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Abstract

Programming language interoperability is the capability of two programming languages to interact as parts of
a single system. Each language may be optimized for specific tasks, and a programmer can take advantage
of this. HTML, CSS, and JavaScript yield a form of interoperability, working in conjunction to render
webpages. Some object oriented languages have interoperability via a virtual machine host (.NET CLI
compliant languages in the Common Language Runtime, and JVM compliant languages in the Java Virtual
Machine). A high-level language can interact with a lower level one (Apple’s Swift and Objective-C).
While there has been some research exploring the interoperability mechanisms (Section 1) there is little
development of theoretical foundations. This paper presents an approach to interoperability based around
theories of equational logic, and categorical semantics.
We give ways in which two languages can be blended, and interoperability reasoned about using equations

over the blended language. Formally, multi-language equational logic is defined within which one may deduce
valid equations starting from a collection of axioms that postulate properties of the combined language.
Thus we have the notion of a multi-language theory and much of the paper is devoted to exploring the
properties of these theories. This is accomplished by way of category theory, giving us a very general and
flexible semantics, and hence a nice collection of models. Classifying categories are constructed, and hence
equational theories furnish each categorical model with an internal language; from this we can also establish
soundness and completeness. A set-theoretic semantics follows as an instance, itself sound and complete.
The categorical semantics is based on some pre-existing research, but we give a presentation that we feel
is easier and simpler to work with, improves and mildly extends current research, and in particular is
well suited to computer scientists. Throughout the paper we prove some interesting properties of the new
semantic machinery. We provide a small running example throughout the paper to illustrate our ideas, and
a more complex example in conclusion.

Keywords: categorical logic, equational logic, interoperability, multi-languages, order-sorted signatures
and theories, programming languages, subsort polymorphism.

1 Introduction

The theory of equational algebra has been a compelling topic since the early days

of universal algebra [33,2]. Research on equational logic, addressing the problem

of reasoning by deduction about term equality, has been prolific (see [34,17] for
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surveys). In particular, many sound and complete deduction systems have arisen.

For instance, if Sg is a one-sorted, many-sorted, or order-sorted signature (sorts and

function symbols), such systems appear in [2], [10], and [13], respectively. These

developments have had a remarkable impact on operational semantics and automatic

theorem proving. In particular, the pioneering works of [8,18] to operationalize

equational deduction led to the theory of term rewriting systems [15,35] which has

extensive applications.

Multi-languages are programming languages arising from the combination of

already existing languages [27,1,32,9,14,26,24,21]. Intuitively, terms of multi-

languages are obtained by performing cross-language substitutions. For instance,

the multi-language designed in [21] allows programmers to replace ML expressions

with Scheme expressions and vice versa. Potential benefits are code reuse and

software interoperability. In order to provide a semantics, [21] introduces new con-

structs to regulate the flow of values between the underlying languages, the so-called

boundary functions.

But what are the formal properties and semantics of multi-languages? Indeed,

how general can we be? And in any case, what is a good formal definition of a multi-

language in the first place? Buro and Mastroeni [4] extended the approach of [21] to

the broader class of order-sorted algebras, providing a systematic and more general

way to define multi-languages, but they did not address equational reasoning. We do

so here. In more detail, a multi-language is specified by combining two order-sorted

signatures Sg1 and Sg2. But how exactly should the signatures be combined? And

what is the formal equational theory of “term interoperability”? More precisely,

since equations will not only be defined between two terms both of which are over

just one of the Sg i, but also defined between terms containing symbols from both

Sg1 and Sg2, what is a good deduction system for such multi-language equations?

We tackle these questions by specifying multi-language equational logic which is

shown to be sound and complete.

Contributions in Detail: Conceptually we lift the basic syntactic theories of

order-sorted equational logic [13], and models of the theories, to the algebraic multi-

language framework defined by [4]. The models in [13] are built from sets, but we

adapt the categorical approach in [20]. The main contribution is a deductive system

for multi-languages with a sound and complete categorical semantics. We also

prove some interesting semantic properties. There is a running example application

throughout the paper, and an outline of a more elaborate application in Section 3.3

where we combine an imperative language and a lambda calculus. Our account of

order-sorted equational theories builds on and refines [20], with all our deductive

systems presented with uniform and clear inductive rules. Further, we include

explicit type information in equality judgements, and include axioms that may

be conditional equations. We give a simplified categorical semantics along with

categorical type-theory correspondence and classifying category, and also give an

explicit connection to free set-algebra semantics.

Remarks and Intuitions: We work with order-sorted signatures [13]. As such,

our languages enjoy subsort polymorphism; there is no provision for parametric
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polymorphism. Such signatures may satisfy criteria known as monotonicity and

regularity. Since the intuitions of these criteria are usually omitted from technical

papers, we make some remarks. Language terms t are built inductively by applying

function symbols f to existing terms (which begin as constants). Such symbols f

can be polymorphically sorted. As such, if one input sort of f is a subsort of another

input sort, we would like the term t to be subsort polymorphic with respect to the

output sorts. Monotonicity formalises this requirement. One needs to place some

control over such polymorphism: one way of doing so is to apply a requirement

whereby every term t has a least sort. Regularity [13] is such a condition. To ensure

every term t to has a least sort, we might naively achieve this by requiring each

subsort-polymorphic function symbol f to have a least input and least output sort,

hoping that t would do so inductively. We would need to give all constants a least

sort to start the induction; and we could simply stipulate that each constant has

just one sort. In initially building terms, if there were any function symbol f with

a (polymorphic) input sort that is a strict subsort of the sort of a constant, such

f could not be applied to that constant. We are led to refine our naive idea: Fix

any f . Consider only those constants that this f can be polymorphically applied to.

Now fix one such constant of sort s; this imposes a lower bound for the input sort

of f , namely s. We then require that for all such polymorphic instances of f , there

is one instance with a least input sort s, where of course s ≤ s, and a least output

sort. This requirement, formalised, is Regularity.

Paper Structure: In Section 2 we present a transparent rule based deduction

system for order-sorted equational logic with conditional axioms, together with a

categorical semantics which is proved sound and complete. In Section 3 we present a

similar set of results for multi-languages. In Section 4 we give some further examples

of multi-languages. In Section 3.3 we present an outline of an extended example in

which a traditional lambda calculus and an imperative while language are blended

as a single multi-language.

2 Order-Sorted Equational Logic

We review order-sorted equational theories (see for example [13,20]). Here we give

an improved presentation that is syntactically simpler than in loc cit, and further we

extend theories to include conditional equational axioms. We also present a detailed

but stylistically improved summary of the categorical models from [20], along with a

simpler construction of the classifying category (up to equivalence). We then prove

a result relating the classifying category to free order-sorted algebras.

2.1 Order-Sorted Algebras

A set S is usually regarded as a set of sorts or set of ground types. Often S

is partially ordered by ≤, and then Sn � S × · · · × S (n-times cartesian product

for n ≥ 1) inherits the pointwise order, with typical instances written w ≤ w′.
If w ∈ Sn, we usually make explicit its components by writing w � s1, . . . , sn,

sometimes referring to a sequence of sorts.
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We write (As | s ∈ S) for a family indexed by S where each As is some-

times a set, but more generally an object in a category C. We sometimes refer to

the family as an S-sorted set (or, an S-sorted object). Such indexed families

are simply functors A in the presheaf category SetS (CS). As such, an S-sorted

function (S-sorted morphism) h : A → B is simply a morphism (that is, natural

transformation) in SetS (CS) where S is a set or poset.

In this paper all categories have finite products, and functors preserve them up

to isomorphism. If A, B, and Ai (1 ≤ i ≤ n) are objects in a category C, we write

A × B for the binary product of A and B, A1 × · · · × An or
∏n

1 Ai for the finite

product of the Ai, and 1 for the terminal object. Mediating morphisms for binary

product are written 〈f, f ′〉, and as usual f × f ′ � 〈f ◦ π, f ′ ◦ π′〉 (for suitable f

and f ′ and the usual projections). We adopt the obvious extension of notation for

finite products. If A is an S-sorted object and w � s1, . . . , sn, we denote by Aw the

product As1 ×· · ·×Asn . Likewise, if f is an S-sorted morphism, then the morphism

fw is defined by fs1 × · · ·× fsn . The coproduct object of A and B is written A+B.

We write l1 . . . ln or l1, . . . , ln for a typical finite list, and we may abbreviate just to

l. In the special case of a list of sorts s1, . . . , sn we usually abbreviate to w. When

we define order-sorted signatures Sg1, Sg2, Sg , Sg
′, etc., we shall implicitly assume

that their posets of sorts are denoted by (S1,≤1), (S2,≤2), (S,≤), (S′,≤′), etc.,
respectively.

Key ingredients of order-sorted equational theories are the definitions of signature

and algebra. The former defines the symbols from which the terms of a language

are built, and the latter provides terms with a meaning. This meaning can be both

set-theoretic and category-theoretic [13,20].

Definition 2.1 (Order-Sorted Signature) An order-sorted signature Sg is

specified by

• a poset (S,≤) of sorts;

• a collection of function symbols f : s1, . . . , sa → s each with arity a ≥ 1 and

(w, s) ∈ Sa × S the rank of f where w � s1, . . . , sa;

• a collection of constants k : s, each of a unique rank s (just a single sort);

and

• a monotonicity requirement that whenever f : w1 → s and f : w2 → r with

w1 ≤ w2, then s ≤ r.

By an operator we mean either a function symbol or a constant.

A key property of such signatures Sg , related to polymorphism, is regularity.

We will shortly show how to build a set of terms out of Sg , and regularity ensures

that each term has a unique least sort [13, Proposition 2.10]. (All signatures in this

paper are assumed regular).

Definition 2.2 (Regularity of an Order-Sorted Signature) An order-sorted

signature Sg is regular if for each f : w → s and for each lower bound wl ≤ w

the set { (w′, s′) | f : w′ → s′ ∧wl ≤ w′ } ⊆ Sn × S has a minimum, called the least

rank of f with respect to wl.
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−
Γ, x : s,Γ′ � x : s

−
(k : s)

Γ � k : s
(∀1 ≤ i ≤ a) Γ � ti : si

(Fn) (f : s1, . . . , sa → s)
Γ � f(t1, . . . , ta) : s

Γ � t : s
(s ≤ r)

Γ � t : r

Fig. 1. Proved terms generated by an order-sorted signature Sg.

Raw terms over a signature Sg are defined by t ::= x | k | f(t1, . . . , ta) with

x ∈ Var (a countably infinite set of variables), k a constant, and f a function symbol

with arity a. A context is a finite list of ordered pairs x : s formed by a variable x

and a sort s in Sg . We usually define a context by writing Γ � [x1 : s1, . . . , xn : sn].

We denote context concatenation of Γ and Γ′ by Γ,Γ′. We work with sorting

judgements of the form Γ � t : s. Those that are generated by the sorting rules

in Figure 1 are called proved terms. Note that a term t may have more than one

sort s for which Γ � t : s is a proved term. However there is always a unique least

sort.

Lemma 2.3 (Terms Have A Least Sort) Suppose that Γ is a context and t a

raw term for a given regular signature Th. If there is any sort s for which Γ � t : s

is a proved term, then there is a least such sort, st.

Proof. One uses rule induction. The proof is easy, though in the literature a key

step is often omitted. By induction, for the rule Fn, one easily uses regularity to

obtain a sort, say š, such that Γ � f(t1, . . . , ta) : š. Now š is a candidate for the

least sort of f(t1, . . . , ta). Most authors state that such a sort š is least. This is

true, but proving it so requires a separate (though trivial) rule induction. �

We denote by t[u/x] the substitution of the raw term u for the variable x in

t, and by t[u/x] the simultaneous substitution of raw terms u � u1, . . . , un for

variables x � x1, . . . , xn.

Definition 2.4 (Inclusion Structure and FPI-category) An inclusion

structure I in a category C is specified by a subposet (subcategory) I of C such that

• for any two objects A and B of C, the unique morphism A � B in I, if any,
is a monic in C;

• for any object A in C, the identity idA is in I (so I is a luff subcategory: it has

the same objects as C);
• if ι1 : A1 � B1 and ι2 : A2 � B2 are morphisms in I, then so to is ι1×ι2 : A1×
A2 � B1 ×B2.

A pair (C, I) is called an FPI-category. The intuition is that products model lists

of sorts, and inclusions model subsort polymorphism.

Thus, an FPI-category can be used as the basis for a definition of an algebra for

a signature, namely

Definition 2.5 (Order-Sorted Algebra) Given an order-sorted signature Sg,

an Sg-algebra A in an FPI-category (C, I) is specified by
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• an object �s�A in C for each sort s and object �w�A � �s1�A × · · · × �sn�A for

each w � s1, . . . , sn ∈ Sn;

• morphisms �f : w → s�A : �w�A → �s�A and �k�A : 1 → �s�A for each f : w → s

and k : s; and

• a morphism �s ≤ r�A : �s�A � �r�A in I for each s ≤ r in S, where we set

�s ≤ s�A � id �s�

such that if the function symbol f appears with more than one rank f : w1 → s and

f : w2 → r in Sg with s1, . . . , sa � w1 ≤ w2 � r1, . . . , ra, then the following diagram

commutes:

�s1�A × · · · × �sa�A �s�A

�r1�A × · · · × �ra�A �r�A

�f : w1→s�A

�s1≤r1�A×···×�sa≤ra�A �s≤r�A

�f : w2→r�A

From now on, we drop the algebra subscript and the ranks of function symbols

in the semantic brackets whenever they are clear by context.

Definition 2.6 (Order-Sorted Homomorphism) Let Sg be an order-sorted sig-

nature and let A and B be Sg-algebras. An Sg-homomorphism h : A → B is an

S-sorted morphism (hs : �s�A → �s�B | s ∈ S) such that given f : s1, . . . , sa → s,

k : s, and s ≤ r in Sg the following diagrams commute:

�s1�A × · · · × �sa�A �s�A

�s1�B × · · · × �sa�B �s�B

�f�A

hs1×···×hsa hs

�f�B

1 �s�A

�s�B

�k�A

�k�B
hs

�s�A �r�A

�s�B �r�B

�s≤r�A

hs hr

�s≤r�B

We define hw � hs1 × · · · × hsa provided that w � s1, . . . ,×sa.

Given an order-sorted signature Sg , the class of all the order-sorted Sg-algebras

and the class of all the order-sorted Sg-homomorphisms form a category denoted

by OSAlg(C, I)Sg .
If Γ � t : s is a proved term in a regular signature Sg and Γ � [x1 : s1, . . . , xn : sn],

any Sg-algebra A induces a (unique) morphism from �Γ�A � �s1�A × · · · × �sn�A to

�s�A in C according to the inductive definition that appears in Figure 2. We denote

such an arrow by �Γ � t : s�A and we refer to it as the semantics of Γ � t : s.

Since terms can be assigned different types in one given context, we should

consider whether the definition in Figure 2 is a sensible one. As such, we have the

following lemma, where one sees that semantics of substitutions of terms is given
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−
�Γ, x : s,Γ′ � x : s� � π : �Γ� × �s� × �Γ′� → �s�

−
(k : s)

�Γ � k : s� � �k�◦! : �Γ� → 1 → �s�

(∀1 ≤ i ≤ a) �Γ � ti : si� � mi : �Γ� → �si�
(f : s1, . . . , sa → s)

�Γ � f(t1, . . . , ta) : s� � �f� ◦ 〈m1, . . . ,ma〉 : �Γ� → (
∏a

1�si�) → �s�

�Γ � t : s� = m : �Γ� → �s�
(s ≤ r)

�Γ � t : r� = �s ≤ r� ◦m : �Γ� → �s� → �r�

Fig. 2. Categorical semantics for proved terms.

as usual by morphism composition:

Lemma 2.7 (Well-Defined Semantics) Given a proved term Γ � t : s and an

algebra A:

• The semantic morphism �Γ � t : s� is unique; that is, the assignment ξ → �ξ�

is a total function.

• The algebra induces a functor (S,≤) → I between posetal categories, where

s ≤ s′ → �s ≤ s′� : �s� � �s′�, and so as a consequence the semantics can be

factored through the morphism �Γ � t : st�, that is to say, �Γ � t : s� = �st ≤
s� ◦ �Γ � t : st�.

• Let Γ � [x1 : s1, . . . , xn : sn]. If we have proved terms Γ � t : s and Γ′ � ui : si
where 1 ≤ i ≤ n, then Γ′ � t[u/x] : s and �Γ′ � t[u/x] : s� = �Γ � t : s� ◦ 〈�Γ′ �
u1 : s1�, . . . , �Γ

′ � un : sn�〉.
Equations between proved terms are defined only for coherent signatures. To

define coherence, first let ≡ be the symmetric and transitive closure of ≤. The

equivalence classes induced by ≡ on S are the connected components of (S,≤);

and (S,≤) is locally filtered, if for every two sorts s′ and s′′ in the same connected

component there is a sort s such that s′, s′′ ≤ s. Then a signature Sg is said to

be coherent if and only if it is regular and locally filtered. The intuition is that

terms of sort s′ and s′′ respectively could potentially be judged equal if they have a

“common super-sort” s.

Definition 2.8 (Order-Sorted Equation and Satisfaction) Let Sg be a co-

herent signature. An equation (in-context) in Sg is denoted by Γ � t = t′ : s,
where

• there are sorts s′, s′′ such that Γ � t : s′ and Γ � t′ : s′′ are proved terms in Sg;

• s′ and s′′ fall in the same connected component of (S,≤); and

• s is a common supersort of s′ and s′′ (which exists by the coherence condition).

A conditional equation (in-context) in Sg is a list of m + 1 equations-in-

context (where m ≥ 1) suggestively denoted by
∧m

α=1 Γ � tα = t′α : sα =⇒ Γ � t =
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Let Γ � [x1 : s′1, . . . , xn : s′n] be a context in (AxSub) and (AxCSub).

Γ � t = t′ : s ∈ Ax

(∀1 ≤ i ≤ n) Γ′ � ui : s
′
i

(AxSub)
Γ′ � t[u/x] = t′[u/x] : s

∧m
1 Γ � tα = t′α : sα =⇒ Γ � t = t′ : s ∈ Ax

(∀1 ≤ i ≤ n) Γ′ � ui : s
′
i

(∀1 ≤ α ≤ m) Γ′ � tα[u/x] = t′α[u/x] : sα
(AxCSub)

Γ′ � t[u/x] = t′[u/x] : s

Γ � t : s
(Ref)

Γ � t = t : s

Γ � t = t′ : s
(Sym)

Γ � t′ = t : s

Γ � t = t′ : s Γ � t′ = t′′ : s
(Trans)

Γ � t = t′′ : s

Γ � t = t′ : s
(Subsort) (s ≤ r)

Γ � t = t′ : r
Γ � t : s (∀1 ≤ i ≤ n) Γ′ � ui = u′i : si

(Cong) (Γ � [x1 : s1, . . . , xn : sn])
Γ′ � t[u/x] = t[u′/x] : s

Fig. 3. Theorems generated by an order-sorted theory Th � (Sg,Ax).

t′ : s. We say that an algebra A satisfies an equation if �Γ � t : s� = �Γ � t′ : s�.
We say that an algebra A satisfies a conditional equation if for all morphisms

u : U → �Γ�, �Γ � tα : sα�◦u = �Γ � t′α : sα�◦u implies �Γ � t : s�◦u = �Γ � t′ : s�◦u.
We define an order-sorted theory Th � (Sg ,Ax ) to be a pair consisting of

a signature Sg and a set of axioms Ax . Each axiom is either an equation or a

conditional equation. The theorems of the theory Th are those equations generated

by the rules of equational logic in Figure 3.

Lemma 2.9 (Generalised Substitution) The following rule is admissible by a

routine rule induction

Γ � t = t′ : s (∀1 ≤ i ≤ n) Γ′ � ui : si
(Sub) (Γ � [x1 : s1, . . . , xn : sn])

Γ′ � t[u/x] = t′[u/x] : s

Let Th � (Sg ,Ax ) be an order-sorted theory. If an Sg-algebra A satisfies all the

axioms in Ax , we call A a model of Th. The category of models OSMod(C, I)Th

is the full subcategory of OSAlg(C, I)Sg given by all the models of Th in (C, I).
Lemma 2.10 (Satisfaction is Well-Defined) As a consequence of Lemma 2.7,

satisfaction is well-defined up to subsort-polymorphic equality, as follows: Suppose

that we have a theorem Γ � t = t′ : s satisfied in a model A. If Γ � t = t′ : ŝ is also

a theorem, then it too is satisfied.

Proof. The existence of least sorts st and st′ means that s and ŝ are connected,

and so have a super-type s′. Thus each term has this type s′, and the result

follows by using factorisation from Lemma 2.7 and the left-cancellation properties
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of monomorphisms. �

The category Pres×,�((C, I), (D,J)) is defined by having objects functors

F : C → D such that finite products are preserved and F restricts to a functor

F|I : I → J (that is monics are also preserved). Suppose that we have a model A

in OSMod(C, I)Th . Then there is a model F∗A in OSMod(D,J)Th that is, roughly

speaking, defined by “taking the image of Sg in (C, I) induced by the model A,

and applying F”. Equally one may “apply F to homomorphisms of models” and

this process (which is absolutely standard in categorical type theory/logic; see for

example [6,16]) leads to a functor ApA : Pres×,�((C, I), (D,J)) → OSMod(D,J)Th .

A classifying category Cl(Th) for a theory Th is an FPI-category such that there

is an equivalence of categories

ApG : Pres×,�(Cl(Th), (D,J)) � OSMod(D,J)Th

and thus models of Th in (D,J) correspond to such structure preserving functors

with source Cl(Th).

Theorem 2.11 (Existence of Classifying Category) There is an FPI-

category Cl(Th) constructed out of the syntax of Th, in which there is a generic

model of Th with the property that equality of morphisms corresponds to derivability

of term equations. At an abstract level this notion is standard in categorical type

theory/logic; see for example [6,16]. We feel that our concrete construction is

simpler than that found in [20], and regard this as a small contribution. Such

existence proofs are notoriously tricky to get completely correct, and there are

notable errors in the literature. We use matching contexts and permutation

invariance [7,29] to replace the usual substitutions that rename variables, and we

think this makes our proofs simpler to state and prove (and hence less error prone).

Proof. Let Var be a (countable) fixed set of variables {V1, V2, . . .}. We call the

context Γs � [V1 : s1, . . . , Vn : sn]) the primary context for any sorts s1, . . . , sn. In

general, below, the metavariables x, y, z etc, possibly subscripted, range over Var .

Thus Γ � [x1 : s1, . . . , xn : sn] is a typical context as before, and we say that any

such context matches s � s1, . . . , sn.

First we define the objects T(Γ) of FOSAlg . Of course T(Γ) must be an S-sorted

set, and the components are sets of equivalence classes

T(Γ)s � Term(Γ)s/ ∼ where Term(Γ)s � { t | Γ � t : s in Th }

where we define the equivalence relation t ∼ t′ just in case we can derive Γ � t = t′ : s
in Th, and write [ t ] for a typical equivalence class.

Let Γ and Γ′ match s1, . . . , sn and s′1, . . . , s′m respectively. The morphisms

h : T(Γ) → T(Γ′) must be S-sorted functions (hs : T(Γ)s → T(Γ′)s | s ∈ S). These

are specified by lists hs � {Γ′ � t1, . . . , tn} where ti ∈ Term(Γ′)si and where

hs([ t̂ ] ∈ T(Γ)s) � [ t̂[t1, . . . , tm/x1, . . . , xm] ] ∈ T(Γ′)s
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It is easy to check this is well defined. Note that if

h � {Γ′ � t1, . . . , tn} : T(Γ) → T(Γ′) and h′ � {Γ′′ � t′1, . . . , t
′
m} : T(Γ′) → T(Γ′′)

then we have h ◦ h′ defined by

{Γ′′ � t1[t
′
1, . . . , t

′
m/x1, . . . , xm], . . . , tn[t

′
1, . . . , t

′
m/x1, . . . , xm]}

It is tedious but routine to verify that this gives rise to a category, relying crucially

on the substitution rules for equation derivation. �

Theorem 2.12 (Soundness and Completeness) Let Th be an order-sorted

theory. Γ � t = t′ : s is a theorem of Th if and only if Γ � t = t′ : s is satis-

fied by every model of Th.

Proof. Soundness follows by rule induction for Figure 3. For completeness, suppose

that Γ � t = t′ : s is satisfied in any model. Then in particular it is satisfied in the

generic model G in the classifying category Cl(Th). Thus we have �Γ � t : s�G =

�Γ � t′ : s�G and so we have (Γ | t) = (Γ | t′) which holds precisely when Γ � t = t′ : s
is a theorem. �

We conclude this section with a new result, although it is motivated by analogous

theorems [28]. The proof also makes use of matching contexts and permutations of

variables.

Theorem 2.13 (Relationship to Free Algebras) There is an equivalence be-

tween FPI-categories Cl(Th) and (FOSAlgop,J) where FOSAlg is the cate-

gory of free order-sorted algebras over finite sets of variables, and order-

sorted homomorphisms. Moreover the equivalence is given by an FPI-functor

Φ: Cl(Th) � (FOSAlgop,J).

Proof. With a view to showing that (FOSAlgop,J) is an FPI-category, we shall

show that FOSAlg is has finite coproducts, and then define J. Given objects T(Γ)

and T(Γ′) then the binary coproduct object is given by T(Δ � Γs,Γs′) where the

sorts match Γ and Γ′ respectively. The coproduct insertions are given by {Δ �
v1, . . . , vn} and {Δ � vn+1, . . . , vn+m}. Given morphisms

{Γ′′ � t1, . . . , tn} : T(Γ) → T(Γ′′) and {Γ′′ � t′1, . . . , t
′
m} : T(Γ′) → T(Γ′′)

then the mediating morphism is {Γ′′ � t1, . . . , tn, t
′
1, . . . , t

′
m}. Note that T(∅) is the

initial object.

Suppose that si ≤ ri for each 1 ≤ i ≤ n. Then there is an epic morphism i �
{Γs � x1, . . . , xn} : T(Γr) → T(Γs); it’s easy to verify that this is an epimorphism,

and hence yields a monomorphism in FOSAlgop. The luff subcategory J has all of

its morphisms the monomorphisms iop � {Γs � x1, . . . , xn} : T(Γs) → T(Γr). This

is certainly an inclusion category.
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Now we prove the equivalence. We define a functor Φ: Cl(Th) → (FOSAlgop,J)
as follows. Given a morphism (Γ | t1) . . . (Γ | tm) : s → r then Φ sends this to

{Γs � πt1, . . . , πtm} : T(Γr) → T(Γs)

where permutation π is specified by π : xi → Vi. We check this is well defined.

Suppose that

(Γ | t1) . . . (Γ | tm) = (Γ′ | t′1) . . . (Γ | t′m).

We need to check that

{Γs � πt1, . . . , πtm}�Φ((Γ | t1) . . . (Γ | tm))

=Φ((Γ′ | t′1) . . . (Γ | t′m)) � {Γs � π′t′1, . . . , π
′t′m}

By definition we have Γ � tj = ρt′j : rj where ρ is specified by ρ : x′i → xi. We can

deduce, using substitution rules for equations, that πΓ � πtj = π(ρt′j) : rj and this

is exactly Γs � πtj = π′t′j : rj as required, since π′ = π ◦ ρ. We feel that the use

of permutations, while equivalent to the use of simultaneous variable renamings by

substitution, improves readability and more importantly simplifies calculations by

making use of judgements that are permutation invariant.

(Φ is essentially surjective):

For any object s in Cl(Th) we have Φ(s) = T(Γs). But one easily shows

that for any T(Γ) where Γ matches s, we have T(Γ) ∼= T(Γs) where the inverse

homomorphisms “swap variables” xi and Vi.

(Φ is faithful): Let

Φ((Γ | t1) . . . (Γ | tm)) = Φ((Γ′ | t′1) . . . (Γ | t′m)).

We need to check that Γ � tj = ρt′j : rj . By the assumption we have

{Γs � πt1, . . . , πtm} = {Γs � π′t′1, . . . , π
′t′m}

Hence Γs � πtj = πt′j : rj . Therefore we can deduce that Γ � tj = (π−1 ◦ π′)t′j : rj ;
we are done since π−1 ◦ π′ = ρ.

(Φ is full): Let

{Γs � t1, . . . , tm} : Φ(r) = T(Γr) → Φ(s) = T(Γs)

Then (Γs | t1, . . . , tm) is the appropriate Cl(Th) morphism.

(Φ is an object of Pres×,�(Cl(Th), (FOSAlgop,J))): We need to check that

Φ|I : I → J where I is the inclusion category of Cl(Th). Let s ≤ r. Note that

Φ((Γ | x1) . . . (Γ | xn) : s → r) is the monomorphism {Γs � x1, . . . , xn} : Γr → Γs �

3 Multi-Language Equational Logic

3.1 Fundamentals of Multi-Languages

Throughout this section we often refer to a Running Example, introduced below

and subsequently extended, to illustrate how the theory works in a concrete setting
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0 : nat zero constant

s : nat → nat successor function

+ : nat,nat → nat addition operator

(a) Sg1 operators.

(∀c ∈ Char) c : chr character constant

next : chr → chr next character function

+ : str, str → str string concatenation

(b) Sg2 operators.

Fig. 4. Operators of order-sorted signatures Sg1 and Sg2.

(see Section 3.3 for the outline of a more complex example).

Running Example. Our example is defined using the following order-sorted sig-

natures:

• The signature Sg1 defines the symbols of a language for constructing simple

mathematical expressions over natural numbers in Peano’s notation. Let the

poset of sorts (S1,≤1) of Sg1 be a poset with a single sort nat denoting the

type of natural numbers, and let the operators be those in Figure 4a.

• Let c ∈ Char � {a, b, . . . , z} be the metavariable ranging over a finite set Char

of characters. The signature Sg2 defines a language to build strings over Char.

The set of sorts S2 of Sg2 carries the sort str for strings and the sort chr
for characters. The subsort relation ≤2 is the reflexive relation on S2 plus

chr ≤2 str (i.e., characters are one-symbol strings), and the operator symbols

in Sg2 appear in Figure 4b.

We model Sg1 and Sg2 by the order-sorted algebras A1 and A2 (see Figure 5) in

(Set , Incl), the FPI-category of sets with inclusion functions forming the inclusion

structure. The symbol c′ in the definition of �next�A2 denotes the character that

follows c in Char (assuming the standard alphabetical order).

Remark 3.1 The forthcoming definitions and results gradually define and illus-

trate multi-languages, and give relationships between multi-languages and order-

sorted languages. A multi-language signature 3.2 is specified as two order-sorted

signatures (as in the Running Example) together with an interoperability rela-

tion between the two signatures. This determines the terms of the multi-language.

Note that the relation is not a universal property of the underlying signatures; and

also note a multi-language signature explicitly provides users with the original two

language specifications. We show in 3.3 that there are nice notions of categories

of signatures, both order-sorted and multi-language. We shall also see that we can

exhibit a functor that maps a multi-language signature to an order-sorted signa-

ture (the associated signature 3.4), blending the two original signatures into one.

After defining multi-language algebras 3.5 and homomorphisms 3.6, Theorem 3.7

will provide, via associated signatures, a clear semantic relationship between multi
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Sorts �nat�A1 � N

�chr�A2 � Char

�str�A2 � Char∗

Operators �0�A1 � ∗ → 0: 1 → N

�s�A1 � n → n+ 1: N → N

�+�A1 � (n1, n2) → n1 + n2 : N2 → N

(∀c ∈ Char) �c�A2 � ∗ → c : 1 → Char

�next�A2 � c → c′ : Char → Char

�+�A2 � (s1, s2) → s1s2 : (Char
∗)2 → Char∗

Subsorts �chr ≤2 str�A2 � c → c : Char → Char∗

Fig. 5. Categorical semantics of Sg1 and Sg2.

and order-sorted languages. In particular, it suggests how to give the definitions of

(multi-language) terms, equations, and satisfaction using the associated signature.

We can then reason equationally about interoperability of the two given languages.

This takes us to Section 3.2 where we study equational reasoning in detail.

In order to define multi-language signatures we introduce some crucial notation.

We denote by + the disjoint union of two sets: the insertion morphisms that

form a coproduct in the category of sets are injective functions, thus they have left

inverses (and one has a model of disjoint union). In the following, if S1 and S2 are

two sets of sorts and s ∈ Si with i � 1, 2, we write

si for the element ιi(s) ∈ S1 + S2 where ιi(s) � (s, i) ∈ S1 × {1} ∪ S2 × {2}

Thus in relationships si � s′j we have s ∈ Si and s′ ∈ Sj . This is a very useful

notation but perhaps requires care on first reading. Moreover, if w � s1, . . . , sn ∈
Sn
i , then we write wi for (s1)i, . . . , (sn)i.

Definition 3.2 (Multi-Language Signature) A multi-language signature

SG � (Sg1,Sg2,�) is

• a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts (S1,≤1) and

(S2,≤2), respectively; and

• a (binary) relation join � over S1 +S2 such that si � s′j with i, j ∈ {1, 2} and

i �= j.

The idea is that if si � s′j , and Γ � t : s is a proved term in one language, then t

can be used in place of a term t′ such that Γ′ � t′ : s′ in the other language: as

in [21], “ML code can be used in place of Scheme code”. This is made precise in
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due course.

Definition 3.3 OSSg is the category of order-sorted signatures with mor-

phisms h : Sg1 → Sg2 given by

• a monotone function h : (S1,≤1) → (S2,≤2) (where we will write h(w) �
h(s1), . . . , h(sn) for w � s1, . . . , sn ∈ Sn

1 ), and

• a mapping h from the operators in Sg1 to those in Sg2 that preserves rank:

given k : s in Sg1, then h(k) : h(s) in Sg1; and given f : w → s in Sg1, then

h(f) : h(w) → h(s) in Sg2.

Moreover, we denote by MLSg the category of multi-language signatures

in which a morphism

H � (h1, h2) : (Sg1,Sg2,�) → (Sg ′1,Sg
′
2,�

′)

is defined by two morphisms h1 : Sg1 → Sg ′1 and h2 : Sg2 → Sg ′2 in OSSg such that

they preserve the join relation, namely si � s′j in (Sg1,Sg2,�) implies (hi(s)i �
′

(hj(s
′))j in (Sg ′1,Sg

′
2,�

′).

Definition 3.4 (Associated Signature) Let SG � (Sg1,Sg2,�) be a multi-

language signature. The associated signature SG of SG is the order-sorted sig-

nature defined as follows:

• the poset of sorts is given by (S1 + S2,≤), where si ≤ rj if i = j and s ≤i r;

• if f : w → s is an operator in Sg i for some i � 1, 2, then fi : wi → si is a

function symbol in SG;

• if k : s is a constant in Sg i for some i � 1, 2, then ki : si is a constant in SG;

and

• a conversion operator ↪→si,s′j : si → s′j for each constraint si � s′j.

The associated signature functor (−) : MLSg → OSSg maps each multi-

language signature SG � (Sg1,Sg2,�) to its associated signature SG , and each

multi-language signature morphism H : SG → SG ′ to the order-sorted signature

morphism H : SG → SG ′ given by H(si) � (hi(s))i for each s ∈ Si (hence

si ∈ S1 + S2) and H(fi) � (hi(f))i for each f ∈ Sg i (hence fi in SG).

Running Example. (−) embeds the multi-language signature SG into OSSg , pro-
viding the order-sorted version SG of the multi-language. SG generates Sg i-terms

(see Section 3.2) as well as hybrid multi-language terms involving conversion op-

erators such as [c : chr2, n : nat1] � +1( ↪→chr2,nat1 (c), n) : nat1. From now on,

we use colours in the examples for disambiguating the left and the right inclusion

in place of subscripts 1 and 2. Moreover, we use an infix notation whenever the

operators lend themselves well to do so. That is, the previous term is represented

by [c : chr, n : nat] � ↪→chr,nat (c) + n : nat.

Such a functor outlines an embedding of multi-language signatures into order-

sorted signatures, enabling us to see a multi-language as an ordinary language.
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Indeed, it is easy to see that (−) is both injective on objects and a faithful functor.

Definition 3.5 (Multi-Language Algebra) Let SG � (Sg1,Sg2,�) be a multi-

language signature. An SG-algebra A in an FPI-category (C, I) is given by

• a pair of order-sorted algebras A1 and A2 in (C, I) over Sg1 and Sg2, respec-

tively; and

• a boundary morphism �si � s′j�A : �s�Ai → �s′�Aj in C for each constraint

si � s′j.

An algebra sets out the meaning of a multi-language: The meaning of the un-

derlying languages, and how terms of sort s ∈ Si can be interpreted as terms of sort

s′ ∈ Sj . Put differently, “boundary morphisms regulate the flow of values across

A1 and A2” [22].

Definition 3.6 (Multi-Language Homomorphism) Let SG � (Sg1,Sg2,�)

be a multi-language signature, and let A and B be two SG-algebras. An SG-

homomorphism h : A → B is given by a pair of order-sorted homomorphisms

h1 : A1 → B1 and h2 : A2 → B2 such that they commute with boundary functions,

namely, if si � s′j, then the following diagram commutes:

�s�Ai �s′�Aj

�s�Bi �s′�Bj

�si�s′j�A

(hi)s (hj)s′

�si�s′j�B

Given a multi-language signature SG , the class of all SG-algebras and SG-

homomorphisms form a category denoted by MLAlg(C, I)SG . We have a simple

connection between this category and OSAlg(C, I)SG , outlined in Theorem 3.7, after

more of the Running Example.

Running Example. Suppose we are interested in a multi-language SG �
(Sg1,Sg2,�) according to the following specifications:

• terms denoting natural numbers can be used in place of characters according

to the function chr : N → Char that maps the natural number n to the n-th

character symbol modulo |Char|; and
• terms denoting strings can be used in place of natural numbers according to

the function len: Char∗ → N, namely the length of the string.

In order to get such a multi-language, we provide (1) the join relation� on S1+S2

and (2) a boundary morphism �si� s′j�A : �s�Ai → �s′�Aj for each constraint si� s′j
introduced by �:

• nat1 � chr2 and nat1 � str2 with boundaries �nat1 � chr2�A(n) � �nat1 �

str2�A(n) � chr(n); and

• chr2 � nat1 and str2 � nat1 with boundaries �chr2 � nat1�A(c) � len(c) = 1

and �str2 � nat1�A(s) � len(s).
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The next theorem yields a formal correspondence between multi-languages and

order-sorted languages: We can make a multi-language signature SG into an order-

sorted one by applying the functor (−), and thus blending the underlying languages.

Nevertheless, we do not lose any semantical information if we consider the category

of algebras over SG and SG .

Theorem 3.7 There is a natural isomorphism between the category of multi-

language algebras over SG and the category of order-sorted algebras over the as-

sociated signature SG

η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦ (−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG

where there are functors MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg →
Catop that map signatures to their category of algebras in (C, I).

Proof. The functors are defined on objects by MLAlg(C, I)(SG) � MLAlg(C, I)SG
and OSAlg(C, I)(Sg) � OSAlg(C, I)Sg . Now, let SG � (Sg1,Sg2,�) and SG ′ �
(Sg ′1,Sg

′
2,�

′), and let H � (h1, h2) : SG → SG ′ be a signature morphism between

them. We shall define a functor H∗ : MLAlg(C, I)SG′ → MLAlg(C, I)SG and let

MLAlg(C, I)(H) � H∗. Let A be an SG ′-algebra in MLAlg(C, I)SG′ . Then, the

multi-language SG-algebra H∗A is defined as follows:

• We define its order-sorted components (H∗A)1 and (H∗A)2. Let i � 1, 2:

· the interpretation of sorts is given by �s�(H∗A)i � �hi(s)�Ai for each s ∈ Si;

· given the function symbol f : w → s in Sg i, we define �f : w → s�(H∗A)i �
�hi(f) : hi(w) → hi(s)�Ai ;

· the constant symbol k : s in Sg i is interpreted by letting �k�(H∗A)i �
�hi(k)�Ai ; and

· �s ≤i r�(H∗A)i � �hi(s) ≤′
i hi(r)�Ai for each subsort constraint s ≤i r in

Sg i.

The fact that (H∗A)i is a proper order-sorted Sg i-algebra is ensured by the

properties of the (multi-language) signature morphism H.

• Boundary morphisms are defined by �si � s′j�H∗A � �hi(s)�
′ hj(s′)�A for each

constraint si � s′j in SG .

In order to define the action of H∗ on homomorphisms, suppose that g : A → B is a

multi-language SG ′-homomorphism in MLAlg(C, I)SG′ . Then, (H∗g)i : (H∗A)i →
(H∗B)i is defined by the Si-sorted morphisms

•
(
(H∗g)i

)
s
� (gi)hi(s), which is well-defined since gi : Ai → Bi is an order-sorted

Sg ′i-homomorphism and �hi(s)�Ai = �s�(H∗A)i .

The commutativity of the diagram in Definition 3.6 is given by a tedious but simple

diagram chase.
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�hi(s)�Ai �hj(s
′)�Aj

�s�(H∗A)i �s′�(H∗A)j

�s�(H∗B)i �s′�(H∗B)j

�hi(s)�Bi �hj(s
′)�Bj

(gi)hi(s)

�hi(s)�
′hj(s

′)�A

(gj)hj(s′)

�si�s′j�H∗A

(
(H∗g)i

)
s

(
(H∗g)j

)
s′

�si�s′j�H∗B

�hi(s)�
′hj(s

′)�B

We next define a functor h∗ : OSAlg(C, I)Sg2 → OSAlg((C, I))Sg1 and set

OSAlg(C, I)(h) � h∗, where h : Sg1 → Sg2 is an order-sorted signature morphism.

This is similar to the definition of H∗ above. First pick any (order-sorted) Sg2-

algebra A. We need to define the order-sorted Sg1-algebra h∗A. We define

• objects �s ∈ S1�h∗A � �h(s)�A in C and hence �w�h∗A � �h(s1)�A × · · · ×
�h(sn)�A for w � s1, . . . , sn ∈ Sn

1 ;

• morphisms �f : w → s ∈ Sg1�h∗A � �h(f) : h(w) → h(s) ∈ Sg2�A : �w�h∗A →
�s�h∗A and morphisms �k ∈ Sg1�h∗A � �h(k)�A : 1 → �s�h∗A; and

• a morphism �s ≤1 r ∈ S1�h∗A � �h(s) ≤2 h(r)�A : �s�h∗A � �r�h∗A in I.

We omit the verification that semantics of operators commutes with the semantics

of subsorting, although this is essentially immediate since A is an Sg2-algebra.

Now let g : A → B be an order-sorted Sg2-homomorphism. We define the Sg1-

homomorphism h∗(g) : h∗A → h∗B by setting the components to be (h∗(g))s∈S1 �
gh(s) : �h(s)�A → �h(s)�B.

Now we define the natural transformation η by specifying the components

ηSG : MLAlg(C, I)SG → OSAlg(C, I)SG . Pick any SG-homomorphism h : A → B.

First we define the (order-sorted) SG-algebra ηSGA by setting

• �si ∈ S1 + S2�ηSGA � �s�Ai in C and �w�ηSGA � �s1�Ai × · · · × �sn�Ai for each

w � s1, . . . , sn ∈ (S1 + S2)
n;

• morphisms �fi : wi → si�ηSGA � �f : w → s�Ai and �ki�ηSGA � �k�Ai : 1 →
�s�Ai ; and

• �↪→si,s′j : si → s′j�ηSGA � �si � s′j�A : �s�Ai → �s′�Aj

• �si ≤ rj�ηSGA � �s ≤i r�Ai : �s�Ai � �r�Ai in I for each si ≤ rj in S1 + S2

(don’t forget that i = j).

where the required commutation properties follow immediately since the Ai are

Sg i-algebras. Second we define SG-homomorphism ηSG(h) : ηSGA → ηSGB. Since

by the definition of h there are Sg i-homomorphisms hi : Ai → Bi, we can define

ηSG(h)si∈S1+S2 � (hi)s : �s�Ai → �s�Bi , and ηSG(h)si inherits the required commut-

ing properties from h (commuting with ↪→si,s′j ), and from the hi (commuting with

the fi).

S. Buro et al. / Electronic Notes in Theoretical Computer Science 352 (2020) 79–103 95



One can see that ηSG is an isomorphism by reversing the construction and by

noting there is a one-one correspondence between the sorts, operators, and subsort

constraints in SG and those in Sg1 and Sg2. This is straightforward. More difficult

is naturality of η which we show next.

Let H � (h1, h2) : SG � (Sg1,Sg2,�) → SG ′ � (Sg ′1,Sg
′
2,�

′). Then we need to

show that the diagram below commutes.

MLAlg(C, I)SG OSAlg(C, I)SG

MLAlg(C, I)SG′ OSAlg(C, I)
SG′

ηSG

H∗

ηSG′

H
∗

Pick any morphism g : A → B in MLAlg(C, I)SG′ . First we need to show that

ηSG(H
∗A) = H

∗
(ηSG′A). Let us check only that these SG-algebras provide equal

meaning to sorts si ∈ S1 + S2 where we have (hi(s))i ∈ S′
1 + S′

2.

�si�ηSG(H∗A) = �s ∈ Si�(H∗A)i = �hi(s) ∈ S′
i�Ai

= �(hi(s))i ∈ S′
1 + S′

2�ηSG′A = �H(si)�ηSG′A = �si�H∗
(ηSG′A)

Now g furnishes us with SG ′-homomorphisms gi : Ai → Bi, and we need to show

that

ηSG(H
∗g) = H

∗
(ηSG′g) : �hi(s) ∈ S′

i�Ai → �hi(s) ∈ S′
i�Bi

is an equality of SG-homomorphisms. But this follows from the following calculation

on components of S1 + S2-sorted morphisms

(ηSG(H
∗g))si = ((H∗g)i)s = (gi)hi(s) = (ηSG′g)(hi(s))i = (ηSG′g)(H(si))

= (H
∗
(ηSG′g))si

and the proof is completed. �

Running Example. The multi-language semantics of the term introduced in the

previous example is given by the algebra ηSGA which leads to �[c : chr, n : nat] �
↪→chr,nat (c) + n : nat�ηSGA = (c, n) → n+ 1: Char× N → N.

3.2 Equational Reasoning in a Multi-Language Context

In this section we define multi-language proved terms, and give them a semantics.

Then we define multi-language equations and semantic satisfaction. From this we

can define theories and models, and hence prove soundness and completeness.

Let SG � (Sg1,Sg2,�) be a multi-language signature. A (multi-language)

proved term Γ � t : si is a proved term over the associated signature SG . It

follows that if Γ � t : s is a proved term over Sg i, then Γ � t : s is a proved term in

SG , where Γ � t : s � Γ � t : s and

• s � si for each s ∈ Si; and Γ � [x1 : s1, . . . , xn : sn] for each context Γ �
[x1 : s1, . . . , xn : sn] over Sg i;

• t is recursively defined over the syntax of raw terms generated by Sg i: x � x;

k � ki; and f(t1, . . . , ta) � fi(t1, . . . tn).
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(eq1,1) [n : nat] � 0 + n = n : nat

(eq1,2) [n : nat,m : nat] � s(n) + m = s(n + m) : nat

(eq1,3) [n : nat,m : nat] � n + m = m + n : nat

(a) Th1 axioms.

(eq2,1) � next(a) = b : chr

(eq2,...) � . . . = . . . : chr

(eq2,26) � next(z) = a : chr

(b) Th2 axioms.

Fig. 6. Axioms of order-sorted theories Th1 and Th2.

Due to the injectivity of this construction, we shall refer to it as the inclusion of

an order-sorted term into the multi-language, and we informally say that a multi-

language “contains” the underlying languages. Furthermore, the definition of multi-

language terms also includes hybrid terms that are not the result of the inclusion of

an order-sorted term but which are constructed using the conversion operators in

the associated signature.

Given a multi-language SG-algebra A, the categorical semantics of a (multi-

language) term Γ � t : si is the order-sorted semantics of Γ � t : si induced

by ηSGA, namely �Γ � t : si�A � �Γ � t : si�ηSGA. As expected, a multi-language

preserves the semantics of the underlying terms:

Proposition 3.8 Let A be a multi-language SG-algebra over SG � (Sg1,Sg2,�).

If Γ � t : s is a proved term over Sg i, then �Γ � t : s�A = �Γ � t : s�ηSGA = �Γ �
t : s�Ai.

Regularity and coherence for a multi-language signature SG � (Sg1,Sg2,�) are

defined with respect to its associated signature. That is, SG is regular (resp.,

coherent) if SG is regular (resp., coherent). It is immediate that SG is regular

(resp., coherent) if and only if Sg1 and Sg2 are regular (resp., coherent).

Definition 3.9 (Multi-Language Equation and Satisfaction) Let SG be a

coherent multi-language signature. A (conditional) equation for SG is an order-

sorted (conditional) equation over SG. A multi-language algebra A satisfies any

such (conditional) equation if the (conditional) equation is satisfied by ηSGA.

An immediate consequence of Proposition 3.8 is that every Sg i-equation satisfied

byAi is also satisfied by the multi-language algebraA (in its inclusion form provided

by the mapping (−)).

A multi-language theory TH � (SG ,AX ) is a pair of a multi-language sig-

nature SG and a set of (conditional) multi-language equations AX over SG , namely

the axioms of the theory. The theorems of TH are the equations Γ � t = t′ : si
derivable from (SG ,AX ). A multi-language SG-algebra that satisfies all the axioms

in AX is said a model of TH , and MLMod(C, I)TH denotes the full subcategory

of models of MLAlg(C, I)TH . We now introduce the categories of theories in order

to define the associated theory of a multi-language theory. From now on, when we

write order-sorted theories Th1, Th2, Th, Th
′, etc., we assume they are defined

as Th1 � (Sg1,Ax 1), Th2 � (Sg2,Ax 2), Th � (Sg ,Ax ), Th ′ � (Sg ′,Ax ′), etc.,
respectively.

Running Example. Let Th1 � (Sg1,Ax 1) and Th2 � (Sg2,Ax 2) be the order-

sorted theories over Sg1 and Sg2 axiomatized by the equations provided in Figure 6.
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We can generate from Ax 1 and Ax 2 a set AX of multi-language equations by apply-

ing (−) to each equation. For instance, (eq1,1) � [n : nat] � 0 + n = n : nat becomes

(eq1,1) � [n : nat] � 0 + n = n : nat. Note that a substantial change occurs when

mapping an order-sorted equation to a multi-language one. Consider again (eq1,1).

A substitution in the order-sorted world can only plug t, where Γ � t : nat in Sg1,

into the variable n : nat. However, a multi-language substitution can substitute any

t′, where Γ′ � t′ : nat in SG , for n : nat in the lifted equation (eq1,1)—including,

crucially, the possibility that t′ is a hybrid multi-language term.

The behaviour of boundary morphisms can be axiomatized by adding the fol-

lowing equations to AX :

(EQ1) � ↪→nat,chr (0) = a : chr

(EQ2) � ↪→nat,str (0) = a : str

(EQ3) [c : chr] � ↪→chr,nat (c) = s(0) : nat

(EQ4) [c : chr] � ↪→str,nat (c) = s(0) : nat

(EQ5) [n : nat] � ↪→nat,chr (s(n)) = next(↪→nat,chr (n)) : chr

(EQ6) [n : nat] � ↪→nat,str (s(n)) = next(↪→nat,str (n)) : str

(EQ7) [s : str, v : str] � ↪→str,nat (s + v) = ↪→str,nat (s) + ↪→str,nat (v) : nat

Definition 3.10 Let OSTh be the category of order-sorted theories whose

morphisms h : Th1 → Th2 are signature morphisms h : Sg1 → Sg2 in OSSg
that preserve theorems, that is, if Γ � t = t′ : si is a theorem of Th1 with

Γ � [x1 : s1, . . . , xn : sn], then Γ′ � h(t) = h(t′) : h(si) is a theorem of Th2, where

Γ′ � [x1 : h(s1), . . . , xn : h(sn)] and h(t) and h(t′) are inductively defined over the

syntax according to the action of h on function symbols and constants.

The category of multi-language theories is denoted by MLTh and a theory

morphism H : (SG1,AX 1) → (SG2,AX 2) is a signature morphism H : SG1 → SG2

in MLSg such that if Γ � t = t′ : si is a theorem of (SG1,AX 1) with Γ �
[x1 : s1, . . . , xn : sn], then Γ′ � H(t) = H(t′) : H(si) is a theorem of (SG2,AX 2),

where Γ′ � [x1 : H(s1), . . . , xn : H(sn)].

Functors MLAlg(C, I) and OSAlg(C, I) can be easily extended to

MLMod(C, I) : MLTh → Catop and OSMod(C, I) : OSTh → Catop, respectively,

such that they associate to each signature its corresponding category of models.

Then, (−) : MLTh → OSTh is defined by TH � (SG ,AX ) on objects and by H on

morphisms H : TH 1 → TH 2.

Proposition 3.11 MLMod(C, I) and OSMod(C, I) ◦ (−) are isomorphic functors.

Let η be the natural isomorphism between them and TH a multi-language the-

ory. Then, ηTH is the isomorphism between categories MLMod(C, I)TH and

OSMod(C, I)TH .

Theorem 3.12 (Soundness and Completeness) Let TH be a multi-language

theory. Γ � t = t′ : s is a theorem of TH if and only if Γ � t = t′ : s is satisfied by

every model of TH .
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3.3 An Extended Example

The Running Example has the sole purpose of illustrating our theory in an elemen-

tary way: we are very much aware of its limitations. Here we give a taste of a more

realistic example. For space reasons, we can convey only the main ideas: full details

are in an extended version of the paper [3].

We define a new multi-language by blending a simple functional core with a

minimal imperative language. The former is of course suited to writing programs

that are easier to reason about, whereas the latter provides a more straightfor-

ward procedural and low-level approach to software development. We formalise the

simply-typed lambda calculus and a simple imperative language as two equational

theories, and we blend them together in order to provide the gist of an interoper-

ability between the functional and imperative paradigms. More complex examples

can be built along the lines of the one presented here.

We assume Imp and λ� to be the signatures of a small imperative language and

the simply-typed lambda-calculus, respectively. In the following, we use colours blue

for denoting Imp code and red for λ�-terms. The interoperability we wish to provide

should allow the use of λ�-terms as Imp-expressions and vice versa. For instance,

we would like to write multi-language programs such as x = (λy:int . y + y) 1,

which encodes the assignment to the variable x of the value obtained by applying

the λ�-function (λy:int . y + y) to the Imp-numeral 1. Although minimal, its

interpretation requires several applications of the boundary functions: First, we

need to compute the result of the function application, which in turn needs the

evaluation of 1 as a λ�-term. Then, the resulting term has to be converted back to

an Imp-numeral in order to be assigned to x.

The multi-language signature λ�-Imp providing the desired interoperability is

given by coupling the signatures Imp and λ� with the join relation specified by

e � exp and exp � e, where e is the sort of Imp-expressions and exp the sort of

λ�-terms. The semantics of the generated multi-language programs is obtained

by introducing a boundary function for each �-constraint. For instance, given a

standard denotational semantics for both the underlying languages, the boundary

function �e�exp� can provide each Imp-expression with a λ�-meaning in the follow-

ing way: Let e be the semantics of such an Imp-expression. We can first transform

a λ�-environment to an Imp-environment, run e on its conversion, and then move

the resulting Imp-values to suitable λ�-values.

The equational axiomatization of such a boundary function can be specified by

the following multi-language equations: (1) ↪→e,exp (i) = i and (2) ↪→e,exp (x) = x.

The first equation allows λ�-integers to be converted to Imp-numerals of the same

form. In more realistic examples, the conversion of values across languages should

take into consideration different machine representations (for instance, if the λ�

language does not admit an explicit representation of integers, we may convert the

integer i to its corresponding Church-numeral). Equation (2) provides a match

between Imp and λ� variables with the same name. This enables a natural way for

moving stored values across the two languages. For instance, the multi-language

program x = (λy:int . y + y) z acts in the same way of the previously described

S. Buro et al. / Electronic Notes in Theoretical Computer Science 352 (2020) 79–103 99



one but applying the λ�-function to the value stored in the Imp-variable z.

On the other hand, the boundary function �exp � e� works in a dual manner

for providing λ�-terms with an Imp-meaning. Given all these specifications, the

equational logic provides the following chain of equalities:

x = (λy:int . y + y) 1 = x = 1 + 1 = x = 2 = x = 2

4 Further Multi-Language Constructions

Buro and Mastroeni [4] provides three different multi-language constructions based

on boundary morphism properties (although in their work, morphisms are only set-

theoretic functions). In Section 3, we studied a categorical equational logic for the

simplest construction. Here we briefly discuss the other two, each a refinement of

the first.

The first refinement of multi-language signatures is accomplished by allowing all

conversion operators ↪→si,s′j : si → s′j in the associated signature to be replaced by

subsort polymorphic operators ↪→ : si → s′j that do not carry any sort information.

One can check that any associated signature SG defined in this way remains an

order-sorted signature if and only if the following additional constraint holds for

SG :

si � s′j , ri � r′j , and si ≤i ri imply s′j ≤j r
′
j (1)

Multi-language algebras are then restricted by the following monotonicity require-

ment:

si�s′j , ri�r′j , and si ≤i ri imply �s′ ≤j r
′�Aj ◦ �si�s′j�A = �ri�r′j�A ◦ �s′ ≤j r

′�Aj

(2)

In this new multi-language construction, we can prove the following version of The-

orem 3.7:

Theorem 4.1 Assume (1) and (2) for multi-language signatures and algebras,

respectively. There is a natural isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I) ◦
(−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG , where there are functors

MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg → Catop that map signatures

to their category of algebras in (C, I).
Proof. The proof is almost identical to the proof of Theorem 3.7. That each

ηSGA is a proper order-sorted algebra boils down to the fact that each �↪→ : si →
s′j�ηSGA commutes with the desired morphisms in I; but this commutativity follows

immediately from (2). �

The second refinement of multi-language signatures aims to achieve a multi-

language construction which consists only of the union of the underlying languages,

that is no conversion operator is added to the associated signature and single-

language operators are not tagged. Such a construction is particularly useful when

mode ling the extension of a language rather than the union of two already existing

languages.
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The notion of multi-language signature is refined by assuming that

• (S1 + S2,�) is a poset; and

• f : w → s in Sg i and f : w′ → s′ in Sgj with wi � w′
j , then si � s′j .

and the associated signature SG is defined as follows:

• the poset of sorts is given by (S1 + S2,≤), where si ≤ rj if i = j and s ≤i r or

i �= j and si � rj ;

• if f : w → s is a function symbol in Sg i, then f : wi → si is a function symbol

in SG , and similarly for constants.

Multi-language algebras now force boundary morphisms to act as subsort mor-

phisms. This means that if the function symbol f appears with more than one

rank f : w → s and f : w′ → r in Sg i and Sgj , respectively, with (s1)i, . . . , (sa)i �
w � w′ � (r1)j , . . . , (ra)j , then the following diagram commutes:

�s1�Ai × · · · × �sa�Ai �s�Ai

�r1�Aj × · · · × �ra�Aj �r�Aj

�f : w1→s�Ai

�(s1)i�(r1)j�A×···×�(sa)i�(ra)j�A �si�rj�A

�f : w2→r�Aj

Theorem 4.2 Assume these new hypotheses for multi-language signatures and al-

gebras, respectively. There is a natural isomorphism η : MLAlg(C, I) ⇒ OSAlg(C, I)◦
(−) inducing MLAlg(C, I)SG ∼= OSAlg(C, I)SG , where (as before) there are functors

MLAlg(C, I) : MLSg → Catop and OSAlg(C, I) : OSSg → Catop.

Conclusions and Future Research

Equational logic is a simple fragment of first-order logic with several applications

to computer science [12,34,17]. In this paper, we have addressed the problem of

equational deduction in a multi-language context. We have lifted the order-sorted

equational logic of [13] to the algebraic framework of multi-languages introduced

by [4], and we have proved the soundness and the completeness of the resulting

deduction system. The main benefit of the theoretical development in this paper is

a solid mathematical foundation for reasoning about equalities in a multi-language

context.

Among all the applications, one motivation for extending the theory of equa-

tional logic to a multi-language context resides in the possibility of providing oper-

ational semantics to multi-languages, in a similar way to [11]. In future work, we

plan to investigate this in the context of rewriting logic [31], where axioms might

be partitioned into a set R of rewriting rules and a set E of equations in order to

perform rewriting modulo E.

We know that there is considerable practical interest in understanding how real

languages and systems may be integrated to exploit advantages of each individual

system. To make real progress, we believe that practical advances need to be made
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in synchrony with theoretical developments, with each approach supporting and

informing the other. To this end, we are pursuing practical developments of the

work presented in this paper. As a side note, we have also begun to look at the

implementation of our examples within Maude [5].

We deduce unconditional equations but allow conditional axioms. This approach

has merit from the point of view of practical specifications, and reasoning about

them. That said, one could be rather more expressive if one allows conditional equa-

tions as primary judgements of a deduction system. In such a case, the semantics of

judgements could be given in an internal manner by making use of categories with

equalisers [19]. We are currently working on such a system, with a view to giving

a sound and complete semantics, and the results will appear in a future paper.

There are interesting questions concerning the appropriate category theory, and the

answers will have connections to work such as [25]. And further, since equational

theories give rise to free algebra monads [30], further studies should investigate

the possibility of extending/generalizing the results in this paper to the notion of

monad [23]. Here, however, our intention has been to provide an account that is

very general (categorical) but not so abstract that applications become obfuscated.

Finally, we wish to note that the approach presented in this paper generalises

to the combination of an arbitrary number n of languages by recursively combin-

ing the (associated theory of the) first Th1, . . . ,Thn−1 theories with Thn. Such a

modularity property strengthens the framework both from a theoretical and practi-

cal perspective, enabling the construction of complex theories on the basis of more

elementary ones.
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