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Abstract—In this paper, we focus on the challenging multi-
category instance segmentation problem in remote sensing images
(RSIs), which aims at predicting the categories of all instances
and localizing them with pixel-level masks. Although many land-
mark frameworks have demonstrated promising performance
in instance segmentation, the complexity in the background
and scale variability instances still remain challenging for in-
stance segmentation of RSIs. To address the above problems,
we propose an end-to-end multi-category instance segmentation
model, namely Semantic Attention and Scale Complementary
Network, which mainly consists of a Semantic Attention (SEA)
module and a Scale Complementary Mask Branch (SCMB).
The SEA module contains a simple fully convolutional seman-
tic segmentation branch with extra supervision to strengthen
the activation of interest instances on the feature map and
reduce the background noise’s interference. To handle the under-
segmentation of geospatial instances with large varying scales,
we design the SCMB that extends the original single-scale mask
branch to trident mask branches and introduces complementary
mask supervision at different scales to sufficiently leverage the
multi-scale information. We conduct comprehensive experiments
to evaluate the effectiveness of our proposed method on the
iSAID dataset and the NWPU Instance Segmentation dataset
and achieve promising performance.

Index Terms—Instance segmentation, semantic attention, scale
complementarity, remote sensing images.

I. INTRODUCTION

THANKS to the rapid development in remote sensing
technology, RSIs have become easily available and the

understanding of RSIs has become a popular topic. Recently,
many researchers commit to scene classification [1]–[5] and
object detection [6]–[11] in RSIs and achieve outstanding
performance. In this paper, we concentrate on a new and
challenging problem of instance segmentation in RSIs.

Instance segmentation aims to classify the categories and
predict the pixel-level results of each instance. Compared
to the bounding-box annotation in object detection, instance
segmentation delineates the boundary of each instance and
results in a more accurate location. Benefiting from more
accurate pixel-level information for each instance, instance
segmentation has great development potential in land planning,
urban monitoring, and military reconnaissance.
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Fig. 1. Problems of instance segmentation network designed for a natural
scene in RSIs. The prediction of PANet may contain many false detections
and under-segmentation. While our proposed network can better address these
problems. The false prediction results and the miss prediction results are
indicated by yellow and red rectangles, respectively. The bounding boxes are
removed for simplicity.

In the past two decades, with the development of con-
volutional neural networks (CNN) [12], [13], many instance
segmentation architectures [14]–[29] have been proposed and
achieved outstanding performance in the natural scene. How-
ever, few researchers [30]–[35] focus on the instance seg-
mentation in RSIs and the available methods just apply the
instance segmentation models designed for the natural images
to the RSIs, without taking into account the characteristics of
RSIs such as the complex background and diversely scaled
instances. Specifically, RSIs typically contain a highly com-
plex background area that may interfere with the region of
interest. As shown in the first row of Fig. 1, tennis courts
have a color similar to that of the surrounding grassland. When
directly apply the off-the-shelf PANet [17] on the RSIs, it has
difficulties in separating the adjacent tennis courts or even
causes miss detection. Besides, the geospatial instances can
largely vary in scale, which leads to under-segmentation with
the original single-scale mask branch in [17]. For example,
the boundary of the ground track field is incomplete (see the
second row of Fig. 1).

To alleviate the problem of complex background and huge
scale-variation of instances, we introduce the Semantic At-
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tention (SEA) module and the Scale Complementary Mask
Branch (SCMB) and design an end-to-end multi-category
instance segmentation network for RSIs. For the SEA module,
a new supervised semantic segmentation branch is proposed
to strengthen the activation of the foreground instances and
reduce the effect of the background noise. For the SCMB, a
multi-scale structure is exploited to capture the complementary
information at different scales to get more accurate segmenta-
tion results. We evaluate the proposed method on two public
remote sensing datasets. Compared with the other state-of-art
approaches, our method achieves superior performance.

Our contributions can be summarized as follows:
1) We propose the Semantic Attention (SEA) module

with semantic segmentation supervision and integrate it in
the Feature Pyramid Network (FPN) to reduce the complex
background interference on the feature maps. With the help of
the SEA module, the network highlights the instances’ regions
and suppresses backgrounds.

2) We extend the original single-scale mask branch into
the Scale Complementary Mask Branch (SCMB) to deal with
the under-segmentation problem caused by the large scale-
variation problem of geospatial instances. The SCMB not only
introduces scale complementary supervision to supervise the
proposed trident mask branch but also fuses multi-scale feature
maps to integrate information over multiple scales.

3) The best performance is achieved in two challenging
remote sensing instance segmentation datasets against the
other state-of-the-art methods. The ablation studies show the
effectiveness of each proposed module.

The remainder of this paper is organized as follows. In
Section II, we give a brief introduction to the related work.
In Section III, we describe our proposed method in detail.
We report and discuss the experiments in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK
A. Instance Segmentation

Instance segmentation is mainly divided into proposal-
based and proposal-free methods. Proposal-based methods first
obtain the instances’ proposals in the image through an object
detector and then perform the segmentation on each proposal
to obtain its mask. Li et al. [14] predicted position-sensitive
inside/outside score maps and simultaneously rendered the
instance mask and category with these score maps. He et al.
[16] modified the Faster-RCNN [36] with a simple fully con-
volutional mask branch, which runs in parallel to the detection
branch, to predict the mask of the proposals. Driven by the
excellent performance of Mask-RCNN [16], the literature such
as [17]–[19] have explored various extensions to Mask-RCNN.
PANet [17] adds a fully connected layer in the mask branch
for accurate segmentation results. Huang et al. [18] found the
mask quality cannot be well correlated with the classification
confidence and presented the Mask-IoU block to learn the
mask quality. Hybrid Task Cascade [19] adopts a cascaded
approach [21], where the mask features of the preceding stage
are fed into the next stage for further improvements.

Proposal-free methods are mainly built upon segmentation
and aim at clustering pixel-level semantic class labels into

different instances. Many researchers [22]–[25] further trans-
form semantic segmentation results into instances. Bai and
Urtasun [22] used the direction network and the watershed
transform network to learn the energy map for watershed trans-
form. InstanceCut [25] first predicts the semantic segmentation
result with a semantic segmentation network and then uses
an instance-awareness edge detector to obtain the instance
segmentation results. Besides, several methods [26]–[29] map
pixels into the embedding space for instance segmentation.
Brabandere et al. [26] introduced a new discriminative loss
function that guides the network to pull the pixels that belong
to the same instance while pushing away the pixels of different
instances. Fathi et al. [27] used deep metric learning to
determine the similarity of the embedding points.

Despite the flourishing development of instance segmenta-
tion in the nature scene, there are only a handful of existing
works [30]–[35] on RSIs. Feng et al. [30] introduced the
sequence local context module to address the confusion be-
tween densely arranged ships. Mou and Zhu [31] decomposed
the vehicle instance segmentation task into vehicle semantic
segmentation and semantic boundary detection. HQ-ISNet [34]
introduces the HR-FPN to maintain high-resolution feature
maps in the network and designs a tiny network to refine
the original mask branch. Liu et al. [35] embedded a global
context parallel attention module into the anchor-free instance
segmentation framework to capture the global information.
Different from the methods that only focused on a single
category (e.g. ship [30], vehicle [31], building [32], etc.),
our proposed approach takes full account of the complex
background and large scale-variance of instances in RSIs, and
verifies the effectiveness of our network on a more challenging
multi-category instance segmentation dataset.

B. Attention Mechanism

Recently, a number of works [10], [37]–[42] have studied
in the attention mechanism to facilitate different computer
vision tasks. SENet [37] designs an efficient Squeeze-and-
Excitation (SE) block to adaptively re-weight channel-wise
feature responses and achieves superior performance for im-
age classification. Libra-RCNN [39] fuses the 5-level feature
maps from FPN [43] and uses a Gaussian Non-Local [44]
attention to obtain the balance semantic features. ScarfNet
[40] generates features with strong semantic attention for each
pyramid scale by biLSTM [45] and channel-wise attention.
DES [41] adds an extra semantic attention branch supervised
with weak segmentation ground-truth for semantic enrichment.
In the remote sensing community, Zhang et al. [10] designed
the Channel and Spatial Attention Module to highlight the
important features and suppress the inessential ones, which
improves the performance in SAR ship detection. Yang et
al. [42] proposed a Multi-Dimensional Attention Network to
strengthen the response of the region of interest. In contrast to
[10], [37]–[40], our proposed method adds accurate supervi-
sion to guide the learning of the attention mechanism. Besides,
our attention mechanism has a simple structure compared to
the biLSTM in ScarfNet [40] and the atrous convolutional
layers in DES [41].
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Fig. 2. Overview of our instance segmentation network. It is based on the Mask-RCNN/PANet and adds the proposed Semantic Attention (SEA) module
and Scale Complementary Mask Branch (SCMB). The SEA module consists of three steps: rescaling, enriching and integrating and introduces an extra
segmentation branch (details in Fig. 3). For simplicity, we only represent the integrating operation at the P2 level in the SEA module. The SCBM is composed
of trident mask branch, scale complementary mask labels and feature fusion module (details in Fig. 5).

C. Scale Complementarity

The scale-variation across instances is one of the most chal-
lenging problems in both natural scene images and RSIs. To
alleviate this problem, many works explore the complementary
information between the low-level and high-level features of
CNN. In the natural scene, SSD [46] sets different scales of
default boxes in multiple layers and outputs the combination
detection results of each layer. FPN [43] uses a top-down
approach and horizontal connections to generate five-level
features, and assigns each proportion of the proposal to the
corresponding level. Considering the superior performance of
FPN, many researchers [17], [47]–[49] have made further
improvements to it. In remote sensing fields, Azimi et al.
[50] combined the image pyramid and the feature pyramid
with the same resolution to detect the diverse scale geospatial
objects. Deng et al. [51] designed a multi-scale object proposal
network (MS-OPN) with different receptive fields to generate
different scales of proposals. Zhang et al. [52] designed a
lightweight scale share feature pyramid (SSFP) module to
achieve high-speed and high-accurate SAR ship detection.
The above method achieves complementary information at
different scales at image-level [50] or feature-level [43], [46],
[49], [52]. Our method introduces label-level multi-scale infor-
mation to improve the scale-invariant ability of the network.

III. METHODOLOGY

Our proposed network can be regarded as an extension of
Mask-RCNN/PANet and the overall framework is illustrated
in Fig. 2. First, we use CNN and FPN/PA-FPN [17] to
generate multi-scale feature maps of the given image. Then, we
employ the SEA module to output the multi-scale feature maps
with meaningful semantic information. Finally, the candidate
proposals generated by the region proposal network (RPN)
[36] and multi-scale semantic meaningful feature maps are
sent to the detection branch and the proposed SCMB for
the detection and segmentation. In the following section, we
describe the details of the SEA module and SCMB.

A. Semantic Attention Module

As shown in Fig. 4(b), the feature maps obtained by FPN
contain complex background information, which may result
in false predictions. Thus, we propose the SEA module that
introduces the semantic segmentation supervision to enhance
the activation of instances and reduce the responses of noises.
Many semantic attention modules [39]–[41] have been pub-
lished to enrich the semantic information of feature maps.
Different from these methods, the SEA module adds semantic
segmentation supervision and has a simple and straightforward
architecture.

For the semantic segmentation’s ground truth, we generate
it using a simple transformation strategy: Given an image, if
a pixel belongs to an instance, we assign the class label of
this instance to the pixel, otherwise, we set the pixel to the
background class. An example of the semantic segmentation’s
ground truth is shown in Fig. 7(b).

The pipeline of the SEA module is shown in Fig. 2. There
are mainly three steps, including rescaling, enriching and
integrating.

1) Rescaling: Following the definition of FPN, we use {P2,
P3, P4, P5, P6} to define the 5-level output feature maps with
different strides of {4, 8, 16, 32, 64} pixels corresponding to
the original image. To enrich the semantic information of the
above 5-level multi-scale feature maps, we first resize these
feature maps to a uniform scale, i.e. the corresponding scale
of P3 (Ablation study illustrates why we choose P3). Here, we
use bilinear interpolation and average pooling layer to generate
resized feature maps {P2

′, P3
′, P4

′, P5
′, P6

′}. Then, we can
obtain the scale-normalized feature map by:

P ′ =
1

5

6∑
i=2

P ′i (1)

2) Enriching: In contrast to previous researches [39] [40]
that implemented the semantic enrichment in an unsupervised
way, we consider that embedding the semantic segmentation
supervision is an intuitive approach to enrich the semantic
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Fig. 3. The detailed architecture of the segmentation branch in the SEA module. The segmentation branch takes the scale-normalized feature map P ′ as
the input, and a series of convolutional layers is adopted to obtain the intermediate feature map F I . Then, F I is broadcast into two streams to generate the
semantic attention feature map FSEA and segmentation prediction Ŷ . Finally, the element-wise multiplication is applied between P ′ and FSEA to generate
the semantic enriched feature map FSE .

(a) (b) (c)

Fig. 4. Visualization of the feature map. (a) Input image. (b) Feature map of
original FPN. (c) Feature map of the FPN with proposed SEA module

information. We design a tiny fully convolutional semantic
segmentation branch, including four convolutional layers with
a 3×3 kernel and two convolutional layers with a 1×1 kernel.
We set the filter number to 256 for the four 3×3 convolutional
layers. For the two 1 × 1 convolutional layers, one is set to
C+1 for prediction where C is the number of the classes and
the other is 256 for semantic attention.

As shown in Fig. 3, the proposed semantic branch takes
the scale-normalized feature map P ′ as input, and the four
3 × 3 convolutional layers first extract the scale-normalized
feature map P ′ to get the intermediate feature map F I . Then,
F I is attached to two streams, called prediction and attention
streams.

In the attention stream, we append a 1 × 1 convolutional
layer to obtain the semantic attention feature map FSEA, and
then multiply FSEA with the original scale-normalized feature
map P ′ to generate the semantic enriched feature map FSE .

Thus, the generation of the semantic enriched feature map
FSE is as follows:

F I = Extraction (P ′; θE) (2)

FSEA = Attention−Stream
(
F I ;WA

)
(3)

FSE = P ′ � FSEA (4)

where Extraction (∗; θE) represents the four 3 × 3 convolu-
tional layers with parameter θE . Attention−Stream (∗;WA)
is the convolutional layer in the attention stream and WA

denotes the weights of the convolutional layer.
The prediction stream contains a 1× 1 convolutional layer

with C + 1 output channels and a softmax layer aiming to
produce semantic segmentation prediction Ŷ ∈ H ×W :

ŷcij =
exp

(
f cij
)∑C

k=0 exp
(
f cij
) (5)

where f = Conv1×1 (I;W1×1) and ŷcij measures the proba-
bility that the pixel in i-th row and j-th column belongs to the
category c. We define the loss function Lsegmentation as:

Lsegmentation = − 1

H ·W
∑
ˆyij∈Ŷ

yij∈Y

C∑
k=0

ykij log
(
ŷkij
)

(6)

where Y denotes the ground truth of semantic segmentation.
3) Integrating: After the enriching step, the semantic en-

riched feature map is resized to different scales corresponding
to {P2, P3, P4, P5, P6}, and we denote these generated feature
maps as {FSE

2 , FSE
3 , FSE

4 , FSE
5 , FSE

6 }. Similar to [39]
[13], we deploy the skip connection to integrate feature maps
FSE
i and the original feature maps Pi, which can sufficiently

leverage original information and enrich semantic information.
The integrated operation can be represented as:

F out
i = FSE

i + Pi (7)



5

Fig. 5. Illustration of Scale Complementary Mask Branch. The feature maps produced by RoIAlign layer are resized to the other two scales using the average
pooling layer and the bilinear interpolation. After that, the three scale feature maps are fed to Scale Complementary Guidance (SCG) Module and Feature
Fusion (FF) module. The SCG module embeds the corresponding scale mask supervision to improve the discrimination of each scale feature maps. The FF
module fuses the three scale feature maps for precision segmentation. For simplicity, we do not show the Binary Cross-Entropy (BCE) Loss of the three
guidance paths in the SCG Module.

With the above three steps, the output multi-scale feature
maps with meaningful semantic information {F out

2 , F out
3 ,

F out
4 , F out

5 , F out
6 } can be used for the following RPN and

RCNN modules. Significantly, our proposed SEA module can
be well embedded in FPN to effectively identify the instance
regions on feature maps, and it can be easily applied to other
computer vision tasks.

B. Scale Complementary Mask Branch

Because the scale variations of the instances in RSIs are
generally larger than that of natural scene images, the orig-
inal single-scale mask branch [16] [17] may lead to under-
segmentation, as shown in the second row of Fig. 1. Inspired
by the studies [53] [54] that fuse the multi-scale information
to remedy the weakness of the single-scale network, we intro-
duce the SCMB to alleviate the under-segmentation problem.
Specifically, we replace the single-scale mask branch with a
trident mask branch and generate scale complementary mask
supervision for the corresponding branch. Besides, a feature
fusion module is designed to integrate the multi-scale features.

The detailed architecture of the SCMB is shown in Fig. 5,
including Trident Mask Branch (TMB), Scale Complementary
Guidance (SCG) module and Feature Fusion (FF) module.

1) Trident Mask Branch: In [16], given the Region of
Interest (RoI) feature map, the mask branch employs a tiny
fully convolutional network (FCN) with parameter θ1 and a
deconvolutional layer with the upsampling ratio of 2 to predict

a binary pixel-wise mask for each class independently. The
binary prediction is presented as follows:

Pred = Sigmoid (Deconv (FCN (RoI; θ1)) ; 2) (8)

where
Sigmoid(x) =

1

1 + e−x
(9)

Considering the absence of multi-scale information in the
original single-scale mask branch [16], we transform it into the
trident form, as shown in the TMB of Fig. 5. Following [16],
the TMB first applies a tiny FCN to extract the feature map
of each RoI. Different from [16], we use bilinear interpolation
and average pooling layer to upsample (28×28) and downsam-
ple (7× 7) the feature map and keep the scale of the original
feature map (14 × 14), resulting in three different scales of
feature maps {F1, F2, F3}. To reduce the computational
overhead, we adopt a 1×1 convolutional layer to shrink output
channels to half for each scale of the feature map. The program
of our Trident Mask Branch is as follows:

F1 = Conv1×1 (Avg−Pooling (FCN (RoI; θs)) ;W1) (10)

F2 = Conv1×1 (FCN (RoI; θs) ;W2) (11)

F3 = Conv1×1 (Up (FCN (RoI; θs) ; 2) ;W3) (12)

where Up (∗; 2) and Avg−Pooling (∗; 2) represent bilin-
ear interpolation and average pooling layer, respectively.
FCN (∗; θs) denotes the weight shared FCN with parameter
θs and Conv1×1 (∗;Wi) denotes the convolutional layer with
parameter Wi for the computational reduction in each branch.
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2) Scale Complementary Guidance Module: In order to
obtain the discriminative feature maps at each scale, we in-
troduce the scale complementary guidance module composed
of three guidance paths {GP1, GP2, GP3}. In each path, we
adopt a 1 × 1 convolutional layer to produce the prediction
and embed the corresponding scale mask supervision. The
prediction (Pred(i)GP ∈ H

(i)
GP ×W

(i)
GP ) of each guidance path

is denoted as:

Pred
(i)
GP = Sigmoid (Conv1×1 (Fi;WGPi

)) (13)

In all the three guidance paths, we use the binary cross-
entropy which could be defined as:

L
(i)
GP = − 1

H
(i)
GP ·W

(i)
GP

∑
ŷ∈Pred

(i)
GP

y∈S
(i)
GP

[y log ŷ + (1− y) log(1− ŷ)]

(14)
where i ∈ [1, 2, 3] and S

(i)
GP denotes the mask supervision in

the i-th guidance path. Thus the total loss of this module could
be denoted as:

LSCG = L
(1)
GP + L

(2)
GP + L

(3)
GP (15)

3) Feature Fusion Module: The goal of the feature fusion
module is to integrate the information at different scale feature
maps for precise segmentation. For the three different spatial
resolution feature maps generated from TMB, we upsample
the two low-resolution feature maps to 28× 28 using bilinear
interpolation. Then the three feature maps are merged by
channel-wise concatenation. Finally, we append four consec-
utive convolutional layers consisting of 3× 3 kernel sizes and
a 1 × 1 convolutional layer to produce the binary prediction
for each class. The binary prediction can be denoted as:

Ffusion = Concat (Up (F1; 4) , Up (F2; 2) , F3) (16)

Pred = Sigmoid (FE (Ffusion; θFE)) (17)

where Up (∗; 2) and Up (∗; 4) denote the bilinear interpolation.
FE (∗; θFE) represents four consecutive convolutional layers.

We also use the binary cross-entropy to calculate the LFF ,
which has the same form as Eq. (14). The loss function of the
overall SCMB is denoted as:

LSCMB = LSCG + LFF (18)

C. Joint Loss Function

Our proposed approach is an end-to-end instance segmen-
tation network and the joint loss function Ltotal consists of
three parts: Ldetection, Lsegmentation and LSCMB . Thus, the
joint loss function could be expressed as:

Ltotal = α1Ldetection + α2Lsegmentation + α3LSCMB (19)

In this paper, we set the loss weights α1, α2, and α3

to 1. The previous work [55], [56] has demonstrated that
a good choice of the loss weights can further improve the
performance, which will be our future research.

IV. EXPERIMENTS

A. Evaluation Datasets

1) iSAID: The iSAID [57] dataset is a new open benchmark
dataset for multi-categories instance segmentation in RSIs. The
dataset consists of 2,806 images with different sizes (from 800
to 13,000 in width) and 655,451 annotated instances. There are
15 common object categories in the dataset, including large
vehicle (LV), small vehicle (SV), storage tank (ST), plane
(PL), ship (SH), swimming pool (SW), harbor (HA), tennis
court (TC), ground track field (GTF), soccer-ball field (SBF),
baseball diamond (BD), bridge (BR), basketball court (BC)
roundabout (RA) and helicopter (HC). The whole dataset is
split into three parts: 1/2 for training, 1/6 for validation and
1/3 for testing. The ground truth of the training set and the
validation set are available.

Due to the large spatial resolution of the original images,
we crop the original images into 800 × 800 patches with a
stride set to 200 by the official provided toolkit1 and acquire
28,249 images for the training set, 9,581 for validation set and
19,377 for the test set.

2) NWPU VHR-10 instance segmentation: The NWPU
VHR-10 instance segmentation dataset [33] is an extension
of the remote sensing object detection dataset NWPU VHR-
10 [58]. This instance segmentation dataset includes 650
images and the spatial size of images ranges from 533× 597
to 1, 728 × 1, 028 pixels. This dataset contains 10 object
categories, including airplane, baseball diamond, basketball
court, bridge, ground track field, harbor, ship, storage tank,
tennis court, and vehicle.

In the experiments, we randomly select 70% of the image
set (i.e. 454 images) as the training set and the rest of the
positive set (i.e. 196 images) as the test set.

B. Evaluation Metrics

We utilize the COCO evaluation metric [59] to evaluate the
network performance.

1) COCO Evaluation: The COCO evaluation metric is
based on the average precision metric. The average precision
metric computes the average value of Precision in the interval
of Recall from 0 to 1 under a certain IoU threshold, where the
Precision and the Recall calculates the fraction of true posi-
tives and the fraction of positives that are correctly predicted.
There are mainly 6 metrics of COCO evaluation metric for
both object detection and instance segmentation:
AP : The AP measures the mean value of 10 average

precision values under the Intersection over Union (IoU)
threshold from 0.5 to 0.95 with intervals of 0.05.
AP50 and AP75: These two metrics indicate the average

precision value under the IoU threshold of 0.5 and 0.75
respectively.
APS , APM and APL: They correspond to the AP value

for small, medium and large scale instances.
However, there are generally a large number of instances

in RISs [57] and the instance scale distribution is different
from natural images. We use the modified COCO evaluation

1https://github.com/CAPTAIN-WHU/iSAID Devkit
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TABLE I
EFFECTS OF SEA MODULE AND SCMB. ALL MODELS ARE EVALUATED ON ISAID VALIDATION SET

Model Backebone SEA SCMB APm APm
50 APm

75 AP b AP b
50 AP b

75 FPS Params Model Size

PANet [17] ResNet-101

38.1 62.8 40.5 43.9 67.0 48.3 5.1 85.14M 682.6MB
X 38.6 63.4 41.0 44.7 68.1 49.5 4.5 89.08M 709.2MB

X 38.8 62.9 41.6 44.0 67.9 48.3 4.3 87.44M 701.1MB
X X 39.5 64.1 42.1 44.6 68.5 48.4 3.6 91.38M 727.6MB

Ground Truth PANet Ours Ground Truth PANet Ours

Fig. 6. Comparison results on iSAID dataset. In the first row, we can see our proposed network can reduce the false prediction with complicated background
interference. In the second row, we can obtain the complete segmentation results compared with the baseline. The false prediction results and the miss
prediction results are indicated by yellow and red rectangles, respectively. The bounding boxes are removed for simplicity.

metric [57] to evaluate the performance of our model. In the
modified evaluation metric, the number of the detection boxes
is set to be 1000 per image (instead of 100 by default) and the
area range of large, medium, and small instances are changed,
where small instances range from 10 to 144, medium instances
range from 144 to 512 pixels and large instances range from
512 and over. In all the experiments, we use APm and AP b to
report the performance of segmentation and detection results.

C. Implementation Details and Parameter Optimization

We conduct all the experiments based on the PyTorch
framework. For the network initialization, we use ImageNet
pre-trained weights to initialize the backbone (i.e. ResNet-
101) and the newly added layers are initialized by a zero-
mean normal distribution with a standard deviation of 0.01.
We choose the stochastic gradient descent with the momentum
of 0.9 and weight decay of 0.0001 to fine-tune the overall
network.

For the training phase, we resize the input image with a
short side of 800 pixels and train 12 epochs in total, where
the learning rate starts from 0.01 and decreased by a factor
of 0.1 at the 8th and 11th epoch. We train the network in a
mini-batch size of 8 on 4 NVIDIA GeForce GTX 1080Ti with
12 GB GPU memory.

For the testing phase, the test images are resized to 800
pixels on the short side. The NMS (non-maximal suppression)
threshold and the mask binarized threshold are both set as 0.5.
Besides, considering a large number of instances are present
in each image, we output the top 1000 results in each image.

D. Ablation Studies
We conduct comprehensive experiments to evaluate the

performance of the SEA module and SCMB. All ablation
experiments are performed on PANet based on ResNet101 and
evaluated on the iSAID validation dataset. In addition, we do
not apply any data-augmentation strategies in this section.

1) Evaluation of Semantic Attention Module: The effective-
ness of the proposed SEA module can be observed from the
visualization of feature maps shown in Fig. 4. As shown in
Fig. 4, without the SEA module, the boundaries between dif-
ferent instances are blurred, and there is significant interfering
noise in the background (i.e. in Fig. 4(b)). In contrast, Fig.
4(c) demonstrates clearer boundaries with less noise in the
background. Similar results are shown in the first row of Fig.
6, where our SS-PANet does not recognize pipes in the factory
as bridges and better separates the boundaries of the soccer-
ball field. Besides, we can see that with the SEA module, our
network obtains performance improvement in all six metrics
and increases the APm by 0.5% and AP b by 0.8% compared
with the baseline approaches shown in Table I.

We report the other two experiments to further discuss the
design of the SEA module. As described in Sec.III, we resize
the 5-level output feature maps into a uniform scale and obtain
the scale-normalized feature map by Eq. (1). We first study the
influence of the different uniform scales. Due to the large scale
of P2, once we set the uniform scale as P2, the model will
exceed the maximum GPU memory. Thus, we only conduct
ablation studies at the scale of P3, P4, P5, P6 and term them as
P3-scale, P4-scale, P5-scale, P6-scale, respectively. Table II
shows the comparative results and the larger the uniform scale,
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TABLE II
ABLATION STUDY ON THE SEMANTIC ATTENTION MODULE. ALL

SETTINGS ARE EVALUATED ON ISAID VALIDATION SET

Settings APm APm
50 APm

75 AP b AP b
50 AP b

75

PANet baseline [17] 38.1 62.8 40.5 43.9 67.0 48.3

P3-scale 38.6 63.4 41.0 44.7 68.1 49.5
P4-scale 38.5 63.6 40.8 44.4 68.1 49.0
P5-scale 38.2 63.4 40.5 43.6 67.6 47.6
P6-scale 37.8 62.9 40.0 41.9 66.4 45.6

MULTIPLY 38.6 63.4 41.0 44.7 68.1 49.5
CONCATE 38.3 63.3 40.8 44.5 67.4 49.2

Fig. 7. Semantic segmentation prediction with different uniform scales. (a)
Input image. (b) Ground truth. (c) Prediction of P3-scale. (d) Prediction of
P4-scale. (e) Prediction of P5-scale. (f) Prediction of P6-scale.

the better result we obtain, similar to the results in [60]. For the
segmentation performance, P3-scale and P4-scale achieve a
gain of about 0.5% compared to the baseline, and P5-scale has
slight improvement, while P6-scale decreases the performance
by 0.3%. A similar trend can be observed in the detection
performance. To explore the above phenomenon, we resize the
semantic segmentation prediction of each setting to 800×800
and present them in Fig. 7. We can find that P6-scale has
the coarsest segmentation prediction than the others, which
will produce false semantic attention and deteriorate network
performance.

We also investigate different feature fusion schemes be-
tween the semantic attention feature map and the scale-
normalized feature map and design the following two feature
fusion approaches. First, we employ the element-wise multipli-
cation, represented by ”MULTIPLY”. Second, we concatenate
the corresponding feature maps and append 1×1 convolutional
to reduce channel dimensions, named ”CONCATE”. We set
the uniform scale as P3-scale for both two schemes and
report the results in Table II. We can find the improvement
in both two feature fusion ways and the element-wise multi-
plication achieves better than the channel-wise concatenation.
We consider the semantic attention feature map has strong
activation in the instance region, and the response of the
background is almost 0. Thus, the element-wise multiplication

TABLE III
ABLATION STUDY ON SCALE COMPLEMENTARY MASK BRANCH. ALL

SETTINGS ARE EVALUATED ON ISAID VALIDATION SET

Settings APm APm
50 APm

75

PANet baseline [17] 38.6 63.4 41.0

7 + 14 38.9 63.8 41.7
14 + 28 39.3 64.1 42.1

7 + 14 + 28 39.5 64.1 42.1

MULTIPLY 39.1 63.8 41.6
CONCATE 39.5 64.1 42.1

is an intuitive way to enhance the instance activation and
reduce the background noise.

2) Evaluation of Scale Complementary Mask Branch: By
introducing the SCMB, the network increase segmentation
performance from 38.6 to 39.5 and remains comparable de-
tection performance as shown in the fourth row of Table
I. We also visualize the comparison segmentation result in
the second row of Fig. 6. With the SCMB, the network
avoids separating the storage tank into two parts and achieves
complete segmentation results compared with the single-scale
mask branch [17].

Furthermore, we conduct ablation studies on the setting of
SCMB. Based on the original mask branch [17] with only a
spatial resolution of 14 × 14, we extend it to the following
three multi-scale forms. The first two forms introduce only
a parallel branch with a spatial resolution of 7 × 7 and a
spatial resolution of 28× 28, respectively. As for the last one,
it simultaneously includes the above two parallel branches.
The corresponding scale complementary supervision is applied
in all three settings. Table III gives the corresponding results
where ’7+14’, ’14+28’ and ’7+14+28’ represent the above
three settings. We can find that all these settings improve the
segmentation performance and the third setting leads to the
best performance.

We also consider two fusion operations for the feature
fusion module. As shown in Table III, the channel-wise
concatenation achieves a better result. It is noticed that this
result is exactly the opposite of the result shown in Table II.
For channel-wise concatenation, it can better fuse information
from different scales of feature maps. However, for element-
wise multiplication, the poor results from a certain feature map
may affect the final fusion results.

It can be seen from the ablation study that the element-wise
multiplication has a better result in the SEA module, while
channel-wise concatenation performs well in the SCMB. Thus,
we follow the above settings in all subsequent experiments.

3) Speed and Complexity Comparison: For the inference
speed, we report the comparison results in Table I. First, we
extend the baseline with our proposed SEA module, and the
FPS is reduced by 0.6. This reduction is mainly due to the
additional convolutional layer of the proposed SEA module.
Then, we extend the baseline with SCMB. The FPS drops
by 0.8, and we consider that the SCMB changes the original
single mask branch to the trident form, which affects the
inference speed. Compared with the SEA module, the SCMB
needs to operate on each RoI feature, thus it has a worse
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TABLE IV
OVERALL PERFORMANCE COMPARISONS ON ISAID VALIDATION SET

Settings APm APm
50 APm

75 APm
s APm

m APm
l AP b AP b

50 AP b
75 AP b

s AP b
m AP b

l

Mask-RCNN [16] 37.4 62.0 39.4 39.7 51.5 35.7 43.1 66.2 47.4 45.8 55.9 51.2
PANet [17] 38.1 62.8 40.5 40.5 51.9 36.7 43.9 67.0 48.3 46.5 56.7 62.3

SS-Mask-RCNN 39.2 63.7 41.8 41.8 54.4 24.3 43.8 67.7 48.4 46.6 57.2 28.2
SS-PANet 39.5 64.1 42.1 41.7 53.5 35.0 44.6 68.5 48.4 47.3 58.4 55.8

SS-Mask-RCNN+ 39.7 64.4 42.2 42.5 53.6 26.3 45.0 68.6 49.7 47.9 56.6 37.1
SS-PANet+ 40.8 65.6 43.8 43.7 54.0 32.1 46.9 70.0 52.0 49.8 57.2 44.7

TABLE V
CLASS-WISE INSTANCE SEGMENTATION RESULTS ON ISAID VALIDATION SET

Model AP PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Mask-RCNN [16] 37.4 48.4 55.8 22.9 31.8 14.0 38.5 50.2 76.6 42.2 34.8 46.1 37.5 26.7 30.3 5.1
PANet [17] 38.1 49.2 55.9 22.8 32.4 14.1 40.6 50.4 77.9 45.5 35.2 47.1 38.7 26.9 30.5 4.9

SS-Mask-RCNN 39.2 50.8 58.0 23.9 33.1 14.6 41.6 52.1 78.7 44.2 37.4 48.0 39.9 28.8 31.0 6.0
SS-PANet 39.5 50.9 58.8 23.5 34.4 14.7 41.8 52.0 78.8 46.8 37.2 46.8 40.4 28.3 31.2 6.9

SS-Mask-RCNN+ 39.7 51.5 59.1 24.5 34.0 15.6 42.6 52.9 79.2 45.3 37.7 46.0 40.8 28.7 33.0 4.4
SS-PANet+ 40.8 53.1 60.3 24.8 35.6 16.1 43.7 54.0 79.8 49.3 38.7 48.0 40.8 29.9 33.4 5.3

TABLE VI
CLASS-WISE OBJECT DETECTION RESULTS ON ISAID VALIDATION SET

Model AP PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Mask-RCNN [16] 43.1 67.2 55.7 27.2 45.6 16.6 44.8 54.9 77.2 42.5 35.5 44.5 37.7 48.5 33.8 15.2
PANet [17] 43.9 67.7 56.4 26.8 47.0 16.5 45.3 54.7 78.9 44.6 35.7 45.9 39.1 49.3 34.2 16.6

SS-Mask-RCNN 43.8 66.6 57.4 27.5 46.2 16.9 45.8 55.4 79.2 42.4 37.4 44.9 40.5 49.2 33.5 15.0
SS-PANet 44.6 68.0 58.0 28.2 49.0 16.4 46.2 55.2 78.7 43.3 36.0 46.2 40.2 49.7 34.3 19.9

SS-Mask-RCNN+ 45.0 68.6 58.4 27.8 47.1 18.3 46.9 57.0 79.7 44.3 37.4 44.5 41.6 50.5 36.5 16.2
SS-PANet+ 46.9 70.8 60.1 29.6 50.3 18.4 48.6 58.0 81.0 48.0 39.1 46.6 42.1 52.9 36.6 20.8

TABLE VII
OVERALL PERFORMANCE COMPARISONS ON ISAID TEST SET

Settings APm APm
50 APm

75 APm
s APm

m APm
l AP b AP b

50 AP b
75 AP b

s AP b
m AP b

l

Mask-RCNN+ [57] 33.4 56.8 34.7 35.8 46.5 23.9 37.2 60.8 40.7 39.8 43.7 16.0
D2Det [20] 37.5 61.0 39.8 - - - - - - - - -
SS-PANet 39.3 62.5 42.5 42.4 47.8 13.8 44.5 66.2 50.1 47.8 50.2 16.5
HTC [19] 39.4 62.5 42.5 42.3 49.0 14.8 46.6 66.5 52.2 49.6 55.7 17.4

Cascade-Mask-RCNN [21] 39.4 62.5 42.5 42.3 49.0 14.8 46.6 66.5 52.2 49.6 55.7 17.4
PANet+ [57] 39.5 63.6 42.2 42.1 53.6 38.5 46.3 66.9 51.7 48.9 53.3 26.5
SS-PANet+ 40.6 64.1 44.0 44.0 49.8 13.8 46.6 67.7 52.4 50.0 54.0 17.3

impact on speed. Finally, when applying both the proposed
SEA module and SCMB, the FPS is reduced from 5.1 to 3.6.
Besides, we also report the comparison results of complexity
in the last two columns in Table I.

E. Results on iSAID

To quantitatively evaluate the proposed method, we integrate
the SEA module and SCMB into two representative networks
(Mask-RCNN, PANet) and name them as SS-Mask-RCNN and
SS-PANet. We report the overall comparison performance on
iSAID validation set in Table IV to show the performance
of our proposed method. As shown in these two tables, our
SS-Mask-RCNN/SS-PANet performs better than the baseline
Mask-RCNN/PANet by 1.8%/1.4% in APm and 0.7%/0.7% in
AP b. This not only indicates the superiority of our proposed
method but also shows that our SEA module and SCMB

are robust to different baselines. Considering the large scale-
variation of instances in RSIs, multi-scale training is a com-
mon and effective strategy to improve performance [7], [57].
We randomly resize the short side of the input image with
(1000,800,600,400) in the training phase and name this model
as SS-Mask-RCNN+/SS-PANet+. As shown in Table IV, SS-
PANet+ achieves the best performance as 40.8%/46.9%. In
addition, it can be seen that the comparison results of APm

l

and AP b
l in Table IV are unstable. We calculate the distri-

bution of instances’ areas in the image patches of the iSAID
validation set and find there are only 9 instances belong to
the large scale, which is less than 1% (9 vs 238,138) of the
number of instances in the whole validation set. Therefore, a
tiny deviation in prediction may lead to a large difference in
performance.

To further study the results of different categories, we
also reveal the class-wise APm and AP b in Tables V and
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PL BD SP and SV
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GTF and SBF RA and SV SV

HC ST LV

Fig. 8. Performance of proposed network on iSAID dataset. The first to the third column shows the results of each category, and we zoom in the densely
arranged results in the last column. The bounding boxes are removed for simplicity.
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TABLE VIII
OVERALL PERFORMANCE COMPARISONS ON NWPU VHR-10 INSTANCE SEGMENTATION TEST SET

Model APm APm
50 APm

75 APm
s APm

m APm
l AP b AP b

50 AP b
75 AP b

s AP b
m AP b

l

Mask-RCNN [16] 60.9 90.2 67.2 61.3 55.3 - 60.6 90.3 69.9 61.1 47.3 -
PANet [17] 62.3 91.4 68.1 62.5 56.1 - 61.7 91.1 71.2 62.0 48.6 -

SS-Mask-RCNN 62.3 92.0 69.4 62.2 64.7 - 63.6 92.6 72.2 63.9 56.3 -
SS-PANet 63.6 92.4 70.2 63.4 65.3 - 64.5 92.9 74.3 64.7 58.1 -

SS-Mask-RCNN+ 65.1 93.8 74.0 65.0 65.3 - 65.2 93.6 76.0 65.3 57.2 -
SS-PANet+ 66.1 94.5 74.6 65.9 66.4 - 65.9 94.2 76.7 66.0 58.8 -

TABLE IX
CLASS-WISE INSTANCE SEGMENTATION RESULTS ON NWPU VHR-10 INSTANCE SEGMENTATION TEST SET

Model AP Airplane Ship Storagek Baseball Tennis Basketball Ground track Harbor Bridge Vehicle
tank diamond court court field

Mask-RCNN [16] 60.9 37.7 51.6 79.3 84.2 65.0 68.4 85.0 53.4 30.4 53.6
PANet [17] 62.3 39.0 53.8 80.1 84.9 66.3 70.5 85.3 55.5 32.9 54.9

SS-Mask-RCNN 62.3 38.3 52.5 80.1 84.9 65.7 69.3 85.7 55.6 36.4 54.4
SS-PANet 63.6 39.5 54.6 80.9 85.4 67.7 71.2 86.2 57.0 37.1 55.9

SS-Mask-RCNN+ 65.1 41.7 54.0 81.3 86.3 71.4 71.6 88.3 58.9 40.3 57.3
SS-PANet+ 66.1 42.8 55.2 81.2 86.6 72.8 72.3 88.0 59.5 41.6 57.9

TABLE X
CLASS-WISE OBJECT DETECTION RESULTS ON NWPU VHR-10 INSTANCE SEGMENTATION TEST SET

Model AP Airplane Ship Storagek Baseball Tennis Basketball Ground track Harbor Bridge Vehicle
tank diamond court court field

Mask-RCNN [16] 60.6 70.9 56.0 76.1 79.4 65.6 63.8 71.3 41.5 25.8 55.9
PANet [17] 61.7 71.3 57.8 76.3 79.6 66.7 65.4 72.8 42.8 27.7 56.6

SS-Mask-RCNN 63.6 71.5 61.9 76.7 81.1 66.4 66.1 75.6 45.6 34.3 57.0
SS-PANet 64.5 72.5 62.2 77.0 81.6 67.0 67.1 76.2 47.5 35.9 57.8

SS-Mask-RCNN+ 65.2 72.2 63.4 77.9 81.9 67.9 67.5 76.7 50.3 36.6 57.9
SS-PANet+ 65.7 73.3 63.7 78.1 82.2 68.4 68.2 76.6 51.6 37.0 58.5

Ground Truth PANet Ours Ground Truth PANet Ours

Fig. 9. Comparison results on NWPU VHR-10 Instance Segmentation dataset. We can see that our SS-PANet can better avoid the false detection (in the first
row) and reliefs under-segmentation results (in the second row). The false prediction results and the miss prediction results are indicated by yellow and red
rectangles, respectively. The under-segmentation results are surrounded by green rectangles. The bounding boxes are removed for simplicity.

VI. In Table V, the SS-PANet+ achieves the best APm in
14 categories except for helicopter and increases more than
4% for plane and baseball diamond compared with PANet.
Similar patterns can be found in Table VI. Despite achieving
impressive results, the proposed method obtains a low AP
for the bridge in both detection and segmentation. This is

mainly because the aspect ratio of the bridge is large, and
hence, the anchors with default aspect ratios of 2:1, 1:1
and 1:2 can not better fit them, which in turn affects the
segmentation results. In addition, due to the small size of the
small vehicle and the limited number of helicopter samples,
their performance is also poor. Besides, it is worth noting
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Airplane Ship Baseball diamond, Tennis court and
Basketball court

Bridge

Harbor Storage tank Vehicle Ground track field and Tennis court

Fig. 10. Performance of our proposed method on NWPU VHR10 Instance Segmentation dataset. Each sub-pictures demonstrates the class-wise results. The
bounding boxes are removed for simplicity.

that there is still a large margin between the detection results
and the segmentation results. Specifically, the segmentation
results of some categories decrease more than 15% compared
to the detection results. For the ground track field, they often
contain the soccer-ball field leading to misclassification for
pixels locating in overlapping regions. As for harbor, plane,
and helicopter, the drop is mainly due to the complex contours.
Visualization results for all categories are shown in Fig. 8.

Table VII shows the performance of our approach on the
iSAID test set. We use the symbol ‘+’ to denote the models
using multi-scale training strategies. From Table VII, we
can see that the proposed SS-PANet with the single-scale
training strategy achieves comparison results with PANet+
[57]. Besides, our proposed SS-PANet is 1.8% higher than
D2Det [20] in the term of APm. Compared to the multi-
stage approaches [19], [21], SS-PANet gets comparable per-
formance in APm, but there is still a large gap in AP b.
This is mainly because the multi-stage approaches can get
better detection performance through multiple regressions and
classifications. When applying the multi-scale training strategy
in SS-PANet, we obtain the best performance as 40.6%/46.6%.
In addition, we note that the improvement of our approach in
segmentation is significantly higher than the detection results
(1.1 vs 0.3) compared to PANet+ [57]. We believe that this
difference mainly comes from the difference in multi-scale
training strategy. In [57], the scale augmentations of the shorter
side are at five scales (1200,1000,800,600,400), while we
only choose scale augmentations at (1000,800,600,400), which
limits the detection results. Despite the detection performance

is limited, we still achieve great segmentation performance,
which reflects the effectiveness of the proposed method in
segmentation.

F. Results on NWPU VHR-10 Instance Segmentation

In Table VII, we report the overall performance of our
proposed method. With the SEA module and SCMB, the APm

and AP b improve by 1.4%/1.3% and 3.0%/2.8% compared
with the Mask-RCNN/PANet. Since we use the modified
COCO evaluation metric [57] and the area of all instances
in the NWPU VHR-10 Instance Segmentation dataset is less
than 512 × 512, the APm

l and AP b
l in Table VII are empty.

In addition, we find that the APm
m is slightly better than the

AP b
m of SS-PANet+. This is mainly due to the characteris-

tics of the NWPU VHR-10 Instance Segmentation dataset.
The instances of most categories in this dataset (such as
ground track field, baseball diamond, basketball court, etc.)
are medium-scale and have regular contours, which is simple
for segmentation. However, since the instances are always
arbitrarily oriented in RSIs, the horizontal bounding boxes
may cause inaccurate detection results, especially under high
IoU thresholds. Fig. 9 demonstrates the comparison results,
where the proposed method effectively handles the impact of
complex backgrounds, such as the misclassification between
roads and bridges, and the false detection of the parking lot
as the harbor. Besides, our SS-PANet can better deal with the
under-segmentation of harbor and airplane.

Tables IX and X show the segmentation and detection
results in all categories and our proposed method demonstrates
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superior performance compared with the baseline. Especially,
for the bridge, we obtain more than 5% performance gains in
detection results, because the proposed SEA module prevents
the road from misclassifying as the bridge (as shown in Fig.
9). Besides, the segmentation results of the ground track field,
basketball court, and baseball diamond are significantly better
than their detection results, which validates our conjecture in
the previous paragraph. However, due to the large aspect ratio
of the bridge and the complex contours of the airplane, their
segmentation results are still poor. Fig. 10 visualizes the results
of each category.

V. CONCLUSION

In this paper, we focus on multi-category instance seg-
mentation in remote sensing images and propose an end-to-
end instance segmentation framework. Taking into account
the complex background in RSIs, we design the Semantic
Attention (SEA) module with extra segmentation supervision
to improve the activation of instances under noise interference.
Meanwhile, we introduce the Scale Complementary Mask
Branch (SCMB) which integrates information from different
scales to tackle the under-segmentation results. Experiments
demonstrate that our method achieves better performance
competed with the state-of-the-art methods.

Although the proposed method achieves satisfactory im-
provements, there is still a large margin between the segmen-
tation and detection results. This is mainly because the bird-
views of RSIs lead to the arbitrary orientations of objects,
and the horizontal bounding boxes in the detection results
can not closely surround the instances, which may affect the
segmentation result in the bounding box. Therefore, in future
work, we will consider the rotation information of RSIs to
further improve both detection and segmentation results.
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