performance, Gulrajani et al.
[71] penalized the norm of gradient of the critic with respect to
its input as an alternative to clipping weights, which was called
WGAN-GP. WGAN-GP performs much better than standard
WGANs and enables stable training of a wide variety of GANs
architectures with almost no hyperparameter tuning.

III. THE UNIFIED DEEP CLUSTERING FRAMEWORK

In this section, we first formulate the objective of deep
clustering as finding a precise feature as the cue for cluster
assignment. To fulfil this objective, we make an assumption.
Then, we introduce the discipline for constructing the unified
deep clustering framework based on the assumption. Finally,
we describe the implementation details of the proposed deep
clustering framework.

A. Objective Formulation

Unlike supervised learning, where the learning objective
can be straightforward defined as the closeness between the
ground-truth annotation and the prediction [72]–[74], how to
define the objective of unsupervised learning is still an open
problem worth exploring [27]–[29], [51], [53]–[56], [75], [76].
Generally, the objective is defined to discover the most dis-
criminative features of data points [27]–[29]. However, in the
deep clustering context, discriminative features may be task-
specific. For example, digit recognition and handwriting recog-
nition must require different cues of the input image samples.
There is no doubt that the optimal features for digit recognition
are not necessarily suitable for handwriting recognition. In the
common sense, digit type is the most discriminative attribute
of a hand-writing digit dataset. Nonetheless, these digits may
be sampled from different writers. Indeed, if we would like
to cluster these digits according to their chirography, none of
the existing clustering algorithms perform well because their
objectives are all dedicated to digit recognition.

To address this issue, we define the objective of deep
clustering as finding a precise feature as the cue for cluster
assignment. This objective encourages the establishment of
a framework for handling general-purpose clustering tasks.
These tasks may include the handwriting clustering problem
mentioned, and all that is required is just the prior knowledge
of the number of clusters. Please note that an exactly matched
feature means that the possible values of the feature can
establish a one-to-one relationship with the designated clus-
ters. It accounts for a maximum predictability of the cluster
assignment for a given sample. Mathematically, maximization
of predictability is equivalent to minimization of the entropy of

a distribution. Therefore, we can fulfil the defined objective by
minimizing the distribution entropy of the cluster assignment.

However, when representation and cluster assignment are
jointly optimized, direct entropy minimization is prone to
getting stuck in the non-optimal local minima during train-
ing [38]. The reason is that practical samples usually contain
a large number of variables that create many spurious corre-
lations. To avoid the learning method from falling into these
spurious correlations (e.g., division of the value space of a
real-valued feature), we propose two constraints: 1) there is not
an empty cluster, 2) the feature chosen as the cue for cluster
assignment must be unique-valued in a cluster. Under these
two constraints, the learning method can only select a precise
(exactly matched) feature as the cue for cluster assignment.
This is further formalized in the following assumption.

Assumption 1. Minimization of the expectation of the distri-
bution entropy of the cluster assignment is the necessary and
sufficient condition for learning a precise feature as the cue
for cluster assignment, under two constraints: 1) there is no
empty cluster and 2) the feature chosen as the cue for cluster
assignment must be unique-valued in a cluster.

More explanation of this assumption can be found in the
supplemental material. According to Assumption 1, we can
endow a deep clustering algorithm with similar ability to
humans by exploiting the most suitable features for different
clustering tasks. In the next subsection, we will introduce the
framework substantiating this assumption.

B. Framework Design
In Fig.1(a), 100 blocks of 10 colors, 20 shapes and 5

sizes are assigned to 10 baskets. As shown in the bottom,
the assignment can be derived by fetching blocks from these
baskets. If x and y denote a sample and a cluster respec-
tively, then clustering is to assign x to y. Equivalently, this
can be expressed as extracting x from y. Since the inverse
formula naturally conforms to a generative paradigm from y
to x, we design the deep clustering framework as shown in
Fig.1(b), where G is an implicit generative model acting as
the process of fetching samples from given cluster ids, D is
a discriminator used to estimate the consistency between the
generated samples and the real sample, C is a classifier that
is used to implement the approximation of the real posterior
distribution of the cluster assignment. In the following, we
detail the motivation for each design choice of the framework.

The reason why we use G to reversely simulate the clus-
tering process is because the generative paradigm helps to
achieve the constraints of Assumption 1. In Fig.1(a), if shape
is chosen as the cue for basket assignment, there will be at
least one basket containing blocks of at least two different
shapes (Pigeonhole principle). Consequently, if we use the
identity of this basket as condition for generation, the produced
samples will be of only one shape. This is due to the fact that
there is no additional information for indicating what shapes
exist in that basket. Finally, the generated samples drop into
a subspace of the original sample space, since the cue used
for cluster assignment is not an intrinsic feature, but the value
space division of a certain feature.
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Fig. 1. Illustration of the overall framework. (a) is a simple sketch of the clustering process. In the first row, 100 blocks of 10 colors, 20 shapes and 5 sizes
are clustered into 10 baskets. Equivalently, as depicted in the second row, the basket assignment can be derived by extracting blocks from these baskets. In the
second row, the baskets are covered in gray because the assignment is unknown until all the blocks are extracted from these baskets. (b) is the flowchart of
the proposed framework, where x denotes a sample and y denotes a cluster id. Besides, z is a random variable that obeys a multivariate normal distribution
(with covariance matrix being an identity matrix), representing the features independent of y. In the framework, C is optimized to estimate the expectation
of the distribution entropy of the cluster assignment, and D aims to estimate the Earth Mover distance (EMD) between the generated samples and the real
samples. Afterwards, G is optimized to minimize the expectation of the distribution entropy of the cluster assignment and EMD simultaneously

In the framework, D is used to ensure the consistency
between the generated samples and real samples. Under the
pressure of D, the generative model G will be forced to put
samples of the same feature value into one cluster. As a result,
the second constraint of Assumption 1 (i.e., the feature chosen
as the cue for cluster assignment must be unique-valued in
one cluster) is satisfied. In this paper, we refer to features that
are independent on each other and essential to composing the
sample space as intrinsic features. In this sense, the generative
formulation makes the deep model learn an intrinsic feature
as the cue for cluster assignment.

For the first constraint of Assumption 1 (i.e., there is not an
empty cluster), we implement it by assuming a uniform prior
– denoted by p(y) in Fig.1(b) – on the marginal distribution
of cluster assignment. In this way, we virtually assume that
samples are evenly distributed across clusters. In practice, the
number of clusters is usually predetermined, but the marginal
distribution of clusters is often unknown. Therefore, this is
an over implementation of the first constraint, which limits
the applicability of the deep clustering framework. Its specific
impact will be further analyzed in the experimental part.

Since the two constraints of Assumption 1 have been
satisfied, we are to deduce the entropy minimization objective
required by the assumption. Although it is straightforward to
perform an entropy minimization in a discriminative model,
this is not the case for a generative model, because the
distribution of the cluster assignment therein is posterior and
always intractable. For this reason, we introduce a variational
algorithm for indirect optimization of the distribution entropy
of the cluster assignment. Specifically, we first calculate an
approximation (output of C) of the real posterior distribution,
and then induce an upper bound of the expectation of the
distribution entropy. Afterwards, the expectation of the distri-
bution entropy of the cluster assignment can be consistently
minimized as we continue to lower the upper bound.

As illustrated in Fig.1(b), the conditional distribution im-
plied by G is denoted as p(x|y), the posterior distribution
of the cluster assignment is denoted as p(y|x), and the
approximation of p(y|x) is denoted as q(y|x). Afterward, the

expectation of the cross-entropy between the real posterior dis-
tribution and the approximation can be calculated as follows:

Ex∼p(x)[H(p(y|x), q(y|x))]

= −
∫
p(x)

∫
p(y|x) log q(y|x)dydx

= −
∫ ∫

p(x)p(y|x) log q(y|x)dydx

= −
∫ ∫

p(x, y) log q(y|x)dydx

= Ex,y∼p(x,y)[− log q(y|x)]. (1)

Eq.1 pronounces that the expectation of the cross-entropy is
equal to the expectation of the negative log-likelihood of the
approximation on the joint distribution of x and y.

In addition, the expectation of the cross-entropy can be
expressed as an addition of two terms:

Ex∼p(x)[H(p(y|x), q(y|x))]

= Ex∼p(x)[−
∫
p(y|x) log q(y|x)dy]

= Ex∼p(x)[−
∫
p(y|x) log(

q(y|x)

p(y|x)
p(y|x))dy]

= Ex∼p(x)[−
∫
p(y|x)(log

q(y|x)

p(y|x)
+ log p(y|x))dy]

= Ex∼p(x)[

∫
p(y|x) log

p(y|x)

q(y|x)
dy −

∫
p(y|x) log p(y|x)dy]

= Ex∼p(x)[KL(p(y|x), q(y|x))] + Ex∼p(x)[H(p(y|x))], (2)

where KL(p(y|x), q(y|x)) represents the Kullback-Leibler
divergence between p(y|x) and q(y|x), and H(p(y|x)) denotes
the distribution entropy of p(y|x). Since KL(p(y|x), q(y|x))
is definitely positive, we have the following inequality:

Ex∼p(x)[H(p(y|x))] ≤ Ex∼p(x)[H(p(y|x), q(y|x))]. (3)

Eq.3 indicates that the expectation of the cross-entropy is an
upper bound of the expectation of the distribution entropy of
the cluster assignment, and the upper bound becomes tight
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if and only if KL(p(y|x), q(y|x)) gets close to zero, which
means that q(y|x) is approaching p(y|x) almost everywhere.
Therefore, we will consistently minimize the expectation of
the distribution entropy of the cluster assignment if we keep
the approximation q(y|x) accurate and continue to reduce the
cross-entropy Ex∼p(x)[H(p(y|x), q(y|x))].

However, the solution illustrated by Eq.1 for the expectation
of the cross-entropy involves an expectation on the joint
distribution p(x, y) that is implicit. Since direct calculation
is not practical, we solve for the expectation by utilizing a
Monte-Carlo algorithm. As we encode cluster ids in the one-
hot fashion, according to the strong law of large numbers, the
following equation can be obtained:

Ex,y∼p(x,y)[− log q(y|x)]

= lim
n→∞

− 1

n

n∑
i=1

k∑
j=1

yij log q(yj |xi), (4)

where yij represents the jth entry of the one-hot coding vector
of the cluster id generating xi, k is the number of clusters,
and n denotes the number of samples. Eq.4 enables a Monte-
Carlo solution for the expectation by first sampling y from
the prior distribution and then sampling x from the likelihood
p(x|y) that is implicitly modeled by the generator G. The
two-stage sampling process is equivalent to sampling (x, y)
from their joint distribution p(x, y). In practice, the Monte-
Carlo approximation becomes more and more accurate with
the value of n getting larger. Here we suppose that n is large
enough, and the solution is basically accurate.

In the training stage, D and C are optimized first before
each optimization of G. It is known that the discriminator D
is dedicated to estimating a distance between the generated
samples and real samples [59], [70], [71], [77]. Because C
is used to approximate the real posterior distribution of the
cluster assignment of a given sample, the Kullback-Leibler
divergence between p(y|x) and q(y|x) will approach zero after
C is optimized. This means that q(y|x) asymptotically equals
to p(y|x) almost everywhere and the upper bound implied by
Eq.3 hence becomes tight. In turn, the generative model G
is optimized for two tasks: 1) minimization of the distance
between the generated samples and real samples, 2) reducing
the up bounder of the expectation of the distribution entropy
of the cluster assignment. Consequently, the generative model
G learns a mapping between the cluster ids and the samples,
where the minimized distribution entropy of the cluster as-
signment ensures a one-to-one correspondence between the
clusters and the discrete values of the cue feature.

In this subsection, we assume that samples and labels are
continuous and perform derivation by calculus, whereas it
should be noted that the conclusions still hold for discrete
variables. In that case, the integration becomes summation and
the probability densities become discrete probability masses.

C. Implementation

First, the uniform distribution y ∼ U int[1, k], which denotes
a discrete distribution with the probability mass uniformly
distributed on integers in the closed interval [1, k], is employed

as the marginal distribution of the cluster assignment to satisfy
the first constraint of Assumption 1. Second, as WGAN-GP
[71] achieves much better performance than other generative
models [64], [68]–[70], we employ it as the backbone to
realize the consistency between the generated samples and
real samples. The consistency condition satisfies the second
constraint of Assumption 1. Now, we formally present the loss
functions for each component of the framework.

First of all, the loss function of the discriminator D is the
same defined as that in WGAN-GP:

LD = Ex∼pg(x)[D(x)]− Ex∼pr(x)[D(x)]

+λEx̂∼px̂(x̂)[(‖∇x̂D(x̂)‖2 − 1)2], (5)

where px̂() represents the uniform sampling function which
works along the straight lines between pairs of points sampled
from both the data distribution pr and the generator distribu-
tion pg , D(x) denotes the output of the discriminator when x
is given, and λ is a hyperparameter for the gradient penalty
term. After the discriminator D is sufficiently optimized, LD
will be approximately equal to the Earth Mover distance [71]
between the generated samples and the real samples.

Second, because the cluster assignment of a given sample
obeys a categorical distribution, the estimator C for the poste-
rior distribution of cluster assignment adopts the conventional
cross entropy as the loss function:

LC = − 1

n

n∑
i=1

k∑
j=1

yij log q(yj |xi), (6)

where yij denotes the jth entry of the one-hot coding of the
cluster id used as the input in G to generate the ith sample, and
q(yj |xi) stands for the jth output of the classifier when the ith
sample is fed as input. The cluster ids fed into the generator
are viewed as ground-truth when the cross-entropy loss is
calculated, and we refer to them as fake labels in the following.
It should be noted that the fake labels are autonomously
generated rather than being annotated by humans.

Finally, the loss function of the generator G is defined as
an addition of two terms:

LG = Lreality + ηLentropy, (7)

where Lreality is the reality term, and Lentropy is the entropy
minimization term. According to the conventional practice of
GANs [71], we make Lreality = −Ex∼pg(x)[D(x)]. Since LC
is defined as the cross entropy by Eq.6, we can readily set
Lentropy = LC by referring to Eq.4. In addition, η > 0
is a trade-off parameter between the reality term and the
entropy minimization term. During training, η is exponentially
increased in a staircase function:

η ← ηγbt/τc, (8)

where t represents the current training step, and τ denotes
the number of steps for every increase. In this manner, the
generator will tend to focus on the entropy minimization
objective in the later training stage, in which the quality of
the generated samples has been significantly improved.
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The training dynamics of these three components are further
formalized in Algorithm 1, which also declares the configu-
ration of the hyperparameters used in the experiment. After
the optimization is completed, the estimator for the posterior
distribution of the cluster assignment becomes accurate and is
exploited for efficient clustering in the inference stage.

IV. EXPERIMENTS

In this section, we conduct several experiments to veri-
fy the proposed method. Specifically, we experiment on a
synthetic dataset, MNIST, Fashion-MNIST, Artifact-MNIST,
ORL, USPS, Cifar-10 and ImageNet-10 to examine a practical
and theoretically grounded direction towards solving the deep
clustering problems. As popular measures in the literature,
Clustering Accuracy (ACC), Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI) are employed for
evaluation. The value range of ACC and NMI is [0,1], and
the value range of ARI is [-1,1]. It should be noted that the
effectiveness of the framework strongly relies on the capability
of the generative model to produce realistic samples. There-
fore, the reported results can consistently get improved as the
generative model evolves, which is now prospective [78]–[80].

A. Networks

Because our main purpose is to verify the utility of inte-
grating representation learning and clustering into a unified
framework, we do not carry out exhaustive architecture and
hyperparameter search in all experiments, and the architectural
choice and experimental configuration are similar to [71]. In
particular, the generator and discriminator inherit the network
structure in [71]. The classifier shares a similar structure with
the discriminator, but the classifier has a different output
layer to produce categorical probability masses. The training
dynamics between these three components have been outlined
in Algorithm 1, and will be explained in detail below.

The networks embodying our framework are illustrated in
Fig.2, where all the convolutional or deconvolutional layers
adopt a 5x5 kernel size and a 2x2 stride. All the experi-
ments are conducted with this architecture, and only a few
modifications are made to adapt to different datasets, except
for experiments on the synthetic dataset, where three fully-
connected networks are employed. We have also tried to
combine the discriminator and classifier into a single network
with two output heads for multi-task learning. However, this
strategy causes performance degradation on some data sets
(i.e., according to median statistics of ten runs, at least 10%
performance degradation on MNIST and Fashion-MNIST, and
completely crashed results on Artifact-MNIST).

It is likely that even though both the discriminator and the
classifier learn discriminative features of the samples, they
focus on different aspects. The discriminator looks for the
difference between the generated samples and real samples.
As the training progresses, this difference gradually changes.
On the contrary, the classifier aims to discover the accurate
features for clustering. Sometimes, these two prompts may be
quite different, especially in the final stage of training, at this
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Fig. 2. Architecture used in our experiments. This architecture is used
across experiments on MNIST, Fashion-MNIST, Artifact-MNIST, ORL, USP-
S, Cifar-10 and ImageNet-10. For MNIST, Fashion-MNIST and Artifact-
MNIST, the size of the images is 28x28, we drop one pixel horizontally and
vertically after the first deconvolutional layer. In the experiments on ORL and
Cifar-10, the size of the feature maps outputted by the first deconvolutional
layer should be 8x8. For Cifar-10, the output of the generator should be
32x32x3, which is formalized by a deconvolutional layer with 3 kernels rather
than 1 for grayscale images. As USPS variants consist of images of 16x16, we
adopt a 1x1 stride in the last deconvolutional layer of the generator and the first
convolutional layer of the discriminator and classifier. For ImageNet-10, we
append a deconvolutional layer to the generator and a convolutional layer to
the discriminator and classifier to process 64x64 images. In this figure, we just
write the output of the generator as 28x28x1 for compact. To disambiguate,
we make it clear here for readers

stage, the most effective features for distinguishing the gener-
ated samples from real samples may be invalid for the on-hand
clustering task. In addition, the discriminator is constrained by
the gradient penalty to realize a Lipschitz function [70], [71],
which may impair the learning of clustering hints, whereas the
separate classifier does not have to be Lipschitz.

B. Experiments on synthetic dataset
In order to study the effectiveness and characteristics of

the proposed framework, we conduct experiments on a simple
dataset consisting of eight isotropic Gaussian blobs of data.
The centers of these Gaussian blobs are (1.414,0), (-1.414,0),
(0,1.414), (0,-1.414), (1,1), (-1,1), (-1,-1), (1,-1), and the stan-
dard deviation of all the blobs is 0.014. The Gaussian mixture
where samples come from is figured in the supplemental
material. In the experiment, we view samples coming from
the same Gaussian blob as in one cluster. The training and
evaluating samples in the experiment are all randomly sampled
from the Gaussian mixture. Therefore, there are indeed infinite
training and evaluation samples.

In this experiment, three fully connected networks are
adopted to embody the framework. The network structure
of the generator acts like x − 512 − 512 − 512 − 2, the
network structure of the discriminator acts like 2 − 512 −
512 − 512 − 1, and the network structure of the classifier
acts like 2 − 512 − 512 − 512 − 8. Therein x denotes the
number of inputting variables to the generator, which varies
from 8 to 16 in the experiments. As one-hot coding is applied,
one cluster id corresponds to 8 inputting variables. The other
inputting variables are all noise variables. We use relu as
activation function in each hidden layer of these networks, and
use non-activation function in the output layer of the generator
and discriminator. The output of the classifier is activated by
softmax to realize a normalized probability distribution.

A total of six experiments are performed on the synthet-
ic dataset, where the cluster id sampled from the uniform
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Algorithm 1 We use default values of λ = 100, η = 10, Ncritic = 5, Nclass = 4, N = 900000, α = 0.0001, β1 = 0.5,
β2 = 0.9, τ = 30000, γ = 1.2.
Input: The gradient penalty coefficient λ, the trade-off parameter η, the number of critic iterations Ncritic and the number of

classifier iterations Nclass, the number of generator iterations N , the batch size n, Adam hyperparameters α, β1, β2
Input: Initial critic parameters θd, initial generator parameters θg , initial classifier parameters θc, the number of clusters k
Output: Classifier C

1: while t ≤ N and θg has not converged do
2: repeat
3: for i = 1, . . . , n do
4: Sample a real data x ∼ Pr, a cluster id y ∼ U int[1, k], a random noise vector z ∼ N (0, 1), a random number

ε ∼ U [0, 1]
5: y← one-hot coding of y
6: x̃← Gθg (y, z)
7: x̂← εx + (1− ε)x̃
8: L(i) ← Dθd(x̃)−Dθd(x) + λ(‖∇x̂Dθd(x̂)‖2 − 1)2

9: end for
10: θd ← Adam(∇θd 1

nΣni=1L
(i), θd, α, β1, β2)

11: until Reach the maximal iteration Ncritic
12: repeat
13: for i = 1, . . . , n do
14: Sample a cluster id y ∼ U int[1, k], a random noise vector z ∼ N (0, 1)
15: y← one-hot coding of y
16: ŷ← Cθc(Gθg (y, z))
17: L(i) ← −Σkj=1yj ln ŷj
18: end for
19: θc ← Adam(∇θc 1

nΣni=1L
(i), θc, α, β1, β2)

20: until Reach the maximal iteration Nclass
21: Sample a batch of cluster ids {y(i)}ni=1 ∼ U int[1, k], a batch of random noise vectors {z(i)}ni=1 ∼ N (0, 1)
22: for all y(i) such that i ∈ [1, n] do
23: y(i) ← one-hot coding of y(i)

24: ŷ(i) ← Cθc(Gθg (y(i), z(i)))
25: end for
26: L← − 1

nΣni=1(Dθd(Gθg (y(i), z(i))) + ηΣkj=1y(i)
j ln ŷ(i)

j )
27: θg ← Adam(∇θgL, θg, α, β1, β2)
28: t← t+ 1
29: η ← ηγbt/τc

30: end while

categorical distribution on [0, 7] and different numbers (0,
1, 2, 3, 4, 8) of noise variables are used together as the
input to the generator. Experimental results illustrate that when
feeding 0, 1, 2 or 4 noise variables into the generator, the
framework can exploit the centers of the gaussian blobs as
the cue for cluster assignment. This demonstrate that, under
appropriate experimental configuration, the framework can
exploit the dominant feature of samples as the cue and give
fascinating clustering results accordingly. However, when 3 or
8 noise variables are fed in, the generator begins to generate
samples completely deviating from the true distribution, and
the classifier falls into severe overfitting.

Because there are actually 3 intrinsic features (the centers
of the gaussian blobs and the biases on x-axis and y-axis) that
control the positions of samples in the plane, the experimental
results declares that when the number of variables used as
input deviates from the true number of intrinsic features, the
performance of the framework becomes unstable. However,
it’s worth noting that, when the number of inputting variables

decreases from the actual number of intrinsic features, the
performance of the framework does not decrease as sharply
as the number of inputting variables increases from them on.
Thus, we preferentially use fewer inputting variables in the
framework if the true number of intrinsic features is unknown,
which is also desirable in practice for efficiency reasons.
Furthermore, we can judge whether the number of inputting
variables exceeds the true number of intrinsic features by
plotting the learning curves. When too many variables are used
as input, the Earth-Mover distance and the evaluated clustering
accuracy will gradually diverge in the later stage of the training
process. More details about the experimental results can be
found in the supplemental material.

C. Experiments on MNIST and Fashion-MNIST

In academia, MNIST is often the first dataset researchers
try. Members of the AI/ML/Data Science community love this
dataset and use it as a benchmark to validate their algorithms.
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It is widely believed that if an algorithm doesn’t work on
MNIST, it won’t work at all. However, the reality is that even
if an algorithm works well with MNIST, it doesn’t necessarily
work well with others. As MNIST is too easy and overused,
some researchers think MNIST can not represent modern CV
tasks and call for people to move away from MNIST. Fashion-
MNIST is intended to serve as a direct drop-in replacement for
the original MNIST dataset for benchmarking machine learn-
ing algorithms. It shares the same image size and structure of
training and testing splits as MNIST [81].

On these two datasets, we use the original training and
testing splits to train and evaluate our framework and all
the other comparison methods, where label information is not
used during the training phase. In order to ensure the fairness
of the comparison, all the comparison methods use the best
hyperparameters reported in the literature to retrain on the
datasets. Our experiments on MNIST and Fashion-MNIST
adopt the same configuration, including architecture selection
and hyperparameter settings. On each dataset, we run each
method ten times with the same configuration, and report
the minimum, maximum, and median statistics of the three
metrics. The results are summarized in Table I and Table II,
where the results marked with ∗ are reported in the literature.

We rarely find clear statements in the relevant papers that
the reported results are median. Most of the time, researchers
report the best results found in experiments. However, we
consciously treat all reported results as medians to allow a
sound analysis of the improvement of our method. Table I and
Table II demonstrate that our method obtains state-of-the-art
clustering results on the MNIST and Fashion-MNIST datasets.
On MNIST, from the median statistics of the three metrics, our
method is competitive with state-of-the-art methods. From the
maximum statistics, our method is superior to all the other
methods. On Fashion-MNIST, our method outperforms all the
other comparison methods with a surprising advantage. The
only flaw of our method is that the minimum statistics of
the performance on MNIST is relatively poor compared to
state-of-the-art due to the unstable performance that has been
quantitatively reflected in Fig.4a as the considerable standard
deviation. More detailed comparison of the performance of ten
runs can be found in the supplemental material.

Fig.3 illustrates the learning dynamics on MNIST and
Fashion-MNIST. In Fig.3(a)(e), the cross-entropy loss decreas-
es quickly as the training begins. Correspondingly, the fake
classifying accuracy obtained by treating the fake labels as
ground truth is rapidly improved. Later in the training process,
the cross-entropy loss is kept small, and the fake classifying
accuracy remains close to 1. According to the derivation in
section III-B, since the classifier is fully optimized, the objec-
tive is actually to guide the generator to minimize the expecta-
tion of the distribution entropy of the cluster assignment. In the
experiment, the expectation of the distribution entropy quickly
reaches its optimum at the beginning of the training process, so
the generator is actually optimized to produce realistic samples
while keeping the distribution entropy to a minimum. In this
case, as the quality of the generated samples improves (Earth
Mover distance converges as in Fig.3(b)(f)), the evaluated
clustering accuracy will continue to increase (as shown in

Fig.3(c)(g)). Finally, when the generator produces high-quality
samples, the framework obtains encouraging clustering results.
In fact, the samples generated in Fig.3(d) and Fig.3(h) show
that the generated samples from the same cluster are similar in
perception – basically the same in digit or apparel type. This
proves that the framework has discovered the digit or apparel
type in the image as a clue for cluster assignment.

In the experiments, we initialize η to 10 and then multiply
it by 1.2 every 30,000 iterations. A total of 900,000 iterations
of this optimization are performed. It should be noted that in
Fig.3(b) and Fig.3(f), the plots of the trade-off parameter are
scaled by 10. In addition, the hyperparameter λ is set to 100.

D. Learning a precise feature as the cue for clustering

We have argued in section III that our objective is to
lean an exactly matched characteristic as the cue for clus-
ter assignment, which differs the proposed framework from
previous methods. However, the above experiments cannot
provide proof of this statement, because the clustering tasks
are still focused on finding the most dominant feature (centers
of the gaussian blobs in synthetic dataset, digit and apparel
types in MNIST and Fashion-MNIST) of the data points, and
performing grouping accordingly. In this section, we plan to
empirically demonstrate the ability of the proposed framework
to learn a precise feature as the cue for cluster assignment.

1) Experiments on Artifact-MNIST: To this end, we make
an artifact version of the original MNIST dataset and call it
Artifact-MNIST. Specifically, we randomly set the first pixel
of each image in the MNIST dataset to 0.1, 0.5, and 0.9 with
the same probability. Since the artifact is so subtle, it must not
be the dominant feature of the samples, and can be regarded as
an analogy of chirography. In addition, because of the sample-
level and independent (of other features) nature, the artifact is
one of the intrinsic characteristics of these samples. In this
experiment, we want to investigate whether our method can
find such delicate artifacts as clues for cluster assignment when
three categories are specified for the clustering task.

We run our method and all the comparison methods ten
times on Artifact-MNIST. The experimental results are listed
in Table III, where the zero values of NMI and ARI represent
meaningless (totally random) cluster assignment. A more
detailed comparison of ten runs is given in the supplementary
material. Although our method does not always provide ideal
results, all the other clustering algorithms can not accomplish
this task. The reason for the failure cases of our method may
be that the dataset contains other intrinsic features that are
also ternary. The intelligent agent tries to capture an intrinsic
feature to perfectly solve this three-category clustering prob-
lem, but it will arbitrarily select one from multiple candidates,
and does not always encounter the desired one. However,
the persistent success results (over 80% of the time) indicate
that our framework can indeed solve such general-purpose
clustering problems. In practice, a small evaluation set is
needed to check whether the intelligent agent has captured
the desirable feature as the cue for cluster assignment.

2) Experiments on the ORL dataset: ORL [85] is a widely
used dataset in the context of face recognition [36], [86].
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TABLE I
PERFORMANCE COMPARISON ON MNIST. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. ∗ INDICATES THAT THE RESULT IS REPORTED IN LITERATURE

Method ACC NMI ARI
Min Max Med Min Max Med Min Max Med

NMF [82] - - 0.545∗ - - 0.608∗ - - 0.430∗

K-means [13] 0.534 0.571 0.563 0.479 0.521 0.499 0.347 0.374 0.352
SC [83] - - 0.696∗ - - 0.663∗ - - 0.521∗

AC [23] - - 0.695∗ - - 0.609∗ - - 0.481∗

DeCNN [84] - - 0.818∗ - - 0.758∗ - - 0.669∗

GAN [64] - - 0.828∗ - - 0.764∗ - - 0.736∗

DDC [48] - - 0.965∗ - - 0.916∗ - - -
DDC-DA [48] - - 0.970∗ - - 0.927∗ - - -

DAC [34] 0.745 0.813 0.804 0.782 0.836 0.820 0.678 0.756 0.728
DEC [33] 0.862 0.864 0.864 0.833 0.835 0.835 0.797 0.801 0.800
JULE [37] 0.948 0.964 0.960 0.901 0.926 0.912 0.913 0.927 0.922

SpectralNet [39] 0.967 0.971 0.969 0.920 0.924 0.921 0.931 0.934 0.933
DCCM [58] 0.641 0.921 0.780 0.651 0.905 0.785 0.499 0.815 0.650

Ours 0.915 0.984 0.958 0.922 0.978 0.944 0.855 0.951 0.912

TABLE II
PERFORMANCE COMPARISON ON FASHION-MNIST. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE IMPROVEMENT OF OUR METHOD HAS BUILT

A LARGE MARGIN ON THREE METRICS REGARDLESS OF THE USED STATISTICS

Method ACC NMI ARI
Min Max Med Min Max Med Min Max Med

DDC [48] - - 0.619∗ - - 0.682∗ - - -
DDC-DA [48] - - 0.609∗ - - 0.661∗ - - -
K-means [13] 0.254 0.354 0.331 0.172 0.307 0.256 0.181 0.271 0.249

DEC [33] 0.469 0.478 0.477 0.492 0.504 0.501 0.320 0.331 0.330
SpectralNet [39] 0.488 0.523 0.505 0.519 0.529 0.523 0.329 0.347 0.337

JULE [37] 0.423 0.505 0.486 0.594 0.652 0.639 0.342 0.421 0.390
DAC [34] 0.435 0.591 0.531 0.487 0.584 0.552 0.371 0.459 0.414

DCCM [58] 0.406 0.593 0.544 0.315 0.515 0.449 0.301 0.416 0.375
Ours 0.685 0.754 0.721 0.689 0.749 0.719 0.524 0.589 0.555

TABLE III
PERFORMANCE COMPARISON ON ARTIFACT-MNIST. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE ZERO VALUES OF NMI AND ARI INDICATE

COMPLETELY RANDOM CLUSTER ASSIGNMENT

Method ACC NMI ARI
Min Max Med Min Max Med Min Max Med

K-means [13] 0.347 0.352 0.350 0.000 0.000 0.000 0.000 0.000 0.000
DEC [33] 0.335 0.337 0.336 0.000 0.000 0.000 0.000 0.000 0.000

SpectralNet [39] 0.338 0.342 0.340 0.000 0.000 0.000 0.000 0.000 0.000
JULE [37] 0.345 0.362 0.359 0.000 0.000 0.000 0.000 0.000 0.000
DAC [34] 0.348 0.379 0.368 0.000 0.000 0.000 0.000 0.000 0.000

DCCM [58] 0.322 0.349 0.332 0.000 0.000 0.000 0.000 0.000 0.000
Ours 0.467 1.000 1.000 0.051 1.000 1.000 0.036 1.000 1.000

TABLE IV
PERFORMANCE OF VARIOUS CLUSTERING METHODS ON ORL. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. IN EACH CELL, THE LEFT VALUE IS

EXAMINED BY VIEWING IDENTITY AS GROUND TRUTH, AND THE RIGHT VALUE IS EXAMINED BY VIEWING GENDER AS GROUND TRUTH

Method ACC NMI ARI
Min Max Med Min Max Med Min Max Med

DAC [34] 0.098 0.265 0.143 0.690 0.133 0.404 0.286 0.027 0.379 0.082 0.344 0.049 0.009 -0.020 0.052 0.150 0.040 0.008
K-means [13] 0.715 0.900 0.800 0.900 0.751 0.900 0.842 0.018 0.885 0.020 0.864 0.019 0.570 -0.009 0.673 -0.005 0.621 -0.007

DEC [33] 0.025 0.503 0.395 0.900 0.191 0.569 0.000 0.000 0.619 0.058 0.422 0.006 0.000 -0.039 0.203 0.036 0.073 0.000
SpectralNet [39] 0.025 0.888 0.448 0.892 0.025 0.890 0.000 0.007 0.670 0.009 0.000 0.008 0.000 -0.020 0.293 -0.012 0.000 -0.016

JULE [37] 0.560 0.900 0.625 0.900 0.597 0.900 0.758 0.006 0.805 0.093 0.786 0.030 0.371 -0.084 0.480 0.099 0.428 -0.025
S2ConvSCN − l2 [36] - - - - 0.888∗ - - - - - - - - - - - - -
S2ConvSCN − l1 [36] - - - - 0.895∗ - - - - - - - - - - - - -

DCCM [58] 0.735 0.502 0.825 0.610 0.775 0.540 0.883 0.000 0.921 0.163 0.902 0.025 0.651 -0.016 0.764 0.047 0.705 0.002
Ours 0.893 0.973 0.922 0.980 0.910 0.978 0.875 0.615 0.902 0.840 0.893 0.688 0.875 0.615 0.902 0.840 0.893 0.688
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Fig. 3. Learning curves on MNIST and Fashion-MNIST. The subfigures in the first line depicts the learning dynamics on MNIST, and the subfigures in the
second line depicts the learning dynamics on Fashion-MNIST. (a)(e) illustrate the changes of the expectation of distribution entropy of the cluster assignment
(orange, ticks on the left axis), and the fake classifying accuracy (blue, ticks on the right axis) during training. (b)(f) describe the Earth Mover distance
evaluated on the test data (orange, ticks on the left axis), and the trade-off parameter η (blue, ticks on the right axis) at each iteration. (c)(g) display the
evolution of the ACC, NMI and ARI metrics evaluated on the test data at each iteration. Finally, the samples generated at the last optimization iteration
are given in (d)(h). The generated samples are arranged according to the cluster id. Specifically, the first five or last five samples of each line in (d)(h) are
generated from the same cluster id. A total of 900,000 iterations of this optimization are performed

Images in the dataset are taken under varying illumination
conditions, facial expressions, and facial occlusions (with or
without glasses). The ORL dataset consists of 400 images,
10 each of 40 different subjects. There are 4 female and 36
male subjects in the dataset. The ORL dataset can be used for
verifying the capability of finding precise feature as the cue for
cluster assignment. In the dataset, clustering can be performed
according to identities or genders of the facial images.

In this experiment, each facial image is resized to 32x32
pixels. Since there are only 400 samples in the dataset, we
optimize the generator for 30,000 iterations. Correspondingly,
we initialize η to 10 and then multiply it by 1.2 every 1,000
iterations (reduced in proportion to the number of optimization
iterations). All the comparison methods are also trained on the
dataset using the default configuration on MNIST. We run each
method for ten times, and the statistics are listed in Table IV. In
each cell of Table IV, the left value is obtained by performing
clustering according to identity, and the right value is obtained
by performing clustering according to gender. When we want
the framework to perform clustering according to gender, we
provide the framework not only the categorical information,
but also the distribution of the clusters, since we know that
there are only four females. In spite of this, when we regard
gender as the ground truth, the clustering performance is still
less satisfying, because there is a hard subject in the dataset
(the 12th subject), for which it is difficult for even humans to
judge his gender. If we remove this subject from the dataset,
we can get a higher accuracy.

It should be noted that clustering according to gender is a
binary clustering task with extremely unbalanced distribution,
so completely random assignment means an ACC around
0.5, and putting all samples into one cluster corresponds
to an ACC of 0.9. Therefore, when performing clustering
according to gender, the indicators NMI and ARI are of more

reference value than ACC. With reference to Table IV, it can
be found that, except our method, all methods fail to cluster
by gender. This experiment on a real-world face recognition
dataset demonstrates that our method does possess the ability
to find precise cue (identity or gender) of samples according
to the specified number of categories for cluster assignment.

E. Stability analysis

Stability is one of many indicators to evaluate the quality of
an algorithm. In order to compare the stability of our method
and other methods, we calculated the standard deviations of
three metrics in ten runs for all algorithms, and the results
obtained on MNIST and Fashion-MNIST are shown in Fig.4.
It can be seen that our method performs more unstable than
SpectralNet [39] and DEC [33].

We have tried to provide fixed seeds to the random number
generators of Python and Tensorflow (we use Tensorflow
for implementation). However, the resulted clustering per-
formance still fluctuate. We attribute the instability of the
clustering performance to the random behavior of the cuDNN
library employed by Tensorflow. In any case, our method is
too sensitive to the initialization of the network parameters.
This becomes the main flaw of our method. We hope to make
the method more robust to random initialization in the future.

F. Dealing with non-uniform distributions

In section III-B, we adopt a uniform prior for the marginal
distribution of the clusters to realize the first constraint of
Assumption 1, which limits the application of our method to
problems where samples are evenly distributed across clusters.
To concretely see how the distribution of clusters affects the
clustering performance, we construct five variants of the USPS
dataset and conduct experiments on these variants. USPS is
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Fig. 4. Comparison of stability between different methods. (a) and (b)
illustrate the results evaluated on MNIST and Fashion-MNIST respectively,
where the standard deviation of the performance (ACC, NMI, and ARI) in
ten runs is calculated and displayed

a handwritten digit dataset, which consists of 7,291 training
images and 2,007 test images. The images in USPS are
16x6 grayscale pixels. The samples in USPS are unevenly
distributed across 10 classes, with the largest class owning
1,553 samples, and the smallest class owning 708 samples. In
this experiment, we reproduce the experimental configuration
of section IV-C, including architecture and hyperparameters.

To quantitatively evaluate how the cluster distribution affects
the performance of our method, we defined a metric to
measure the uniformity of a dataset:

UI(X) =
−
∑n
i=1 pi ln pi
lnn

, (9)

where UI is the defined metric, X is a dataset, pi denotes
the ratio of the samples of the ith class in all samples, and
n denotes the number of classes. The more evenly distributed
the classes are, the greater the value of the metric will be. The
maximum value of the metric is one which indicates that the
samples in the dataset are evenly distributed across all classes,
and the minimum value of the metric is zero which indicates
that the samples in the dataset all come from one class.

Please note that in this experiment, we specify 10 categories
for the clustering task, so the class distribution of the dataset
is also the cluster distribution. In addition, the annotations are
only necessary for theoretical analysis of clustering perfor-
mance but not in practical applications. To create variants of
the USPS dataset, we iteratively reduce the largest classes to
the second largest class by removing samples. In particular, we
only select an integer multiple of 100 samples from each class.
Finally, we obtained five datasets with different UI values.
Detailed information about these datasets can be found in the
supplementary material. We evaluate our method on each of
these datasets and calculate the ACC, NMI and ARI metrics.
Fig.5a illustrates how the clustering performance is affected
by the UI value. It can be seen that, as the UI value increases,
the performance of our method keeps improving. The reported
results are median statistics in ten runs. Here, we use the same
samples for training and evaluation, with label information
only used in the evaluation phase.

Finally, we make a comparison between our method and
other methods on the USPS700. The performance comparison
is summarized in Table V, and the stability comparison is
illustrated in Fig.5b. We use the experimental configuration
reported in the literature to run each comparison method.

For methods that did not carry out experiments on the USPS
dataset, we resize the image to 28x28 and use the MNIST’s
configuration for the experiment. It can be seen that on the
USPS700, our method performs much better and more stable
than all the comparison methods. The stable performance is
really a surprise as we haven’t expected it since we found the
instability of our method in section IV-C. This pronounces that
the stability of performance depends on specific datasets.
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Fig. 5. (a) illustrates that as the UI value increases, clustering performance
will also improve. The lower boundary of the error line represents the
minimum of the performance in ten runs, and the upper boundary represents
the maximum of the performance in ten runs. (b) illustrates the comparison
of the stability of different methods on USPS700. The standard deviation of
the performance (ACC, NMI, and ARI) of each method in ten runs is plotted

G. When intrinsicness is corrupted

Cifar-10 [87] is a common benchmark for verifying object
recognition algorithms. ImageNet-10 [34] is a tiny version
of the origianl ImageNet dataset [5]. In this subsection, we
conduct experiments on these two datasets for examining if our
method can deal with real-world object recognition tasks. We
use the same architecture and hyperparameter configuration
as section IV-C for experiments, except that we append a
deconvolutional layer to the generator (correspondingly, a con-
volutional layer is appended to the discriminator and classifier
respectively) to process 64x64 images (we resize the images
in ImageNet-10 to 64x64). The experimental results are shown
in Table VI. The results on Cifar-10 and ImageNet-10 are far
from satisfactory. However, we can see that all the comparison
methods (except for DCCM [58]) have also failed on these two
dataset. This illustrates that there is still a long way to go to
apply unsupervised methods in object recognition tasks.

We blame three reasons for the poor performance of deep
clustering in object recognition: First, object recognition itself
is a challenging task. Understanding the class structure on
these dataset requires a lot of out-of-domain knowledge. For
examples, although the appearance of chickens, ostriches and
canaries varies greatly, they are all considered birds in the
dataset. The same happens on freighters, cruise ships and
motorboats. In fact, if you ignore the background information,
motorboats look more like cars, but are classified as ships
along with freighters and cruise ships. Most of the time, we use
auxiliary knowledge, such as biology and the usage, to assist
in object classification. Second, the quality of the generated
samples are still poor, which undermines the criterion that
the samples fetched from all clusters are equal to the original
samples. This may be due to the insufficient capacity of the
generator. Third, the images vary greatly in appearance. There
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TABLE V
PERFORMANCE OF VARIOUS CLUSTERING METHODS ON USPS700. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. OUR METHOD COMPREHENSIVELY

OUTPERFORMS ALL THE COMPARISON METHODS ON THREE METRICS

Method ACC NMI ARI
Min Max Med Min Max Med Min Max Med

DDC [48] - - 0.967∗ - - 0.918∗ - - -
DDC-DA [48] - - 0.977∗ - - 0.939∗ - - -

DAC [34] 0.364 0.483 0.391 0.301 0.389 0.342 0.261 0.329 0.288
K-means [13] 0.469 0.564 0.534 0.367 0.451 0.433 0.259 0.368 0.344

DEC [33] 0.605 0.748 0.696 0.626 0.717 0.682 0.464 0.626 0.572
SpectralNet [39] 0.827 0.877 0.835 0.860 0.898 0.865 0.788 0.876 0.799

JULE [37] 0.856 0.954 0.877 0.862 0.893 0.888 0.802 0.908 0.840
DCCM [58] 0.153 0.328 0.293 0.134 0.246 0.201 0.056 0.332 0.119

Ours 0.933 0.985 0.981 0.936 0.978 0.971 0.885 0.967 0.957

TABLE VI
PERFORMANCE COMPARISON ON CIFAR-10 AND IMAGENET-10. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD. ALL THE RESULTS OF THE
COMPARISON METHODS ARE REPORTED IN LITERATURE. FOR OUR

METHOD, THE MEDIAN STATISTICS IN 10 RUNS ARE REPORTED

Datasets Cifar-10 ImageNet-10
Method ACC NMI ARI ACC NMI ARI

K-means [13] 0.229 0.087 0.049 0.241 0.119 0.057
SC [83] 0.247 0.103 0.085 0.274 0.151 0.076
AC [23] 0.228 0.105 0.065 0.242 0.138 0.067

NMF [82] 0.190 0.081 0.034 0.230 0.132 0.065
AE [88] 0.314 0.239 0.169 0.317 0.210 0.152

SAE [89] 0.297 0.247 0.156 0.325 0.212 0.174
DAE [75] 0.297 0.251 0.163 0.304 0.206 0.138

DeCNN [84] 0.282 0.240 0.174 0.313 0.186 0.142
SWWAE [76] 0.284 0.233 0.164 0.324 0.176 0.160

GAN [64] 0.315 0.265 0.176 0.346 0.225 0.157
JULE [37] 0.272 0.192 0.138 0.300 0.175 0.138
DEC [33] 0.301 0.257 0.161 0.381 0.282 0.203
DAC [34] 0.522 0.396 0.306 0.527 0.394 0.302

DCCM [58] 0.623 0.496 0.408 0.710 0.608 0.555
Ours 0.330 0.315 0.014 0.368 0.377 0.030

Ours∗ 0.440 0.421 0.223 0.487 0.492 0.310

may be many features that can be easily exploited as cues for
cluster assignment, such as style and hue, not just the type
of object. Therefore, when we introduce knowledge, such as
invariance to translation, rotation, resize, brightness, contrast,
saturation, hue, noise and etc., into the training process, we
can further improve the clustering performance. That has
been illustrated as Ours∗ in Table VI. Because this paper
aims to build a general-purpose deep clustering framework,
elaborating on exotic designs dedicated to extracting effective
features for specific clustering tasks is beyond the scope of dis-
cussion. Here, we just make an indicative specification about
incorporating any orthogonal techniques into the framework.

H. Complexity analysis

The training of the framework consumes a relatively
long time (generally, 38 hours for MNIST, Fashion-MNIST,
Artifact-MNIST and USPS, 1.2 hours for ORL, 56 hours
for Cifar-10, 220 hours for ImageNet-10), but after training,
the framework outputs the clustering result for an instance
(32x32 grayscale/color image or 64x64 color image) within
0.03/0.034/0.09 milliseconds (average over a batch size of

50)1. It should be noted that since we used similar experimen-
tal configurations for all datasets, the reported performance
must be below its maximum value. In this case, when a better
hyperparameter is selected, the measured training latency can
be reduced by cutting the number of iterations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we define the objective of deep clustering as
finding a precise feature as the cue for cluster assignment.
To achieve this objective, we propose a general-purpose deep
clustering framework that integrates representation learning
and clustering into an individual pipeline for joint optimiza-
tion. We apply the proposed framework to a synthetic dataset
and several real-world image benchmarks. The results showed
that the framework performed better than, or comparably to,
the baselines. We attribute the promising results to the fact
that our framework captures the intrinsic characteristics of
samples and learns to select one whose discrete value space
exactly matches the specified categories as the cue for cluster
assignment. In essence, the proposed framework works in the
similar manner as that humans behave in clustering tasks.

However, there are still some limitations for the proposed
framework. First, the uniform prior imposed on the clusters
only benefits when the samples are approximately uniformly
distributed across clusters. Second, the failure on the object
recognition datasets suggests that pure statistical methods are
difficult to solve complex recognition problems, and it is nec-
essary to introduce additional knowledge or visual mechanisms
into the unsupervised framework. In the future, we aim to build
more robust methods in order to cater for various clustering
scenarios, including adopting a learnable prior to fit more
general distributions and using the commonsense provided by
humans to induce the learning procedure.
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Supplemental Material for Learning the Precise
Feature for Cluster Assignment

Yanhai Gan, Xinghui Dong, Huiyu Zhou, Feng Gao, and Junyu Dong

I. HUMAN’S DECISION-MAKING MECHANISM

Thought experiment is a very important studying method in physics and plays pivotal role in both science and philosophy [1],
[2]. A thought experiment is a device with which one performs an intentional, structured process of intellectual deliberation
in order to speculate, within a specifiable problem domain, about potential consequents (or antecedents) for a designated
antecedent (or consequent) [3], [4]. Here, we would like to introduce thought experiment to unsupervised learning researches
to study how to construct human’s decision-making mechanism inspired architecture design. Perceptual grouping has been
thoroughly studied by psychologists [5], [6], and even further, Vickery and Jiang empirically demonstrate that visual statistical
learning may form an important component of perceptual organization, which alters the perceptual grouping of distinct visual
elements [7]. In spite of these studies focusing on how humans perceive objects as organized patterns and objects [8], we
emphasize that the designated categories can induce the intelligent agent to learn the precisely matched intrinsic feature as the
cue for cluster assignment.

A. Necessary and sufficient condition to achieve perfect clustering result

Supposing there are 100 blocks of 10 colors with 10 blocks for each color, and these blocks are undistinguishable in any
other aspect, one is tasked to put the 100 blocks into 10 baskets with the requirement that, when a block is fetched, one should
definitely tell which basket it lies in after that all the blocks have been distributed. This simplest toy task has been depicted in
the first row of Fig.1. There are many strategies that can be adopted to distribute these blocks. Supposing one chooses strategy
to put blocks with the same color into different baskets, it will become impossible for him to guess the correct basket when a
block is fetched. To meet the requirement, one would like to put blocks with the same color into one basket. However, a very
trivial solution can be made by putting all blocks into one basket. To avoid this, we make the first constraint - there should
be no empty basket after the distribution has been finished. Under this constraint, each basket will be filled with ten blocks
of the same color, which corresponds to perfect cluster assignment. One can prove that any difference from this assignment
will lead to suboptimal solution. This toy task forces one to find the only discriminative feature of blocks and use it as the
cue for cluster assignment. If one has found the discriminative feature, i.e., color, he can make cluster assignment according
to it. On the contrary, when confronted with the obligation to accomplish this toy task, one would try to discover the only
discriminative cue. That is to say, discriminative feature learning and cluster assigning are cooperative tasks, and must work
together to produce perfect clustering result.

Now, we make an analysis about the relationship between the toy task and entropy minimization objective. For description
clarity, we make some notations. We use y to denote the basket, use x to denote a block, use y = g(x) to denote putting x into
y, and use ŷ = f(x) to denote guessing the basket when a block is fetched. The toy task can thus be depicted as optimizing
g such that ŷ = f(x) can be as accurate as possible under the constraint that the marginal distribution of y covers the entire
range of all plausible baskets. According to information theory, reducing the difficulty of assignment conjecture is equivalent
to making the distribution of y given x informative, which corresponds to a low information entropy of distribution [9].
Therefore, it is straightforward to formally define the objective of the toy task as minimization of the average of entropies of
the distributions of cluster assignment of given examples. In the optimal solution, where each basket is filled with ten blocks
of the same color, the entropy of the distribution of the basket assignment of certain block becomes zero. On the contrary, it
is easy to deduce that blocks of each color must be put into one basket in order to minimize the average of entropies of the
distributions of basket assignment under the constraint that each basket is not empty. That is to say, the entropy minimization
objective is the necessary and sufficient condition to perfectly achieve the requirement of this toy task.

B. Robustness of the entropy minimization objective

The second row of Fig.1 provides the 100 blocks with additional 3 different shapes. As one can choose shape as the cue for
cluster assignment now, if he does so, he will be faced with the misalignment between shapes and baskets. If he puts blocks of
the same shape into one basket, empty basket becomes inevitable. On the contrary, if he distributes blocks of the same shape
into different baskets, the requirement of the toy task can’t be satisfied. The misalignment between shapes and baskets prevents
one from choosing shape as the cue for cluster assignment. This further demonstrates that discriminative feature learning and
cluster assigning must work together to produce good result. The third row of Fig.1 provides the blocks with 10 colors, 2
shapes and 5 sizes. Different from before, one is able to choose the combination of shape and size as the cue to accomplish
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Fig. 1. Sketches of toy tasks. There are 100 blocks in each toy task. The first row depicts the simplest toy task, in which only color of the blocks is varied.
The second row gives additional 3 different shapes to the blocks. The third row changes the blocks to be of 10 colors, 2 shapes and 5 sizes. The forth row
gives the blocks 10 colors and 20 shapes as features. In all toy tasks, the intelligent agent ultimately chooses color as the cue for cluster assignment, as color
is the only feature whose possible values precisely match the number of designated categories.

TABLE I
VARIANTS OF USPS DATASET.

Dataset
Number of samples in each category

UI
0th class 1th class 2th class 3th class 4th class 5th class 6th class 7th class 8th class 9th class

USPS1500 1500 1200 900 800 800 700 800 700 700 800 0.985

USPS1200 1200 1200 900 800 800 700 800 700 700 800 0.991

USPS900 900 900 900 800 800 700 800 700 700 800 0.998

USPS800 800 800 800 800 800 700 800 700 700 800 0.999

USPS700 700 700 700 700 700 700 700 700 700 700 1.000

the toy task. Although this strategy does work, we can safely assume that most people, even intelligent agents, prefer simpler
solution of choosing color as the cue for cluster assignment, just like scientists use Occam’s razor as an abductive heuristic
in the development of theoretical models [10]. The fourth row of Fig.1 provides the blocks with 10 colors, 20 shapes. In this
configuration, one is able to choose shape as the cue for cluster assignment by dividing these 20 shapes into 10 different
subsets. To avoid it, we make the second constraint that the feature chosen as the cue for clustering must be unique-valued in
a cluster.

Because samples in practice, especially images, contain a large amount of variables, many of which own an enormous value
space, clustering would become meaningless if the intelligent agent is permitted to divide the value space of intrinsic feature
into different subsets as a new cue for cluster assignment. That’s the reason why we establish the second constraint. Under the
first and second constraint, the intelligent agent has to choose color as the cue for cluster assignment in every task, as color is
the only intrinsic feature whose possible values match the number of designated categories. If there are several such features,
one intelligent agent may arbitrarily choose one from these alternatives. Since any practical case about feature learning and
clustering can be boiled down into one of these toy tasks, the derived entropy minimization objective is robust. Till now, we
have clearly pointed out the destiny of the entropy minimization objective, which guides the intelligent agent to learn intrinsic
feature and simply use it for cluster assignment. It should be noted that, the correctness of the consequence is built upon the
premise - the intelligent agent is capable enough to learn intrinsic features of samples, which refer to sample-level features
independent of each other.

II. EXPERIMENTAL RESULTS

Fig.2 illustrates the dynamics learned by the framework on synthetic dataset. Fig.3 illustrates the results of ten runs on
MNIST and Fashion-MNIST. Fig.4 is the result on Artifact-MNIST, and Fig.5 is the result on USPS700. Table II summarizes
the variants of USPS, including the distribution of samples across classes and the uniformness index of each variant.
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(a) (b)

(c) (d)

(f)(e)

Fig. 2. Experimental results on synthetic dataset. (a),(b),(c),(d),(e),(f) are training dynamics of the framework, in which cluster id, cluster id plus one gaussian
noise, cluster id plus two noises, cluster id plus three noises, cluster id plus four noises, cluster id plus eight noises are respectively used as inputs to the
generator. The first row in each subfigure depicts the contour lines of the critic values, the generated samples and real samples. The generated samples are
drawn as green pluses, the real samples are drawn as orange pluses. The second row in each subfigure depicts the clustering surface, where samples in regions
covered by the same color are viewed as in one category by the model. The columns formed by the first two rows in each subfigure are drawn from the 99th,
24999th, 49999th, 74999th and 99999th iteration of the optimization dynamics for the generator. The third row in each subfigure depicts the learning curves
of entropy expectation, Wasserstein distance, fake classifying accuracy, evaluated clustering accuracy and the gaussian mixture distribution of true samples. In
(a),(b),(c),(e), the generated samples reach the real samples in the end, and the final clustering result is fascinating. In (d),(f), the Wasserstein distance diverges
in the later stage of training, and the generated samples correspondingly bias from real samples. As a consequence, the finally leaned clustering surface looks
weird, and the evaluated clustering accuracy severely deteriorates. In particular, when using 8 noises besides the cluster id as input to the generator, subfigure
(f) presents serious overfitting, in which the final evaluated clustering accuracy gets really terrible without surprise. These phenomenons pronounce that the
quality of the generated samples is vital important for the clustering performance of the framework. In this synthetic dataset, the samples are drawn from
a mixture of 8 gaussian distributions. Therefore, there are actually 3 intrinsic features existing in the samples. Specifically, the three intrinsic features are
the center of each blob, the bias in x-axis, and the bias in y-axis respectively. Among these intrinsic features, the biases in x-axis and y-axis can also be
transformed as a distance and an angle from fixed point and direction. Whatever formalization, the degree of freedom insist. Hence, subfigure (c) indeed uses
the accurate number of inputting variables identical to that of the intrinsic features for generating, and reasonably produces good clustering results. While
the number of variables used as input increases, the performance of the framework quickly becomes unstable. However, when there are less variables than
actual intrinsic features in the input, the clustering performance of the framework will not sharply degrade. Based on this observation, we’d better use less
variables as input in the framework. In spite of these, subfigure (e) comes into a distinct phenomenon, in which the generated samples and the final evaluated
clustering accuracy both get a desired result. To be audacious, we pronounce that this may be caused by the duality of the designated inputting noises, and
the framework cleverly learns to combine two of them as one intrinsic feature.
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Fig. 3. Performance comparison of different methods on MNIST and Fashion-MNIST. (a)(b)(c) are evaluated on MNIST, (c)(d)(e) are evaluated on Fashion-
MNIST. In each subfigure, each method is trained and evaluated by the same training and test splits of the datasets. Specifically, each method on each dataset
is trained and evaluated for ten times, and the evaluated ACC, NMI and ARI metrics for each run are illustrated.
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Fig. 4. Performance comparison of different methods on Artifact-MNIST. (a)(b)(c) illustrate the performance comparison of different methods measured by
ACC, NMI and ARI. Each method is trained and evaluated by the same training and test split of the dataset for 10 times. It should be noted that all the
comparison methods fail on this task.
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