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Energy-aware Scheduling of Streaming Applications
on Edge-devices in IoT based Healthcare

Umair Ullah Tariq, Haider Ali, Lu Liu, James Hardy, Muhammad Kazim, and Waqar Ahmed

Abstract—The reliance on Network-on-Chip (NoC) based
Multiprocessor Systems-on-Chips (MPSoCs) is proliferating in
modern embedded systems to satisfy the higher performance
requirement of multimedia streaming applications. Task level
coarse grained software pipeling also called re-timing when
combined with Dynamic Voltage and Frequency Scaling (DVFS)
has shown to be an effective approach in significantly reducing
energy consumption of the multiprocessor systems at the expense
of additional delay. In this paper we develop a novel energy-aware
scheduler considering tasks with conditional constraints on Volt-
age Frequency Island (VFI) based heterogeneous NoC-MPSoCs
deploying re-timing integrated with DVFS for real-time streaming
applications. We propose a novel task level re-timing approach
called R-CTG and integrate it with non linear programming
based scheduling and voltage scaling approach referred to as
ALI-EBAD. The R-CTG approach aims to minimize the latency
caused by re-timing without compromising on energy-efficiency.
Compared to R-DAG, the state-of-the-art approach designed for
traditional Directed Acyclic Graph (DAG) based task graphs, R-
CTG significantly reduces the re-timing latency because it only
re-times tasks that free up the wasted slack. To validate our
claims we performed experiments on using 12 real benchmarks,
the results demonstrate that ALI-EBAD out performs CA-TMES-
Search and CA-TMES-Quick task schedulers in terms of energy-
efficiency.

Index Terms—IoT, Video-streaming, CTGs, Re-timing, MP-
SoCs, Edge-device, Scheduling, Energy-efficiency, Prologue.

I. INTRODUCTION

HEALTHCARE is one of the fastest growing industries
with an enormous potential for enhancement from the

employment of technologies such as the Internet-of-Things
(IoT), cloud computing, and mobile devices. An IoT based
ubiquitous healthcare system may provide patients the oppor-
tunity to lead a more independent life without the constant
need for qualified medical staff to monitor their health. The
advanced healthcare system using the IoT not only provides
an accurate medical data but also integrates an alarm system
for emergency situations. The IoT is making healthcare more
accessible and responsive to the needs of most users anywhere
and at anytime. The IoT consists of a combination of sen-
sors and actuators including, analogue devices, and cameras.
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Utilizing features such as video-streams transmitted via the
Internet, these systems are able to monitor the healthcare needs
for anyone. This is considered most beneficial to people with
increases support needs such as elderly, inform or those with
alternative abilities. The video and data streams are stored
securely in the cloud but available for access by the right
people when needed. An abstract IoT based healthcare system
architecture is demonstrated in Fig. (1) [1], [2].
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Fig. (1) IoT based Healthcare System Architecture

Thanks to the advancements in technology, multimedia data-
streaming and live video-streaming have provided significant
positive impacts on healthcare by enabling professional, real-
time virtual healthcare assistance in places which was not pos-
sible before the era of the Internet. Multimedia applications are
providing a new baseline for advanced healthcare. Literature
predicted there to be approximately 50 billion interconnected
IoT digital devices by 2020 [3]. Multimedia content will be
approximately 80% of the total Internet data traffic by 2021
and healthcare will be a significant proportion of this data.
The multimedia data content is streamed over the network
in an encoded form with the video displayed to the end
user and/or professional either in a recorded or pre-recorded
manner. Real-time video-streaming applications in IoT are
periodic in nature as they tend to be executed repeatedly. In
IoT, video streams are usually compressed to reduce the video
size and achieve better network load balancing. The MPEG-
encoder is executed numerous times for the whole video
stream. The multimedia streaming data can be represented
by Conditional Task Graph (CTG), the tasks within the CTG
are dependent on each other [4]. Prime examples of real-time
IoT based multimedia streaming applications in healthcare
include human gait analysis, telemonitoring and fall detection
in people with infirmities [5], [6].

In real-time streaming applications, tasks are dependent on
each other thus, the slack within the processors of the MPSoC
architecture is not efficiently utilized. Re-timing is a powerful
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technique applied at the application level to transform the
intra-period dependencies between tasks by regrouping the
tasks from different periods. Concisely, re-timing transforms
a dependent task model into an independent task model to
efficiently utilize the resources [7]. However, the process of
re-timing adds an unwanted delay called prologue during
video-streaming. Ideally there is a need of an efficient video-
streaming where the video starts playing with a reduced
prologue.

Creation and manipulation of multimedia data is computa-
tionally expensive due to intensive processes such as video
encoding, compression, and Fourier Transform (FT). Con-
sequently, Multiprocessor System-on-Chips (MPSoCs) have
become an essential element of the modern embedded sys-
tems for real-time multimedia data processing due to their
higher performance, reliability and exceptional Quality-of-
Service (QoS) [8], [9]. Xilinx Zynq R© UltraScale+TM MPSoCs
and Tilera TILE-Gx72TM are few of the well-known high
performance computing architectures used in digital systems
for healthcare Examples of the medical application of multi-
processor systems include a real-time video-streaming system
[10] developed to remotely monitor the human ultrasound ex-
aminations. The ultrasound streams are transmitted wirelessly
to a remote location where the information is accessed and
analyzed by a medical specialist. Similar works in [11], [12]
used heterogeneous MPSoCs and enhanced the image quality
for the ultrasound imaging. These developments improved the
overall performance and reduced latency. In a further example,
a human fall detection mechanism is presented [13] using a
ZYNQ MPSoC platform to perform various operations such
as segmentation, feature extraction, filtering and recognition
for differentiating different types of fall.

Data extensive real-time applications are increasing in IoT,
increasing numbers of processors elements are therefore de-
sirable in MPSoCs design to meet the performance needs
[9], [14], [15]. According to the International Technology
Roadmap for Semiconductors (ITRS), MPSoCs will consist
of hundreds of processors in the near future. In this case,
traditional bus-based MPSoCs would become a computational
bottleneck due to their higher inter-element communication
requirement leading to higher congestion and poor scalability.
Alternatively, Network-on-Chip (NoC) based communication
available in some MPSoCs can offer improved scalability with
higher flexibility [16], [17]. Recently Voltage Frequency Island
(VFI), Globally Asynchronous Locally Synchronous (GALS)
introduced to NoC interconnect, where the tiles/processors are
partitioned into islands. Each island in an MPSoC operates
at its own frequency and supply voltage to minimize the
total energy consumption [18]. These attributes lead to higher
throughput and lower hardware complexity and make VFI
based heterogeneous NoC-MPSoC (VFI-NoC-HMPSoC) the
most suitable choice of computing platform for data extensive
applications [19].

Energy consumption reduction in digital systems using MP-
SoCs for the IoT based healthcare is an important research as-
pect because higher energy consumption produces an increased
carbon footprint [9], [18]. Proper task scheduling approaches
can reduce energy consumption and increase the performance

and reliability of an embedded system [20]. Task scheduling
is NP-hard problem therefore, different heuristics have been
developed to achieve energy-efficient solutions [21]. Real-
time multimedia streaming applications, as used in healthcare,
are typical illustrations of static task scheduling. Dynamic
Voltage and Frequency Scaling (DVFS) is a conventional
approach integrated with scheduling to minimize the energy
consumption of MPSoC computing architectures [22]. DVFS
efficiently utilizes the available slack within the processors
by dynamically reducing the supplied voltage/clock frequency
without violating the tasks deadline constraint subsequently, it
minimizes the overall power consumption [7].

In this paper, we investigate an energy-efficient static
scheduling deploying VFI-NoC-HMPSoC for a set of periodic
tasks with conditional precedence constraints representing a
real-time periodic streaming application. Our contributions and
innovations include as follows:

1) We develop a novel energy-aware static scheduler con-
sidering tasks with conditional constraints using VFI-
NoC-HMPSoC computing architecture deploying a re-
timing technique integrated with DVFS for the IoT based
real-time streaming applications in healthcare.

2) We present a non linear programming (NLP) based
scheduling and voltage scaling approach which we refer
to as ALI−EBAD. This performs task scheduling and
voltage scaling in an integrated manner to steer the task
scheduling towards a more energy-efficient solution.

3) We propose a novel task level coarse-grained software
pipelining approach called Re-timed CTG (R-CTG).
This significantly reduces the re-timing latency com-
pared to R-DAG [23], without an increase in energy
consumption.

4) We show by experiments that that ALI-EBAD deploy-
ing VFI-NoC-HMPSoC achieves an average energy-
efficiency of ∼ 20% over CA-TMES-Search [24] and ∼
25% over CA-TMES-Quick [24]. The energy-efficiency
increases significantly when R-CTG is integrated with
ALI-EBAD and attains an average energy saving of
∼ 40% and ∼ 45% respectively. The R-CTG efficiently
reduces the prologue/latency by 50% when compared
with state-of-the-art re-timing technique R-DAG [23].

The remainder of the paper is organized as follows: Section
II discusses the related work performed so far on task schedul-
ing using multiprocessors. Section III presents application,
system, and energy models used in the simulations. Section
IV explains our novel offline pipelined scheduling. Section V
presents experimental results followed by the conclusion of
this paper in Section VI.

II. LITERATURE REVIEW

Multiprocessor systems are becoming de-facto computing
platforms due to their excellent high-performance and excep-
tional QoS. For this reason, different research studies have
deployed multiprocessor computing architectures for energy-
aware task scheduling.

Olafsson introduced one of the first dynamical models for
the scheduling of tasks on heterogeneous multiprocessor sys-
tems [25]. Aydin et al. applied DVFS to determine the optimal
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voltage levels for the tasks and developed an algorithm called
Earliest Deadline First (EDF) to a generate feasible tasks
schedule [26]. Tosun [27] used Integer Linear Programming
(ILP) to decrease the computational energy consumption of
heterogeneous MPSoC architectures by assigning accurate
voltage levels to the tasks. The authors also developed an
energy-aware heuristic integrated with EDF technique for
efficient task ordering. Kumar and Vidyarthi [28] combined
task mapping and discrete voltage levels assignment within
the single optimization loop of Genetic Algorithm (GA) and
compared the results in terms of energy-savings with Genetic
Algorithm-Struggle (GA-ST). Recently Dziurzanski and Singh
designed a feedback control- based task scheduling called
Admission Control Algorithm (ACA) and performed schedu-
lability analysis to determine the tasks which are expected to
violate deadline constraints [29]. Though the aforementioned
task scheduling heuristics presented in [26], [27], [28], [29]
efficiently reduced energy consumption of the multiprocessor
computing systems, these investigations only considered inde-
pendent task graphs i.e. tasks without precedence constraints.

Other researchers investigated scheduling problems inte-
grated with DVFS for tasks with precedence constraints to
reduce the power overhead. For instance, Wang et al. for-
mulated the scheduling problem as ILP and reduced the
computational and inter-processor communication overheads
of heterogeneous MPSoC for streaming applications. The
authors obtained a solution with a possible minimum schedule
length using ILP based algorithm and minimized the wasted
slack within the schedule deploying DVFS [30]. Chen et
al. [31] applied Mixed Integer Linear Programming (MILP)
on NoC-MPSoC and developed a heuristic for generating a
non-preemptive task schedule while applying discrete voltage
to each task. Ali et al. developed a meta-heuristic called
Contention-aware Integrated Task Mapping and Voltage As-
signment (CITM-VA) for static task mapping and performed
task ordering using Earliest Latest Finish Time First (ELFTF)
[9]. While the investigations performed for task scheduling
problems on MPSoC in [30], [31], [9] only focus on dependent
tasks represented by Directed Acyclic Graph (DAG).

The research studies in [32], [33], [34], [16], [35] explored
energy-efficient scheduling for CTGs. For example, Shin and
Kim [32] developed a Non Linear Programming (NLP) based
heuristic for assigning optimal discrete voltage levels to each
task in order to reduce the computational energy consumption.
Wu et al. [33] presented an algorithm which deploys the
schedule table generated by Eles et al. [34] for calculating
the available slack in the processors and assigns voltage
levels to each task using a voltage scaling algorithm. Tariq
and Wu [16] scheduled the tasks represented by CTGs on
homogeneous MPSoC and formulated the scheduling prob-
lem as NLP. An algorithm called Iterative Offline Energy-
aware Task and Communication Scheduling (IOETCS) is used
to perform scheduling and voltage scaling in an integrated
manner. IOETCS used the Earliest Successor-Tree-Consistent
Deadline First (ESTCDF) algorithm for generating an initial
task schedule and then applies voltage scaling using ILP [35].
Each of these research papers only investigated energy-aware
conditional task scheduling on single processor per VFI.

Recently, task scheduling deploying VFI based MPSoCs
have been explored in other studies that use bus as a communi-
cation interconnect. For example, Pagani et al. [36] presented a
Single Frequency Approximation (SFA) algorithm for optimal
voltage assignment to the processor islands in MPSoC archi-
tecture. The SFA is integrated with Dynamic Programming
Mapping Algorithm (DPMA) to increase the energy-efficiency
and to minimize the running time. Liu and Guo [37] developed
an algorithm called Voltage Island Largest Capacity First
(VILCF) for task scheduling. The VILCF reduces the energy
consumption by fully utilizing an island that is already active
before activating other islands. Han et al. [24] mapped tasks on
the processors of the islands and communications on the NoC
to reduce the overall makespan and inter-VFI communication.
The authors developed two contention and energy-aware task
mapping and edge scheduling heuristics called CA-TMES-
Quick and CA-TMES-Search for assigning tasks to processors
and edges on NoC. Tariq et al. [38] developed a meta-heuristic
for energy-efficient and contention-aware dependent tasks with
precedence constraints on VFI-NoC-HMPSoC. Gammoudi
et al. [39] scheduled periodic tasks on homogeneous NoC-
VFI-MPSoC architectures deploying well known EDF task
ordering policy. Though these investigations reduced the en-
ergy consumption by utilizing appropriate task mapping and
scheduling, they did not consider re-timing at the task level to
further minimize the total energy consumption.

Researchers in other investigations have developed algo-
rithms to transform the intra-period dependencies in DAG
tasks into inter-period dependencies using re-timing integrated
with DVFS to achieve higher energy-efficiency. Wang et al.
[23] transformed the dependent tasks into independent task
models deploying an algorithm called R-DAG, and used a
heuristic termed as GeneS for voltage assignment plus task
mapping. Wang et al. [40] reduced the inter-processor commu-
nication overhead using re-timing by deploying an algorithm
called Joint Computation and Communication Task Scheduling
(JCCTS). The JCCTS combined with DVFS reduces the com-
putational energy consumption for real-time tasks. In another
research study, Wang et al. [41] reduced both memory and
communication overhead using algorithms called Memory-
Aware Optimal Task Scheduling (MAOTS) and Heuristic
Memory-Aware Task Scheduling (HMATS). These scheduling
approaches fail to implement re-timing for tasks represented
by CTGs on VFI-NoC-MPSoC architectures.

Concisely, to the best of our knowledge, no prior work
has been done that focuses on energy-aware scheduling of
tasks with conditional constraints represented by CTGs on
VFI-NoC-HMPSoC deploying re-timing combined with DVFS
technique.

III. MODELS AND DEFINITIONS

In this section, CTG is explained followed by the discussion
of our computing architecture deployed for energy-aware task
scheduling, and finally the energy model is presented that is
used to carry out the simulations.
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A. Application Model

The application in our model is represented by a CTG.
A CTG is a weighted DAG, G(V,E,A,W,X) [16]. V =
{v1, v2, . . . , vn} shows a set of tasks while each task has
a certain execution time represented by the number of clock
cycles NCi,k on a processor pek, a common period T and
an individual soft deadline di ≤ T . E ⊆ V × V is a set of
directed edges each denoting the dependency between the two
tasks. A is a set of triplets (ei, ci, p(ci)), where ei ∈ E, and
ci and p(ci) represent the condition associated with ei and its
probability [42], respectively. X is a set of edge weights. An
edge weight χs ∈ X of an edge es = (vi, vj) denoted the
communication volume in bits from task vi to task vj .
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Fig. (2) (a) CTGs (b) A scenario of CTG, G

A scenario of a CTG G is a sub-graph of G formed by
all the tasks in a complete execution trace of the task set.
Fig. (2b) shows a scenario of the CTG G in Fig. (2a) with
a = true. Given a CTG Gi, an activation space AS is a set
of all the possible conditions each of which corresponds to a
unique scenario. For example, the activation space of the CTG
G shown in Fig. (2a) is AS = {a, a′}. The probability of a
scenario s ∈ AS, represented by p(s), is calculated as p(s) =∏
c∈s p(c) where c is a condition that belongs to the scenario s,

and p(c) is the probability when c is true. Associated with each
task is its activation probability. The activation probability of
a task is the probability with which the task can be executed.
Let Sj be the set of scenarios to which a task vj belongs to.
The activation probability of vj is calculated as follows:

p(vj) =
∑
s∈Sj

p(s) (1)

B. System Model

We consider a NoC based VFI-MPSoC with M processors
P = {p1, p2, p3, . . . pM} as demonstrated in Fig. (3). In a
single tile there is a processor, local memory and network
interface. In each tile, the processor executes tasks, memory
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holds the scheduled tasks and the network interface connects
the processor with the router (R) of the mesh network. The
processors of the target computing architecture are grouped
into a set C = {c1, c2, c3, . . . cm} of m heterogeneous VFIs.
Heterogeneous VFIs have processors with different energy
performance profiles. That is one VFI contains lower per-
formance but higher energy-efficient processors while other
VFI consists of higher performance but lower energy-efficient
processors. Each VFI, ci ∈ C of the computing system
contains k number of homogeneous processors (processors
with same energy performance profile). A single VFI can
operate independently at n discrete voltage and frequency lev-
els, {(Vdd1 , f1), (Vdd2 , f2), (Vdd3 , f3), . . . , (Vddn , fn)} while a
common supply voltage is shared by intra-VFI processors and
routers (R).

1) Topology: We consider a 2D-mesh topology NoC for the
communication architecture of the MPSoC as exhibited in Fig.
(4). Each tile of the NoC based VFI-MPSoC is associated with
a router. The NoC mesh contains NR rows and NC columns.
Thus, the total number of processors in the NoC based VFI-
MPSoC is equal to NR×NC . Each router possesses five ports,
out of which four ports are deployed to communicate with the
neighbour routers while one port is used for communicating
with the processor. A link connects two routers and/or a router
with a processor. All links are identical, full duplex and have
the same band width, bw.

2) Switching Technique: We assume Virtual cut-through
(VCT) switching. VCT is one of the most popular packet
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switching techniques for NoC communications. In VCT rout-
ing the buffer size is large and the entire packet is sent to
the next node thus, VCT has lower latency and higher link
utilization and lesser packet blocking probability

3) Routing Technique: We adopt XY routing which is the
most popular deterministic routing technique on NoC. Routing
in a network decides the path of a packet from source to the
destination router/node. The XY routing specifically targets
2D-mesh topology and it is the most suitable option for
mesh topology networks. Moreover, XY routing is a simple
routing but an effective approach additionally it is not prone to
deadlock occurrence. In XY routing the packets at the routers
are first routed in x-direction and then in the y-direction.

C. Offline Schedule

We consider periodic applications. Periodic applications
have a property that they execute repeatedly. Hence, the offline
schedule of a CTG is a repeated pattern for the execution of
one period of the corresponding periodic conditional depen-
dent tasks. In this work offline schedule consists of both task to
processor allocation step and control step assignment. In task
to processor allocation step we decide which processor should
execute the task and in the control step assignment we decide
when to start the task/communication. The key notations we
have used in this paper are listed in TABLE (I).

Suppose T is the period of the application then, T indicates
the deadline of the schedule, and the schedule must complete
within T . We use ρ(vi) and ∆t(vi) to represent respectively
the start and the execution time of a task node vi. Similarly
ρ(vj , Lk) and ∆t(vi, Lk) represent respectively the start and
transmission time of a communication node vj on link Lk.
ζ(vi) represents the finish time of a node vi.

Given the start time ρ(vi) of a node in the first period its
start time ρ(vi)

l in the lth period is ρ(vi)
l = ρ(vi) + (l −

1)T , l ≥ 0. In section IV-A we discuss in detail our offline
scheduling and voltage scaling approach. The energy model
that is used in our simulations is also discussed in section
IV-A.

IV. SCHEDULE-AWARE PIPELINING

In this section we discuss our coarse-grained task level
pipelining (re-timing) approach. Before we start explaining our
proposed re-timing approach we briefly explain re-timing.

The notion of re-timing was originally introduced by [43]
to reduce the synchronous circuit cycle period. Recently,
[23], [44], [45] extended re-timing to schedule applications
represented by a classical DAG (Directed Acyclic Graph) task
model on MPSoCs and is defined as follows:

Definition 1: Given a CTG G, re-timing is a function RT :
V 7→ Z, that maps each node vi ∈ G to an integer RT (vi),
where RT (vi) is the number of periods of vi reschedule in
the prologue. Re-timing vi once if it is legal, reschedules one
period of vi into the prologue.

From the point of view of the program, re-timing regroups
loop body such that some or all dependencies within a period
are transformed into inter-period dependencies. The re-timing

TABLE (I) Important Notations and Explanation

Notation Explanation

CTG Conditional Task Graph
G An instance of CTG
RT Re-timing function
vi Task node
RT (vi) Number of periods of vi reschedule in prologue
(vi, vj) Edge
pe Processor
RTmax Maximum re-timing value
prologLatency Prologue latency
ζ(vi) Finish time of vi
T Period of the application
ρ(vi) Start time of a task node vi
∆t(vi) Execution time of a task node vi
ρ(vj , Lk) Start time of a communication node vj on link Lk
∆t(vi, Lk) Transmission time of a communication node vj on

link Lk
Lk kth Link
Gs Schedule graph
Vs Set of all scheduled task nodes
V ∗
s Set of communication nodes
Es Set of edges
K1,K2,K6, Vth1

Circuit dependent constants
Ld Logic Depth
α Velocity saturation, (1.4 ≤ α ≤ 2)
NCC Number of clock cycles
fu Router sender frequency
fv Router receiver frequency
IPred(vi) Set of immediate predecessors of vi
Π(vi, pek) Set of task nodes concurrent to vi
Π(vi, Lγ) Set of communication nodes concurrent to vi
Vmindd Minimum supply voltage
Vmaxdd Maximum supply voltage
Ei Energy consumed in execution of a task vi
Ceffk Effective switched capacitance
Lg Number of logic gates
vbs Body-bias voltage
Ijn Leakage current
Eu Energy consumed in execution of communication

node vu

function is valid if no reference is made to the data from the
future period. The definition of a valid re-timing function is:

Definition 2: Given a CTG G, for each edge (vi, vj) ∈ G
and vi, vj ∈ G, the re-timing function RT is said to be valid
if RT (vi)−RT (vj) ≥ 0.

If RT (vi) − RT (vj) < 0, the re-timing function is illegal
because this condition implies a reference to unavailable data
from the future.

Fig. (5)(a) shows the schedule of the first three periods of
the CTG shown in Fig. (6)(a). TABLE II shows the execution
time and energy consumption of the tasks of the CTG in Fig.
(6)(a). The application is scheduled on MPSoC that consists
of two processors pe1 and pe2. TABLE II shows the energy
consumption and execution time of each task on the two
processors. Compared to pe1, pe2 is more energy efficient.

Fig. (5)(a) shows a schedule generated by CA-TMES-
Search. Notice that CA-TMES-Search fails to efficiently uti-
lize the more energy-efficient processor pe2 because it favours
the processor on which the task can start the earliest. pe2
remains idle until v1 completes execution on pe1. This is
because of the intra-period dependency between v1 and v2.
CA-TMES-Search cannot utilize this slack.

Fig. (5)(c) shows the schedule generated by our approach.
Notice that if intra-period dependencies can be transformed
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into inter-period dependencies then the wasted slack can
be utilized. This can be obtained by regrouping tasks from
different periods with computation and communication node
rescheduling. As each task is periodic, in Fig. (5)(c), we
reschedule periodic task v1 and execute it one period before v2
and v3. The newly added period is called the prologue. In this
way the data required by v2 and v3 is available at the start of
each period, therefore v2 can start early on pe2. Consequently,
task v4 can be scheduled on pe2. Since our approach can
utilize the available resources more efficiently hence, it is
able to generate more energy-efficient schedule. The energy
consumption of the schedule in Fig. (5)(a) is 7.5nJ where as
the schedule in Fig. (5)(c) consumes 7nJ . Our approach can
further reduce the energy to 6nJ if the MPSoC has another
energy-efficient processor like pe2.
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Although re-timing is effective in reducing energy con-
sumption, there is a cost associated with it. One drawback
of re-timing is that it adds prologue. The prologue latency
is the number of periods in prologue times the period, T .
The number of periods in the prologue is equal to the max-

TABLE (II) Energy Consumption and Execution Time of
Tasks of CTG in Fig. (6)

Task pe1 pe2

Energy (nJ) Execution Time Energy (nJ) Execution Time

V1 2 1 1.5 1.5
V2 2 1 1.5 1.5
V3 2 1 1.5 1.5
V4 2 1 1.5 1.5

imum re-timing value RTmax of the nodes in G, RTmax =
max{RT (vi) : ∀vi ∈ G}. Thus the prologue latency is:

prologLatency = RTmax × T (2)

Besides energy reduction, we also want to minimize the
prologLatency. Fig. (5)(b) shows the re-timed schedule gen-
erated by R-DAG. Compared to this the prologue latency of
the re-timed schedule generated by our approach is half. We
are able to reduce the prologue latency because we take a
different approach compared to R-DAG. We first transform the
CTG into an independent task set by relaxing the precedence
constraints between the nodes and then we schedule the
independent task model onto the MPSoC. Hence, the MPSoC
resources are maximally utilized and do not remain idle due
to precedence constraints between nodes. Finally we calculate
the re-timing values of the nodes and generate the re-timed
schedule.

Algorithm 1 describes our schedule-aware software pipelin-
ing scheduling approach. Our approach has three main steps.

1) Step 1 (Line 1): Use Algorithm 2 to generate the relaxed
schedule π and task to processor mapping map.

2) Step 2 (Line 2): Given the CTG G(v,E,A,W,X)
and task to processor mapping map transform G into
an extended graph Ge by adding additional nodes for
every directed edge in G whose tail and head nodes are
mapped on a different processor. An extended graph Ge
is a directed acyclic graph G(V + V ∗, E). V is the set
of original nodes that are kept unchanged and are called
task nodes. For every edge (vi, vj) ∈ E we insert an
additional communication node vc in V ∗ if vi and vj
are mapped on different processors and replace (vi, vj)
by two directed directed edges (vi, vc) and (vc, vj).

3) Step 3 (Lines 4-9): Calculate the re-timing values of
the nodes. Given a node vi and its child node vj , our
re-timing function is defined as follows:

RT (vi) =


0 if vi is sink node
max{RT (vi), RT (vj) + 1} if ζ(vi) < ρ(vj)

max{RT (vi), RT (vj)} otherwise
(3)

A. ALI-EBAD, A Relaxed Offline Scheduling and Voltage
Scaling Algorithm

In this section, we describe our relaxed offline scheduling
and voltage scaling approach. A relaxed schedule is generated
by assuming that the precedence constraints between the nodes
of a CTG do not exist, that is the nodes are assumed to be
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Algorithm 1: R-CTG
input : A CTG G, tasks Deadlines, an MPSoC
output: Re-timed schedule

1 Use Algorithm 2 to generate the relaxed schedule π and task
to processor mapping map;

2 Given the CTG G and task to processor mapping map
transform G into an extended graph Ge;

3 Set the re-timing values of all leaf nodes of Ge to zero;
4 for each node vi in the reverse topological order of Ge do
5 for each parent vj of vi do
6 if ρ(vi) < ζ(vj) then
7 RT (vi)← max{RT (vi), RT (vj) + 1};
8 else
9 RT (vi)← max{RT (vi), RT (vj)};

10 Given the relaxed schedule π and retiming values, generate
the re-timed schedule.

independent. We propose an offline scheduler Algorithm 2,
ALI − EBAD to generate the relax schedule.

Given a periodic CTG that models a streaming application,
our main objective is to execute the application on heteroge-
neous VFI-NoC-MPSoC such that the total expected energy
consumption is minimized. Unlike other state-of-the-art algo-
rithms for task scheduling, we consider energy performance
profiles, scheduling and voltage scaling in a integrated manner
in the design of ALI − EBAD.
ALI − EBAD maintains a ready list R that contains all

the ready nodes and source nodes. A task is ready if all its
parents have been scheduled. All the nodes of G are in R
because we relax the precedence constraints between the task
(Line 2). Next ALI−EBAD repeats executing the following
five steps until all the tasks in R have been scheduled.

1) Selects one by one each ready task vi ∈ R, tentatively
map vi on each processor pek ∈ P . For each task and
processor pair (vl, pek), repeat the following:

a) Insert task vl in set Vs (Line 10). The set Vs
contains all the tasks that have been scheduled.
For each parent and child node of vl mapped on
a different processor insert a communication node
in V ∗s (Line 11-14). The communication node is
required because the precedence constraints have
only been relaxed not removed. The data has to
be transmitted over the NoC from the processor,
where the parent node is mapped to the processor
where child node is mapped.

b) Solve the NLP described in the next section to
generate the schedule π and calculate the expected
energy consumption of Gs (Line 15). The schedule
π specifies the unique start time, finish time for
each node in Gs and a voltage setting for each
island.

c) Round the voltage of each island that has been
assigned an invalid voltage level by NLP to the
nearest highest valid voltage level (Line 16). Note
that the schedule needs to be updated in this case.
This involves re-calculating the start and finish
times of task and communication nodes under new

Algorithm 2: ALI-EBAD
input : CTG G, matrix NC, set X , and NoC based

MPSoC
output: Schedule πbest and an array Map reflecting

task mapping
1 Compute the successor-tree-consistent deadline of all

the nodes in G;
2 Create a list R and insert in it all the nodes of G,

R← V ;
3 Create and array Map of size |V |;
4 Create two empty sets Vs and V ∗s ;
5 repeat
6 Set Ebestexp to ∞;
7 for each vl ∈ R do
8 for each pek ∈ P do
9 Tentatively map vl to pek;

10 Insert vl in Vs;
11 for each parent of vl mapped on a different

processor do
12 Insert a communication node vc in V∗s
13 for each child of vl mapped on a different

processor do
14 Insert a communication node vc in V∗s
15 Solve the NLP to generate the schedule π

and calculate the expected energy
consumption Eexp;

16 Round the voltage of each island that has
been assigned invalid voltage level by
NLP to a nearest highest valid voltage
level and recompute the Eexp under new
voltage settings.;

17 if Eexp < Ebestexp then
18 Set Ebestexp to Eexp;
19 Set πbest to π ;
20 Set j to k;
21 Set i to l;

22 Delete vl from Vs and corresponding
communication nodes from V ∗s ;

23 Set Map[i] to j;
24 Insert vi in Vs;
25 for each parent of vi mapped on a different

processor do
26 Insert a communication node vc in V∗s
27 for each child of vi mapped on a different

processor do
28 Insert a communication node vc in V∗s
29 Delete vi from R;
30 until R is not empty;

voltages settings such that the relative order of the
task and communication nodes remain the same.

d) Delete vl from Vs (Line 22) and the corresponding
communication nodes from V ∗s . vl is deleted from
Vs because its current mapping is tentative.
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2) Find the task processor pair (vi, pek), such that mapping
vi to pek results in a minimum increase in energy
consumption amongst all the pairs.

3) Map vi to pek and insert vi to Vs (Lines 23-24).
4) For each parent and child node of vi mapped on a

different processor insert a communication node in V ∗s
(Lines 25-28).

5) Delete vi form R (Line 29).

1) NLP Based DVFS Approach: We propose an NLP
based offline scheduler that is inspired by the scheduler
proposed in [16], [46]. Before we describe our NLP based
offline scheduler, we discuss the priority scheme used by
the scheduler. Our approach uses the priority scheme earliest
successor-tree-consistent deadline first [35] because it allows
the DVFS scheme to efficiently utilize the available slack and
significantly reduce energy consumption. The successor-tree-
consistent deadline is defined as the upper bound on the latest
finish time of the nodes in CTG. Compared to edge-consistent
deadline it is a tighter bound on latest finish time of the nodes,
because it takes into account the resource constraints of the
MPSoC while calculating the latest finish time. Our NLP based
offline approach, schedules tasks and communication nodes in
the earliest successor-tree-consistent deadline manner, which
means that nodes with shorter successor-tree-consistent dead-
line are scheduled earlier than nodes with longer successor-
tree-consistent deadline.

Next, we describe our NLP based offline scheduler:
Operating frequency constraints: The operating frequency

fj of each island cj ∈ C is determined by the following
constraints [47]:

fj =
((1 +K1)Vddj +K2Vbs − Vth1)α

K6LdVddj
∀cj ∈ C (4)

where K1,K2,K6 and Vth1
are circuit dependent constants,

Ld is the logic depth, and α (1.4 ≤ α ≤ 2) is velocity
saturation imposed by the technology used.

Execution and transmission time constraints: The execu-
tion time of each task node vi ∈ V is given by the following
equation:

∆ti =
NCCi,k
fj

∀vi ∈ Vs (5)

where vi is mapped on processor pek that belongs to island
cj whose frequency is fj .

Consider a communication node vj whose parent task node
vp is mapped on pesrc and child task node vc is mapped
on pedest, the routing algorithm used by the network gen-
erates the route Rj from pesrc to pedst. The route Rj =<
L1, L2, . . . , Ll > is an ordered list of links, where L1 is the
first link and Ll is the last link on the route.

For communication nodes we only consider the link trans-
mission time and ignore the overheads such as inter router
delay, data copy between buffers etc. The transmission fre-
quency of a link Lγ ∈ Rj is the minimum of the sender and
receiver routers frequencies. Hence, the transmission time of
a communication node vj on link Lγ ∈ Rj is given by the
following constraint:

∆tj(Lγ) =
χp,c
bwλ

(6)

λ is given by the following constraint:

λ = min{fu, fv} (7)

where fu and fv are the frequencies of sender and receiver
routers respectively.

Link causality constraints: In communication scheduling,
network resources such as links are treated as processors in a
way that each communication can only use one resource at a
time. Hence, communication nodes are scheduled on the links
for the time they occupy them.

Note that the route depends only on the source and destina-
tion of the communication because in our network model we
assume deterministic (XY ) routing. Furthermore, the entire
communication must be transmitted on the established route
because in the network model we suppose circuit switching.
A communication node utilizing this route must be scheduled
on all the links (of this route). The data traverses these links
in the order they appear in the route vector.

The schedule of each communication node vj ∈ V ∗ on the
links of the route Rj =< L1, L2, . . . , Ll > (that vj traverses)
must obey the link causality constraints according to cut-
through switching [48], [38]. The link causality constraints
are defined as follows:

ρ(vj , L1) ≤ ρ(vj , Lγ) (8)
ρ(vj , Lγ−1) + ∆tj(Lγ−1) ≤ ρ(vj , Lγ) + ∆tj(Lγ) (9)

for 1 < γ ≤ l

Resource exclusiveness constraints: In a feasible sched-
ule nodes mapped on the same resource must not overlap.
However, a schedule is deemed feasible even though mutually
exclusive nodes may schedule in the same time interval. This is
because only one among the mutually exclusive nodes execute
at run-time thus, resource exclusiveness constraints are not
violated.

We define resource exclusiveness constraints to order con-
current nodes mapped on the same resource in an exclusive
manner. For each task node vi ∈ V the resource exclusiveness
constraints are defined as follows:

ρ(vi) + ∆ti ≤ ρ(vj) ∀vj ∈ Π(vi, pek) (10)

where Π(vi, pek) is a set of task nodes concurrent to vi,
have shorter or equal successor-tree-consistent deadline than
vi and are mapped on pek. Nodes vi and vj are concurrent if
they are not reachable from each other in the CTG and are
not mutually exclusive.

Similarly for each communication node vi ∈ V ∗ where the
route that vj takes is Rj =< L1, L2, . . . , Ll >, the resource
constraints are defined as follows:

ρ(vi, Lγ) + ∆ti(Lγ) ≤ ρ(vj , Lγ) ∀vj ∈ Π(vi, Lγ)

for 1 < γ ≤ l (11)
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where Π(vi, Lγ) is a set of communication nodes concurrent
to vi, have shorter or equal successor-tree-consistent deadline
than vi and use the same Lγ .

Deadline constraints: We define the deadline constraints so
that tasks complete execution before their deadlines as follows:

ρ(vi) + ∆ti ≤ di ∀vi ∈ V (12)

Supply voltage and start time bounds: Given the mini-
mum supply voltage V mindd and the maximum supply voltage
V maxdd the following constraints define the upper and lower
bounds on the supply voltage assigned to each island:

V mindd ≤ V ddj ≤ V maxdd ∀cj ∈ C (13)

The following constraint define the lower bound on the start
time of each task node vi ∈ V :

ρ(vi) ≥ 0 ∀vi ∈ V (14)

Objective function: The objective of our NLP formulation is
to minimize the total expected energy consumption

minimize E

where the total expected energy is given as follows:

E =
∑
∀vi∈V

p(vi)Ei +
∑
∀vu∈V ∗

p(vu)Eu (15)

Ei is the energy consumed in execution of a task vi mapped
on processor pek that belongs to VFI cj :

Ei(Vddj ) = (CeffkV
2
ddjNCi,k + Lg(VddjK3e

K4Vddj eK5Vbs

+ |Vbs|Ijn)∆ti (16)

where Ceffk is the effective switched capacitance of pek, Lg
denotes the number of logic gates, {K3, K4, K5} represents
technology specific parameters, vbs and Ijn represent body-
bias voltage and leakage current respectively. Eu is the energy
consumed in the execution of communication node vu that
traverses the route Ru =< L1, L2, . . . , Ll >. The parent
and child task nodes of vu are vp and vc respectively. Eu
is calculated as follows:

Eu =

l−1∑
β=1

χp,cEbit(β, β + 1) (17)

where Ebit(src, dest) is the energy consumed to transmit one
bit from src tile to dest. Ebit(src, dest) is discussed in detail
in [49].

V. PERFORMANCE EVALUATION

In this section we explain our experimental setup used
for producing various results on different real benchmarks to
compare the performance of our scheduler.

TABLE (III) Operating Frequency and Power Consumption
of Type 1 and Type 2 Processors

Type 1 (Cortex A15)

Frequency
(GHz) 2.0 1.8 1.6 1.4 1.2 1.0 0.8
Power
(mW) 2500 1750 1350 1000 850 650 400

Type 2 (Cortex A7)

Frequency
(GHz) 1.4 1.2 1 0.8 0.6 0.4 0.2
Power
(mW) 82.0 76.0 74.0 72.0 68.0 66.0 64.0

TABLE (IV) The 70 nm Processor Technology Parameters

Parameter Value Parameter Value

K1 0.063 K2 0.153
K3 5.38 × 10−38 K4 1.83
K5 4.19 K6 5.26 × 10−12

Ceff 4.30 × 10−10 α 2.00
Ij 4.80 × 10−10 Lg 4.00 × 106

Vbs - 0.70 Vth 0.244

A. Experimental Setup

We use Samsung Exynos 5422 chip energy model adapted
from [50], in simulations we deploy two types of processors.
Type 1 is a high-performance and high-energy consuming Cor-
tex A15 (big). Type 2 is a low-power, low-power consuming
Cortex A7 (little). The Cortex A15 consumes ∼ 6− 12 times
higher power compared to Cortex A7 [51]. The operating
frequencies and relative power consumption of both types
are listed in TABLE (III). We adopted 70 manometers (nm)
processor technology parameters from Ali et al. [9] given in
TABLE (IV). We built the simulation environment in Matlab
version R2016a. We use Matlab’s fmincon function to solve
the NLP problem.Moreover, we conducted the experiments
using the hardware platform of Intel (R) Xeon (R), i5-3570
CPU with the clock frequency of 3.50 GHz and 16.00 GB
memory, 10 MB cache.

We perform experiments on 12 real benchmarks listed in
TABLE (V) and TABLE (VI). In TABLE (V), the robot
benchmark contains tasks for automation and control. ATR is
a real-time streaming application used for pattern recognition.
Consumer-1 and consumer-2 consist of tasks to perform RGB
to CMYK conversion and JPEG compression/decompression.
The mp3-decoder benchmark performs Huffman Decoding
(HD) and Inverse Discrete Transform (IDCT). Office bench-
mark contains tasks for text processing, image rotation, and
gray-scale to binary conversion. In TABLE (VI), E shows
the number of edges and O represents the number of OR-
Fork nodes while C denotes the number of conditions for
each benchmark. Cruise-control (ctg-1) and mjpeg-decoder
(ctg-2) benchmarks represent the vehicle cruise controller
system application and Motion-JPEG decoder respectively.
The last four benchmarks symbolize synthetic benchmarks
with conditional precedence constraints.

We use contention and energy-aware task mapping and edge
scheduling (CA-TMES) approach developed by Han et al.
[24] as a baseline for energy-efficiency performance compari-
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TABLE (V) Characteristics of Benchmarks Without Condi-
tional Precedence Constraints

Benchmark No.of Nodes No.of Edges

Robot 88 131
atr 14 15
consumer-1 7 8
consumer-2 5 4
mp3-decoder 17 18
office 3 2

TABLE (VI) Characteristics of Benchmarks With Condi-
tional Precedence Constraints

Benchmark No.of Nodes E/O/C
cruise-control (ctg-1) 32 35/2/4
mpjeg-decoder (ctg-2) 14 13/0/0
ctg-3 28 26/1/3
ctg-4 29 27/2/4
ctg-5 25 23/3/8
ctg-6 34 36/3/7

son of our energy management technique, ALI-EBAD. The
authors presented CA-TMES-Search and CA-TMES-Quick
two different scheduling techniques for processor selection on
which a task can start earliest among all other processors.
CA-TMES-Search approximates the start time for each task
while considering the communication contention. CA-TMES-
Quick first maps the tasks and then determines the routes
for communications. CA-TMES-Search relatively saves higher
energy than CA-TMES-Quick because of coordinating the task
mapping in an exhaustive way and subsequently, reducing
the overall makespan significantly. Similarly, we compare the
effectiveness of our re-timing technique R-CTG with a state-
of-the-art approach called R-DAG developed by Wang et al.
[23]. R-DAG transforms a set of periodic dependent tasks into
periodic independent tasks. R-DAG technique assigns a re-
timing value to each node in the DAG starting from reverse
topological order. It assigns a value 0 to the sink node while
adds 1 with the re-timing value if it is a parent node.

B. Results and Discussion

In this section, we perform experiments on a set of bench-
marks for two different scenarios (1) without and (2) with con-
ditional precedence constraints. We consider that the number
of VFI (NVFI) = 4 and number of processors per VFI (NPI)
= 4. We use two terms in the results i.e. heterogeneous VFI
based NoC-MPSoC (VFI-NoC-HMPSoC) and homogeneous
VFI based NoC-MPSoC (VFI-NoC-MPSoC).

1) Without Re-timing: Fig. (7) shows the energy consump-
tion comparison of our task scheduling, ALI-EBAD with state-
of-the-art energy management schemes CA-TMES-Search and
CA-TMES-Quick. The horizontal axis represents real bench-
marks while the vertical axis denotes the energy consumption
in milli joules (mJ). ALI-EBAD outperforms CA-TMES-
Search and CA-TMES-Quick scheduling techniques in terms
of energy-efficiency. It achieves an average energy savings of
∼ 15%, and ∼ 20% over CA-TMES-Search and CA-TMES-
Quick respectively when homogeneous processors only of type
1 are used to form VFI-NoC-MPSoC architecture. Unlike, CA-
TMES-Search and CA-TMES-Quick, ALI-EBAD performs

task mapping, ordering and voltage scaling in an integrated
manner. Moreover, it schedules dependent tasks closer to each
other to avoid energy dissipation due to the utilization of
links, buffers, and switches for communications. In case of
task scheduling using both type 1 and type 2 processors to
form VFI-NoC-HMPSoC. We randomly select the type of
processor for each VFI in VFI-NoC-HMPSoC architecture to
generate a heterogeneous computing platform while ensuring
unbiased experimentation. The energy-efficiency further in-
creases to ∼ 20% and ∼ 25% compared to CA-TMES-Search
and CA-TMES-Quick when VFI-NoC-HMPSoC computing
architecture is considered during task scheduling. This further
reduction in energy consumption occurs because ALI-EBAD
maps higher energy consuming tasks on high energy-efficient
and low-performance processor. In other words it considers
the energy performance profiles of the processors during task
scheduling.
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Fig. (7) Unconditional Benchmarks Energy Consumption
without Re-timing

2) With Re-timing: Fig. (8) demonstrates the energy con-
sumption of real benchmarks without conditional precedence
when re-timing is deployed. We combine ALI-EBAD static
task scheduler with our developed re-timing technique R-
CTG while we integrate CA-TMES-Search and CA-TMES-
Quick with R-DAG. R-CTG coarse-grained software pipelin-
ing transforms the intra-period dependencies into inter-period
dependencies to utilize the wasted slack and efficiently utilize
the DVFS for achieving higher energy-efficiency. The energy
consumption significantly reduces when re-timing technique is
used. Compared to CA-TMES-Search in Fig. (7) without re-
timing the energy-efficiency increases to an average ∼ 40%
and ∼ 45% for ALI-EBAD@VFI-NoC-MPSoC and ALI-
EBAD@VFI-NoC-HMPSoC. Similarly Fig. (9) illustrates the
energy consumption of benchmarks with conditional prece-
dence constraints. It is noticeable that both R-DAG and R-
CTG perform similarly in terms of energy-efficiency when
combined with ALI-EBAD heuristic for both homogeneous
and heterogeneous VFI-NoC-MPSoC platforms. Though, there
is no significant energy performance improvement of R-CTG
over R-DAG however, it reduces the maximum re-timing
(RTmax) values significantly as shown in Fig. (10). R-CTG
reduces the RTmax by 50% when compared to R-DAG. We
compare the prologue latency in terms of maximum re-timing
RTmax. The smaller the value of RTmax the shorter the
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Fig. (8) Unconditional Benchmarks Energy Consumption
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prologue latency. Unlike R-DAG our novel re-timing, R-CTG
achieves lower prologue because it only re-times tasks that
free up the wasted-slack.

Concisely, ALI-EBAD static task scheduler using VFI-NoC-
HMPSoC outperforms CA-TMES-Search and CA-TMES-
Quick. It achieves an average energy-efficiency of ∼ 20%
over CA-TMES-Search and ∼ 25% over CA-TMES-Quick.
This energy saving increases to ∼ 40% and ∼ 45% when
re-timing is deployed. R-CTG and R-DAG achieve similar
energy-efficiency when integrated with ALI-EBAD but R-CTG
produces a lower prologue of 50% compared to R-DAG.

VI. CONCLUSION

The computational complexity of real-time multimedia ap-
plications is rapidly proliferating, Voltage Frequency Islands
(VFI) based Multiprocessor System-on-Chip (MPSoC) archi-
tectures are adopted for higher performance and effective
energy management. In this paper we investigated complex
scheduling problem for tasks, both with and without con-
ditional precedence constraints by deploying a VFI-NoC-
MPSoC computing platform. We proposed a novel re-timing
technique, R-CTG and integrated it with a non linear program-
ming based scheduling and voltage scaling approach referred
to as ALI-EBAD. The R-CTG minimizes the latency caused
by re-timing without compromising on the energy-efficiency.
It significantly reduces the re-timing latency because it only
re-times tasks that free up the wasted slack. We conducted an
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experiment on 12 benchmarks the results of which demonstrate
that ALI-EBAD deploying VFI-NoC-HMPSoC outperforms
CA-TMES-Search and CATMES-Quick while achieving an
average energy-efficiency improvement of ∼ 20% and ∼
25% respectively. The energy saving significantly increases
to ∼ 40% and ∼ 45% when R-CTG is used. Compared to
a previous state-of-the-art re-timing technique, R-DAG, our
coarse-grained software pipelining, R-CTG achieves similar
energy-efficiency when integrated with ALI-EBAD however
it improves computational efficiency by reducing prologue
by ∼ 50%. In the future we can also consider Quality-of-
Experience (QoE), which is an interesting parameter from a
user’s perspective.
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