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a b s t r a c t 

Difluoromethane (CH 2 F 2 ; HFC-32), a hydrofluorocarbon (HFC) used as a refrigerant in air conditioning 

and heat pump systems, is currently being phased out under the terms of the Montreal Protocol (Ki- 

gali Amendment). In order to monitor its concentration profiles using infrared-sounding instruments, for 

example the Atmospheric Chemistry Experiment – Fourier transform spectrometer (ACE-FTS), accurate 

laboratory spectroscopic data are required. This work describes new high-resolution infrared absorption 

cross sections of difluoromethane / dry synthetic air over the spectral range 850–1335 cm 

−1 , derived 

from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 

26-cm-pathlength cell. Spectra were recorded at resolutions between 0.009 and 0.03 cm 

−1 (calculated as 

0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.6–

760 Torr and 188–297 K). The new absorption cross sections in this work improve upon those currently 

available in HITRAN for remote sensing. 

© 2021 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The discovery that chlorofluorocarbon (CFC) refrigerants were 

estroying stratospheric ozone led to the signing of the 1987 Mon- 

real Protocol. Designed to protect the Earth’s ozone layer, whose 

estruction was catalysed by chlorine atoms reaching the strato- 

phere, the Protocol mandated the phasing out of CFC production. 

t least initially, hydrochlorofluorocarbons (HCFCs) were adopted 

s ‘transitional’ CFC replacements because of their shorter atmo- 

pheric lifetimes on account of their more efficient reaction with 

H in the troposphere. However, the race was on to find replace- 

ent refrigerants that did not deplete stratospheric ozone. Ulti- 

ately, this led to the manufacture and use of a class of molecules 

nown as hydrofluorocarbons (HFCs). Like CFCs and HCFCs, HFCs 

re potent greenhouse gases, many times more powerful than car- 

on dioxide. Although the ozone depletion potentials of HFCs are 

efined to be zero, somewhat ironically they will produce a very 

mall indirect effect on ozone destruction through the increases in 

ropospheric and stratospheric temperatures, notably by enhancing 

zone-destroying catalytic cycles and modifying atmospheric circu- 
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ation [1] . Historically, HFCs were not regulated by the Montreal 

rotocol, however this changed in 2016 with the Kigali amend- 

ent, which provides a roadmap for their phase out. Monitoring 

FCs now takes on a greater importance. 

The use of HFC-32 is primarily as a refrigerant in air condition- 

ng and heat pump systems. It also exists in a variety of refriger- 

nt blends: Tables 2–4 in [2] lists 21. In 2016, HFC-32 was the fifth

ost abundant HFC with a global mean surface mole fraction of 

1.9 ppt; it increased during 2012–2016 by an average of 1.6 ppt 

r −1 for HFC-32, faster than the average growth rate for the pre- 

eding four years. HFC-32 has a 100-year global warming potential 

f 705 [2] , and a total atmospheric lifetime of 5.4 years [2] . It is re-

oved from the atmosphere by reaction with OH, resulting in the 

ormation of carbonyl fluoride (COF 2 ) [3] . 

In addition to regular in situ monitoring at the surface, HFC- 

2 has recently been measured from orbit by the ACE-FTS (Atmo- 

pheric Chemistry Experiment – Fourier transform spectrometer) 

4] , which has been recording atmospheric limb spectra for over 

fteen years with near-global coverage. The ACE-FTS is the only 

atellite instrument currently able to measure HFCs, including the 

ore abundant HFC-134a [5] and HFC-23 [6] . With a very con- 

ested infrared spectrum, making it difficult to generate line pa- 

ameters, it is more convenient to use absorption cross sections 
der the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The absorption cross section of difluoromethane / dry synthetic air at 188.9 K and 24.96 Torr (this work), with fundamental bands labelled. 
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f air-broadened HFC-32 over a range of atmospherically relevant 

emperatures and pressures in retrieval schemes. This work de- 

cribes a new such dataset, which is utilised in a companion paper 

ithin this HITRAN special issue to obtain the first measurements 

f HFC-32 from orbit [7] . 

. Infrared spectroscopy of difluoromethane 

Carbon has two stable isotopes found in nature, fluorine only 

ne, so there are two stable isotopologues of difluoromethane 

not considering deuterated forms), 12 CH 2 F 2 and 

13 CH 2 F 2 , with 

pproximate abundances of 99 and 1%, respectively. Both forms 

ossess C 2v symmetry and have nine vibrational modes. The 850–

335 cm 

−1 spectral range covered in the present work includes 

our fundamental band systems: ν3 ~1111.5 cm 

−1 , ν5 ~1255.8 cm 

−1 , 

7 ~1178.6 cm 

−1 , and ν9 ~1090.1 cm 

−1 (wavenumbers are for 
2 CH 2 F 2 [8] ). Of these, ν3 and ν9 give rise to the strongest ab- 

orptions, with ν7 having medium intensity; strictly, ν5 is infrared 

nactive but becomes weakly allowed through Coriolis interactions. 

s difluoromethane is an asymmetric rotor, its infrared spectrum 

ontains highly complex, congested rotational structure. Fig. 1 is a 

lot of the new absorption cross section at 188.9 K and 24.96 Torr, 

ith fundamental bands labelled. Details on the measurement 

onditions and derivation of this cross section are given in 

ection 3 . 

Absorption cross sections of difluoromethane were first in- 

luded in HITRAN 20 0 0 [9] for 17 different conditions over two 

avenumber ranges (995 −1236 and 1385 −1475 cm 

−1 ) for both 

ure (at 203, 212, 222, 243, 253, 264, 287, and 297 K) and air-

roadened samples (203, 251, and 297 K at pressures of 5, 20, 

nd 100 kPa air); henceforth referred to as the Smith dataset 

10] , all cross sections were derived from spectra recorded by 

ourier transform infrared spectroscopy at 0.03 cm 

−1 spectral reso- 

ution. Previously, these have been the only cross sections available 

or remote sensing, although three 760-Torr-N 2 -broadened difluo- 

omethane spectra (at 278, 298, and 323 K) from the Pacific North- 

est National Laboratory (PNNL) IR database [11] were added to 

he HITRAN 2016 compilation [12] . A number of weaknesses have 

een identified in the Smith dataset, namely the poor pressure and 

emperature coverage, the poor wavenumber calibration, and the 

oor spectral resolution of the low-pressure measurements. The 

otivation for this work has been to provide the community with 

mproved absorption cross sections, which will provide a more ac- 

urate basis for retrievals for HFC-32. 
2 
. New absorption cross sections of air-broadened 

ifluoromethane 

.1. Experimental 

The measurements were performed at the Rutherford Apple- 

on Laboratory (RAL) in the High Resolution Spectroscopy Facil- 

ty (HRSF), formerly known as the Molecular Spectroscopy Facility 

MSF). The experimental setup and the experimental procedures 

ave been described previously for related measurements [e.g. 

2–14]. FTS instrumental parameters used for the measurements, 

ample details, and the cell configuration are summarised in 

able 1 . The sample pressures and temperatures for each air- 

roadened spectrum, along with their experimental uncertainties 

nd associated spectral resolutions, are listed in Table 2 . 

.2. Generation of absorption cross sections 

The procedure used to generate absorption cross sections from 

easured spectra has been reported previously [e.g. [13–15] ], so 

he full details are not provided here. The wavenumber scale was 

alibrated using the positions of isolated N 2 O absorption lines in 

he range 1140 to 1320 cm 

−1 from NIST heterodyne wavenumber 

alibration tables [16] . The absorption cross sections, σ ( υ , P air , T ),

ith units of cm 

2 molecule −1 , at wavenumber υ (cm 

−1 ), tempera- 

ure T (K) and synthetic air pressure P air , were normalised accord- 

ng to 

1335 c m 

−1 ∫ 

50 c m 

−1 

σ ( v , P air , T ) ∂v = 5 . 9594 × 10 

−17 cm molecul e −1 , (1) 

here the value on the right hand side is the average integrated 

and intensity over the spectral range 850–1335 cm 

−1 for three 

60-Torr-N 2 -broadened difluoromethane spectra (at 278, 298, and 

23 K) from the Pacific Northwest National Laboratory (PNNL) IR 

atabase [11] . This intensity calibration procedure counters prob- 

ems with difluoromethane adsorption in the vacuum line and on 

he cell walls, under the assumption that the integrated intensity 

ver each band system is independent of temperature. The reader 

s referred to Ref. [13] for a more complete explanation of the 

nderlying assumption, and references cited within Refs. [14] and 

15] for details on previous successful uses of this approach. 
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Table 1 

FTS parameters, sample conditions, and cell configuration for all measurements. 

Spectrometer Bruker Optics IFS 125HR 

Mid-IR source Globar 

Detector Mercury cadmium telluride (MCT) D313 a 

Beam splitter Potassium bromide (KBr) 

Optical filter ~700–1350 cm 

-1 bandpass 

Spectral resolution 0.009 to 0.03 cm 

−1 

Aperture size 3.15 mm 

Apodisation function Boxcar 

Phase correction Mertz 

HFC-32 (Fluorochem Ltd) 99.6% purity, natural-abundance isotopic mixture 

Air zero (BOC Gases) total hydrocarbons < 3 ppm, H2O < 2 ppm, CO2 < 1 ppm, CO < 1 ppm; used ‘as is’ 

Cell pathlength 26 cm 

Cell windows Potassium bromide (KBr) (wedged) 

Pressure gauges 3 MKS-690A Baratrons (1, 10 & 1000 Torr) ( ±0.05% specified accuracy) 

Refrigeration Julabo F95-SL Ultra-Low Refrigerated Circulator (with ethanol) 

Thermometry 4 PRTs, Labfacility IEC 751 Class A 

Wavenumber calibration N 2 O 

a Due to the non-linear response of MCT detectors to the detected radiation, all interferograms were Fourier trans- 

formed using Bruker’s OPUS software with a non-linearity correction applied. 

Table 2 

Summary of the sample conditions for all measurements. 

Temperature (K) Initial CH 2 F 2 Pressure (Torr) a Total Pressure (Torr) Spectral resolution (cm 

−1 ) b 

188.9 ± 0.3 0.131 24.96 ± 0.04 0.0090 

188.6 ± 0.3 0.194 49.99 ± 0.08 0.0100 

188.1 ± 0.3 0.283 100.1 ± 0.1 0.0150 

188.0 ± 0.3 0.366 199.9 ± 0.3 0.0225 

202.7 ± 0.3 0.153 24.98 ± 0.09 0.0090 

202.7 ± 0.3 0.221 50.04 ± 0.05 0.0100 

202.7 ± 0.3 0.303 99.96 ± 0.08 0.0150 

202.7 ± 0.3 0.414 200.7 ± 0.1 0.0225 

202.7 ± 0.3 0.450 300.1 ± 0.5 0.0300 

217.1 ± 0.2 0.165 25.15 ± 0.08 0.0090 

217.1 ± 0.2 0.244 51.34 ± 0.04 0.0100 

217.1 ± 0.2 0.348 101.0 ± 0.1 0.0150 

217.1 ± 0.2 0.446 202.1 ± 0.5 0.0225 

217.1 ± 0.2 0.523 359.8 ± 0.2 0.0300 

232.9 ± 0.2 0.189 25.37 ± 0.02 0.0090 

232.9 ± 0.2 0.241 50.02 ± 0.02 0.0100 

232.9 ± 0.2 0.423 100.4 ± 0.1 0.0150 

232.9 ± 0.2 0.522 203.5 ± 0.1 0.0225 

232.9 ± 0.2 0.590 400.0 ± 0.1 0.0300 

252.8 ± 0.2 0.191 24.70 ± 0.02 0.0090 

252.8 ± 0.2 0.245 50.77 ± 0.02 0.0100 

252.8 ± 0.2 0.523 200.0 ± 0.1 0.0225 

252.8 ± 0.2 0.683 403.5 ± 0.1 0.0300 

252.8 ± 0.2 0.764 600.2 ± 0.1 0.0300 

273.8 ± 0.2 0.306 7.645 ± 0.006 0.0100 

273.8 ± 0.2 0.692 203.6 ± 0.3 0.0225 

273.8 ± 0.2 0.852 360.7 ± 0.1 0.0300 

273.7 ± 0.2 0.821 760.4 ± 0.2 0.0300 

296.6 ± 0.1 0.847 362.4 ± 0.1 0.0300 

296.7 ± 0.1 1.007 760.3 ± 0.2 0.0300 

a MKS-690A Baratron readings are specified accurate to ± 0.05%. 
b Using the Bruker definition of 0.9/MOPD. 
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.3. Absorption cross section uncertainties 

The uncertainty of the wavenumber scale is comparable to the 

ncertainty of the N 2 O lines used in the calibration, which accord- 

ng to the NIST heterodyne wavenumber calibration tables [16] is 

etween 0.0 0 0 05 cm 

−1 and 0.0 0 0 08 cm 

−1 . 

The signal-to-noise ratios (SNRs) for the measured transmit- 

ance spectra range from 2400 to 4600 (rms); these were calcu- 

ated using Bruker’s OPUS software at ~980 cm 

−1 where the trans- 

ittance is close to 1, and indicate that the contribution from noise 

o the uncertainty in the cross section intensities is below 0.1%. 

n fact, systematic errors dominate this intensity uncertainty. As 

hown in Table 2 , the maximum systematic errors in the sam- 

le temperatures ( μ ) and total pressures ( μ ) are 0.2% and 0.4%, 
T P 

3 
espectively. The photometric uncertainty ( μphot ), associated with 

he detection of radiation by the MCT detector and systematic er- 

or arising from the use of Bruker’s non-linearity correction for 

CT detectors, is estimated to be ~2%. The pathlength error ( μpath ) 

s estimated to be lower than 0.1%. According to the relevant meta- 

ata files, the systematic error in the PNNL difluoromethane spec- 

ra used for the intensity calibration is estimated to be less than 

% (2 σ ); this incorporates errors in the partial pressures and cell 

athlength, so these do not have to be considered further. Equat- 

ng the error, μPNNL , with the 1 σ value, i.e. 1.5%, and assuming 

hat the systematic errors for all the quantities are uncorrelated, 

he systematic error, μsystematic , can be expressed as: 

2 
sytematic = μ2 

PNNL + μ2 
T + μ2 

P + μ2 
phot . (2) 
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Fig. 2. The absorption cross sections of difluoromethane / dry synthetic air over the spectral region 1096.8–1100.3 cm 

−1 at a temperature of ~202.7 K and a range of 

pressures. 

Fig. 3. A graphical representation of the PT coverage for the three difluoromethane 

cross section datasets. 
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Eq. (2) gives a systematic error of ~3% (1 σ ) for the new HFC-32

bsorption cross section dataset. 

. Discussion 

This work extends the range of pressure and temperature com- 

inations for the absorption cross sections of air-broadened diflu- 
ig. 4. The absorption cross section of difluoromethane / dry synthetic air over the spectra

re two Smith cross sections for pure and air-broadened (37.5 Torr total) difluoromethane

4 
romethane, providing a more suitable range for remote sensing 

han hitherto available. A selection of the air-broadened absorp- 

ion cross sections is presented in Fig. 2 for five pressures (24.98–

00.1 Torr) at 202.7 K. 

Overall, the pressure – temperature (PT) coverage of the air- 

roadened cross sections has been extended from only three tem- 

eratures to seven (188–297 K), and now covers a more appropri- 

te range of pressures. The PT coverage can be visualised in Fig. 3 ,

n which the temperature for each cross section is plotted against 

he corresponding total pressure. Overall, this new cross-section 

ataset contains 30 different combinations of pressure and tem- 

erature (see Table 2 ). 

The choice of spectral resolution is an important one in ensur- 

ng that features are adequately resolved; under-resolved bands in 

bsorption cross sections can contribute to systematic errors in re- 

rievals when utilised in remote sensing. All the Smith measure- 

ents were taken at 0.03 cm 

−1 spectral resolution. For those at 

.0 (i.e. pure sample) and 37.5 Torr, this is too low and the spectra 

re under-resolved; Norton-Beer strong apodisation has also been 

pplied to the measured spectra, which has the effect of degrad- 

ng the resolution even further. Fig. 4 provides a comparison of a 

ew cross section at 202.7 K and 50.04 Torr with two Smith cross 

ections at a similar temperature but lower pressures; it is evident 

hat the Smith cross sections are under-resolved due to the lower 

pectral resolution chosen. 
l range 1087.5–1090.4 cm 

−1 at a temperature of 202.7 K and 50.04 Torr; overplotted 

, both at 203.0 K. 
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Fig. 5. Integrated band intensity versus temperature for three difluoromethane cross section datasets (Smith, PNNL, present work) calculated over the wavenumber range 

995–1236 cm 

−1 . 
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[

Furthermore, the wavenumber scale of the Smith cross sections 

s not calibrated. With an absolute accuracy in the wavenumber 

cale of between 0.0 0 0 05 cm 

−1 and 0.0 0 0 08 cm 

-1 for the new

ross sections, it is clear that the Smith measurements are sig- 

ificantly shifted too low by ~0.04 cm 

−1 (a calibration factor of 

1.0 0 0 04). This can also be observed in Fig. 4 . 

Integrated band intensities have been calculated over the 

avenumber range 995–1236 cm 

−1 for the Smith, PNNL, and new 

ross sections; these are plotted against temperature in Fig. 5 . Scat- 

er in the Smith integrated band intensities approaches 20%, likely 

ue to errors in these measurements associated with the sample 

oncentrations. The integrated band intensities for the new cross 

ections agree well with those for PNNL, however this is to be ex- 

ected due to the normalisation procedure. 

The new HFC-32 absorption cross section dataset will be 

ade available to the community via the HITRAN [12] and GEISA 

17] databases, but in the meantime is available electronically from 

he author. 

. Conclusions 

New high-resolution IR absorption cross sections for air- 

roadened difluoromethane (HFC-32) have been determined over 

he spectral range 850–1335 cm 

−1 , with an estimated systematic 

ncertainty of ~3% (1 σ ). Spectra were recorded at resolutions be- 

ween 0.009 and 0.03 cm 

−1 (calculated as 0.9/MOPD) over a range 

f temperatures and pressures (7.6–760 Torr and 188–297 K). This 

ew cross-section dataset greatly expands the number of PT com- 

inations available for air-broadened HFC-32 absorption cross sec- 

ions, and additionally improves upon the Smith dataset [10] in 

erms of wavenumber calibration, and the spectral resolution of 

he low-pressure measurements. 
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