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Abstract

In this thesis, we address the problem of fault identification in Petri nets:
given a known Petri net and an unknown fault introduced to it, in terms
of an additional (possibly unobservable) transition, we identify the fault, by
only observing the executions of the system. We do this by translating the
fault identification into a system of Integer Linear (In)Equations, which en-
able us to solve the problem using Integer Linear Programming. We prove
its soundness, i.e., that the identified Petri net can indeed generate all the
observed traces. Additionally, we observe and correct some inaccuracies in
the existing literature in fault identification. We propose an approach to ex-
ploit the recent developments in the tools for checking satisfiability modulo
theories. Through this approach, we empirically examine our research ques-
tion, whether our fault identification technique is applicable in identifying
faults in a number of examples. We have implemented the approach into a
program that automatically codes the fault identification method into the
input language of the Z3 SMT Solver. An evaluation of the applicability of
our tool has been made by using a number of examples.
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14 CHAPTER 1. INTRODUCTION

1.1 Background

For the past five decades, Petri nets have been extensively studied both in
theory and application. They were first introduced in the early 1960s by
Carl Adam Petri [49] for the description of chemical processes. Petri nets
are mathematical modelling languages used for the description of distributed
systems.

Nowadays, Petri nets are used for modelling, analysing and controlling
discrete event systems, along with automata and other state-based formalisms.
Although Petri nets have been extended in many directions and applied to
several domains, such as manufacturing, transportation and communication,
there still exist some open questions considering them. We will focus on one
of these problems, namely identification of discrete event systems using Petri
nets. The identification problem concerns constructing a formal model of an
unknown system through observing its behaviour.

Several original approaches have been discussed considering the identi-
fication problem, among them is an approach by Hiraishi [35], who first
introduced identification of safe Petri nets. There, an algorithm is proposed
for constructing a Petri net model from a finite set of firing sequences. The
algorithm consists of two phases. In the first phase, a language is identified
in the form of a finite state automaton from the given firing sequences. In
the second phase, the dependency relation is extracted from the language,
and the structure of a Petri net is hypothesised. The algorithm is for a class
of safe Petri nets, and its running time is bounded by a polynomial function
in the size of inputs.

A system implementation may be faulty, for example, in that it may
contain some additional transitions that are not present in the specification.
In the context of this thesis, we call such additional transitions faults. These
faults can lead to a failure, i.e., sequences that are not in the specification.
In this thesis we aim to discover the additional transitions by observing the
failures of the system. This is a well-known instance of the fault identification
problem [30, 12, 23].

An approach [13], upon which the present thesis builds, deals with the
fault identification problem within the framework of Petri nets without ex-
ploiting much knowledge about the nature of the fault. In particular, this
approach identifies the structure of the faulty transitions of the system given
its influence on the language of the faulty net. Then, the approach is general-
ized to deal with unobservable faults [13]. The generalized approach relies on
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two important pieces of information: the structure of the fault-free specifica-
tion, and the projection of the faulty system language on the set of non-faulty
events.

Different approaches of the identification problem for free-labelled Petri
nets have been proposed. Giua and Seatzu [30] deal with the problem of
identifying a Petri net system, given the accepted strings of certain length.
In particular, they consider the problem of identifying a free-labelled Petri
net system, i.e., a net system where each transition is assigned a unique
label. They show that the identification problem can be solved via a linear
integer programming problem. They also discuss how additional structural
constraints can be easily imposed on the net.

Similarly, Cabasino [12] and Dotoli [23] proposed an approach based on
linear algebraic characterization of the net systems, given the accepted strings
of certain maximal length. The set of transitions and the set of places are
assumed to be known, while the net structure and the initial marking are
computed by solving an integer programming problem. They also treat the
problem of synthesizing a bounded net system starting from an automaton
that generates its language. Finally, they show how the approach can also be
generalized to the case of labelled Petri nets, where two or more transitions
may share the same label. The output of their identification algorithm is
always a deterministic net.

1.1.1 State of art for identification

Input data are usually given in terms of behavioral descriptions (e.g., transi-
tion system, language), and the identification (or synthesis) problem aims to
address two main issues. First, decide whether for the given behavioral spec-
ification there exists a Petri net (of a given class) whose behavior coincides
with the specified behavior. Secondly, provide a constructive procedure to
determine the Petri net that satisfies the given specifications [14].

1.1.2 Theory of regions

A similar approach, that most contributions of identification topic are based
on, is theory of regions [14]. Given a prefix-closed language L over some
alphabet T , the theory of regions is trying to find a finite Petri net, which
accepts L. The set of places for the Petri net is empty and the set of transi-
tions consists of all possible transitions in T . The behavior of such Petri net
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is not minimal, therefore, it needs to be minimized, such that the Petri net
still accepts the language L, but it doesn’t accept any words not in L. This
can be achieved by adding places to the Petri net. The theory of regions pro-
vides a method to calculate the places, using regions. However, region-based
techniques differ as there exist various types of Petri nets.

1.1.3 Synthesis problem

The basic synthesis problem consists of deciding whether a given finite ini-
tialized transition/net system is isomorphic to the reachability graph of some
free labelled net system [2]. Ehrenfeucht and Rozenberg were the first who
introduced the synthesis problem in order to model the sets of states that
characterize marked places [24]. There exist several surveys regarding the
synthesis of a Petri net. Among them are synthesis approaches introduced
by Badouel and Darondeau [2], and by Lorenz [45].

Badouel and Darondeau [2] studied various types of net synthesis prob-
lems, depending on whether a given graph is isomorphic to the reachability
graph or up to language equivalence, on whether synthesizing an arbitrary
net system or an elementary net system, and on whether the net system is
contact-free or not. For all types of synthesis problems, theoretical optimal
solutions have been given. They then provide an algorithm which adapts
to all synthesis problems, with one exception, and that runs in polynomial
time taking into account the length of the alphabet of Petri nets with either
sequential firing of with step firing rules and with respect to the number of
places. Moreover, in [3, 4], the authors design explicit algorithms running
in polynomial time and which are apply to most of the synthesis problems
mentioned above.

Koutny et al. [41] study Petri nets with localities where transitions are
partitioned into disjoint groups within which execution is synchronous and
maximally concurrent. They generalise this type of nets by allowing each
transition to belong to several localities. They also define this extension
in a generic way for all classes of nets defined by net-types. They show
that Petri nets with overlapping localities are an instance of the general
model of nets with policies. They then construct nets with localities from
behavioural specifications given in terms of finite step transition systems. To
conclute, they outline some initial ideas concerning net synthesis when the
association of transition to localities is not given and has to be determined
by the synthesis algorithm.
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Cortadella, Kishinevsky, Lavagno and Yakovlev [18], introduce a method
which, given a finite state model(transition system), synthesizes a safe, place-
irredundant PN with a reachability graph that is bisimilar to the original
transition system.

Carmona et al. [16] address an efficient synthesis approach for concurrent
systems. An algorithm for k-bounded Petri nets synthesis based on the the-
ory of general regions is presented. A bounded Petri net is always provided in
case it exists. Otherwise, they propose heuristically split events into multiple
transitions, and the algorithm always guarantees a visualization object. A
minimal Petri net with bisimilar behavior is obtained when the original tran-
sition systems is excitation closed from sets of states to multisets of states.
Experimental results show a significant net reduction when compared with
approaches for the synthesis of safe Petri nets.

In [44], the authors, given a set of scenarios, find an answer to the question
whether this set equals the set of all executions of a Petri net. They define
regions of partial languages, and they prove a characterization of partial
languages of executions of Petri nets based on this notion of regions. Finally
they show that this notion of regions is consistent with the notion of regions
of trace languages.

In [43], the authors present, given a finite set of labeled partial orders
representing a partial language, how to compute a (finite) marked Petri net
with minimal set of runs, such that each specified labeled partial order is
a run of the net. Finally, they presented, for the first time, an effective
algorithm to test, whether the computed net has more runs than specified
or not. This decides the synthesis problem, since the synthesis problem has
a solution if and only if the computed net does not have more runs than
specified.

Additionally, in [45], Lorenz et al. present a survey on methods for
the synthesis of Petri nets from behavioral descriptions given as languages.
They consider Petri nets, elementary Petri nets and Petri nets with inhibitor
arcs. For each net class they consider classical languages, step languages
and partial languages as behavioral description. All methods are based on
the notion of regions of languages. Altogether, they present a framework for
region-based synthesis of Petri nets from languages which integrates almost
all known approaches by several new algorithms that involve integer pro-
gramming methods. It was the first synthesis algorithms for step languages
that had ever been introduced.

The [6] by Bergenthum et al., tackles synthesis of Petri nets from infinite



18 CHAPTER 1. INTRODUCTION

partial languages. More precisely, they introduce terms built from labeled
partial orders (LPOs) and composition operators including iteration. More-
over, they consider operators for sequential and parallel composition as well
as a union operator. Given a term constructed this way from a finite set of
LPOs, they show how to synthesize a finite Petri net from this term such
that the behaviour of the net coincides with the set of LPOs represented by
the term – if such a net exists. The synthesis approach is based on the so
called theory of regions. The synthesized Petri net has minimal net behaviour
including the behaviour specified by the given term.

1.1.4 Process mining

An actual application area of synthesis methods is the area of process mining
[55, 6]. The goal of process mining is to automatically generate a process
model from an event log. In other words, process mining techniques aim to
discover, monitor and improve real processes by extracting knowledge from
event logs.

Process mining is quite different from constructing a Petri net on the
basis of regions because the notion of completeness is much weaker than the
typical assumption when using regions (i.e., a complete transition system).
In synthesis one assumes a complete description of the system, only a partial
description of the system is assumed in process mining. For process mining
one assumes that the log contains only a fraction of the possible behavior.
Existing process mining techniques have problems dealing with large event
logs referring to many different activities [59]. During process mining, spe-
cialized data mining algorithms are applied to event log data in order to
identify trends, patterns and details contained in event logs recorded by an
information system.

In [59], van der Aalst et al. propose a generic approach to decompose
process mining problems. The decomposition approach is generic and can be
combined with different existing process discovery and conformance check-
ing techniques. It is also noted that is possible to split computationally
challenging process mining problems into many smaller problems that can
be analyzed easily and whose results can be combined into solutions for the
original problems.

In [58], van der Aalst and Weijters propose a technique for process mining.
This technique uses workflow logs to discover the workflow process as it is
actually being executed. The process mining technique proposed in the paper
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can deal with noise and can also be used to validate workflow processes by
uncovering and measuring the discrepancies between prescriptive models and
actual process executions.

In [17], Carmona et al. present Genet, a tool that allows the derivation of
a general Petri net from a state-based representation of a system. The tool
supports two modes of operation: synthesis and mining. Moreover, in [15],
Carmona et al. present a new method for the synthesis of Petri nets from
event logs in the area of process mining. The method derives a bounded
Petri net that over-approximates the behavior of an event log. The most
important property is that it produces a net with the smallest behavior that
still contains the behavior of the event log. The methods described in this
paper have been implemented in a tool and tested on a set of examples.

In [57], the authors developed techniques for discovering workflow models.
The starting point for such techniques is a so-called “workflow log” containing
information about the workflow process as it is actually being executed. They
present a new algorithm to extract a process model from such a log and
represent it in terms of a Petri net. However, they demonstrate that it is not
possible to discover arbitrary workflow processes. In the paper, they explore
a class of workflow processes that can be discovered and they show that the
algorithm can successfully mine any workflow process.

1.2 Problem statement

In all of the above-mentioned techniques the aim is to construct a Petri net
from a set of observations or specifications. My thesis also treats a related
problem, but with a specific set of hypotheses: I assume that I have access to
an original specification of system in terms of a Petri net and also finite traces
of its faulty implementation (up to a given length). Faults in this setting are
additional transitions that were not present in the specification and were in-
troduced due to a mistake (e.g., manufacturing fault, or programmer’s error)
in the implementation. I would like to construct (synthesise, mine) a Petri
net from the implementation traces with the aim of identifying the imple-
mented fault. In this setting, fault identification amounts to identifying the
(weighted) arcs connecting the faulty transitions to the original specification
traces. I call this problem the fault identification problem in Petri nets.

In this thesis, I address fault identification in Petri nets in two different
settings: the first setting, which serves as an exercise to set the scene for my
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solution, assumes that the occurrences of faulty transitions in the traces of
the implementation are observable. In other words, our first research question
is as follows:

RQ1 Is it possible to efficiently identify observable faults in a
system built from a known Petri net.

The second research question, which is closer to the real setting, removes
the assumption about the observability of the faulty transitions. My second
research question is hence phrased as follows:

RQ2 Is it possible to identify unobservable faults in a system
built from a known Petri net.

I answer both research questions by translating the fault identification
into a system of Integer Linear (In)Equations, which enable us to solve the
problem using Integer Linear Programming. I prove its soundness, i.e., that
the identified Petri net can indeed generate all the observed traces. Sub-
sequently, I answer the followig research question by implementing my ap-
proach, designing a benchmark of examples of various degrees of complexity,
and evaluating the efficiency of fault identification on the designed bench-
mark:

(RQ3) How scalable is my fault identification technique for un-
observable faults?

1.3 Contributions of the thesis

In order to answer this question, we push the state of the art:

• correcting the inaccuracies in the existing formulation fault identifica-
tion problem [12] corresponding to RQ2,

• implementing my approach using a state of the art SMT solver. Through
this implementation, we empirically examine the research question,
whether my fault identification technique is efficient in identifying the
fault,
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• implementing the approach into a program that automatically codes
the fault identification method into the input language of the Z3 SMT
Solver, and

• designing a benchmark and evaluating the applicability of my tool using
the designed benchmark, addressing RQ3.

1.4 Structure of the thesis

The rest of this thesis is organised as follows. In Chapter 2, I provide an
overview of the formal definitions concerning Petri nets and faults and for-
malise our problem statement. In Chapter 3, I rephrase a solution scheme in
our setting, which is mainly due to Cabasino [12]. In this solution scheme,
the problem is translated into a system of linear inequations, assuming that
faults are observable, pertaining RQ1. Subsequently, in Chapter 4, I drop
the assumption that the faulty transition is observable, addressing RQ2. In
Chapter 5, I review the approach of Cabasino [14], which has inspired our
approach and report the issues we observed. In Chapter 6, I present my im-
plementation, which translates the specification of the original Petri net and
my systems of linear (in)equations into the input language of the Z3 SMT
Solver. In Chapter 7, I design a benchmark comprising a number of examples
of various sizes, and I evaluate my proposed approach and the implementa-
tion on the designed benchmark, addressing RQ3. Finally, I conclude the
thesis and present the directions of my future research in Chapter 8.
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Chapter 2

Preliminaries

2.1 Modelling using Petri nets

Model-based analysis is the study of using models in order to express, con-
struct, and analyse the architecture of systems. Different notations and
formalisms have been proposed for system modelling at different levels of
abstraction. Petri nets is one such formalism that has been introduced for
modelling and analysis of concurrent systems at a high level of abstraction.

In a Petri net, places identify the state (conditions, configurations) of the
system being modelled (e.g., idle, working, queuing, failed). In each place,
there can be zero or more tokens representing the valuation of that state
at each moment. Different events occurring in the system (e.g., end of a
task, repair, failure) are represented by transitions. In order for an event
to occur, its source and target states conditions must be satisfied. This
is indicated by input arcs; conditions are then denoted by the presence of
tokens in the source of their input arcs. Output arcs represent the resulting
states of event occurrences. As a result of firing a transition, i.e., occurrence
of an event, tokens are placed at the target places of the output arcs. The
number of tokens in a place represent the valuation of the state; for instance,
in a data processing system, where transitions represent the data processing
events and tokens in source and target places represent input and output
data, respectively. Systems containing conditions and events are known as
Condition/Event-systems [8, 61].

23
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2.2 Languages: basic definitions

In this section we will introduce some basic definitions concerning alphabets
and languages.

Definition 1. An alphabet A is a non-empty finite set of symbols.
We let A∗ denote the set of all finite strings or words, including the empty

string λformed by concatenating zero or more symbols from alphabet A. A+

denotes the set of all non-empty finite sequences of elements of A. �

For example, consider alphabetA = {a, b}. Then, according to the above-
given definition, we have

A∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, . . . }

This is well-known as the Kleene star operator.

Definition 2. A language L over alphabet A is a set of words over the
alphabet, i.e., L ⊆ A∗.

For a q ∈ N we let L≤q denote the set of all sequences in L of length at
most q. �

Considering alphabet A = {a, b}, examples of languages A include ∅ (the
empty language), {a, b} (A itself), {λ, a, b, aa, ab, ba, bb} (all words of size at
most two) and A∗.

Definition 3. The string α is a prefix of a string s, if there exists a (possibly
empty) string β, such that

s = αβ

�

In other words, α is a prefix of a string s, if α is a substring of s appearing
at the beginning of s. For example if s = aba, we have that ab is a prefix of
s.

Definition 4. A language L over A is said to be prefix-closed if whenever
α ∈ L and β is a prefix of α, then β ∈ L, i.e.:

α ∈ L, β a prefix of α =⇒ β ∈ L.

�
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Definition 5. Let L ⊆ A∗ then the set of prefixes of L, denoted by Pref (L),
is defined as follows:

Pref (L) = {σ ∈ A∗ : ∃t ∈ A∗, σt ∈ L}

�

In general L ⊆ Pref (L), where Pref (L) consists of all the prefixes of all
strings in L. For, example, if L = {ab} then Pref(L) = {ε, a, ab}. If L is
prefix-closed then L = Pref (L).

2.3 Petri nets: basic definitions

Petri nets provide a formal method for modelling and analysing a large va-
riety of systems; other alternative methods include automata, process alge-
bras, and many other state-based formalisms. The pictorial representation
of a Petri net is a graph that consists of two kinds of nodes; circles called
places and bars or boxes called transitions. Places and transitions are con-
nected by arcs, either from a place to a transition or vice-versa. There are
no arcs between two places, nor between two transitions. Input arcs connect
a transition to a place and output arcs connect a place to a transition. They
represent the pre-conditions and the post-conditions of transitions respec-
tively. Input and output arcs are labelled with weights. The weight of an
input arc indicates how many tokens must be put in a place after firing a
transition, whereas the weight of the output arc indicates how many tokens
must be consumed from a place when a transition is fired. In simple words,
the weight of an arc denotes how many tokens must be removed from a place
and how many tokens must be put to another place when a transition is fired.

After this intuitive explanation of the structure of Petri nets, their formal
definition is given below.

Definition 6. A Petri net is a 4-tuple (P, T, F, ω) where:

• P is a finite set of places

• T is a finite set of transitions

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation of the net

• ω : F → N is the weight function
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�

Places may contain markers called tokens which control the execution of
the Petri net. A place can have a non-negative number of tokens. The initial
marking is the marking of the Petri net at the beginning. Petri nets with
such initial markings are called marked Petri nets.

Definition 7. Let N = (P, T, F, ω) be a Petri net. A marking of N is a
function µ : P → N. We denote the initial marking by µ0. By µ(p) we
denote the number of tokens in place p in a marking µ. �

As mentioned above, pre and post conditions are the input and the output
arcs of places and transitions. Transitions consume tokens from the input
place and produce tokens in the output place. The distribution of the tokens
in places results in a new marking. The following definition provides an
explicit notation for pre- and post-conditions in terms of arc weights.

Definition 8. Consider a Petri net, N = (P, T, F, ω); Let Pre : P × T → N
and Post : T × P → N be defined as follows:

Pre(p, t) = ω(p, t) ∀p ∈ P, t ∈ T
Post(p, t) = ω(t, p) ∀p ∈ P, t ∈ T

If (p, t) /∈ F then we define Pre(p, t) = 0 and similarly, if (t, p) /∈ F then
Post(t, p) = 0.

We often assume an arbitrary, yet fixed, ordering of places |P | = [p1, · · · , pn];
in this context, Pre(t) and Post(t) are the vectors defined as follows:

Pre(t) =

 Pre(p1, t)
...

Pre(pn, t)


and

Post(t) =

 Post(p1, t)
...

Post(pn, t)


Similarly, we also fix an ordering on transitions |T | = [t1, · · · , tm]; in this

context, we define
Pre = [Pre(t1), . . . ,Pre(tm)]
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and
Post = [Post(t1), . . . ,Post(tm)]

Note that Pre and Post are both n×m = |P ×T | matrices. Also C, is called
the incidence matrix and is defined as Post − Pre is the incidence matrix.

If σ is a non-empty sequence (v1, v2, . . . , vk) of transitions, then we define:

Pre(σ) = Pre(v1) + Pre(v2) + . . .+ Pre(vk)

,
Post(σ) = Post(v1) + Post(v2) + . . .+ Post(vk)

. �

Having presented the definition of (marked) Petri nets, we now present
the execution semantics of Petri nets based on some rules.

A transition t is enabled at a marking µ if all of its input places (places
which are connected to transition t by some input arcs) have at least as many
tokens in µ as the weight of the arc from that place to t. The transition t
then may fire by consuming the specified number of tokens from the pre-
condition places and then generating the specified number of tokens to each
of the post-condition places of the transition. We call this the firing of a
transition.

A transition t is said to be loop-free, if there is no place p that is both an
input and an output place of this transition.

Definition 9. A transition t is enabled under a marking µ if µ(p) ≥ Pre(p, t)
for every p ∈ P ; otherwise, t is said to be disabled.

Consider a transition t enabled at µ; after firing t at µ, a new marking µ′

is generated defined by

µ′(p) = µ(p) + Post(p, t)− Pre(p, t). (2.1)

We write µ
t−→ µ′ to indicate that marking µ′ is reachable from marking

µ when transition t is fired.
Similarly, we write µ

σ−→ µ′ to indicate that marking µ′ is reachable from
marking µ when a sequence of transitions σ = t1 . . . tn is fired. �

The following definition formalizes the concepts of firing sequences and
firing vector; the former is merely a sequence of consecutively enabled tran-
sitions and the latter is the number of occurrences of each transition in such
a sequence.
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Definition 10. A sequence σ = t1 . . . tn of transitions, where t1 . . . tn ∈ T ∗,
is said to be the firing sequence of a Petri net if it is enabled at µ0. For
example, transition t1 is enabled at µ0, then arriving at marking µ1, t2 is
then enabled at µ1, and so on.

Given a firing sequence σ ⊆ T ∗, the firing vector of σ, denoted by π(σ),
is the vector

π(σ) =

 y1
...
ym


where m is the number of transitions, and yi is the number of times transition
ti appears in σ, for all i = 1, . . . ,m. �

The vector µσ denotes the marking obtained from µ0 after a sequence of
transitions σ, i.e.: µ0

σ−→ µσ. We say that µσ is undefined if σ is not enabled
at µ0. If σ is the empty sequence of transitions we say that σ is enabled at
µ0 and define µσ to be µ0.

We define the state equation to be

µσ = µ0 + (Post− Pre) · π(σ)

The proof of this equation is by a straightforward induction on the total
number of transitions in σ.

Definition 11. Consider a net with initial marking 〈N,µ0〉, where N =
(P, T, F, ω) is a Petri net. The reachability set R(N,µ0) of N is then the
set of all markings µ that are reachable from the initial marking µ0 through
some firing sequence σ from µ0 to µ, i.e.:

R(N,µ0) = {µ : µ = µσ for some µ ∈ T ∗}.

�

Note that µ0 ∈ R(N,µ0) and that λ ∈ L(N,µ0) by definition.

Definition 12. The language of a Petri net N from the initial marking µ0,
denoted by L(N,µ0) ⊆ T ∗, is the set of all sequences of transition firings that
are enabled from the initial state.

For all natural numbers q ∈ N, the set L≤q(N,µ0) ⊆ T ∗ is the set of all
firing sequences of maximum length q in L(N,µ0). �
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Whenever the initial marking µ0 is known from the context we will write
L(N), L≤q(N) and R(N) instead of L(N,µ0), L≤q(N,µ0) and R(N,µ0), re-
spectively.

2.4 Subclasses and extensions of Petri nets

Some properties of Petri nets are hard to analyse. For that reason, Petri
nets have been divided into subclasses with lower complexity bounds for
their analysis and they are defined by some restrictions on their structure.
The following are some of the main subclasses of Petri nets [48].

• A state machine is a restricted Petri net where each transition has
exactly one input and one output place. On the other hand, a place
can have more than one input and output transitions, but only one of
those transitions can fire at a time, as the marking always consists of a
single token. Such transitions are said to be in conflict. State machines
have less expressive / computational power than Petri nets in general.

• A marked graph is a Petri net where each place has exactly one input
and one output transition. In marked graphs parallel activities are al-
lowed. In other words, a transition can have more than one input/out-
put places. This phenomenon can be used to model synchronisation.

• A free-choice net is a Petri net such that every arc from a place is either
the only output arc of the place, or the only input arc to a transition.

To facilitate modelling more complex phenomena, Petri nets have also
been extended with various features. The following is an example of such an
extension.

• A Petri net with inhibitor arcs is a net with special arcs, called inhibitor
arcs. An inhibitor arc from a place p to a transition t, allows t to fire
if and only if p does not contain tokens in it. Graphically they are
represented as arcs with a hollow circle instead of an arrowhead.
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2.5 Representing faults in Petri nets

As discussed in Chapter 1, a system implementation may be faulty in that
it may contain spurious transitions that are not present in the specification.
These faults can lead to failures, i.e., traces that are not in the language
of the specification. The subject matter of this Chapter (and much of the
remainder of the thesis) is fault identification. In other words, we aim to
discover the spurious transition by scrutinizing the failures, i.e., the spurious
traces. The following definition formalises this concept.

Definition 13. Consider a marked Petri net 〈N,µ0〉, where N = (P, T, F, ω)
and µ0 is the initial marking; this Petri net is assumed to represent the
fault-free specification. A faulty extension 〈N f , µ0〉, is a Petri net where
N f = (P, T f , F f , ωf ) and µ0 is the initial marking, such that the following
conditions hold:

• P is the set of places

• T f is the set of transitions including faulty transitions, such that T ⊆
T f

• F f ⊆ (P × T f ) ∪ (T f × P ) is the flow relation of the net, such that
F ⊆ F f and F f ∩ ((P × T ) ∪ (T × P )) = F

• ωf : F f → N is the weight function, satisfying the following constraints

ωf (p, t) = ω(p, t) ∀p ∈ P, t ∈ T
ωf (t, p) = ω(t, p) ∀p ∈ P, t ∈ T

In other words, if we restrict the flow relation F f of N f to F and ignore the
transitions in T f \ T , we have our original Petri net N . �

As specified above, we assume that the transitions and places of the spec-
ification are also present in the faulty system. This indicates that the faulty
system has the same underlying structure as the fault-free specification; how-
ever, the former includes some additional faulty transitions.

Our goal is to identify the fault of the system by using the language
which is generated by the faulty Petri net. Specifically, this can be done
by investigating the additional sequences that originate from the additional
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faulty transitions. We assume that T f is the extended set of (faulty and non-
faulty) transitions leading to a faulty behaviour and we also assume that
the faulty transitions are unobservable (note that there are no new places
in the faulty implementation). The firing of the unobservable transitions
cannot be detected directly. However, we scrutinise finite traces of a maximal
length (called q below) and from them infer which extra faulty transitions
are present.

In other words, we will be given a Petri net N with an initial marking
and a language L, which represents the set of firing sequences of the faulty
extension N f of N up to a certain length, and our goal is to deduce what
N f is from L.

Definition 14. Consider a Petri net N and its faulty extension N f ; the
projection of a singleton firing sequence of N f into that of N , denoted by
⇓T ( ) : T f → T ∪ {λ}, is defined as follows:

⇓T (t) =

{
t if t ∈ T
λ if t ∈ T f \ T

(2.2)

Additionally, consider σtj, where σ is a sequence and tj is a transition,
then we have that:

⇓T (σtj) =⇓T (σ) ⇓T (tj) ∀ σ ∈ (T f )∗, tj ∈ T f

�

We refer to ⇓T as the projection from (T f )∗ onto T ∗. We extend ⇓T to a
language on (T f )∗ as expected:

⇓T (L) = {⇓T (α) : α ∈ L} for , where L ⊆ (T f )∗

.

2.6 Problem formalization

2.6.1 Observable faults

We first formalise our research question concerning observable faults (RQ1):
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Problem 15. Given a net N and a finite language Lf ⊆ ((T f )∗)≤q with a
maximum length of q such that L≤q(N,µ0) ⊆ Lf . Decide whether there is
a Petri net N f extending N such that Lf = L≤q(N

f ) and, if the answer is
positive, construct one such N f . The unknowns here are F f and ωf . �

2.6.2 Unobservable faults

Next, we move the setting with unobservable faults, i.e., our second research
question (RQ2). The following problem formalises our RQ2:

Problem 16. Given a net N and a finite language Lf ⊆ (T ∗)≤q with a
maximum length of q such that L≤q(N,µ0) ⊆ Lf . Decide whether there is
a faulty system N f extending N such that Lf =⇓T (L≤q(N f )) and, if the
answer is positive, construct one such N f . The unknowns here are T f , F f

and ωf . �

The goal is to identify the structure of the faulty system, based on its
observable language which is known. When faults are not observable them-
selves, they should be identified based on the other transitions they enable.
(The unobservable transitions are also known as silent transitions [13].) In
other words, scrutinising Lf≤q \ L≤q is they key to fault identification.
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Observable faults

3.1 Problem setting

We start with the simple and well-studied setting for the fault identification
problem, namely, when faults are observable (RQ1). The goal is to char-
acterise the enabledness and disabledness of non-faulty (original) and faulty
transitions into integer linear (in)equations by observing original and faulty
sequences and hence, reduce the fault identification problem into a linear
integer programming problem based on the aforementioned integer linear
(in)equations. The assumption that the faults are observable may not be
practical in all settings and in fact, we remove this assumption in the next
chapters; however, in some settings one may be able to indirectly observe the
presence of faulty transitions, e.g., by observing the execution time of various
observable transitions. This is a well-studied problem and in this chapter,
we mostly review the approach proposed by Cabasino [14] and do not claim
much novelty about it. The main purpose of this chapter is to set the scene
for the more inovlved setting concerning unobservable faults (RQ2), which
is presented in the subsequent chapters.

As before, we assume an arbitrary yet fixed order of non-faulty transitions
[t1, t2, t3, . . . , tn] and faulty transitions [f1, f2, f3, . . . , fk]. Let q be a specified
length of the language of the net system and L≤q, respectively Lf≤q, be the

prefix-closed subsets of L, respectively Lf , that contain all strings of up to
and including length q.

Definition 17. In order to characterise the different enabledness and dis-
abledness conditions, we define the following four sets of strings:

33
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PL(N)≤q = {(σ, tj)|σ ∈ L≤q−1, tj ∈ T, σtj ∈ L≤q} (3.1)

PNL(N)≤q = {(σ, tj)|σ ∈ L≤q−1, tj ∈ T, σtj /∈ L≤q} (3.2)

PL(N f )≤q = {(σ, tj)|σ ∈ Lf≤q−1, tj ∈ T f , σtj ∈ L
f
≤q \ L≤q} (3.3)

PNL(N f )≤q = {(σ, tj)|σ ∈ Lf≤q−1, tj ∈ T f , σtj /∈ Lf} (3.4)

where (σ, t) is a pair of a sequence σ ∈ (T f )∗ and a transition t ∈ T f in
the net. �

3.2 Characterising non-faulty sequences

Consider a non-faulty sequence σ and a transition tj such that (σ, tj) ∈
PL(N)≤q. Then tj must be enabled from the marking µ0+(Post−Pre)·π(σ)
and the following relation must hold

µσ ≥ Pre(tj),

where µσ represents the marking after firing σ. The above equation can be
rewritten as

µ0 + Post · π(σ)− Pre · [π(σ) + tj] ≥ ~0 (3.5)

This equation forms the first constraint for characterising the non faulty
sequences; it makes sure that all non-faulty transitions remain enabled in
the faulty net as well.

3.3 Characterising faulty sequences

Consider now a sequence σ and a transition tj such that (σ, tj) ∈ PNL(N f )≤q.
It follows from the definition of PNL that σ is in the language of the faulty
net and tj is not enabled from the marking µσ + (Post−Pre) · π(σ). Hence,
there must exist at least one place pi such that the following constraint holds:

µσ(pi) < Pre(pi, tj),

We define a vector

Sσ,tj =

 s1
...
sm

 ∈ {0, 1}m
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where m is the number of places such that for each pk, 1 ≤ k ≤ m, sk is
defined as follows:

sk =

{
0 if µσ(pk) < Pre(pk, tj)

1 if µσ(pk) ≥ Pre(pk, tj)
(3.6)

We omit the subscripts σ and tj, when they are clear from the context.
We also assume that K = maxµσ(pk); hence, we have that µσ(pk) ≤ K

and thus that µσ(pk)−K ≤ 0.
For each place pk, we aim to prove that µσ(pk)− Pre(pk, tj) < K · sk; to

this end, we distinguish the following two cases based on the status of sk:

sk = 0 Then, we have that µσ(pk)−Pre(pk, tj) < 0, i.e., µσ(pk)−Pre(pk, tj) <
K · sk or

sk = 1 Then, we have that µσ(pk)−Pre(pk, tj) < K , i.e., µσ(pk)−Pre(pk, tj) <
K · sk .

From the above-mentioned statement and because we have that µσ = µ0 +
(Post− Pre) · π(σ), we obtain that:

µ0 + (Post− Pre) · π(σ)− Pre(tj)−K · S < ~0

Example 18. Consider a Petri net with 3 places such that transition t1 is
disabled at the end of the trace σ; we obtain the following equations:

µσ(p1)− Pre(p1, t1) < 0

µσ(p2)− Pre(p2, t1) < 0

µσ(p3)− Pre(p3, t1) < 0

At least one, but not all three, of these constraints must be satisfied. This
restriction can be modelled by combining the technique just introduced with
multiple-choice constraint as follows:

−Ks1 + µσ(p1)− Pre(p1, t1) ≤ −1

−Ks2 + µσ(p2)− Pre(p2, t1) ≤ −1

−Ks3 + µσ(p3)− Pre(p3, t1) ≤ −1
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and ∑
k≤3

sk < 3

.
The K and si’s are chosen to indicate when the constraints are satisfied.

The multiple-choice constraint
∑

k≤3 sk < 3 implies that at least one variable
sk = 0, so that, as required, at least one constraint must be satisfied. �

3.4 From Fault Identification to Linear Inte-

ger Programming

The following theorem [14] combines the previous results and provides a so-
lution to RQ1, that is the fault identification problem with observable faults,
by translating the problem into a system of linear algebraic inequations.

Theorem 19. A net system 〈N,µ0〉 is a solution to the identification prob-
lem, Problem RQ1, if and only if the following set of linear algebraic con-
straints Gm(PL(N)f , PNL(N)f ) are satisfied [14]:



µ0 + Post · π(σ)− Pre · (π(σ) + ~tj) ≥ ~0 ∀(σ, tj) ∈ PL(N)f

−KSσ,j + µ0 + Post · π(σ)− Pre · [π(σ) + ~tj] < ~0m ∀(σ, tj) ∈ PNL(N)f

~1TSσ,j ≤ m− 1 ∀(σ, tj) ∈ PNL(N)f

µ0 ∈ Nm

Pre, Post ∈ Nm×n

Sσ,j ∈ {0, 1}

(3.7)

where y = π(σ) and PL(N)f , PNL(N)f are given above.

In general, the solution of Theorem 19 is not unique; typically among
such solutions, one is looking for the “smallest” one, which provides a concise
explanation of the fault. In order to select one among these solutions the
author of [14] introduces the following proposition, Proposition 20, where by
choosing a given performance index and by solving an integer programming
problem, determines a Petri net system that minimizes the performance index
mentioned above. However, the solution may still not be unique.
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Proposition 20. Let g(Pre(f1), . . . , P re(fn), Post(f1), . . . , Post(fn)) be de-
fined as

m∑
i=1

n∑
j=1

bi,jPre(pi, fj) + ci,jPost(pi, fj) (3.8)

where bi,j, ci,j ∈ R+
0 . In the rest of the thesis we choose all given coef-

ficients bi,j and ci,j be equal to 1. So the above equation can be rewritten
as:

g(Pre(f1), . . . , P re(fn), Post(f1), . . . , Post(fn)) =
m∑
i=1

n∑
j=1

[Pre(pi, fj) + Post(pi, fj)]
(3.9)

The solution of the identification problem can be computed by solving the
following integer programming problem (IPP), assuming that the initial mark-
ing µ0 is given:

{
min g(Pre(f1), . . . , P re(fn), Post(f1), . . . , Post(fn))

s.t. Gm(PL(N)f , PNL(N)f )

In this way, they determine a Petri net that minimizes the sum of the
weights of the arcs from a place to a faulty transition or from a faulty tran-
sition to a place.

The following example, Example 21, shows how we can solve Problem
RQ1 when applying Theorem 19 and Proposition 20.
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Example 21. Consider the Petri net in Figure 3.1 to represent the fault-free
system.

p1

t1

p2
t2 t3

Figure 3.1: The fault-free net system.

The pre and post condition and the initial marking of the Petri net are

Pre =

[
1 1 0
1 1 1

]
, Post =

[
0 0 0
1 0 0

]
, µ0 =

[
1
1

]
Let Lq(N,µ0) = {ε, t1, t2, t3, t1t3} where q = 2 be its language. Now let

Tf = {f1} and Lf = {ε, t1, t2, t3, t1t3, f1, f1t3} be the language of the faulty
system. Assume that we want to find a Petri net system N f that minimizes
the sum of the arc weights on the fault transitions as in Proposition 20 such
that Lq(N

f , µ0) = Lf . We can solve this problem by using the sets

PL(N)f = {(ε, f1), (f1, t3)}

and

PNL(N)f = {( f1, t1), (f1, t2), (f1, f1), (t1, f1), (t2, f1), (t3, f1)}

where the pre and post condition and the initial marking of the faulty Petri
net are

Pref =

[
1 1 0 x1
1 1 1 x2

]
, Postf =

[
0 0 0 y1
1 0 0 y2

]
, µ0 =

[
1
1

]
where x1 = ω(p1, f1), x2 = ω(p2, f1), y1 = ω(f1, p1), y2 = ω(f1, p2) are the
weights of the arcs from a place to the faulty transition and vice-versa.

In order to find the pre and post conditions of the faulty transition we
solve the first inequality of Theorem 19. Let us consider each element in the
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set PL(N)f , because the first inequality holds for all pairs in PL(N)f . For
example, for the first pair (ε, f1) we have that

µ0 + Post · π(σ)− Pre · [π(σ) + ~tj] ≥ ~0

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
0
0
0
0

− [1 1 0 x1
1 1 1 x2

]


0
0
0
0

+


0
0
0
1


 ≥ [00

]
,

[
1
1

]
−
[
x1
x2

]
≥
[
0
0

]
.

Doing the algebra we get the inequalities

1− x1 ≥ 0

1− x2 ≥ 0

Now, consider the second pair (f1, t3), so we have that

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
0
0
0
1

− [1 1 0 x1
1 1 1 x2

]


0
0
0
1

+


0
0
1
0


 ≥ [00

]
,

[
1
1

]
+

[
y1
y2

]
−
[

x1
1 + x2

]
≥
[
0
0

]
.

Doing the algebra we get the inequalities

1 + y1 − x1 ≥ 0

1 + y2 − 1− x2 ≥ 0

Now consider the second constraint of Theorem 19 and each one of the
pairs in the set PNL(N)f . So for the first pair (f1, t1) we have that

−KSσ,j + µ0 + Post · π(σ)− Pre · [π(σ) + ~tj] ≤ ~−1m
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−1

[
0
1

]
+

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
0
0
0
1

− [1 1 0 x1
1 1 1 x2

]


0
0
0
1

+


1
0
0
0


 ≤ [−1

−1

]
,

[
0
−1

]
+

[
1
1

]
+

[
y1
y2

]
−
[
1 + x1
1 + x2

]
≤
[
−1
−1

]
.

Now, consider the second pair (f1, t2), so we have that

−1

[
0
1

]
+

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
0
0
0
1

− [1 1 0 x1
1 1 1 x2

]


0
0
0
1

+


0
1
0
0


 ≤ [−1

−1

]
,

[
0
−1

]
+

[
1
1

]
+

[
y1
y2

]
−
[
1 + x1
1 + x2

]
≤
[
−1
−1

]
.

For the third pair (f1, f1) we have that

−1

[
0
1

]
+

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
0
0
0
1

− [1 1 0 x1
1 1 1 x2

]


0
0
0
1

+


0
0
0
1


 ≤ [−1

−1

]
,

[
0
−1

]
+

[
1
1

]
+

[
y1
y2

]
−
[
2x1
2x2

]
≤
[
−1
−1

]
.

Now, consider the forth pair (t1, f1), so we have that

−1

[
0
1

]
+

[
1
1

]
+

[
0 0 0 y1
1 0 0 y2

]
1
0
0
0

− [1 1 0 x1
1 1 1 x2

]


1
0
0
0

+


0
0
0
1


 ≤ [−1

−1

]
,

[
0
−1

]
+

[
1
1

]
+

[
0
1

]
−
[
1 + x1
1 + x2

]
≤
[
−1
−1

]
.

Doing the algebra we get the inequalities

y1 − x1 ≤ −1

y2 ≥ x2
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y1 − 2x1 ≤ −1

By solving these inequalities and applying the minimization we have

x1 = 1

x2 ≤ 1

y1 ≥ 0

y2 ≥ 1 ≥ x2

Now, consider the third constraint of Theorem 19 and each one of the
pairs in the set PNL(N)f . So we have that

~1TSσ,j ≤ m− 1

If µσ(pi) < Pre(pi, tj) then si = 0 otherwise si = 1. So for pair (f1, t1) we
have that [

0
1

]
<

[
1
1

]
The resulting matrix for Sσ,j is the following

Sf1,t1 =

[
0
1

]
So for the inequality above we have that

~1T
[
0
1

]
≤ 2− 1 ,

1 ≤ 1

Similarly for the other pairs of the set PNL(N)f . We can clearly see that
all the constraints are satisfied.

The resulting matrices corresponding to the faulty system are then

Pref =

[
1 1 0 1
1 1 1 1

]
, Postf =

[
0 0 0 0
1 0 0 1

]
, µ0 =

[
1
1

]
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This gives the net shown in Figure 3.2; as it can be noted in this figure,
now it is clear that faulty transition is connect to P1 and P2. This piece of
information will be very useful in the subsequent debugging of the implemen-
tation and will guide the process by pinpointing the nature of the introduced
fault.

p1

t1

p2
t2 t3

f

Figure 3.2: The resulting of applying fault identification to the Petri Net of
Figure 3.1 and using the traces in Example 21.

�



Chapter 4

Unobservable fault

4.1 Background

In the previous chapters, we assumed that the set of faulty transitions are
known and they are observable in the sequences of the faulty net. In this
chapter, we relax this assumption and assume the presence of an unobserv-
able fault, which without loss of generality is assume to be represented by a
transition f with unknown pre- and post-conditions. Unobservability means
that this transition does not show up in the sequences of the faulty net and
its effect has to be inferred from enabledness and disabledness of other ob-
servable and non-faulty transitions.

In the next chapter, I revisit a similar result due to Cabasino [14] and
point out a few issues that we observed in the old result and show how I have
fixed these issues in my results.

4.2 Recapitulating problem definition

In this section we recall Problem (RQ2) in Section 2.6.2, which is studied
in the remainder of this chapter.

Consider a fault-free system 〈N,µ0〉 with L(N) its language, where T , i.e.,
the set of transitions of N , is the alphabet of L(N). Consider 〈N f , µ0〉 that
is the faulty extension of 〈N,µ0〉. We assume that the faulty transition(s) is
not observable, but of course its presence may influence the firing of other
transitions in T .

Assuming that we are provided with the specification of 〈N,µ〉 and also

43
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the set of firing sequences Lf≤q of the faulty net (in which the fault itself is
abstracted away).

Following Cabasino [14], we make the following assumption.

Assumption 22. The faulty net contains a single fault, i.e., k = 1. For
simplicity, we denote the faulty transition by f , hence T f = T ∪ {f}. �

Assumption 23. The transition f is loop-free, i.e., Pre(f) ∩ Post(f) = ∅.
�

The latter assumption is not overly restrictive as the effect of loops can al-
ways be cancelled out; however, it comes in handy when making calculations
in the following fault identification problem.

The problem studied in this chapter is to identify the fault f , by identi-
fying its pre- and post-conditions, ⇓T (L≤q(N

f )) = Lf≤q.

Let P = {p1, p2, . . . , pn} be the set of places of N and N f , and choose an
ordering (p1, p2, . . . , pn).

4.3 Identifying an unobservable fault

Theorem 24. Let 〈N f , µ0〉 be a marked Petri net where N = (P, T, F, ω)
and µ0 is the initial marking and let 〈N f , µ0〉 be the faulty extension of N
with T f under Assumptions 22 and 23. Suppose that σ ∈ T ∗ is such that
⇓T (τ) = σ for some τ ∈ L(N f ), where ⇓T is the projection from (T f )∗ onto
T ∗ as defined in Definition 14. Let M be the minimum number of occurrences
of f which occur in such sequences τ and let tj ∈ T . Then the following are
equivalent:

(i) σtj =⇓T (ψ) for some ψ ∈ L(N f );

(ii) There exists l ≥M such that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj) (4.1)

We want to prove that statement (i) holds if and only if statement (ii)
holds. We prove this in terms of two implications.

Proof. We first want to prove that if (i) holds, then (ii) must hold as well.
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Suppose that σtj =⇓T (ψ) for some ψ ∈ L(N f ). Starting at the marking
µ0, we can fire a sequence τ in N f with exactly M occurrences of f such that
⇓T (τ) = σ to reach a marking µ in N f where

µ = µ0 + C · π(σ) +M · [Post(f)− Pre(f)]. (4.2)

We then fire a subsequent sequence φ in N f such that ⇓T (φ) = tj.
Without loss of generality, we may assume that φ = f rtj for some r ≥ 0

(φ must be of the form f rtjf
s for some r, s ≥ 0, and we may simply delete

f s if s > 0).
Now let l = M + r ≥M . Since f rtj is enabled at µ in N f , we must have

that
µ+ r · [Post(f)− Pre(f)] ≥ Pre(tj). (4.3)

Combining Equations 4.2 and 4.3 yields that

µ0+C ·π(σ)+M ·[Post(f)−Pre(f)]+r·[Post(f)−Pre(f)] ≥ Pre(tj), (4.4)

which gives (ii) as required (since l = M + r ≥M).
Now we want to prove that if (ii) holds, then (i) must hold as well.
Suppose that there exists l ≥M such that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj) (4.5)

Set r = l −M ≥ 0.
We know that τ is enabled at µ0 in N f , such that τ contains M occur-

rences of f and that ⇓T (τ) = σ. Firing τ at µ0 in N f reaches the marking


x1
x2
...
xn

 = µ0 + [Post(π(σ))− Pre(π(σ))] +M · [Post(f)− Pre(f)],

where we are taking some fixed ordering of the places. Let

[Post(f)− Pre(f)] =


a1
a2
...
an

 .
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By Equation 4.5 we have that
x1
x2
...
xn

+ (l −M)


a1
a2
...
an

 ≥ Pre(tj),

and so


x1
x2
...
xn

+ r


a1
a2
...
an

 ≥ Pre(tj) ≥


0
0
...
0

 . (4.6)

If we could fire f r times at


x1
x2
...
xn

 then we would, in turn, reach the

markings


x1
x2
...
xn

 f−→


x1 + a1
x2 + a2

...
xn + an

 f−→


x1 + 2a1
x2 + 2a2

...
xn + 2an

 f−→ . . .
f−→


x1 + ra1
x2 + ra2

...
xn + ran

 .

We see that we can fire f r time at


x1
x2
...
xn

 provided that xi+jai ≥ xi ≥ 0

for 1 ≤ i ≤ n and 0 ≤ j ≤ r.
If ai ≥ 0 then it is clear that xi + jai ≥ xi ≥ 0 for 0 ≤ j ≤ r.
If ai < 0 then we have that

xi > xi + ai > xi + 2ai > · · · > xi + rai ≥ 0

by Equation 4.6.
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So we can fire f r time at


x1
x2
...
xn

 and we can reach the marking

µ =


x1
x2
...
xn

+ r


a1
a2
...
an

 .
By Equation 4.6 we see that tj is enabled at µ in N f . Letting ψ = τf rtj ∈

L(N f ), we have that σtj =⇓T (ψ) as required.

Theorem 25. Let 〈N f , µ0〉 be a marked Petri net where N = (P, T, F, ω)
and µ0 is the initial marking and let 〈N f , µ0〉 be the faulty extension of N
with T f under Assumptions 22 and 23. Suppose that R is a prefix-closed
language with L(N) ⊆ R ⊆ T ∗. Then the following are equivalent:

(i) ⇓T (L(N f )) = R

(ii) If tj ∈ T , σ ∈ ⇓T (L(N f )) and M is the minimum number of occur-
rences of f in all sequences τ ∈ L(N f ) such that ⇓T (τ) = σ, then:

σtj ∈ R⇐⇒ there exists l ≥Msuch that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj)

We want to prove that statement (i) holds if and only if statement (ii)
holds. We prove this in terms of two implications.

Proof. We first want to prove that if (i) holds, then (ii) must hold as well.
Suppose that (i) holds, i.e. that ⇓T (L(N f )) = R.
By Theorem 24 we have that, if tj ∈ T , σ ∈⇓T (L(N f )) and M is the

minimum number of occurrences of f in all sequences τ ∈ L(N f ) such that
⇓T (τ) = σ, then:

σtj ∈ ⇓T (L(N f ))⇐⇒ there exists l ≥Msuch that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj).
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Since ⇓T (L(N f )) = R, part (ii) follows immediately.
Now we want to prove that if (ii) holds, then (i) must hold as well.
Assume that (ii) holds. Let L =⇓T (L(N f )); we want to show that L = R.

We will do this by showing that L≤q = R≤q for all q ∈ N; we proceed by
induction on q.

If q = 0 then L≤q = {λ} = R≤q (note that λ ∈ L by definition and λ ∈ R
as R is non-empty and prefix-closed).

Now assume that L≤q = R≤q for some q ≥ 0. Let α ∈ T ∗ with |α| = q+1,
say α = σtj with |σ| = q and tj ∈ T .

Since L and R are both prefix-closed, if σ /∈ L≤q = R≤q, so that σ /∈ L and
σ /∈ R, then σtj /∈ L and σtj /∈ R, so that σtj /∈ L≤(q+1) and σtj /∈ R≤(q+1).

So let us assume that σ ∈ L≤q = R≤q. Let M be the minimum number of
occurrences of f in sequences τ in L(N f ) such that ⇓T (τ) = σ (this makes
sense as σ ∈ L =⇓T (L(N f ))). Now we have that:

α = σtj ∈ R⇐⇒ there exists l ≥Msuch that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj) by part (ii)

⇐⇒ α = σtj ∈ L by Theorem 24

Thus L≤(q+1) = R≤(q+1) as required.
By induction we have shown that L = R, and hence part (i) holds.

In a similar vein we have:

Theorem 26. Let 〈N f , µ0〉 be a marked Petri net where N = (P, T, F, ω)
and µ0 is the initial marking and let 〈N f , µ0〉 be the faulty extension of N
with T f under Assumptions 22 and 23. Suppose that R is a prefix-closed
language with L≤q(N) ⊆ R ⊆ T ∗≤q for some q > 0. Then the following are
equivalent:

(i) ⇓T (L≤q(N
f )) = R

(ii) If tj ∈ T , σ ∈ ⇓T (L≤q−1(N
f )) and M is the minimum number of

occurrences of f in all sequences τ ∈ L(N f ) such that ⇓T (τ) = σ,
then:

σtj ∈ R⇐⇒ there exists l ≥Msuch that

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj).
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We want to prove that statement (i) holds if and only if statement (ii)
holds. We prove this in terms of two implications.

Proof. We first want to prove that if (i) holds, then (ii) must hold as well.
This is the same as for the proof of Theorem 25.
Now we want to prove that if (ii) holds, then (i) must hold as well.
This is essentially the same as for the proof of Theorem 25 but our in-

duction stops with the step from q − 1 to q (so that we don’t need the full
principle of induction here, we just go 0→ 1→ 2→ · · · → q).
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Example 27. If N is the Petri net

p2

t1

p1

t2

p3

t3

Figure 4.1: The fault-free net system.

with initial marking µ0 =

0
0
1

 (as shown) and N f is the following faulty

extension of N :

p2

t1

p1

t2

p3

t3

f

Figure 4.2: The faulty net system.

It is clear that L(N) = L≤3(N) = {λ, t3}.
Let us consider ⇓T (L≤3(N

f )). We can determine this by constructing
part of the reachability tree for N f , in Figure 4.3:
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[0, 0, 1]

[0, 0, 0] [1, 0, 0]

[0, 1, 0]

[1, 0, 0]

[0, 1, 0]

t3 f

t1

t2

t1

Figure 4.3: Reachability tree

t1 ↔

 −1
1
0

 ; t3 ↔

 0
0
−1

 ;

t2 ↔

 1
−1
0

 ; f ↔

 1
0
−1

 .
Note that f can only fire once at the beginning of a sequence of transitions

and is then permanently disabled; so all sequences in ⇓T (L≤3(N
f )) have been

accounted for and we have:

⇓T (L≤3(N
f )) = {λ, t3, t1, t1t2, t1t2t1}

.
In the next example we will take the language ⇓T (L≤3(N

f )) as given
here as our starting point and see if we can deduce the structure of N f .

�
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Example 28. Consider the net N in Example 27 with the same initial mark-
ing. We saw in Example 27 that L(N) = {λ, t3}. We now specify a language
L = {λ, t3, t1, t1t2, t1t2t1} and see if we can determine which faulty extensions
of N , where we add a single loop-free fault f , give rise to this language L if
we consider sequences of length at most 3, i.e. which faulty extensions N f

of N satisfy ⇓T (L≤3(N
f )) = L.

Let

Post(f)− Pre(f) =

 x1
x2
x3

 .

Note that, as f is loop-free, we must have:

xi = 0⇒ Pre(pi, f) = Post(pi, f) = 0;

xi > 0⇒ Pre(pi, f) = 0, Post(pi, f) = xi > 0;

xi < 0⇒ Pre(pi, f) = −xi > 0, Post(pi, f) = 0.

(4.7)

We will use the equivalence of the conditions specified in Theorem 24.
Consider the pair (ε, t1). Here σ = λ and M = 0.

t1 ∈⇓T (L(N f )) =⇒∃ l ≥ 0 :

 0
0
1

+ l

 x1
x2
x3

 ≥
 1

0
0


=⇒∃ l ≥ 1 :

 0
0
1

+ l

 x1
x2
x3

 ≥
 1

0
0


(l = 0 clearly does not satisfy the inequality)

=⇒∃ l ≥ 1 : lx1 ≥ 1, lx2 ≥ 0, 1 + lx3 ≥ 0

=⇒∃ l ≥ 1 : x1 ≥ 1, x2 ≥ 0, lx3 ≥ −1

=⇒x1 ≥ 1, x2 ≥ 0, x3 ≥ −1 (x3 < −1 =⇒ lx3 < −1 for all l ≥ 1)
(4.8)
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Now consider the pair (t3, t1). Here σ = t3 and M = 0.

t3t1 /∈⇓T (L(N f )) =⇒∀ l ≥ 0 :

 0
0
1

+

 0
0
−1

+ l

 x1
x2
x3

 �
 1

0
0


=⇒

 x1
x2
x3

 �
 1

0
0

 (putting l = 1)

=⇒x1 < 1, or x2 < 0, or x3 < 0

(4.9)

Combining conditions (4.8) and (4.9) we see that we must have that
x3 < 0 in condition (4.9), as x1 < 1 and x2 < 0 are impossible by (4.8), and
so −1 ≤ x3 < 0, giving that x3 = −1. So we now have that

Post(f)− Pre(f) =

 x1
x2
−1

 with x1 ≥ 1 and x2 ≥ 0.

Consider the pair (ε, t2). Here σ = λ and M = 0.

t2 /∈⇓T (L(N f )) =⇒∀ l ≥ 0 :

 0
0
1

+ l

 x1
x2
−1

 �
 0

1
0


=⇒

 x1
x2
0

 �
 0

1
0

 (putting l = 1)

=⇒x2 < 1 (as we know that x1 ≥ 1)

=⇒x2 = 0 (as we now know that 0 ≤ x2 < 1).

So we now have that

Post(f)− Pre(f) =

 x1
0
−1

 with x1 ≥ 1.

Now t1 /∈ L(N) but t1 ∈⇓T (L(N f )). What is the minimum number M
of times we need to fire f at µ0 to enable t1 in N f? Clearly M > 0 and then
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µ0 + Post(f)− Pre(f) =

 0
0
1

+

 x1
0
−1


=

 x1
0
0


≥

 1
0
0


= Pre(t1).

So for t1t1 /∈⇓T (L(N f )), we have that σ = t1 and M = 1, and then

t1t1 /∈⇓T (L(N f )) =⇒∀ l ≥ 1 :

 0
0
1

+

 −1
1
0

+ l

 x1
0
−1

 �
 1

0
0


=⇒

 x1 − 1
1
0

 �
 1

0
0

 (putting l = 1)

=⇒x1 − 1 < 1

=⇒x1 < 2.

So 1 ≤ x1 ≤ 2, and so we must have that x1 = 1. We now have that

Post(f)− Pre(f) =

 1
0
−1

 ,
and so, given our observations in (4.7) above, we must have that

Pre(f) =

 0
0
1

 , Post(f) =

 1
0
0

 .
This means that the only possible faulty extension N f of N with ⇓T

(L≤3(N
f )) = L is the Petri net
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p2

t1

p1

t2

p3

t3

f

Figure 4.4: The faulty net system.

in Example 27 above. �
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Chapter 5

Revisiting unobservable fault
identification

5.1 Background

Our approach to fault identification is largely based on an earlier approach
by Cabasino [14]. However, upon a careful examination of her approach we
found a number of shortcomings that led us to its redesign in the previous
chapter. In this chapter, we review the original proof by Cabasino and point
out these shortcomings. In Cabasino’s work there exists an introduction to
linear- programming, that was used for the solution of Problem 16 as it was
described in her thesis [14]. Later in this chapter, we show an alternative
translation to linear programming and we show how this is equivalent to
Cabasino’s work.

57
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5.2 Connection to Cabasino’s approach

Let 〈N f , µ0〉 be a marked Petri net where N = (P, T, F, ω) and µ0 is the
initial marking and let 〈N f , µ0〉 be the faulty extension of N with T f under
Assumptions 22 and 23. Suppose that σ ∈ T ∗ is such that ⇓T (τ) = σ for
some τ ∈ L(N f ), where ⇓T is the projection from (T f )∗ onto T ∗ as defined
in Definition 14. Let M be the minimum number of occurrences of f which
occur in such sequences τ and let tj ∈ T . As in Theorem 24 we have that
the following are equivalent:

∃ψ ∈ L(N f ) : σtj =⇓T (ψ);

∃l ≥M : µ0 + C · π(σ) + l · [Post(f)− Pre(f)] ≥ Pre(tj).

Given this, we see that the following are equivalent:

@ψ ∈ L(N f ) : σtj =⇓T (ψ);

∀l ≥M : µ0 + C · π(σ) + l · [Post(f)− Pre(f)] � Pre(tj).

Let us take a fixed ordering (p1, p2, . . . , pn) of the elements of P . For
1 ≤ i ≤ n and l ≥ 0, we define

R(pi, l) = µ0(pi) + C(pi) · π(σ) + l · [Post(pi, f)− Pre(pi, f)]− Pre(pi, tj).

Then condition

∀l ≥M : µ0 + C · π(σ) + l · [Post(f)− Pre(f)] � Pre(tj) (5.1)

is equivalent to:

∀l ≥M, ∃i : R(pi, l) < 0.

For 1 ≤ i ≤ n and l ≥ 0 we now define

ui,l =

{
1 if R(pi, l) ≥ 0

0 if R(pi, l) < 0.

We see that Condition 5.1 is now equivalent to:

∀l ≥M,∃i : ui,l = 0,
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which, in turn, is equivalent to

∀l ≥M :


u1,l
u2,l

...
un,l

 6=


1
1
...
1

 ,
which is equivalent to

∀l ≥M,u1,l + u2,l + · · ·+ un,l ≤ n− 1,

and then to

∀l ≥M, (1, 1, . . . , 1)


u1,l
u2,l

...
un,l

 ≤ n− 1.

Let Kl denote

max{R(p1, l), R(p2, l), . . . , R(pn, l)}+ 1.

Then for 1 ≤ i ≤ n, we have

R(pi, l) < 0 =⇒ui,l = 0

=⇒R(pi, l)−Klui,l = R(pi, l) < 0,

R(pi, l) ≥ 0 =⇒ui,l = 1

=⇒R(pi, l) < Kl = Klui,l

=⇒R(pi, l)−Klui,l < 0.

In the set {0, 1}n, we let ~0 denote


0
0
...
0

 and ~1 denote


1
1
...
1

 . We have shown

that Condition 5.1 implies that

∀l ≥M :


R(p1, l)
R(p2, l)

...
R(pn, l)

−Kl


u1,l
u2,l

...
un,l

 <


0
0
...
0

 ,
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in other words

∀l ≥M : −Klul + µ0 + [Post(π(σ))− Pre(π(σ))]

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0 (5.2)

where ~ul ∈ {0, 1}n and ~1T ~ul ≤ n− 1.
Conversely suppose that Condition 5.2 holds. Fix l such that l ≥ M .

Since ~1T ~ul ≤ n− 1 we may choose i with 1 ≤ i ≤ n and ui,l = 0. For that i
we have that R(pi, l) = 0 (by definition of ui,l), i.e.

µ0(pi) + C(pi) · π(σ) + l[Post(pi, f)− Pre(pi, f)]− Pre(pi, tj) < 0

by definition of R(pi, l). So

µ0 + C · π(σ) + l · [Post(f)− Pre(f)] � Pre(tj).

Since this is true for any fixed l ≥M we have that

l ≥M : µ0 + C · π(σ) + l[Post(f)− Pre(f)] � Pre(tj),

which is Condition 5.1. So conditions 5.1 and 5.2 are equivalent. We sum
this up in the following result:

Theorem 29. Let 〈N f , µ0〉 be a marked Petri net where N = (P, T, F, ω)
and µ0 is the initial marking and let 〈N f , µ0〉 be the faulty extension of N
with T f under Assumptions 22 and 23. Suppose that σ ∈ T ∗ is such that
⇓T (τ) = σ for some τ ∈ L(N f ), where ⇓T is the projection from (T f )∗ onto
T ∗ as defined in Definition 14. Let M be the minimum number of occurrences
of f which occur in such sequences τ and let tj ∈ T . Then

σtj ∈⇓T (L(N f )) =⇒∃l ≥M

µ0 + C · π(σ) + l[Post(f)− Pre(f)] ≥ Pre(tj);

σtj /∈⇓T (L(N f )) =⇒∀l ≥M,∃~ul ∈ {0, 1}n and Kl > 0 : ~1T ~ul ≤ n− 1 and

−Kl~ul + µ0 + C · π(σ)

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0.
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There is one last part to Cabasino’s characterization in [14] which cap-
tures the fact that f is loop-free which is as follows:

∃ constant R > 0 and vectors ~u =


u1
u2
...
un

 , ~v =


v1
v2
...
vn

 ∈ {0, 1}n such that

ui + v1 = 1(1 ≤ i ≤ n),

P re(pi, f)−Rui ≤ 0(1 ≤ i ≤ n),

Post(pi, f)−Rvi ≤ 0(1 ≤ i ≤ n).

(5.3)

The fact that ~u and ~v must lie in {0, 1}n is implicit in 14 but is not
explicitly stated there.

Below is the proof that Condition 5.3 implies that f is loop-free.

Proof. If we fix i with 1 ≤ i ≤ n, then

ui + vi = 1, ui ∈ {0, 1}, vi ∈ {0, 1} =⇒ui = 0 or vi = 0

=⇒Rui = 0 or Rvi = 0

=⇒Pre(pi, f) = Pre(pi, f)−Rui ≤ 0 or

Post(pi, f) = Post(pi, f)−Rvi ≤ 0

=⇒Pre(pi, f) = 0 or Post(pi, f) = 0.

Since this it true for all i with 1 ≤ i ≤ n we see that f is loop-free.

Now we want to prove that f being loop-free implies Condition 5.3

Proof. Assume that f is loop-free.
For 1 ≤ i ≤ n let

ui =

{
1 if Pre(pi, f) > 0

0 if Pre(pi, f) = 0
,

vi = 1− ui.

Then:

Pre(pi, f) > 0 =⇒ ui = 1, vi = 0 (by definition)

Post(pi, f) > 0 =⇒ Pre(pi, f) = 0 (since f is loop-free)

=⇒ ui = 0, vi = 1 (by definition)
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Let

R = max{Pre(p1, f), P re(p2, f), . . . , P re(pn, f),

Post(p1, f), Post(p2, f), . . . , Post(pn, f)}.

Then:

Pre(pi, f) > 0 =⇒ ui = 1

=⇒ Pre(pi, f)−Rui ≤ 0 (by definition of R);

Pre(pi, f) = 0 =⇒ ui = 0

=⇒ Pre(pi, f)−Rui = 0.

So Pre(pi, f)−Rui ≤ 0 for 1 ≤ i ≤ n.

Post(pi, f) > 0 =⇒ vi = 1

=⇒ Post(pi, f)−Rvi ≤ 0 (by definition of R);

Post(pi, f) = 0 =⇒ Post(pi, f)−Rvi = −Rvi ≤ 0.

So Post(pi, f)−Rvi ≤ 0 for 1 ≤ i ≤ n as required.

5.3 Issues with Cabasino’s approach

In this section we address the issues of Cabasino’s approach and we suggest
some improvements.

Let us separate out the two directions of Theorem 24:

∃ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∃l ≥M : µ0 + C · π(σ)

+ l · [Post(f)− Pre(f)] ≥ Pre(tj).
(5.4)

∃l ≥M : µ0 + C · π(σ)

+ l · [Post(f)− Pre(f)] ≥ Pre(tj) =⇒ ∃ψ ∈ L(N f ) : σtj =⇓T (ψ).
(5.5)

In her version of 5.4 in [14] Cabasino omits the condition that l ≥ M ,
simply stating that:

∃ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∃l : µ0 + C · π(σ)

+ l · [Post(f)− Pre(f)] ≥ Pre(tj).
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This is, of course, still true. The issues is with her approach relating to
5.5.

We have seen that 5.5 is equivalent to:

@ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∀l ≥M,∃~ul ∈ {0, 1}n and Kl ≥ 0 :

~1T ~ul ≤ n− 1 and

−Kl~ul + µ0 + [Post(π(σ))− Pre(π(σ))]

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0.

Cabasino appears to have instead:

@ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∃~u ∈ {0, 1}n and K > 0 : ~1T~u ≤ n− 1 and

∀l ≥ 0,−K~u+ µ0 + [Post(π(σ))− Pre(π(σ))]

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0.

Theere are two potential issues here:

1. Having K independent of l;

2. Having ~u independent of l.

We shall treat these issues in turn and show that there are problems with
each formulation.

Issue 1: Having K independent of l. As we have said, in Cabasino’s
approach in [14], the constant K in the condition

−K~u+ µ0 + C · π(σ) + l[Post(f)− Pre(f)]− Pre(tj) < ~0

appears to be independent of l. In our approach we had:

R(pi, l) := µ0(pi) + C(pi) · π(σ) + l · [Post(pi, f)− Pre(pi, f)]− Pre(pi, tj);

Kl := max{R(p1, l), R(p2, l), . . . , R(pn, l)}+ 1.

With this approach it is clear that, if Post(pi, f)−Pre(pi, f) > 0 for some i
(i.e. if Post(pi, f) > 0 as f is loop-free), then R(pi, l) → ∞ ad l → ∞, and
so Kl → ∞ as l → ∞. With our approach we see that Kl is not bounded
and we cannot replace it by a single constant K.

Of course, it might seem that a differnet approach could remove this issue
of K not being independent of l. To see that there is a genuine problem here,
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let us consider a specific instance of this problem. Consider the Petri net N
and the faulty extension N f of N shown below where the initial marking µ0

is

[
1
1

]
:

p1

t1

p2
t2

f

p1

t1

p2
t2

Figure 5.1: The fault-free and the faulty net systems.

It is clear that L(N) = {λ, t1, t2}. With regards to N f , we can enable t1 at
any stage (firing f if necessary), but t2 can be fired (at most) once and, if
fired, is then permanently disabled. So

⇓T (L(N f )) = {t1}∗ ∪ {t1}∗{t2}{t1}∗.

Let σ = t2 ∈ L(N); so M = 0 in this case. Now σt2 = t2t2 /∈⇓T (L(N f )).
According to [14] we would have:

∃~u ∈ {0, 1}n and K > 0 such that ~1T~u ≤ n− 1 and

∀l ≥ 0,−K~u+µ0+[Post(π(σ))−Pre(π(σ))]+l[Post(f)−Pre(f)]−Pre(tj) < ~0,

which becomes

∃~u =

[
u1
u2

]
∈ {0, 1}n and K > 0 such that ~1T~u ≤ n− 1 and ∀l ≥ 0,

−K
[
u1
u2

]
+

[
1
1

]
+

[(
0
0

)
−
(

1
1

)]
+ l

[(
1
0

)
−
(

0
0

)]
−
[
1
1

]
<

[
0
0

]
,

and then

∃~u =

[
u1
u2

]
∈ {0, 1}n and K > 0 such that ~1T~u ≤ n− 1 and ∀l ≥ 0,[

l −Ku1 − 1
−Ku2 − 1

]
<

[
0
0

]
.

This cannot hold for all l if K is fixed.
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Remark 30. In our discussion of Issue 1 out example demonstrating the
problem, the faulty extension N f satisfies the condition

Pre(p, f) = 0 for all p ∈ P. (5.6)

We will discuss here how to deal with possibilities satisfying 5.6 and thereby
reduce the problem to one in which Issue 2 is no longer a problem.

Let us assume that we have our usual set-up:

N = (P, T, F, ω) with µ0; N
f = (P, T f , F f , ωf ) with µ0;

T f = T ∪ {f}; f /∈ T and f loop-free ,

with N f satisfying 5.6. The problem here arises form the fact that, because
of 5.6, f can fire any number of times at any stage. We will consider an
alternative approach to this particular situation.

Let P1 = {p ∈ P : Post(P ) > 0}. In our faulty extension N f any pre-
conditions of a transition which lie in P1 are essentially irrelevant as we can
fire f sufficiently many times (without any restrictions) to satisfy all of these
(i.e., for any place p, to put sufficiently many tokens np in place p such that
np ≥ Pre(p, t) for all t ∈ T ).

So what we have is effectively a new Petri net with the places in P1 (and
any arcs involving them) removed. We can then remove f to get a new net
N ′ with L(N ′) =⇓T (L(N f )). We obviously need to change µ0 to reflect the
fact that some places have been removed (the markings in other places in µ0

remain the same).

Looking for possible faulty extensions N f of N satisfying 5.6 is equivalent,
therefore, to considering all Petri nets N ′ obtained from N where we delete a
subset P1 of P (and all arcs involving the places in P1). Since there are only
2|P | possibilities for P1 and we are comparing finit languages in each case
(namely L(N)q and L(N ′)q fro some q), we have an algorithm for finding all
faulty extensions of this type.

Let us illustrate this with the Petri net N and the faulty extension N f

we used to illustrate Issue 1:
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p1

t1

p2
t2

f

p1

t1

p2
t2

Figure 5.2: The fault-free and the faulty net systems.

�

In this case P1 = {p1}. Removing p1 (and all the arcs involved with it)
from N yields the Petri net N ′ shown below:

t1

p2
t2

Figure 5.3: The new Petri net N ′.

Note that L(N ′) = {t1}∗ ∪ {t1}∗{t2}{t1}∗ (which is the same as that of
⇓T (L(N f ) inthe discussion of Issue 2 above).

Of course, this onlu finds possibilities for the faulty extenstion N f where
5.6 holds. What about other possibilities, i.e. faulty extensions which satisfy
Pre(p, f) > 0 for some p ∈ P?

So suppose we have a place p with Pre(p, f) > 0 (and then, by our
assumption that f is loop-free, we must have that Post(p, f) = 0). Then, in
any sequence τ ∈ (T f )∗ with ⇓T (τ) = σ, the maximum number of times f
can fire in τ is bounded above by b where

b =
µ0(p) + Post(p, σ)

Pre(p, f)
.

The point is that we can accumulate at most µ0(p) + Post(p, σ) tokens
in place p given the initial tokens there in µ0 anf those placed there by firing
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the transitions in σ (we may not be able to achieve that many tokens in p,
but this value b is certainly an upper bound), and firing f uses Pre(p, f) of
these tokens each time. This means that, in Condition 5.5, we must have
that l ≤ b (in additional to l ≥M). Recall that we defined

R(pi, l) = µ0(pi) + C(pi) · π(σ) + l · [Post(pi, f)− Pre(pi, f)]− Pre(pi, tj);
Kl = max{R(p1, l), R(p2, l), . . . , R(pn, l)}+ 1.

In Cabasino’s version we have

@ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∃~u ∈ {0, 1}n and K > 0 : ~1T~u ≤ n− 1 and

∀l ≥ 0,−K~u+ µ0 + C · π(σ)

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0.
(5.7)

where K is assumed to be independent of l. If we have the extra condition
that l ≤ b in our formulation, then we may take K in her condition to be

max{KM , KM+1, . . . , Kb}.

The point is that, in 5.7, one can replace a specific value of K by a larger
one and 5.7 remains valid.

Taking this approach (finding possibilities fro faulty extensions that sat-
isfy 5.6 first and then considering appropriate bounds for K) allows us to
deal with Issue 1 in Cabasino’s approach. In addition, Cabasino states (in
Remark 10.5 of [14]) that ”In practice . . . it is sufficient to pick K very large”.
The approach outlined here allows us to choose a specific value for K in 5.7
which is independent of l. �

Issue 2: Having ~u independent of l.
In Cabasino’s approach, the vector ~u is the claim

@ψ ∈ L(N f ) : σtj =⇓T (ψ) =⇒∃~u ∈ {0, 1}n and K > 0 : ~1T~u ≤ n− 1 and

∀l ≥ 0,−K~u+ µ0 + [Post(π(σ))− Pre(π(σ))]

+ l[Post(f)− Pre(f)]− Pre(tj) < ~0.

appears to be independent of l.
To see the problem here, consider a Petri net N and faulty extension N f

of N shown below where the initial marking µ0 is

[
0
1

]
:
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p1

t1

p2

f

p1

t1

p2

Figure 5.4: The fault-free and the faulty net systems.

It is clear that L(N) =⇓T (L(N f )) = {λ} here.

Take σ = λ. As σt1 /∈⇓T (L(N f )), we should have K and ~u =

[
u1
u2

]
such

that, for all l ≥ 0,

−K
[
u1
u2

]
+

[
0
1

]
+

[(
0
0

)
−
(

0
0

)]
+ l

[(
1
0

)
−
(

0
1

)]
−
[
1
1

]
<

[
0
0

]
,

i.e. [
−Ku1 + l − 1
−Ku2 − l

]
<

[
0
0

]
.

If l = 0 then we want −Ku1 − 1 < 0 and −Ku2 < 0 and so we must have
that [

u1
u2

]
=

[
0
1

]
.

If l = 1 then we want −Ku1 < 0 and −Ku2 − 1 < 0 and so we must have
that [

u1
u2

]
=

[
1
0

]
.

So ~u is not independent of l.
In this chapter, we have reviewed the original proof by Cabasino and we

have pointed out some shortcomings we found in her approach. In Cabasino’s
work there exists an introduction to linear- programming, that was used for
the solution of Problem 16 as it was described in her thesis [14]. In this
chapter, we have shown an alternative translation to linear programming
and how this is equivalent to Cabasino’s work.



Chapter 6

Implementation

In this chapter we discuss the implementation of our tool, that translates the
fault identification problem into a set of linear inequations and subsequently,
into a satisfiability modulo theories (SMT) problem. We then use Microsoft
Z3 SMT Solver to solve the fault identification problem. We have applied our
tool on a number of examples and plan to turn the prototype into a stable
tool and perform an empirical evaluation of its performance in the future.

6.1 SAT and SMT solvers: an overview

The past few years have seen an enormous progress in the performance of
SAT solvers, enabling formal verification of large and complex systems [5].
A SAT solver is an algorithmic toolkit to solve the NP-Complete problem of
Boolean satisfiability problem (SAT), using various powerful heuristics. The
SAT problem is to determines if there exists an interpretation of Boolean
propositions that satisfies a given Boolean formula. In other words, given a
formula, the solver checks whether its variables can be replaced by Boolean
values, True or False, such that the formula evaluates to True. We call a
formula satisfiable if such an interpretation exists, and unsatisfiable otherwise
[32]. SAT was the first problem that was proven to be NP-complete. Despite
their theoretical worst case complexity, SAT solvers have been successfully
applied to different problems, such as artificial intelligence problems, circuit
design problems, and automatic theorem proving.

These days, SAT almost always refers to CNF-SAT, a boolean satisfaction
problem for formulas in conjunctive normal form (CNF). This means that

69
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the entire formula is a conjunction (AND) of clauses, with each clause being
a disjunction (OR) of literals [32]. Very few problems are expressed as a
logical formula in the CNF format. Due to this fact, after formulating a
problem as a SAT, we often need to convert it into CNF and then determine
its satisfiability. There are different approaches of converting a SAT problem
into CNF. However, one has to be careful as some formulas could blow up
exponentially large in the process of CNF conversion.

Microsoft Z3, is a high performance solver that extends satisfiability solv-
ing to support other theories such as linear integer arithmetic. It offers var-
ious APIs including one in Python, which has been used to implement the
theories presented in this thesis. It has in the past been used in many other
applications such as verification, testing, constraint solving, security analy-
sis, solving geometrical problems, and the analysis of hybrid and dynamical
systems.

6.2 General structure of the prototype

In this section I present the structure of the implementation.

For our implementation, we use automated theorem proving, based on
a SAT solver extended with theories, namely Microsoft Z3. Z3 provides
different APIs and solvers; we use its API in Python and its basic Solver.

The idea is to create a simple tool that codes Theorem 24 into an SMT
problem and solves it using Z3 to characterise a faulty transition that can
explain the faulty language Lf . The traces are coded in our simple syntax:
each trace is coded as a matrix representing the appearance of transitions
in that trace. This facilitates the subsequent step of coding the specific
problem into the in-equations specified by Theorem 24. Once this step is
perfomed the result is passed to Z3 and it is checked whether this system
of inequations is satisfiable. If yes, then Z3 automatically finds a satisfying
interpretation of the pre- and post-conditions of the fault; otherwise it shows
that the requirements have not been satisfied and that there is no solution
for such a net. We have implemented this process in an initial prototype,
described below; we intend to turn this into a full-fledged tool for identifying
multiple faults in the future.
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6.3 Coding and parsing Petri Nets and traces

To start with, we need to code the structure of the Petri net and the traces
into a formal syntax. These files include all the information needed to con-
struct a Petri net, i.e., the initial marking, pre- and post conditions of tran-
sitions, the firing sequences of trances along with the ones that are found not
to belong to the faulty language.

We use the example in Figure 6.1 to illustrate our syntax.

1 places

2 2

3 p1

4 p2

5 transitions

6 3

7 t1

8 t2

9 t3

10 mu0

11 1

12 1

13 pre

14 1 1 0

15 1 1 1

16 post

17 0 0 0

18 1 0 0

19 in_Lf (5)

20 t1

21 [0,0,0]

22 t2

23 [0,0,0]

24 t3

25 [0,0,0]

26 t1 ,t3

27 [1,0,0]

28 t3 ,t3

29 [0,0,1]

30 not_in_Lf (4)

31 t1 ,t1

32 [1,0,0]

33 t1 ,t2

34 [1,0,0]

35 t3 ,t1

36 [0,0,1]
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37 t3,t2

38 [0,0,1]

Figure 6.1: The structure of the index file.

As it can be seen above, first the basic structure of the specification
Petri net are specified; to facilitate parsing, we start with the number of
places and transitions and then specify their names. Subsequently, one can
specify the initial marking for places and pre- and post-condition matrices
for transitions. Finally, one specifies the bounded traces that belong, and
do not belong to the faulty language, respectively. To guide the testing of
our tool, we have created a number of examples in this language, which we
have subsequently used in testing various steps of our implementation. We
plan to develop this set of examples into a benchmark inspired by realistic
specifications and faults.

After having defined our input syntax, we read the specification of the
Petri net and the traces of the faulty net and generate a Python script that
codes the fault identification problem. The code snippet in Figure 6.2 repre-
sents the parsing step in Python.

1 #!/bin/python

2

3 import ast

4 import sys

5 import re

6

7 places = []

8 transitions = []

9 mu0 = {}

10 pre = {}

11 post = {}

12 in_Lf = {}

13 not_in_Lf = {}

14

15 try:

16 fname = sys.argv [1]

17 f = open(fname ,'r')
18

19 # Read number of places and its IDs

20 f.readline ().strip () # read line with 'places '
21 n_places = int(f.readline ().strip ())

22 for i in range(n_places):

23 line = f.readline ().strip()
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24 places.append(line)

25 f.readline ().strip() # jump blank line

26

27 # Read number of transitions and its IDs

28 f.readline ().strip() # read line with 'transitions '
29 n_trs = int(f.readline ().strip ())

30 for i in range(n_trs):

31 line = f.readline ().strip()

32 transitions.append(line)

33 f.readline ().strip() # jump blank line

34

35 # Read the initial markings

36 f.readline ().strip() # read line with 'mu0'
37 for i in range(n_places):

38 line = f.readline ().strip()

39 mu0[places[i]] = line

40 f.readline ().strip() # jump blank line

41

42 # Read the matrix of pre -conditions

43 f.readline ().strip() # read line with 'pre'
44 for _pn in range(n_places):

45 line = f.readline ().strip()

46 line = line.split(' ')
47 pre[places[_pn]] = {}

48 # print(line)

49 for _tn in range(n_trs):

50 pre[places[_pn]][ transitions[_tn]] = line[_tn]

51 f.readline ().strip() # jump blank line

52

53 # Read the matrix of pre -conditions

54 f.readline ().strip() # read line with 'post'
55 for _pn in range(n_places):

56 line = f.readline ().strip()

57 line = line.split(' ')
58 post[places[_pn]] = {}

59 # print(line)

60 for _tn in range(n_trs):

61 post[places[_pn ]][ transitions[_tn]] = line[_tn]

62 f.readline ().strip() # jump blank line

63

64 # Read the list of sequences in_Lf

65 f.readline ().strip() # read line with 'in_Lf '
66 sz_Lf = int(f.readline ().strip ())

67 for _sn in range(sz_Lf):

68 _seq = f.readline ().strip().split(',')
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69 f.readline ()

70 in_Lf[_sn] = _seq

71 f.readline ().strip () # jump blank line

72

73 # Read the list of sequences not_in_Lf

74 f.readline ().strip () # read line with 'not_in_Lf '
75 sz_not_in_Lf = int(f.readline ().strip())

76 for _sn in range(sz_not_in_Lf):

77 _seq = f.readline ().strip().split(',')
78 f.readline ()

79 not_in_Lf[_sn] = _seq

80 f.readline ().strip () # jump blank line

81 f.close ()

Figure 6.2: Code snippet in Python for Parsing the Petri net information
and the Traces of the Faulty System.

6.4 Coding the fault identification problem

in Z3

In the next step, we initialize the constraints needed to solve the identification
problem. To do this, we generate a Python script that can make a call to the
Z3 Sovler API and re-construct the problem structure in this Python script.

The code snippet presented in Figure 6.3 is the first step of this code
generation, where the basic structure of the Petri net is reconstructed in
the generated Python script. In this code snippet, we first initialize the
constraints and then we read the index file line by line. We first read the
numbers of places and then each place itself, and then we read the number of
transitions and each transition itself. Afterwards, we read the initial marking,
and the pre and post conditions of each transition. Then, the only things left
to read is the faulty language of the Petri net along with the language that
it is not. We have split up the language into a list of sequences, so that the
program deals with one sequence at a time. We read the sequences that are
in Lf and then the sequences that are not in Lf . Note that we specify the
number of sequences each time, in order to calculate how many sequences
exist in each set and then generate the inequations accordingly. Also, note
that we separate each transition in the sequence using ”,”, in order to show
that the prexif of the sequence is σ and that the remaining transition is the
tj.
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Then we initialize the constraints needed to solve the identification prob-
lem. To do this, we generate a Python script that can make a call to the
Z3 Sovler API and re-construct the problem structure in this Python script.
Code snippet presented in Figure 6.3 is the first step of this code generation,
where the basic structure of the Petri net is reconstructed in the generated
Python script.

After reading the index file, we start generating a Python script by first
importing Z3 solver, in order to find a solution to our problem. We then
translate all the information gathered from the index file to a Python script
and store them in the generated file. Figure 6.3 represents the process of
storing the initial marking and the matrices of the pre- and post-conditions
for each transition.

1 # 'Starting to print the script '
2 print('#!/bin/python ')
3 print('')
4 print('from z3 import *')
5 print('')
6 print('# we have that')
7 print('s = Solver ()')
8 print('## mu0_px is the initial marking for place px; ')
9 print('%s = %s' % (\

10 ', '.join(['mu_'+places[_pn] for _pn in range(n_places)]), \

11 ', '.join([mu0[places[_pn]] for _pn in range(n_places)])) \

12 )

13

14 print('')
15 print('## pi_tj is the pre -condition from place pi to

transition tj')
16 for _pn in range(n_places):

17 print('%s = %s' % (\

18 ', '.join([ places[_pn]+'_'+transitions[_tn] for _tn in range(

n_trs)]), \

19 ', '.join([pre[places[_pn]][ transitions[_tn]] for _tn in

range(n_trs)])) \

20 )

21 print('')
22 print('## tj_pi is the post -condition from transition tj to

place pi')
23 for _pn in range(n_places):

24 print('%s = %s' % (\

25 ', '.join([ transitions[_tn]+'_'+places[_pn] for _tn in range(

n_trs)]), \

26 ', '.join([post[places[_pn]][ transitions[_tn]] for _tn in
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range(n_trs)]))

27 )

Figure 6.3: Coding the Initial marking, and Pre- and Post Conditions in the
Generated File for Z3.

Subsequently, we define the unknowns of the fault identification problem,
namely the pre- and post- conditions of the faulty transition and the number
of firings of the faulty transition in the traces given in the problem definition.
The code snippet presented in Figure 6.4, represents this step.

1 print('')
2 print('## find the values for the faulty transitions ')
3 for _pn in range(n_places):

4 print('f_%s, %s_f = Ints(\'f_%s %s_f\')' % (places[_pn],

places[_pn],places[_pn],places[_pn]))

5 print('')
6 print('# where they should be ')
7 print('s.add( %s )' % ', '.join('f_%s >= 0' % places[_pn] for

_pn in range(n_places)))

8 print('s.add( %s )' % ', '.join('%s_f >= 0' % places[_pn] for

_pn in range(n_places)))

9 print('')
10 print('## l \\in Naturals ; ')
11 for _sn in range(sz_Lf): print('l'+str(_sn)+' = Int(\'l'+str(

_sn)+'\')')
12 for _sn in range(sz_not_in_Lf): print('l'+str(_sn+sz_Lf)+' =

Int(\'l'+str(_sn+sz_Lf)+'\')')
13 print('')

Figure 6.4: Coding the Unknowns of the Fault Identification Problem in Z3.

The next step is to code the constraints of Theorem 24. To do this,
we need to add the assumptions required, i.e., there is a single fault, and
the fault is loop-free. Once these assumptions are coded, our tool generates
different inequalities for different sequences. Note that the sequences can
either belong to the enabled or the disabled constraints and based on that
we have different values for the variables used and different inequalities for
each sequence. It is worth mentioning here that for the enabled constraints
we use the AND operator as we want all of the inequalities to be satisfied,
where in the disabled constraints we use the OR operator as at least one
place must disable the faulty transition, whilst at least one inequality need
to be satisfied. The code snippet in Figure 6.5 represents the creation of the
inequations for the enabled constraints, e.g. the sequences that are in Lf .
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1 print('######################################## ')
2 print('## \\in L^f (Equation 4.1)')
3 print('######################################## ')
4 for _sn in range(sz_Lf):

5 # set counters for each symbol to zero

6 _counter = {transitions[_tn]:0 for _tn in range(n_trs)}

7 _counter['f'] = 0 # set counters for f to zero

8 # count for all symbols , except the last

9 for _idx in range(len(in_Lf[_sn]) -1):

10 _counter[in_Lf[_sn][_idx ]]+=1

11 # get the last symbol

12 last_transition = in_Lf[_sn][-1]

13 # print(_counter)

14 print('# Sequence %d: %s' % (_sn ,','.join(in_Lf[_sn])))
15 print('%s = %s' % (\

16 ', '.join(['s'+str(_sn)+'_'+transitions[_tn] for _tn in range

(n_trs)]), \

17 ', '.join([ str(_counter[transitions[_tn]]) for _tn in range(

n_trs)]))

18 )

19 # print('s.add( l%d >= %d )' % (_sn ,_counter['f ']))
20 # print('')
21 print('s.add(')
22 print(' Exists ([l%d],'%_sn)
23 print(' And( Implies(l%d >= %d, ' % (_sn ,_counter['f']))
24 print(' And(l%d >= %d, ' % (_sn ,_counter['f']))
25 for _pn in range(n_places):

26 line = ' mu_'+places[_pn]+' + '
27 line += ' + '.join(['('+transitions[_tn]+'_'+places[_pn]+'-'+

places[_pn]+'_'+transitions[_tn]+')*s'+str(_sn)+'_'+
transitions[_tn] for _tn in range(n_trs)])

28 line += ' + '+'l'+str(_sn)+' * ('+'f_'+places[_pn]+' - '+
places[_pn]+'_f'+')'

29 line += ' >= '+places[_pn]+'_'+last_transition+','
30 print(line)

31 print(' )')
32 print(' ))')
33 print(' )')
34 print(')')
35 print('')

Figure 6.5: Coding the Conditions on the Enabled Transitions in Z3.

We first separate the enabled from the disabled constraints and then
we translate the enabled constraints from Theorem 24 into linear algebraic
inequation in Python. According to the Theorem 24
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If σtj ∈ Lf , then for some l ∈ N , where l ≥M

µ0(p) + C(p) · π(σ) + l · [Post(p, f)− Pre(p, f)] ≥ Pre(p, tj)

for all p ∈ P .
In order to translate it in Python, we first state that there exists some

variable l, as the statement should hold for some l. Due to the fact that
these inequations have to be true for all places we use the AND operator
and without loss of generality we translate the above equation in terms of a
Python script. Note that each generated inequation corresponds to a place.

Similarly, for the disabled constraints, i.e., for the sequences not in Lf ,
we have that

If σtj /∈ Lf , then for all l ∈ N , where l ≥M

µ0(p) + C(p) · π(σ) + l · [Post(p, f)− Pre(p, f)] < Pre(p, tj)

for some p ∈ P .
In order to translate this into Python code, we use the same procedure

as before with the difference that we use the OR operator, due to the fact
that these inequations have to be true for at least one place. Moreover, note
that the inequations here must hold for all l and for that reason we use the
keyword ForAll. The figure below shows what was mentioned above.

1 print('')
2 print('######################################## ')
3 print('## \\not \\in L^f (Equation 4.2)')
4 print('######################################## ')
5 for _sn in range(sz_not_in_Lf):

6 # set counters for each symbol to zero

7 _counter = {transitions[_tn]:0 for _tn in range(n_trs)}

8 _counter['f'] = 0 # set counters for f to zero

9 # count for all symbols , except the last

10 for _idx in range(len(not_in_Lf[_sn]) -1):

11 _counter[not_in_Lf[_sn][_idx ]]+=1

12 # get the last symbol

13 last_transition = not_in_Lf[_sn][-1]

14 # print(_counter)

15 print('# Sequence %d: %s' % (_sn+sz_Lf ,','.join(not_in_Lf[_sn
])))

16 print('%s = %s' % (\

17 ', '.join(['s'+str(_sn+sz_Lf)+'_'+transitions[_tn] for _tn in

range(n_trs)]), \
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18 ', '.join([ str(_counter[transitions[_tn]]) for _tn in range(

n_trs)]))

19 )

20 # print('s.add( l%d >= %d )' % (_sn+sz_Lf ,_counter['f ']))
21 # print('')
22 print('s.add(')
23 print(' ForAll ([l%d],' % (_sn+sz_Lf))

24 print(' And( Implies(l%d >= %d, ' % (_sn+sz_Lf ,_counter[

'f']))
25 print(' Or(')
26 for _pn in range(n_places):

27 line = ' And(l%d >= %d, ' % (_sn+sz_Lf ,_counter['f'])
28 line += ' mu_'+places[_pn]+' + '
29 line += ' + '.join(['('+transitions[_tn]+'_'+places[_pn]+'-'+

places[_pn]+'_'+transitions[_tn]+')*s'+str(_sn+sz_Lf)+'_'+
transitions[_tn] for _tn in range(n_trs)])

30 line += ' + '+'l'+str(_sn+sz_Lf)+' * ('+'f_'+places[_pn]+' -

'+places[_pn]+'_f'+')'
31 line += ' < '+places[_pn]+'_'+last_transition+'),'
32 print(line)

33 print(' )')
34 print(' ))')
35 print(' )')
36 print(')')
37 print('')
38 print('')

Figure 6.6: Implementation of the disabled constraints in the base file.

Last but not least, we call two methods in order to check and view a
representation of the calculated result. The first method is called check()
and is used in order to solve the asserted constraints. The second method is
called model() and is used in order to provide a model for the last check.
The following figure represents the two methods called.

1 # print('print(s) ')
2 print('print(s.check ())')
3 print('print(s.model ())')

Figure 6.7: Commands to solve and provide the faulty net system in the base
file.

When the Python script that uses Z3 solver is generated, we can then
run it to see if the result is SAT or unSAT. A model exists if and only if the
constraints are satisfied, otherwise no model is available.
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In Figure 6.8, we present an example of the Python script generated
by our tool. As explained before, we first import the Z3 solver and then
we use the command Solver() which creates a general purpose solver, in
order to find a solution to our problem. We then set up the constraints of
Theorem 24. Namely, the initial marking, the firing sequences, the pre and
post conditions of each transition, and the unknowns, which are the number
of firings of the faulty transition along with its pre and post conditions.
Moreover, we initialize some variables li, which represent the occurrences of
the faulty transition in each sequence. A representation can be found below.

1 #!/bin/python

2

3 from z3 import *

4

5 # we have that

6 s = Solver ()

7 ## mu0_px is the initial marking for place px;

8 mu_p1 , mu_p2 = 1, 1

9

10 ## pi_tj is the pre -condition from place pi to transition tj

11 p1_t1 , p1_t2 , p1_t3 = 1, 1, 0

12 p2_t1 , p2_t2 , p2_t3 = 1, 1, 1

13

14 ## tj_pi is the post -condition from transition tj to place pi

15 t1_p1 , t2_p1 , t3_p1 = 0, 0, 0

16 t1_p2 , t2_p2 , t3_p2 = 1, 0, 0

17

18 ## find the values for the faulty transitions

19 f_p1 , p1_f = Ints('f_p1 p1_f')
20 f_p2 , p2_f = Ints('f_p2 p2_f')
21

22 # where they should be

23 s.add( f_p1 >= 0, f_p2 >= 0 )

24 s.add( p1_f >= 0, p2_f >= 0 )

25

26 ## l \in Naturals ;

27 l0 = Int('l0')
28 l1 = Int('l1')
29 l2 = Int('l2')
30 l3 = Int('l3')
31 l4 = Int('l4')
32 l5 = Int('l5')
33 l6 = Int('l6')
34 l7 = Int('l7')
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35 l8 = Int('l8')

Figure 6.8: An Example of the Generated Python Script Representing a
Fault Identification Problem.

In addition, we assert the constraints of the theorem in the solver by using
the add() method. The first constraint asserted is based on the assumption
where there is a single fault, and the second assertion is with regards to the
self-loopness of the faulty transition, as shown in the figure below.

1 s.add(And(

2 Or( And((f_p1 >= 0, p1_f == 0)),

3 And((f_p1 == 0, p1_f >= 0)),

4 And((f_p1 == 0, p1_f == 0))),

5 Or( And((f_p2 >= 0, p2_f == 0)),

6 And((f_p2 == 0, p2_f >= 0)),

7 And((f_p2 == 0, p2_f == 0)))

8 )

9 )

Figure 6.9: Python representation of Assumption 22 and Assumption 23.

The assertion procedure is also applied for both enabled and disabled con-
straints. The inequations below are generated from the base file and the
information gathered from the index file.

1 ########################################

2 ## \in L^f (Equation 4.1)

3 ########################################

4 # Sequence 0: t1

5 s0_t1 , s0_t2 , s0_t3 = 0, 0, 0

6 s.add(Exists ([l0],

7 And( Implies(l0 >= 0,

8 And(l0 >= 0,

9 mu_p1 + (t1_p1 -p1_t1)*s0_t1 + (t2_p1 -p1_t2)*s0_t2

10 + (t3_p1 -p1_t3)*s0_t3 + l0 * (f_p1 - p1_f) >= p1_t1 ,

11 mu_p2 + (t1_p2 -p2_t1)*s0_t1 + (t2_p2 -p2_t2)*s0_t2

12 + (t3_p2 -p2_t3)*s0_t3 + l0 * (f_p2 - p2_f) >= p2_t1 ,

13 )))))

14

15 # Sequence 1: t2

16 s1_t1 , s1_t2 , s1_t3 = 0, 0, 0

17 s.add(Exists ([l1],

18 And( Implies(l1 >= 0,

19 And(l1 >= 0,
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20 mu_p1 + (t1_p1 -p1_t1)*s1_t1 + (t2_p1 -p1_t2)*s1_t2

21 + (t3_p1 -p1_t3)*s1_t3 + l1 * (f_p1 - p1_f) >= p1_t2 ,

22 mu_p2 + (t1_p2 -p2_t1)*s1_t1 + (t2_p2 -p2_t2)*s1_t2

23 + (t3_p2 -p2_t3)*s1_t3 + l1 * (f_p2 - p2_f) >= p2_t2 ,

24 )))))

25

26 # Sequence 2: t3

27 s2_t1 , s2_t2 , s2_t3 = 0, 0, 0

28 s.add(Exists ([l2],

29 And( Implies(l2 >= 0,

30 And(l2 >= 0,

31 mu_p1 + (t1_p1 -p1_t1)*s2_t1 + (t2_p1 -p1_t2)*s2_t2

32 + (t3_p1 -p1_t3)*s2_t3 + l2 * (f_p1 - p1_f) >= p1_t3 ,

33 mu_p2 + (t1_p2 -p2_t1)*s2_t1 + (t2_p2 -p2_t2)*s2_t2

34 + (t3_p2 -p2_t3)*s2_t3 + l2 * (f_p2 - p2_f) >= p2_t3 ,

35 )))))

36

37 # Sequence 3: t1,t3

38 s3_t1 , s3_t2 , s3_t3 = 1, 0, 0

39 s.add(Exists ([l3],

40 And( Implies(l3 >= 0,

41 And(l3 >= 0,

42 mu_p1 + (t1_p1 -p1_t1)*s3_t1 + (t2_p1 -p1_t2)*s3_t2

43 + (t3_p1 -p1_t3)*s3_t3 + l3 * (f_p1 - p1_f) >= p1_t3 ,

44 mu_p2 + (t1_p2 -p2_t1)*s3_t1 + (t2_p2 -p2_t2)*s3_t2

45 + (t3_p2 -p2_t3)*s3_t3 + l3 * (f_p2 - p2_f) >= p2_t3 ,

46 )))))

47

48 # Sequence 4: t3,t3

49 s4_t1 , s4_t2 , s4_t3 = 0, 0, 1

50 s.add(Exists ([l4],

51 And( Implies(l4 >= 0,

52 And(l4 >= 0,

53 mu_p1 + (t1_p1 -p1_t1)*s4_t1 + (t2_p1 -p1_t2)*s4_t2

54 + (t3_p1 -p1_t3)*s4_t3 + l4 * (f_p1 - p1_f) >= p1_t3 ,

55 mu_p2 + (t1_p2 -p2_t1)*s4_t1 + (t2_p2 -p2_t2)*s4_t2

56 + (t3_p2 -p2_t3)*s4_t3 + l4 * (f_p2 - p2_f) >= p2_t3 ,

57 )))))

58

59

60 ########################################

61 ## \not \in L^f (Equation 4.2)

62 ########################################

63 # Sequence 5: t1,t1

64 s5_t1 , s5_t2 , s5_t3 = 1, 0, 0
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65 s.add(ForAll ([l5],

66 And( Implies(l5 >= 0,

67 Or(

68 And(l5 >= 0,

69 mu_p1 + (t1_p1 -p1_t1)*s5_t1 + (t2_p1 -p1_t2)*s5_t2

70 + (t3_p1 -p1_t3)*s5_t3 + l5 * (f_p1 - p1_f) < p1_t1),

71 And(l5 >= 0,

72 mu_p2 + (t1_p2 -p2_t1)*s5_t1 + (t2_p2 -p2_t2)*s5_t2

73 + (t3_p2 -p2_t3)*s5_t3 + l5 * (f_p2 - p2_f) < p2_t1),

74 )))))

75

76 # Sequence 6: t1 ,t2

77 s6_t1 , s6_t2 , s6_t3 = 1, 0, 0

78 s.add(ForAll ([l6],

79 And( Implies(l6 >= 0,

80 Or(

81 And(l6 >= 0,

82 mu_p1 + (t1_p1 -p1_t1)*s6_t1 + (t2_p1 -p1_t2)*s6_t2

83 + (t3_p1 -p1_t3)*s6_t3 + l6 * (f_p1 - p1_f) < p1_t2),

84 And(l6 >= 0,

85 mu_p2 + (t1_p2 -p2_t1)*s6_t1 + (t2_p2 -p2_t2)*s6_t2

86 + (t3_p2 -p2_t3)*s6_t3 + l6 * (f_p2 - p2_f) < p2_t2),

87 )))))

88

89 # Sequence 7: t3 ,t1

90 s7_t1 , s7_t2 , s7_t3 = 0, 0, 1

91 s.add(ForAll ([l7],

92 And( Implies(l7 >= 0,

93 Or(

94 And(l7 >= 0,

95 mu_p1 + (t1_p1 -p1_t1)*s7_t1 + (t2_p1 -p1_t2)*s7_t2

96 + (t3_p1 -p1_t3)*s7_t3 + l7 * (f_p1 - p1_f) < p1_t1),

97 And(l7 >= 0,

98 mu_p2 + (t1_p2 -p2_t1)*s7_t1 + (t2_p2 -p2_t2)*s7_t2

99 + (t3_p2 -p2_t3)*s7_t3 + l7 * (f_p2 - p2_f) < p2_t1),

100 )))))

101

102 # Sequence 8: t3 ,t2

103 s8_t1 , s8_t2 , s8_t3 = 0, 0, 1

104 s.add(ForAll ([l8],

105 And( Implies(l8 >= 0,

106 Or(

107 And(l8 >= 0,

108 mu_p1 + (t1_p1 -p1_t1)*s8_t1 + (t2_p1 -p1_t2)*s8_t2

109 + (t3_p1 -p1_t3)*s8_t3 + l8 * (f_p1 - p1_f) < p1_t2),
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110 And(l8 >= 0,

111 mu_p2 + (t1_p2 -p2_t1)*s8_t1 + (t2_p2 -p2_t2)*s8_t2

112 + (t3_p2 -p2_t3)*s8_t3 + l8 * (f_p2 - p2_f) < p2_t2),

113 )))))

Figure 6.10: An example of the generated file showing the enabled and the
disabled constraints.

The check() method is then used in order to solve the asserted con-
straints. If a solution is found, the command check returns sat, which means
that it satisfies the requirements of the specification. The result is unsat,
if the requirements of the specification have not been satisfied and so no so-
lution exists. Note that, a solver may fail to solve a system of constraints
and unknown is returned. Finally, the model() method is called in order
to provide a model for the last check. If the last check is sat then a model
is returned, otherwise an exception is thrown and no model is available. See
the representation below.

1 print(s.check ())

2 print(s.model ())

Figure 6.11: An example of the commands generating the solution in the
generated file.

The tool has been tested with various examples and in each case the output is
SAT and a model is produced. Note that we are not using any minimization
algorithm here, but there is always a model that satisfies the specification’s
constraints.

6.5 Testing the prototype

We have tested our tool on a number of examples. In this section, we present
two examples of the application of our tool, starting from the graphical rep-
resentation of the net systems along with their non-faulty and the faulty
language. Then we show the generated Python files representing these ex-
amples and finally, present the outcome of the solution generated. We have
consciously chosen these examples to present different levels of complexity.
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Example 31. Let N be the specification Petri net depicted in Figure 6.12.

p1

t1

p2
t2 t3

Figure 6.12: The fault-free net system.

The initial marking of N is hence µ0 =

[
1
1

]
(as shown).

The Pre and Post conditions of N are

Pre =

[
1 1 0
1 1 1

]
, Post =

[
0 0 0
1 0 0

]
Let L≤q(N) = {λ, t1, t2, t3, t1t3} and Lf≤q = {λ, t1, t2, t3, t1t3, t2t3, t3t1, t3t2, t3t3},

where q=3. Also let the sequences not in Lf be {t1t1, t1t2, t2t1, t2t2}. The
input files to our tool according to our syntax are presented in Figure 6.13.

1 places

2 2

3 p1

4 p2

5 transitions

6 3

7 t1

8 t2

9 t3

10 mu0

11 1

12 1

13 pre

14 1 1 0

15 1 1 1

16 post

17 0 0 0

18 1 0 0

19 in_Lf (8)
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20 t1

21 [0,0,0]

22 t2

23 [0,0,0]

24 t3

25 [0,0,0]

26 t1,t3

27 [1,0,0]

28 t2,t3

29 [0,1,0]

30 t3,t3

31 [0,0,1]

32 t3,t1

33 [0,0,1]

34 t3,t2

35 [0,0,1]

36 not_in_Lf (4)

37 t1,t1

38 [1,0,0]

39 t1,t2

40 [1,0,0]

41 t2,t1

42 [0,1,0]

43 t2,t2

44 [0,1,0]

Figure 6.13: The index file based on the fault-free net.

We can solve this problem by using the sets

PL(N)≤q = {(ε, t1), (ε, t2), (ε, t3), (t1, t3)}

PL(N)f≤q = {(t2, t3), (t3, t1), (t3, t2), (t3, t3)}

and
PNL(N)f≤q = {(t1, t1), (t1, t2), (t2, t1), (t2, t2)}

The generated file by our tool is given in Figure 6.14.

1 #!/bin/python

2

3 from z3 import *

4

5 # we have that

6 s = Solver ()

7 ## mu0_px is the initial marking for place px;
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8 mu_p1 , mu_p2 = 1, 1

9

10 ## pi_tj is the pre -condition from place pi to transition tj

11 p1_t1 , p1_t2 , p1_t3 = 1, 1, 0

12 p2_t1 , p2_t2 , p2_t3 = 1, 1, 1

13

14 ## tj_pi is the post -condition from transition tj to place pi

15 t1_p1 , t2_p1 , t3_p1 = 0, 0, 0

16 t1_p2 , t2_p2 , t3_p2 = 1, 0, 0

17

18 ## find the values for the faulty transitions

19 f_p1 , p1_f = Ints('f_p1 p1_f')
20 f_p2 , p2_f = Ints('f_p2 p2_f')
21

22 # where they should be

23 s.add( f_p1 >= 0, f_p2 >= 0 )

24 s.add( p1_f >= 0, p2_f >= 0 )

25

26 s.add(And(

27 Or( And((f_p1 >= 0, p1_f == 0)),

28 And((f_p1 == 0, p1_f >= 0)),

29 And((f_p1 == 0, p1_f == 0))),

30 Or( And((f_p2 >= 0, p2_f == 0)),

31 And((f_p2 == 0, p2_f >= 0)),

32 And((f_p2 == 0, p2_f == 0)))

33 )

34 )

35

36 ## l \in Naturals ;

37 l0 = Int('l0')
38 l1 = Int('l1')
39 l2 = Int('l2')
40 l3 = Int('l3')
41 l4 = Int('l4')
42 l5 = Int('l5')
43 l6 = Int('l6')
44 l7 = Int('l7')
45 l8 = Int('l8')
46 l9 = Int('l9')
47 l10 = Int('l10')
48 l11 = Int('l11')
49

50 ########################################

51 ## \in L^f (Equation 4.1)

52 ########################################
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53 # Sequence 0: t1

54 s0_t1 , s0_t2 , s0_t3 = 0, 0, 0

55 s.add(

56 Exists ([l0],

57 And( Implies(l0 >= 0,

58 And(l0 >= 0,

59 mu_p1 + (t1_p1 -p1_t1)*s0_t1 + (t2_p1 -p1_t2)*s0_t2

60 +(t3_p1 -p1_t3)*s0_t3 + l0 * (f_p1 - p1_f) >= p1_t1 ,

61 mu_p2 + (t1_p2 -p2_t1)*s0_t1 + (t2_p2 -p2_t2)*s0_t2

62 +(t3_p2 -p2_t3)*s0_t3 + l0 * (f_p2 - p2_f) >= p2_t1 ,

63 )))))

64

65 # Sequence 1: t2

66 s1_t1 , s1_t2 , s1_t3 = 0, 0, 0

67 s.add(

68 Exists ([l1],

69 And( Implies(l1 >= 0,

70 And(l1 >= 0,

71 mu_p1 + (t1_p1 -p1_t1)*s1_t1 + (t2_p1 -p1_t2)*s1_t2

72 +(t3_p1 -p1_t3)*s1_t3 + l1 * (f_p1 - p1_f) >= p1_t2 ,

73 mu_p2 + (t1_p2 -p2_t1)*s1_t1 + (t2_p2 -p2_t2)*s1_t2

74 +(t3_p2 -p2_t3)*s1_t3 + l1 * (f_p2 - p2_f) >= p2_t2 ,

75 )))))

76

77 # Sequence 2: t3

78 s2_t1 , s2_t2 , s2_t3 = 0, 0, 0

79 s.add(

80 Exists ([l2],

81 And( Implies(l2 >= 0,

82 And(l2 >= 0,

83 mu_p1 + (t1_p1 -p1_t1)*s2_t1 + (t2_p1 -p1_t2)*s2_t2

84 +(t3_p1 -p1_t3)*s2_t3 + l2 * (f_p1 - p1_f) >= p1_t3 ,

85 mu_p2 + (t1_p2 -p2_t1)*s2_t1 + (t2_p2 -p2_t2)*s2_t2

86 +(t3_p2 -p2_t3)*s2_t3 + l2 * (f_p2 - p2_f) >= p2_t3 ,

87 )))))

88

89 # Sequence 3: t1,t3

90 s3_t1 , s3_t2 , s3_t3 = 1, 0, 0

91 s.add(

92 Exists ([l3],

93 And( Implies(l3 >= 0,

94 And(l3 >= 0,

95 mu_p1 + (t1_p1 -p1_t1)*s3_t1 + (t2_p1 -p1_t2)*s3_t2

96 +(t3_p1 -p1_t3)*s3_t3 + l3 * (f_p1 - p1_f) >= p1_t3 ,

97 mu_p2 + (t1_p2 -p2_t1)*s3_t1 + (t2_p2 -p2_t2)*s3_t2
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98 + (t3_p2 -p2_t3)*s3_t3 + l3 * (f_p2 - p2_f) >= p2_t3 ,

99 )))))

100

101 # Sequence 4: t2 ,t3

102 s4_t1 , s4_t2 , s4_t3 = 0, 1, 0

103 s.add(

104 Exists ([l4],

105 And( Implies(l4 >= 0,

106 And(l4 >= 0,

107 mu_p1 + (t1_p1 -p1_t1)*s4_t1 + (t2_p1 -p1_t2)*s4_t2

108 + (t3_p1 -p1_t3)*s4_t3 + l4 * (f_p1 - p1_f) >= p1_t3 ,

109 mu_p2 + (t1_p2 -p2_t1)*s4_t1 + (t2_p2 -p2_t2)*s4_t2

110 +(t3_p2 -p2_t3)*s4_t3 + l4 * (f_p2 - p2_f) >= p2_t3 ,

111 )))))

112

113 # Sequence 5: t3 ,t3

114 s5_t1 , s5_t2 , s5_t3 = 0, 0, 1

115 s.add(

116 Exists ([l5],

117 And( Implies(l5 >= 0,

118 And(l5 >= 0,

119 mu_p1 + (t1_p1 -p1_t1)*s5_t1 + (t2_p1 -p1_t2)*s5_t2

120 +(t3_p1 -p1_t3)*s5_t3 + l5 * (f_p1 - p1_f) >= p1_t3 ,

121 mu_p2 + (t1_p2 -p2_t1)*s5_t1 + (t2_p2 -p2_t2)*s5_t2

122 +(t3_p2 -p2_t3)*s5_t3 + l5 * (f_p2 - p2_f) >= p2_t3 ,

123 )))))

124

125 # Sequence 6: t3 ,t1

126 s6_t1 , s6_t2 , s6_t3 = 0, 0, 1

127 s.add(

128 Exists ([l6],

129 And( Implies(l6 >= 0,

130 And(l6 >= 0,

131 mu_p1 + (t1_p1 -p1_t1)*s6_t1 + (t2_p1 -p1_t2)*s6_t2

132 +(t3_p1 -p1_t3)*s6_t3 + l6 * (f_p1 - p1_f) >= p1_t1 ,

133 mu_p2 + (t1_p2 -p2_t1)*s6_t1 + (t2_p2 -p2_t2)*s6_t2

134 + (t3_p2 -p2_t3)*s6_t3 + l6 * (f_p2 - p2_f) >= p2_t1 ,

135 )))))

136

137 # Sequence 7: t3 ,t2

138 s7_t1 , s7_t2 , s7_t3 = 0, 0, 1

139 s.add(

140 Exists ([l7],

141 And( Implies(l7 >= 0,

142 And(l7 >= 0,
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143 mu_p1 + (t1_p1 -p1_t1)*s7_t1 + (t2_p1 -p1_t2)*s7_t2

144 +(t3_p1 -p1_t3)*s7_t3 + l7 * (f_p1 - p1_f) >= p1_t2 ,

145 mu_p2 + (t1_p2 -p2_t1)*s7_t1 + (t2_p2 -p2_t2)*s7_t2

146 +(t3_p2 -p2_t3)*s7_t3 + l7 * (f_p2 - p2_f) >= p2_t2 ,

147 )))))

148

149 ########################################

150 ## \not \in L^f (Equation 4.2)

151 ########################################

152 # Sequence 8: t1,t1

153 s8_t1 , s8_t2 , s8_t3 = 1, 0, 0

154 s.add(

155 ForAll ([l8],

156 And( Implies(l8 >= 0,

157 Or(

158 And(l8 >= 0, mu_p1 + (t1_p1 -p1_t1)*s8_t1

159 +(t2_p1 -p1_t2)*s8_t2 + (t3_p1 -p1_t3)*s8_t3

160 +l8 * (f_p1 - p1_f) < p1_t1),

161 And(l8 >= 0, mu_p2 + (t1_p2 -p2_t1)*s8_t1

162 +(t2_p2 -p2_t2)*s8_t2 + (t3_p2 -p2_t3)*s8_t3

163 + l8 * (f_p2 - p2_f) < p2_t1),

164 )))))

165

166 # Sequence 9: t1,t2

167 s9_t1 , s9_t2 , s9_t3 = 1, 0, 0

168 s.add(

169 ForAll ([l9],

170 And( Implies(l9 >= 0,

171 Or(

172 And(l9 >= 0, mu_p1 + (t1_p1 -p1_t1)*s9_t1

173 + (t2_p1 -p1_t2)*s9_t2 + (t3_p1 -p1_t3)*s9_t3

174 + l9 * (f_p1 - p1_f) < p1_t2),

175 And(l9 >= 0, mu_p2 + (t1_p2 -p2_t1)*s9_t1

176 + (t2_p2 -p2_t2)*s9_t2 + (t3_p2 -p2_t3)*s9_t3

177 + l9 * (f_p2 - p2_f) < p2_t2),

178 )))))

179

180 # Sequence 10: t2,t1

181 s10_t1 , s10_t2 , s10_t3 = 0, 1, 0

182 s.add(

183 ForAll ([l10],

184 And( Implies(l10 >= 0,

185 Or(

186 And(l10 >= 0, mu_p1 + (t1_p1 -p1_t1)*s10_t1

187 + (t2_p1 -p1_t2)*s10_t2 + (t3_p1 -p1_t3)*s10_t3
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188 + l10 * (f_p1 - p1_f) < p1_t1),

189 And(l10 >= 0, mu_p2 + (t1_p2 -p2_t1)*s10_t1

190 + (t2_p2 -p2_t2)*s10_t2 + (t3_p2 -p2_t3)*s10_t3

191 + l10 * (f_p2 - p2_f) < p2_t1),

192 )))))

193

194 # Sequence 11: t2 ,t2

195 s11_t1 , s11_t2 , s11_t3 = 0, 1, 0

196 s.add(

197 ForAll ([l11],

198 And( Implies(l11 >= 0,

199 Or(

200 And(l11 >= 0, mu_p1 + (t1_p1 -p1_t1)*s11_t1

201 + (t2_p1 -p1_t2)*s11_t2 + (t3_p1 -p1_t3)*s11_t3

202 + l11 * (f_p1 - p1_f) < p1_t2),

203 And(l11 >= 0, mu_p2 + (t1_p2 -p2_t1)*s11_t1

204 + (t2_p2 -p2_t2)*s11_t2 + (t3_p2 -p2_t3)*s11_t3

205 + l11 * (f_p2 - p2_f) < p2_t2),

206 )))))

207

208 print(s.check ())

209 print(s.model ())

Figure 6.14: The generated file based on the fault-free net, its language and
the faulty language.

After running the Python script, the solution generated is

1 sat

2 [p2_f = 0, f_p2 = 1, p1_f = 0, f_p1 = 0]

Figure 6.15: The generated solution.
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And so the graphical representation of the faulty Petri net is

p1

t1

p2
t2 t3

f

Figure 6.16: The Faulty Net, Automatically Identified by Our Tool.

�

A second and more complex example can be found in the Appendix sec-
tion.



Chapter 7

Experimental Evaluation

Motivation In order to empirically evaluate the efficiency of our approach,
we developed a large benchmark of Petri nets and their faulty extensions.
For this benchmark to be meaningful for practical applications, we analysed
a set of real-world examples and abstracted their structure. Then we used
the abstracted structure in order to come up with other examples in our
benchmark that have a similar structure. We subsequently used the CPN
tool to generate the state space of our benchmarks (both for the original
Petri nets and their various faulty extensions) and gathered and analysed
data in order to answer the following research question:

(RQ3) How scalable is our fault identification technique for unobservable
faults?

Answering this research question involves gathering execution times for
the Petri nets in our benchmark and performing a regression analysis to
develop an empirical model for the efficiency of our approach. By analysing
this model we can see how scalable our approach is, i.e., what are the largest
sizes of Petri net that can be handled using our approach.

7.1 Experiment design

We studied 10 Petri nets from the practical examples modelled in the CPN
toolset with different complexities [38]. We have then used ideas from the
field of Complex Networks [60] to characterize the graph structure of those
Petri nets. Complex network analysis is a collection of quantitative methods
for analysing the structure of a graph and try to come up with characteristics

93
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of such graph. For our analysis we are not going to do an in-depth complex
network analysis of Petri net graphs, but we use basic measures inspired by
Complex Network Analysis as a starting point. In particular, we abstracted
the indegree and outdegree of places and transitions for the above-mentioned
10 examples, and gathered the characterisation data for them.

A visualisation of the gathered data is provided in Figures 7.1 and 7.2.
These figures, respectively, show the distribution of the indeegrees and the
outdegrees of places and transitions We then calculated the mean value for
these measures and subsequently created a controlled benchmark of Petri
nets of various sizes respecting these measures.

Figure 7.1: The box plot representing indegrees and outdegrees for places.

Figure 7.2: The box plot representing indegrees and outdegrees for transi-
tions.

7.2 State space Analysis

In this section, we explain how the state space was created. In general, the
state space analysis is useful when we would like to scrutinize behavioural
properties of the net, such as boundedness, safeness, liveness, and fairness.
For our benchmark, we have used CPN Tools to calculate such a state space.

Before a state space can be calculated and analyzed, we first need to
generate the state space code. This can be done by applying the Enter the
state space tool. To generate the state space code, we need to make sure that
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all transitions, places and pages in the net have names. Note that the larger
the size of the Petri net is, the more time is needed for the state space to
be generated. Once the state space code is generated, we can simply apply
the Calculate state space tool. The calculated state space can be saved in a
report file, when the Save Report tool is used. In the report file, statistics
section describes the size of the state space and SCC graph.

After entering and calculating the state space, we can display all the nodes
contained in it. In order to display the state space nodes we used the Display
state space node tool. An option for the tool determines which node will be
drawn. If the node does not already exist on the page then the node will be
displayed. If the node is already on the page, then nothing will be added to
the page. Figure 7.3 shows the State Space tools in the CPN toolset.

Figure 7.3: The State Space tools in CPN.

The first node created and displayed, represents the initial marking of
the net. Then, in order to display the rest of the nodes we need to use the
Display successors tool to a state space node. The successor nodes to the
target node will be displayed, and outgoing arcs from the target node to its
successors will be displayed. If any of the successor nodes or outgoing arcs
are already displayed and active on the page, then they will not be displayed
again. Similarly, Display predecessors tool is used to display the outgoing
arcs from the predecessors to their target node. Note that the state space
was drawn manually, as there was not an option for generating the complete
graph at once. For smaller state spaces, it was possible to draw such a graph,
but for larger state spaces, it was time consuming as the tool becomes slower
as the size of the state space grows.

Figure 7.4 depicts a representation of a state space node. The first number
is the number of the node. In this example, the node number is 6. The two
numbers at the bottom of the node are the number of predecessors and
number of successors that have been calculated. In this case 2 predecessors
and 3 successors have been calculated.
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Figure 7.4: The graphical representation of a State Space node.

7.3 Examples

In this section, we present a couple of random examples we created according
to our methodology and show how we have used them within the CPN Tools.

For all examples, I calculate the same indegree and outdegree measures
and only accept those random graphs that deviate in any given measure for
at most 20% from the above-specified mean values.

We observe that the larger the size of the Petri net gets, it is easier to
generate Petri nets that closely respect these measures, while for a small
number of places a small number of deviations can lead to significantly large
deviation percentages.

Example 32. The following example illustrates a Petri net with 5 places
and 3 transitions, based on corresponding guidelines above.

Figure 7.5: A Petri net with 5 places and 3 transitions.

Below is the representation of the generated state space:

Figure 7.6: The corresponding state space for the Petri net with 5 places and
3 transitions.
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Measuring execution time

Figure 7.7: The corresponding box plot for the execution time taken for
solving such a net using our tool.

Figure 7.8: The corresponding box plot for the execution time taken for
generating the state space in CPN tools.

�

Example 33. The following example illustrates a Petri net with 10 places
and 9 transitions, based on corresponding guidelines above.

Figure 7.9: A Petri net with 10 places and 9 transitions.

Below is the representation of the generated state space:
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Figure 7.10: The corresponding state space for the Petri net with 10 places
and 9 transitions.

Measuring execution time

Figure 7.11: The corresponding box plot for the execution time taken for
solving such a net using our tool.

Figure 7.12: The corresponding box plot for the execution time taken for
generating the state space in CPN tools.

�

Example 34. The following example illustrates a Petri net with 15 places
and 13 transitions, based on corresponding guidelines above.
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Figure 7.13: A Petri net with 15 places and 13 transitions.

Below is the representation of the generated state space:

Figure 7.14: The corresponding state space for the Petri net with 15 places
and 13 transitions.

Measuring execution time

Figure 7.15: The corresponding box plot for the execution time taken for
solving such a net using our tool.
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Figure 7.16: The corresponding box plot for the execution time taken for
generating the state space in CPN tools.

�

7.4 Experimental results

In this section, I summarize the results of my empirical evaluation. Figure
7.17 depicts a box plot representing the growth of the execution time with
respect to the size of the Petri nets (i.e., the number of places; the number
of transitions also rise proportionally according to our identified metrics).

Figure 7.17: Execution time of my tool for different sizes of Petri nets
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For comparison, I have also provided the same execution times for the
CPN state-space generation in Table 7.18.

Figure 7.18: Execution time of the CPN tool for different sizes of Petri nets

Final analysis: There is a steep increase in the mean execution time of
our tool (from less than a second for 5 places, to 45 seconds for 10 places,
to about 150 seconds for 15 places). However, the comparison of this growth
with that of state-space generation at CPN tools reveals that our approach
is more scalable than explicit-state exploration approaches.

7.5 Threats to validity

In this section, I examine the threat to the validity of our experimental
evaluation. I divided these threats into two categories: internal- and external
threats to validity.

7.5.1 Internal validity

An internal threat to validity concerns my data set and its analysis method.
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The first internal threat to the validity of my results concerns the sta-
tistical measures used to generate random subject systems. We can in the
future consider more advanced complex network analysis measures to gener-
ate random Petri nets that resemble actual cases.

Another threat to internal validity is the limited size of the data set. I
have increased the size of the data set to the limits of the computational
power of my personal computer. In the future, if I am given access to a
more powerful computer / a computing cluster, I could explore the results
for larger data set and potentially consider parallelizing the analysis and
evaluate the parallelization.

Although we can find different solutions for the fault identification prob-
lem, we cannot minimize it to get a unique solution, however results are
accurate and valid.

7.5.2 External validity

A threat to external validity is the errors or inaccuracies in the examples
used and in the translation between tools (the output of CPN tools and the
input of our tool), that may impact our evaluation. To mitigate this, we
have carefully scrutinized the examples and the coding both by myself and
my supervisor.

Another threat to validity concerns the choice of subject system. To
mitigate this threat we have studied already existing examples based on
realistic phenomena and we have used ideas from the Complex Networks
field to generate other subject systems that have a similar structure. Our
study demonstrates that the produced results are largely in agreement across
various examples.

Furthermore, our tool was implemented in Python using Z3 SMT Solver
to solve the fault identification problem, so the results may not be the same
for other programming languages and SMT Solvers. Future studies should
validate the generalizability of our findings in other implementation contexts.

7.6 Future work

The tool we have created has not been compared with other tools yet; candi-
dates for such a comparison including synthesis and process mining tools. We
are planning to empirically compare the performance of our tool with other
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tools using our benchmark examples. Once the tool is tested with a variety
of benchmark examples, we will be able to make different comparisons to see
if the solutions and the running time are more efficient than the solutions
and the running time of the already existing tools.

There is a variety of tools of presenting the format of a Petri net; these
include Alpha/Sim, AlPiNa, ARP, Artifex, Cosmos, CPN-AMI, ProM CPN,
CPN Tools [39]. These tools are used for the simulation of place/transition
nets, high-level Petri nets, stochastic Petri nets, Colored Petri nets, Petri
nets with time and so on. In the future we plan to perform an exhaustive
research regarding these tools, in order to get an overview of the case studies
carried out in these tools and plan an empirical study for our comparison.
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Chapter 8

Conclusions

In this chapter, I review the results of this thesis and reflect on the possible
avenues for future work.

In the thesis I have formulated the fault identification problem in Petri
nets and I have given an answer to the question whether it is possible to
efficiently identify unknown faults in a system built based on a known Petri
net specification.

I have formalized the basic concepts regarding Petri nets and faults and
I have also formalized the problem statement concerning fault identification.
I then rephrased a solution scheme which is based on the research done
by other authors and in particular by Cabasino. I translated the problem
into a system of linear algebraic inequations, taking into consideration two
cases, namely when the faults are observable (i.e., faults appear in the net
traces) and when the faults are unobservable (i.e., faults do not appear in
the net traces). In the case where the faults are unobservable I also make
the assumption that the net is loop-free.

I have compared my approach to that of Cabasino and identified some
issues with her approach. I have given solutions to these issues and I have
shown that my approach holds in those cases that Cabasino’s proof have
issues.

Last but not least, I have created a tool that automates my approach to
fault identification. I have also created a benchmark of examples in order
to test my tool. In the thesis I have listed two examples with different
complexity in order to show how my tool works and scales to larger examples.

A comparison with other tools has not been done yet, due to the fact that
our tool is still a prototype. As future work, I am planning to improve its
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performance and test it using my benchmark (as well as any other available
set of examples), in order to make a thorough comparison with other tools.

In the future, I plan to polish and finish the generalization of my theo-
rem to multiple faults; this includes different cases, namely, when the faults
overlap and when the faults do not overlap. In other words, I plan to relax
Assumption 22 and extend the approach to multiple faults. I already have
some early results in this direction. I plan to modify the tool in order to au-
tomate the extended process (and also validate it on a number of examples)
and measure the efficiency of my approach in this extended setting.
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[36] Hořeňovský M, “Modern SAT solvers: fast, neat and underused ,” Au-
gust 2018.

[37] Jantzen M, “Language Theory of Petri Nets,” Fachbereich Informatik
Universitat Hamburg, 1987. p. 398-412.

[38] Jensen K, Christensen S, Kristensen L. M., Westergaard M, Ver-
beek H.M.W. (Eric), January 2018, CPN Tools - Sample CPN
Models, Eindhoven University of Technology, viewed 17 July 2020,
http://cpntools.org/2018/01/08/sample-cpn-models.

[39] Jie W T, Ameedeen A M, “A Survey of Petri Net Tools,” Article in
Lecture Notes in Electrical Engineering, January, 2015.

[40] Kiehn A, “Petri Net Systems and their Closure Properties,” Proceedings
of Advances in Petri Nets in the 9th European Workshop on Applications
and Theory in Petri Nets, June 1988.

[41] Koutny M, Pietkiewicz-Koutny M, “Synthesis of General Petri Nets with
Localities,” School of Computing Science, Newcastle, United Kingdom,
2009.



BIBLIOGRAPHY 111

[42] Li L, Hadjicostis C, Sreenivas S R, “Fault Detection and Identification
in Petri Net Controllers,” Proceedings of the 43rd IEEE International
Conference on Decision and Control, December 2004. p. 5248-5253.

[43] Lorenz R, Bergenthum R, Desel J, Mauser S, “Synthesis of Petri nets
from finite partial languages,” In ACSD07: Proceedings of the 7th Inter-
national Conference on Application of Con- currency to System Design,
Washington, DC, USA, 2007. p. 157–166.

[44] Lorenz R, Juhas G, “Towards synthesis of Petri nets from scenarios,” In
Proc. of 27th Inter- national Conference on Applications and Theory of
Petri Nets and Other Models of Concurrency, 2006. p. 302–321.

[45] Lorenz R, Juhas G, Mauser S, “How to synthesize nets from languages
– a survey,” In Proc. 2007 Winter Simulation Conference,Washington
DC, USA, December 2007.

[46] Murata T, “Petri Nets: Properties, Analysis and Applications,” Pro-
ceedings of the IEEE, VOL. 77, NO. 4, April 1989. p. 541-580.

[47] Pelz E, “Closure Properties of Deterministic Petri Nets,” Université
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Appendix A

Implementation Test Case

In this appendix, we provide the details of another test case created for my
prototype implementation. I starting from the graphical representation of
the original net system and then present its non-faulty and faulty languages.
Then I present the generated Python file for the example and finally, present
and discuss the outcome of the solution that is automatically generated by
the prototype tool.

Example 35. Let N be the specification Petri net in Figure A.1.

p1

t1

p2

t2

p3
t3

Figure A.1: The fault-free net system.

Hence, the initial marking of N is µ0 =

0
1
0

 (as shown).

The Pre and Post conditions of the Petri net N are

Pre =

 1 0 0
0 1 0
0 0 1

 , Post =

 0 0 1
1 0 1
0 1 0
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Let L≤q(N) = {λ, t2, t2t3, t2t3t1, t2t3t2, t2t3t1t2, t2t3t2t1, t2t3t2t3} and

Lf≤q = {λ, t2, t2t3, t2t3t1, t2t3t2, t2t3t1t2, t2t3t2t1, t2t3t2t3, t1, t1t1, t1t2,
t1t1t1, t1t1t2, t1t2t3, t2t3t1t1, t1t2t3t1, t1t2t3t2, t1t1t1t1, t1t1t1t2}, where q=4.

Also let the sequences /∈ Lf = {t3, t1t3, t2t1, t2t2, t1t1t3, t1t2t1, t1t2t2, t2t3t3,
t2t3t1t3, t2t3t2t2, t1t2t3t3, t1t1t1t3}

The input file to our tool, based on our syntax, is presented in Figure
A.2.

1 places

2 3

3 p1

4 p2

5 p3

6 transitions

7 3

8 t1

9 t2

10 t3

11 mu0

12 0

13 1

14 0

15 pre

16 1 0 0

17 0 1 0

18 0 0 1

19 post

20 0 0 1

21 1 0 1

22 0 1 0

23 in_Lf (18)

24 t1

25 [0,0,0]

26 t2

27 [0,0,0]

28 t1,t1

29 [1,0,0]

30 t1,t2

31 [1,0,0]

32 t2,t3

33 [0,1,0]

34 t1,t1,t1

35 [2,0,0]

36 t1,t1,t2

37 [2,0,0]
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38 t1 ,t2 ,t3

39 [1,1,0]

40 t2 ,t3 ,t1

41 [0,1,1]

42 t2 ,t3 ,t2

43 [0,1,1]

44 t2 ,t3 ,t1 ,t2

45 [1,1,1]

46 t2 ,t3 ,t1 ,t1

47 [1,1,1]

48 t2 ,t3 ,t2 ,t1

49 [0,2,1]

50 t2 ,t3 ,t2 ,t3

51 [0,2,1]

52 t1 ,t2 ,t3 ,t1

53 [1,1,1]

54 t1 ,t2 ,t3 ,t2

55 [1,1,1]

56 t1 ,t1 ,t1 ,t1

57 [3,0,0]

58 t1 ,t1 ,t1 ,t2

59 [3,0,0]

60 not_in_Lf (12)

61 t3

62 [0,0,0]

63 t1 ,t3

64 [1,0,0]

65 t2 ,t1

66 [0,1,0]

67 t2 ,t2

68 [0,1,0]

69 t1 ,t1 ,t3

70 [2,0,0]

71 t1 ,t2 ,t1

72 [1,1,0]

73 t1 ,t2 ,t2

74 [1,1,0]

75 t2 ,t3 ,t3

76 [0,1,1]

77 t2 ,t3 ,t2 ,t2

78 [0,2,1]

79 t2 ,t3 ,t1 ,t3

80 [1,1,1]

81 t1 ,t1 ,t1 ,t3

82 [3,0,0]
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83 t1,t2,t3,t3

84 [1,1,1]

Figure A.2: The index file based on the fault-free net.

We can solve this problem by using the sets

PL(N)≤q = {(ε, t2), (t2, t3), (t2t3, t1), (t2t3, t2), (t2t3t1, t2), (t2t3t2, t1), (t2t3t2, t3)}

PL(N)f≤q = {(ε, t1), (t1, t1), (t1, t2), (t1t1, t1), (t1t1, t2), (t1t2, t3), (t2t3t1, t1),
(t1t2t3, t1), (t1t2t3, t2), (t1t1t1, t1), (t1t1t1, t2)}

and
PNL(N)f≤q = {(t3), (t1, t3), (t2, t1), (t2, t2), (t1t1, t3), (t1t2, t1), (t1t2, t2),

(t2t3, t3), (t2t3t1, t3), (t2t3t2, t2), (t1t2t3, t3), (t1t1t1, t3)}
The generated file is as follows

1 #!/bin/python

2

3 from z3 import *

4

5 # we have that

6 s = Solver ()

7 ## mu0_px is the initial marking for place px;

8 mu_p1 , mu_p2 , mu_p3 = 0, 1, 0

9

10 ## pi_tj is the pre -condition from place pi to transition tj

11 p1_t1 , p1_t2 , p1_t3 = 1, 0, 0

12 p2_t1 , p2_t2 , p2_t3 = 0, 1, 0

13 p3_t1 , p3_t2 , p3_t3 = 0, 0, 1

14

15 ## tj_pi is the post -condition from transition tj to place pi

16 t1_p1 , t2_p1 , t3_p1 = 0, 0, 1

17 t1_p2 , t2_p2 , t3_p2 = 1, 0, 1

18 t1_p3 , t2_p3 , t3_p3 = 0, 1, 0

19

20 ## find the values for the faulty transitions

21 f_p1 , p1_f = Ints('f_p1 p1_f')
22 f_p2 , p2_f = Ints('f_p2 p2_f')
23 f_p3 , p3_f = Ints('f_p3 p3_f')
24

25 # where they should be

26 s.add( f_p1 >= 0, f_p2 >= 0, f_p3 >= 0 )

27 s.add( p1_f >= 0, p2_f >= 0, p3_f >= 0 )

28

29 s.add(And(



117

30 Or( And((f_p1 >= 0, p1_f == 0)),

31 And((f_p1 == 0, p1_f >= 0)),

32 And((f_p1 == 0, p1_f == 0))),

33 Or( And((f_p2 >= 0, p2_f == 0)),

34 And((f_p2 == 0, p2_f >= 0)),

35 And((f_p2 == 0, p2_f == 0))),

36 Or( And((f_p3 >= 0, p3_f == 0)),

37 And((f_p3 == 0, p3_f >= 0)),

38 And((f_p3 == 0, p3_f == 0)))

39 )

40 )

41

42 ## l \in Naturals ;

43 l0 = Int('l0')
44 l1 = Int('l1')
45 l2 = Int('l2')
46 l3 = Int('l3')
47 l4 = Int('l4')
48 l5 = Int('l5')
49 l6 = Int('l6')
50 l7 = Int('l7')
51 l8 = Int('l8')
52 l9 = Int('l9')
53 l10 = Int('l10')
54 l11 = Int('l11')
55 l12 = Int('l12')
56 l13 = Int('l13')
57 l14 = Int('l14')
58 l15 = Int('l15')
59 l16 = Int('l16')
60 l17 = Int('l17')
61 l18 = Int('l18')
62 l19 = Int('l19')
63 l20 = Int('l20')
64 l21 = Int('l21')
65 l22 = Int('l22')
66 l23 = Int('l23')
67 l24 = Int('l24')
68 l25 = Int('l25')
69 l26 = Int('l26')
70 l27 = Int('l27')
71 l28 = Int('l28')
72 l29 = Int('l29')
73

74 ########################################
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75 ## \in L^f (Equation 4.1)

76 ########################################

77 # Sequence 0: t1

78 s0_t1 , s0_t2 , s0_t3 = 0, 0, 0

79 s.add(

80 Exists ([l0],

81 And( Implies(l0 >= 0,

82 And(l0 >= 0,

83 mu_p1 + (t1_p1 -p1_t1)*s0_t1 + (t2_p1 -p1_t2)*s0_t2

84 + (t3_p1 -p1_t3)*s0_t3 + l0 * (f_p1 - p1_f) >= p1_t1 ,

85 mu_p2 + (t1_p2 -p2_t1)*s0_t1 + (t2_p2 -p2_t2)*s0_t2

86 + (t3_p2 -p2_t3)*s0_t3 + l0 * (f_p2 - p2_f) >= p2_t1 ,

87 mu_p3 + (t1_p3 -p3_t1)*s0_t1 + (t2_p3 -p3_t2)*s0_t2

88 + (t3_p3 -p3_t3)*s0_t3 + l0 * (f_p3 - p3_f) >= p3_t1 ,

89 )))))

90

91 # Sequence 1: t2

92 s1_t1 , s1_t2 , s1_t3 = 0, 0, 0

93 s.add(

94 Exists ([l1],

95 And( Implies(l1 >= 0,

96 And(l1 >= 0,

97 mu_p1 + (t1_p1 -p1_t1)*s1_t1 + (t2_p1 -p1_t2)*s1_t2

98 + (t3_p1 -p1_t3)*s1_t3 + l1 * (f_p1 - p1_f) >= p1_t2 ,

99 mu_p2 + (t1_p2 -p2_t1)*s1_t1 + (t2_p2 -p2_t2)*s1_t2

100 + (t3_p2 -p2_t3)*s1_t3 + l1 * (f_p2 - p2_f) >= p2_t2 ,

101 mu_p3 + (t1_p3 -p3_t1)*s1_t1 + (t2_p3 -p3_t2)*s1_t2

102 + (t3_p3 -p3_t3)*s1_t3 + l1 * (f_p3 - p3_f) >= p3_t2 ,

103 )))))

104

105 # Sequence 2: t1,t1

106 s2_t1 , s2_t2 , s2_t3 = 1, 0, 0

107 s.add(

108 Exists ([l2],

109 And( Implies(l2 >= 0,

110 And(l2 >= 0,

111 mu_p1 + (t1_p1 -p1_t1)*s2_t1 + (t2_p1 -p1_t2)*s2_t2

112 + (t3_p1 -p1_t3)*s2_t3 + l2 * (f_p1 - p1_f) >= p1_t1 ,

113 mu_p2 + (t1_p2 -p2_t1)*s2_t1 + (t2_p2 -p2_t2)*s2_t2

114 + (t3_p2 -p2_t3)*s2_t3 + l2 * (f_p2 - p2_f) >= p2_t1 ,

115 mu_p3 + (t1_p3 -p3_t1)*s2_t1 + (t2_p3 -p3_t2)*s2_t2

116 + (t3_p3 -p3_t3)*s2_t3 + l2 * (f_p3 - p3_f) >= p3_t1 ,

117 )))))

118

119 # Sequence 3: t1,t2
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120 s3_t1 , s3_t2 , s3_t3 = 1, 0, 0

121 s.add(

122 Exists ([l3],

123 And( Implies(l3 >= 0,

124 And(l3 >= 0,

125 mu_p1 + (t1_p1 -p1_t1)*s3_t1 + (t2_p1 -p1_t2)*s3_t2

126 + (t3_p1 -p1_t3)*s3_t3 + l3 * (f_p1 - p1_f) >= p1_t2 ,

127 mu_p2 + (t1_p2 -p2_t1)*s3_t1 + (t2_p2 -p2_t2)*s3_t2

128 + (t3_p2 -p2_t3)*s3_t3 + l3 * (f_p2 - p2_f) >= p2_t2 ,

129 mu_p3 + (t1_p3 -p3_t1)*s3_t1 + (t2_p3 -p3_t2)*s3_t2

130 + (t3_p3 -p3_t3)*s3_t3 + l3 * (f_p3 - p3_f) >= p3_t2 ,

131 )))))

132

133 # Sequence 4: t2 ,t3

134 s4_t1 , s4_t2 , s4_t3 = 0, 1, 0

135 s.add(

136 Exists ([l4],

137 And( Implies(l4 >= 0,

138 And(l4 >= 0,

139 mu_p1 + (t1_p1 -p1_t1)*s4_t1 + (t2_p1 -p1_t2)*s4_t2

140 + (t3_p1 -p1_t3)*s4_t3 + l4 * (f_p1 - p1_f) >= p1_t3 ,

141 mu_p2 + (t1_p2 -p2_t1)*s4_t1 + (t2_p2 -p2_t2)*s4_t2

142 + (t3_p2 -p2_t3)*s4_t3 + l4 * (f_p2 - p2_f) >= p2_t3 ,

143 mu_p3 + (t1_p3 -p3_t1)*s4_t1 + (t2_p3 -p3_t2)*s4_t2

144 + (t3_p3 -p3_t3)*s4_t3 + l4 * (f_p3 - p3_f) >= p3_t3 ,

145 )))))

146

147 # Sequence 5: t1 ,t1 ,t1

148 s5_t1 , s5_t2 , s5_t3 = 2, 0, 0

149 s.add(

150 Exists ([l5],

151 And( Implies(l5 >= 0,

152 And(l5 >= 0,

153 mu_p1 + (t1_p1 -p1_t1)*s5_t1 + (t2_p1 -p1_t2)*s5_t2

154 + (t3_p1 -p1_t3)*s5_t3 + l5 * (f_p1 - p1_f) >= p1_t1 ,

155 mu_p2 + (t1_p2 -p2_t1)*s5_t1 + (t2_p2 -p2_t2)*s5_t2

156 + (t3_p2 -p2_t3)*s5_t3 + l5 * (f_p2 - p2_f) >= p2_t1 ,

157 mu_p3 + (t1_p3 -p3_t1)*s5_t1 + (t2_p3 -p3_t2)*s5_t2

158 + (t3_p3 -p3_t3)*s5_t3 + l5 * (f_p3 - p3_f) >= p3_t1 ,

159 )))))

160

161 # Sequence 6: t1 ,t1 ,t2

162 s6_t1 , s6_t2 , s6_t3 = 2, 0, 0

163 s.add(

164 Exists ([l6],
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165 And( Implies(l6 >= 0,

166 And(l6 >= 0,

167 mu_p1 + (t1_p1 -p1_t1)*s6_t1 + (t2_p1 -p1_t2)*s6_t2

168 + (t3_p1 -p1_t3)*s6_t3 + l6 * (f_p1 - p1_f) >= p1_t2 ,

169 mu_p2 + (t1_p2 -p2_t1)*s6_t1 + (t2_p2 -p2_t2)*s6_t2

170 + (t3_p2 -p2_t3)*s6_t3 + l6 * (f_p2 - p2_f) >= p2_t2 ,

171 mu_p3 + (t1_p3 -p3_t1)*s6_t1 + (t2_p3 -p3_t2)*s6_t2

172 + (t3_p3 -p3_t3)*s6_t3 + l6 * (f_p3 - p3_f) >= p3_t2 ,

173 )))))

174

175 # Sequence 7: t1,t2,t3

176 s7_t1 , s7_t2 , s7_t3 = 1, 1, 0

177 s.add(

178 Exists ([l7],

179 And( Implies(l7 >= 0,

180 And(l7 >= 0,

181 mu_p1 + (t1_p1 -p1_t1)*s7_t1 + (t2_p1 -p1_t2)*s7_t2

182 + (t3_p1 -p1_t3)*s7_t3 + l7 * (f_p1 - p1_f) >= p1_t3 ,

183 mu_p2 + (t1_p2 -p2_t1)*s7_t1 + (t2_p2 -p2_t2)*s7_t2

184 + (t3_p2 -p2_t3)*s7_t3 + l7 * (f_p2 - p2_f) >= p2_t3 ,

185 mu_p3 + (t1_p3 -p3_t1)*s7_t1 + (t2_p3 -p3_t2)*s7_t2

186 + (t3_p3 -p3_t3)*s7_t3 + l7 * (f_p3 - p3_f) >= p3_t3 ,

187 )))))

188

189 # Sequence 8: t2,t3,t1

190 s8_t1 , s8_t2 , s8_t3 = 0, 1, 1

191 s.add(

192 Exists ([l8],

193 And( Implies(l8 >= 0,

194 And(l8 >= 0,

195 mu_p1 + (t1_p1 -p1_t1)*s8_t1 + (t2_p1 -p1_t2)*s8_t2

196 + (t3_p1 -p1_t3)*s8_t3 + l8 * (f_p1 - p1_f) >= p1_t1 ,

197 mu_p2 + (t1_p2 -p2_t1)*s8_t1 + (t2_p2 -p2_t2)*s8_t2

198 + (t3_p2 -p2_t3)*s8_t3 + l8 * (f_p2 - p2_f) >= p2_t1 ,

199 mu_p3 + (t1_p3 -p3_t1)*s8_t1 + (t2_p3 -p3_t2)*s8_t2

200 + (t3_p3 -p3_t3)*s8_t3 + l8 * (f_p3 - p3_f) >= p3_t1 ,

201 )))))

202

203 # Sequence 9: t2,t3,t2

204 s9_t1 , s9_t2 , s9_t3 = 0, 1, 1

205 s.add(

206 Exists ([l9],

207 And( Implies(l9 >= 0,

208 And(l9 >= 0,

209 mu_p1 + (t1_p1 -p1_t1)*s9_t1 + (t2_p1 -p1_t2)*s9_t2
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210 + (t3_p1 -p1_t3)*s9_t3 + l9 * (f_p1 - p1_f) >= p1_t2 ,

211 mu_p2 + (t1_p2 -p2_t1)*s9_t1 + (t2_p2 -p2_t2)*s9_t2

212 + (t3_p2 -p2_t3)*s9_t3 + l9 * (f_p2 - p2_f) >= p2_t2 ,

213 mu_p3 + (t1_p3 -p3_t1)*s9_t1 + (t2_p3 -p3_t2)*s9_t2

214 + (t3_p3 -p3_t3)*s9_t3 + l9 * (f_p3 - p3_f) >= p3_t2 ,

215 )))))

216

217 # Sequence 10: t2 ,t3 ,t1 ,t2

218 s10_t1 , s10_t2 , s10_t3 = 1, 1, 1

219 s.add(

220 Exists ([l10],

221 And( Implies(l10 >= 0,

222 And(l10 >= 0,

223 mu_p1 + (t1_p1 -p1_t1)*s10_t1 + (t2_p1 -p1_t2)*s10_t2

224 + (t3_p1 -p1_t3)*s10_t3 + l10 * (f_p1 - p1_f) >=p1_t2 ,

225 mu_p2 + (t1_p2 -p2_t1)*s10_t1 + (t2_p2 -p2_t2)*s10_t2

226 + (t3_p2 -p2_t3)*s10_t3 + l10 * (f_p2 - p2_f) >=p2_t2 ,

227 mu_p3 + (t1_p3 -p3_t1)*s10_t1 + (t2_p3 -p3_t2)*s10_t2

228 + (t3_p3 -p3_t3)*s10_t3 + l10 * (f_p3 - p3_f) >=p3_t2 ,

229 )))))

230

231 # Sequence 11: t2 ,t3 ,t1 ,t1

232 s11_t1 , s11_t2 , s11_t3 = 1, 1, 1

233 s.add(

234 Exists ([l11],

235 And( Implies(l11 >= 0,

236 And(l11 >= 0,

237 mu_p1 + (t1_p1 -p1_t1)*s11_t1 + (t2_p1 -p1_t2)*s11_t2

238 + (t3_p1 -p1_t3)*s11_t3 + l11 * (f_p1 - p1_f) >=p1_t1 ,

239 mu_p2 + (t1_p2 -p2_t1)*s11_t1 + (t2_p2 -p2_t2)*s11_t2

240 + (t3_p2 -p2_t3)*s11_t3 + l11 * (f_p2 - p2_f) >=p2_t1 ,

241 mu_p3 + (t1_p3 -p3_t1)*s11_t1 + (t2_p3 -p3_t2)*s11_t2

242 + (t3_p3 -p3_t3)*s11_t3 + l11 * (f_p3 - p3_f) >=p3_t1 ,

243 )))))

244

245 # Sequence 12: t2 ,t3 ,t2 ,t1

246 s12_t1 , s12_t2 , s12_t3 = 0, 2, 1

247 s.add(

248 Exists ([l12],

249 And( Implies(l12 >= 0,

250 And(l12 >= 0,

251 mu_p1 + (t1_p1 -p1_t1)*s12_t1 + (t2_p1 -p1_t2)*s12_t2

252 + (t3_p1 -p1_t3)*s12_t3 + l12 * (f_p1 - p1_f) >=p1_t1 ,

253 mu_p2 + (t1_p2 -p2_t1)*s12_t1 + (t2_p2 -p2_t2)*s12_t2

254 + (t3_p2 -p2_t3)*s12_t3 + l12 * (f_p2 - p2_f) >=p2_t1 ,
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255 mu_p3 + (t1_p3 -p3_t1)*s12_t1 + (t2_p3 -p3_t2)*s12_t2

256 + (t3_p3 -p3_t3)*s12_t3 + l12 * (f_p3 - p3_f) >=p3_t1 ,

257 )))))

258

259 # Sequence 13: t2,t3,t2,t3

260 s13_t1 , s13_t2 , s13_t3 = 0, 2, 1

261 s.add(

262 Exists ([l13],

263 And( Implies(l13 >= 0,

264 And(l13 >= 0,

265 mu_p1 + (t1_p1 -p1_t1)*s13_t1 + (t2_p1 -p1_t2)*s13_t2

266 + (t3_p1 -p1_t3)*s13_t3 + l13 * (f_p1 - p1_f) >=p1_t3 ,

267 mu_p2 + (t1_p2 -p2_t1)*s13_t1 + (t2_p2 -p2_t2)*s13_t2

268 + (t3_p2 -p2_t3)*s13_t3 + l13 * (f_p2 - p2_f) >=p2_t3 ,

269 mu_p3 + (t1_p3 -p3_t1)*s13_t1 + (t2_p3 -p3_t2)*s13_t2

270 + (t3_p3 -p3_t3)*s13_t3 + l13 * (f_p3 - p3_f) >=p3_t3 ,

271 )))))

272

273 # Sequence 14: t1,t2,t3,t1

274 s14_t1 , s14_t2 , s14_t3 = 1, 1, 1

275 s.add(

276 Exists ([l14],

277 And( Implies(l14 >= 0,

278 And(l14 >= 0,

279 mu_p1 + (t1_p1 -p1_t1)*s14_t1 + (t2_p1 -p1_t2)*s14_t2

280 + (t3_p1 -p1_t3)*s14_t3 + l14 * (f_p1 - p1_f) >=p1_t1 ,

281 mu_p2 + (t1_p2 -p2_t1)*s14_t1 + (t2_p2 -p2_t2)*s14_t2

282 + (t3_p2 -p2_t3)*s14_t3 + l14 * (f_p2 - p2_f) >=p2_t1 ,

283 mu_p3 + (t1_p3 -p3_t1)*s14_t1 + (t2_p3 -p3_t2)*s14_t2

284 + (t3_p3 -p3_t3)*s14_t3 + l14 * (f_p3 - p3_f) >=p3_t1 ,

285 )))))

286

287 # Sequence 15: t1,t2,t3,t2

288 s15_t1 , s15_t2 , s15_t3 = 1, 1, 1

289 s.add(

290 Exists ([l15],

291 And( Implies(l15 >= 0,

292 And(l15 >= 0,

293 mu_p1 + (t1_p1 -p1_t1)*s15_t1 + (t2_p1 -p1_t2)*s15_t2

294 + (t3_p1 -p1_t3)*s15_t3 + l15 * (f_p1 - p1_f) >=p1_t2 ,

295 mu_p2 + (t1_p2 -p2_t1)*s15_t1 + (t2_p2 -p2_t2)*s15_t2

296 + (t3_p2 -p2_t3)*s15_t3 + l15 * (f_p2 - p2_f) >=p2_t2 ,

297 mu_p3 + (t1_p3 -p3_t1)*s15_t1 + (t2_p3 -p3_t2)*s15_t2

298 + (t3_p3 -p3_t3)*s15_t3 + l15 * (f_p3 - p3_f) >=p3_t2 ,

299 )))))
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300

301 # Sequence 16: t1 ,t1 ,t1 ,t1

302 s16_t1 , s16_t2 , s16_t3 = 3, 0, 0

303 s.add(

304 Exists ([l16],

305 And( Implies(l16 >= 0,

306 And(l16 >= 0,

307 mu_p1 + (t1_p1 -p1_t1)*s16_t1 + (t2_p1 -p1_t2)*s16_t2

308 + (t3_p1 -p1_t3)*s16_t3 + l16 * (f_p1 - p1_f) >=p1_t1 ,

309 mu_p2 + (t1_p2 -p2_t1)*s16_t1 + (t2_p2 -p2_t2)*s16_t2

310 + (t3_p2 -p2_t3)*s16_t3 + l16 * (f_p2 - p2_f) >=p2_t1 ,

311 mu_p3 + (t1_p3 -p3_t1)*s16_t1 + (t2_p3 -p3_t2)*s16_t2

312 + (t3_p3 -p3_t3)*s16_t3 + l16 * (f_p3 - p3_f) >=p3_t1 ,

313 )))))

314

315 # Sequence 17: t1 ,t1 ,t1 ,t2

316 s17_t1 , s17_t2 , s17_t3 = 3, 0, 0

317 s.add(

318 Exists ([l17],

319 And( Implies(l17 >= 0,

320 And(l17 >= 0,

321 mu_p1 + (t1_p1 -p1_t1)*s17_t1 + (t2_p1 -p1_t2)*s17_t2

322 + (t3_p1 -p1_t3)*s17_t3 + l17 * (f_p1 - p1_f) >=p1_t2 ,

323 mu_p2 + (t1_p2 -p2_t1)*s17_t1 + (t2_p2 -p2_t2)*s17_t2

324 + (t3_p2 -p2_t3)*s17_t3 + l17 * (f_p2 - p2_f) >=p2_t2 ,

325 mu_p3 + (t1_p3 -p3_t1)*s17_t1 + (t2_p3 -p3_t2)*s17_t2

326 + (t3_p3 -p3_t3)*s17_t3 + l17 * (f_p3 - p3_f) >=p3_t2 ,

327 )))))

328

329 ########################################

330 ## \not \in L^f (Equation 4.2)

331 ########################################

332 # Sequence 18: t3

333 s18_t1 , s18_t2 , s18_t3 = 0, 0, 0

334 s.add(

335 ForAll ([l18],

336 And( Implies(l18 >= 0,

337 Or(

338 And(l18 >= 0, mu_p1 + (t1_p1 -p1_t1)*s18_t1

339 + (t2_p1 -p1_t2)*s18_t2 + (t3_p1 -p1_t3)*s18_t3

340 + l18 * (f_p1 - p1_f) < p1_t3),

341 And(l18 >= 0, mu_p2 + (t1_p2 -p2_t1)*s18_t1

342 + (t2_p2 -p2_t2)*s18_t2 + (t3_p2 -p2_t3)*s18_t3

343 + l18 * (f_p2 - p2_f) < p2_t3),

344 And(l18 >= 0, mu_p3 + (t1_p3 -p3_t1)*s18_t1
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345 + (t2_p3 -p3_t2)*s18_t2 + (t3_p3 -p3_t3)*s18_t3

346 + l18 * (f_p3 - p3_f) < p3_t3),

347 )))))

348

349 # Sequence 19: f,t1,t3

350 s19_t1 , s19_t2 , s19_t3 = 1, 0, 0

351 s.add(

352 ForAll ([l19],

353 And( Implies(l19 >= 1,

354 Or(

355 And(l19 >= 1, mu_p1 + (t1_p1 -p1_t1)*s19_t1

356 + (t2_p1 -p1_t2)*s19_t2 + (t3_p1 -p1_t3)*s19_t3

357 + l19 * (f_p1 - p1_f) < p1_t3),

358 And(l19 >= 1, mu_p2 + (t1_p2 -p2_t1)*s19_t1

359 + (t2_p2 -p2_t2)*s19_t2 + (t3_p2 -p2_t3)*s19_t3

360 + l19 * (f_p2 - p2_f) < p2_t3),

361 And(l19 >= 1, mu_p3 + (t1_p3 -p3_t1)*s19_t1

362 + (t2_p3 -p3_t2)*s19_t2 + (t3_p3 -p3_t3)*s19_t3

363 + l19 * (f_p3 - p3_f) < p3_t3),

364 )))))

365

366 # Sequence 20: t2,t1

367 s20_t1 , s20_t2 , s20_t3 = 0, 1, 0

368 s.add(

369 ForAll ([l20],

370 And( Implies(l20 >= 0,

371 Or(

372 And(l20 >= 0, mu_p1 + (t1_p1 -p1_t1)*s20_t1

373 + (t2_p1 -p1_t2)*s20_t2 + (t3_p1 -p1_t3)*s20_t3

374 + l20 * (f_p1 - p1_f) < p1_t1),

375 And(l20 >= 0, mu_p2 + (t1_p2 -p2_t1)*s20_t1

376 + (t2_p2 -p2_t2)*s20_t2 + (t3_p2 -p2_t3)*s20_t3

377 + l20 * (f_p2 - p2_f) < p2_t1),

378 And(l20 >= 0, mu_p3 + (t1_p3 -p3_t1)*s20_t1

379 + (t2_p3 -p3_t2)*s20_t2 + (t3_p3 -p3_t3)*s20_t3

380 + l20 * (f_p3 - p3_f) < p3_t1),

381 )))))

382

383 # Sequence 21: t2,t2

384 s21_t1 , s21_t2 , s21_t3 = 0, 1, 0

385 s.add(

386 ForAll ([l21],

387 And( Implies(l21 >= 0,

388 Or(

389 And(l21 >= 0, mu_p1 + (t1_p1 -p1_t1)*s21_t1
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390 + (t2_p1 -p1_t2)*s21_t2 + (t3_p1 -p1_t3)*s21_t3

391 + l21 * (f_p1 - p1_f) < p1_t2),

392 And(l21 >= 0, mu_p2 + (t1_p2 -p2_t1)*s21_t1

393 + (t2_p2 -p2_t2)*s21_t2 + (t3_p2 -p2_t3)*s21_t3

394 + l21 * (f_p2 - p2_f) < p2_t2),

395 And(l21 >= 0, mu_p3 + (t1_p3 -p3_t1)*s21_t1

396 + (t2_p3 -p3_t2)*s21_t2 + (t3_p3 -p3_t3)*s21_t3

397 + l21 * (f_p3 - p3_f) < p3_t2),

398 )))))

399

400 # Sequence 22: f,t1 ,t1 ,t3

401 s22_t1 , s22_t2 , s22_t3 = 2, 0, 0

402 s.add(

403 ForAll ([l22],

404 And( Implies(l22 >= 1,

405 Or(

406 And(l22 >= 1, mu_p1 + (t1_p1 -p1_t1)*s22_t1

407 + (t2_p1 -p1_t2)*s22_t2 + (t3_p1 -p1_t3)*s22_t3

408 + l22 * (f_p1 - p1_f) < p1_t3),

409 And(l22 >= 1, mu_p2 + (t1_p2 -p2_t1)*s22_t1

410 + (t2_p2 -p2_t2)*s22_t2 + (t3_p2 -p2_t3)*s22_t3

411 + l22 * (f_p2 - p2_f) < p2_t3),

412 And(l22 >= 1, mu_p3 + (t1_p3 -p3_t1)*s22_t1

413 + (t2_p3 -p3_t2)*s22_t2 + (t3_p3 -p3_t3)*s22_t3

414 + l22 * (f_p3 - p3_f) < p3_t3),

415 )))))

416

417 # Sequence 23: f,t1 ,t2 ,t1

418 s23_t1 , s23_t2 , s23_t3 = 1, 1, 0

419 s.add(

420 ForAll ([l23],

421 And( Implies(l23 >= 1,

422 Or(

423 And(l23 >= 1, mu_p1 + (t1_p1 -p1_t1)*s23_t1

424 + (t2_p1 -p1_t2)*s23_t2 + (t3_p1 -p1_t3)*s23_t3

425 + l23 * (f_p1 - p1_f) < p1_t1),

426 And(l23 >= 1, mu_p2 + (t1_p2 -p2_t1)*s23_t1

427 + (t2_p2 -p2_t2)*s23_t2 + (t3_p2 -p2_t3)*s23_t3

428 + l23 * (f_p2 - p2_f) < p2_t1),

429 And(l23 >= 1, mu_p3 + (t1_p3 -p3_t1)*s23_t1

430 + (t2_p3 -p3_t2)*s23_t2 + (t3_p3 -p3_t3)*s23_t3

431 + l23 * (f_p3 - p3_f) < p3_t1),

432 )))))

433

434 # Sequence 24: f,t1 ,t2 ,t2
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435 s24_t1 , s24_t2 , s24_t3 = 1, 1, 0

436 s.add(

437 ForAll ([l24],

438 And( Implies(l24 >= 1,

439 Or(

440 And(l24 >= 1, mu_p1 + (t1_p1 -p1_t1)*s24_t1

441 + (t2_p1 -p1_t2)*s24_t2 + (t3_p1 -p1_t3)*s24_t3

442 + l24 * (f_p1 - p1_f) < p1_t2),

443 And(l24 >= 1, mu_p2 + (t1_p2 -p2_t1)*s24_t1

444 + (t2_p2 -p2_t2)*s24_t2 + (t3_p2 -p2_t3)*s24_t3

445 + l24 * (f_p2 - p2_f) < p2_t2),

446 And(l24 >= 1, mu_p3 + (t1_p3 -p3_t1)*s24_t1

447 + (t2_p3 -p3_t2)*s24_t2 + (t3_p3 -p3_t3)*s24_t3

448 + l24 * (f_p3 - p3_f) < p3_t2),

449 )))))

450

451 # Sequence 25: t2,t3,t3

452 s25_t1 , s25_t2 , s25_t3 = 0, 1, 1

453 s.add(

454 ForAll ([l25],

455 And( Implies(l25 >= 0,

456 Or(

457 And(l25 >= 0, mu_p1 + (t1_p1 -p1_t1)*s25_t1

458 + (t2_p1 -p1_t2)*s25_t2 + (t3_p1 -p1_t3)*s25_t3

459 + l25 * (f_p1 - p1_f) < p1_t3),

460 And(l25 >= 0, mu_p2 + (t1_p2 -p2_t1)*s25_t1

461 + (t2_p2 -p2_t2)*s25_t2 + (t3_p2 -p2_t3)*s25_t3

462 + l25 * (f_p2 - p2_f) < p2_t3),

463 And(l25 >= 0, mu_p3 + (t1_p3 -p3_t1)*s25_t1

464 + (t2_p3 -p3_t2)*s25_t2 + (t3_p3 -p3_t3)*s25_t3

465 + l25 * (f_p3 - p3_f) < p3_t3),

466 )))))

467

468 # Sequence 26: t2,t3,t2,t2

469 s26_t1 , s26_t2 , s26_t3 = 0, 2, 1

470 s.add(

471 ForAll ([l26],

472 And( Implies(l26 >= 0,

473 Or(

474 And(l26 >= 0, mu_p1 + (t1_p1 -p1_t1)*s26_t1

475 + (t2_p1 -p1_t2)*s26_t2 + (t3_p1 -p1_t3)*s26_t3

476 + l26 * (f_p1 - p1_f) < p1_t2),

477 And(l26 >= 0, mu_p2 + (t1_p2 -p2_t1)*s26_t1

478 + (t2_p2 -p2_t2)*s26_t2 + (t3_p2 -p2_t3)*s26_t3

479 + l26 * (f_p2 - p2_f) < p2_t2),
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480 And(l26 >= 0, mu_p3 + (t1_p3 -p3_t1)*s26_t1

481 + (t2_p3 -p3_t2)*s26_t2 + (t3_p3 -p3_t3)*s26_t3

482 + l26 * (f_p3 - p3_f) < p3_t2),

483 )))))

484

485 # Sequence 27: f,t2 ,t3 ,t1 ,t3

486 s27_t1 , s27_t2 , s27_t3 = 1, 1, 1

487 s.add(

488 ForAll ([l27],

489 And( Implies(l27 >= 1,

490 Or(

491 And(l27 >= 1, mu_p1 + (t1_p1 -p1_t1)*s27_t1

492 + (t2_p1 -p1_t2)*s27_t2 + (t3_p1 -p1_t3)*s27_t3

493 + l27 * (f_p1 - p1_f) < p1_t3),

494 And(l27 >= 1, mu_p2 + (t1_p2 -p2_t1)*s27_t1

495 + (t2_p2 -p2_t2)*s27_t2 + (t3_p2 -p2_t3)*s27_t3

496 + l27 * (f_p2 - p2_f) < p2_t3),

497 And(l27 >= 1, mu_p3 + (t1_p3 -p3_t1)*s27_t1

498 + (t2_p3 -p3_t2)*s27_t2 + (t3_p3 -p3_t3)*s27_t3

499 + l27 * (f_p3 - p3_f) < p3_t3),

500 )))))

501

502 # Sequence 28: f,t1 ,t1 ,t1 ,t3

503 s28_t1 , s28_t2 , s28_t3 = 3, 0, 0

504 s.add(

505 ForAll ([l28],

506 And( Implies(l28 >= 1,

507 Or(

508 And(l28 >= 1, mu_p1 + (t1_p1 -p1_t1)*s28_t1

509 + (t2_p1 -p1_t2)*s28_t2 + (t3_p1 -p1_t3)*s28_t3

510 + l28 * (f_p1 - p1_f) < p1_t3),

511 And(l28 >= 1, mu_p2 + (t1_p2 -p2_t1)*s28_t1

512 + (t2_p2 -p2_t2)*s28_t2 + (t3_p2 -p2_t3)*s28_t3

513 + l28 * (f_p2 - p2_f) < p2_t3),

514 And(l28 >= 1, mu_p3 + (t1_p3 -p3_t1)*s28_t1

515 + (t2_p3 -p3_t2)*s28_t2 + (t3_p3 -p3_t3)*s28_t3

516 + l28 * (f_p3 - p3_f) < p3_t3),

517 )))))

518

519 # Sequence 29: f,t1 ,t2 ,t3 ,t3

520 s29_t1 , s29_t2 , s29_t3 = 1, 1, 1

521 s.add(

522 ForAll ([l29],

523 And( Implies(l29 >= 1,

524 Or(
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525 And(l29 >= 1, mu_p1 + (t1_p1 -p1_t1)*s29_t1

526 + (t2_p1 -p1_t2)*s29_t2 + (t3_p1 -p1_t3)*s29_t3

527 + l29 * (f_p1 - p1_f) < p1_t3),

528 And(l29 >= 1, mu_p2 + (t1_p2 -p2_t1)*s29_t1

529 + (t2_p2 -p2_t2)*s29_t2 + (t3_p2 -p2_t3)*s29_t3

530 + l29 * (f_p2 - p2_f) < p2_t3),

531 And(l29 >= 1, mu_p3 + (t1_p3 -p3_t1)*s29_t1

532 + (t2_p3 -p3_t2)*s29_t2 + (t3_p3 -p3_t3)*s29_t3

533 + l29 * (f_p3 - p3_f) < p3_t3),

534 )))))

535

536 print(s.check ())

537 print(s.model ())

Figure A.3: The Generated Fault Identification Problem for Z3.

After running the Python script, the solution generated is presented in
Figure A.4.

1 sat

2 [p2_f = 1, p1_f = 0, f_p3 = 0, p3_f = 0, f_p1 = 1, f_p2 = 0]

Figure A.4: The generated solution.

And the graphical representation of the faulty Petri net is depicted in Figure
A.5. I have manually inspected the generated faulty Petri net and it can
idneed generate the faulty language as expected.

p1
t1 p2

t2

p3
t3

f

Figure A.5: The faulty net based on the generated solution.
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