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Abstract. An always-connected temporal graph G = 〈G1, ..., GL〉 with
underlying graph G = (V,E) is a sequence of graphs Gt ⊆ G such that
V (Gt) = V and Gt is connected for all t. This paper considers the property
of k-edge-deficiency for temporal graphs; such graphs satisfy Gt = (V,E−
Xt) for all t, where Xt ⊆ E and |Xt| ≤ k. We study the Temporal
Exploration problem (compute a temporal walk that visits all vertices
v ∈ V at least once and finishes as early as possible) restricted to always-
connected, k-edge-deficient temporal graphs and give constructive proofs
that show that k-edge-deficient and 1-edge-deficient temporal graphs can
be explored in O(kn logn) and O(n) timesteps, respectively. We also give
a lower-bound construction of an infinite family of always-connected k-
edge-deficient temporal graphs for which any exploration schedule requires
at least Ω(n log k) timesteps.
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1 Introduction

Given a simple, connected, undirected graph G and a start vertex s ∈ V (G),
the task of exploring G, i.e., computing a sequence of consecutively crossed
edges e ∈ E(G) that begins at s and visits every vertex v ∈ V (G) at least once,
is both natural and well-understood. A closely related problem was initially
considered by Shannon [19], who designed a mechanical maze-solving machine
which implemented a depth first search-type technique in order to locate, within
a given maze, a prespecified goal. This ‘searching’ problem is indeed related to
graph exploration: if our task is to simply complete an exploration of G, then
a solution can be straightforwardly found by performing a DFS starting from
s and stopping once all vertices have been visited at least once – clearly this
requires Θ(n) edge-traversals in total.

The graph exploration problem in the context of temporal graphs (i.e., graphs
whose edge set can change over time) has also received significant attention in
recent years. This problem, known as Temporal Exploration (TEXP), but
restricted to k-edge-deficient temporal graphs (which we define formally later)
is the focus of this paper. Given a temporal graph G, the problem asks that we
compute a temporal walk, starting at some prespecified vertex s ∈ V (G), that
makes at most a single edge-traversal in each timestep, and that visits all vertices



2 T. Erlebach and J.T. Spooner

at least once by the earliest time possible. We formally define the problem and
temporal graph model in Section 2, but refer the interested reader to [5, 16]
for more on temporal graphs in general, or [6, 17] for more on TEXP. In the
most general setting, TEXP makes no assumptions about the input temporal
graph, aside from the assumption that the input temporal graph is connected
in each timestep (i.e., always-connected), which ensures exploration is always
possible. This allows an arbitrary number of edges from the underlying graph to
be missing in each timestep, and thus the graphs in different timesteps can differ
substantially, which leads to pessimistic bounds on the worst-case exploration
time. It is therefore interesting to study the question whether better exploration
times can be guaranteed if the number of missing edges in each time step is
small. To study this question, we also consider always-connected temporal graphs
but, in contrast to previous work, we consider k-edge-deficient temporal graphs,
whose structure in each step is ‘close’ to that of its underlying graph, in the
sense that at most k edges are missing. Such graphs were defined by Gotoh et al.,
in [11], where they were considered in a distributed setting. We assume that the
temporal structure of an input temporal graph is known in full to an algorithm
prior to it computing a solution, as opposed to a setting in which the structure
of the graph in each step is revealed online and over time.

Contribution. We introduce the temporal graph property of k-edge-deficiency,
and consider Temporal Exploration on always-connected temporal graphs
that are k-edge-deficient for some k ∈ N. We define the property formally in
Section 2, but essentially these are temporal graphs G with underlying graph
G, such that, during each timestep t of G’s lifetime, there are at most k edges
e ∈ E in the underlying graph that are untraversable in (or ‘missing’ from) G. Let
n = |V (G)|. In Section 3 we prove for arbitrary k ∈ N that k-edge-deficient always-
connected temporal graphs can be explored in O(kn log n) timesteps. In Section 4
we additionally show that 1-edge-deficient graphs can always be explored in O(n)
timesteps, giving a recursive exploration algorithm that exploits a number of
existing structural/algorithmic results originating from traditional graph theory.
Finally, in Section 5, we sketch a modification of an existing Ω(n log n) lower
bound on the number of timesteps required to explore always-connected temporal
graphs with planar underlying graph of maximum degree ≤ 4, presented in [6],
that allows us to obtain an Ω(n log k) bound on the worst-case time required to
explore arbitrary always-connected k-edge-deficient temporal graphs.

Related work. Brodén et al. [3] consider the Temporal Travelling
Salesperson Problem on a complete graph with n vertices, with edge costs
that can differ between 1 and 2 in each timestep. They show that when an edge’s
cost changes at most k times over the input graph’s lifetime, the problem is NP-
complete, but provide a (2− 2

3k )-approximation; for the same problem, Michail and
Spirakis [17] prove APX-hardness and provide a (1.7+ε)-approximation. Bui-Xuan
et al. [4] propose multiple objectives for optimisation when computing temporal
walks/paths: e.g., fastest (fewest steps used) and foremost (arriving at the
destination at the earliest time possible). The decision version of the Temporal
Exploration problem, which asks whether or not a given temporal graph
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admits a temporal walk that visits all vertices at least once, is also considered
in [17]. They show that the problem is NP-complete when no restrictions are
placed on the input; they also propose considering the problem under the always-
connected assumption, which ensures that exploration is possible provided the
lifetime of the input graph is sufficiently long [17]. Erlebach et al. [6] further
consider the optimisation variant of the Temporal Exploration problem
under the always-connected assumption. They prove an Ω(n2) lower bound
on the time needed to explore general always-connected temporal graphs, and
provide a proof that temporal graphs within this class can be explored in n2

steps. They also prove a number of bounds on the number of timesteps required
to explore various restricted temporal graph classes. Bodlaender and van der
Zanden [2] examine TEXP when restricted to graphs of pathwidth at most 2 in
each timestep, showing the problem to be NP-complete even under these limiting
restrictions. In [14] and [13], Ilcinkas et al. respectively consider TEXP restricted
to temporal graphs with underlying cycle or cactus graphs. Akrida et al. [1]
consider Return-To-Base TEXP in which a candidate solution must return
to the vertex from which it initially departed. In [7], Erlebach et al. prove an
O(dn1.75) bound on the number of time steps required to explore any temporal
graph with degree bounded by d in each step, a considerable improvement over

the previously best known O(n
2 log d
logn ) bound [8]. In [9], a non-strict variant of

TEXP is studied – here, a computed walk may make an unlimited number of
edge-traversals in each given timestep. Notions of strict/non-strict paths which
respectively allow for a single edge/unlimited number of edge(s) to be crossed
in any timestep have been considered before, notably by Kempe et al. in [15]
and Zschoche et al. in [20]. In this paper, we only consider strict temporal walks.
Gotoh et al. in [12] consider TEXP on temporal graphs with underlying cycle
under the so-called (H,S)-view, in which only the availability of edges at most H
hops away for at most the next S timesteps is known to an algorithm. Casteigts et
al. examined the fixed-parameter tractability of the problem of finding temporal
paths between a source and destination that wait no longer than ∆ consecutive
timesteps at any vertex they visit. Temporal graph exploration has also been
studied in a distributed setting: in [11], Gotoh et al. consider a variant in which
a collection of cooperating mobile agents construct a map of a temporal graph.
In the same paper, they defined the class of k-edge-deficient graphs (under a
different name), proving bounds on the number of cooperating agents required
to ensure that exploration is possible under a variety of different distributed
settings.

2 Preliminaries

We denote by [n] the set {1, ..., n}. Let G = (V,E) and G′ be simple, undirected
graphs. We write G′ ⊆ G if G′ is a (not necessarily induced) subgraph of G. |V |
is the order of G; |E| is G’s size. If X ⊆ V is a subset of G’s vertex set, we
denote by G−X the subgraph of G induced by V (G)−X.
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Definition 2.1 (Temporal graph). A temporal graph G = 〈G1, G2, ..., GL〉
with underlying graph G = (V,E), order n = |V | and lifetime L is an ordered
sequence of subgraphs Gt = (V,Et) of G, indexed by the timesteps t ∈ [L]. In
particular, we have that V (Gt) = V = V (G) and Et ⊆ E for all t ∈ [L].

Let G = 〈G1, G2, ..., GL〉 be an arbitrary temporal graph. An edge e ∈ E that
satisfies e ∈ Et is present during timestep t. If e ∈ E satisfies e /∈ Et, we say that
e is missing in timestep t. A temporal graph G = 〈G1, G2, ..., GL〉 is said to be
always-connected if it is such that Gt is connected for all t ∈ [L].

Definition 2.2 (Temporal walk). A temporal walk W in a temporal graph G
is an alternating sequence of vertices and edge-time pairs,

W = v1, (e1, t1), v2, ..., vk−1, (ek−1, tk−1), vk.

Each edge-time pair (ej , tj) denotes the traversal of edge ej = {vj , vj+1} at
timestep tj, which implies that ej ∈ Etj . We require that t0 < t1 < ... < tk−1,
i.e., that the timesteps at which the consecutive edges of W are traversed are
strictly increasing. We say that the walk starts at vertex v0, and for all i ∈ [k],
we say that W visits vi ∈ V (G).

W is an exploration schedule of G with start vertex s ∈ V (G) if W is a temporal
walk in G that starts at s and visits all vertices v ∈ V (G). LetW be an exploration
schedule in a temporal graph G with underlying graph G. We denote by a(W)
the timestep at which W first visits the n-th unique vertex v ∈ V (G); this is
the arrival time of W. If W satisfies a(W) ≤ a(W ′) for any other exploration
schedule W ′ with the same start vertex in G, then we say that W is foremost.

Definition 2.3 (Temporal Exploration). An instance of the Temporal Ex-
ploration (TEXP) problem is given as a pair (G, s), where G = 〈G1, G2, ..., GL〉
is an arbitrary temporal graph on n vertices with lifetime L ≥ |V (G)|2 = n2, and
s ∈ V (G) is a start vertex. The problem asks that we compute an exploration
schedule W such that W is foremost and starts at vertex s. It is assumed that Gt
(t ∈ [L]) is known to an algorithm prior to it computing a solution.

It was proven in [6] that arbitrary always-connected temporal graphs admit at
least one exploration scheduleW such that α(W) ≤ n2. Hence having L ≥ |V (G)|2
ensures that an exploration schedule exists.

Definition 2.4 (k-edge-deficient). Let G = 〈G1, ..., GL〉 be a temporal graph
with underlying graph G = (V,E) and order n = |V |. Then G is k-edge-deficient
(for k ∈ N) if, for all t ∈ [L], we have Gt = (V,E −Xt) for some Xt ⊆ E with
|Xt| ≤ k.

When constructing a walk in a k-edge-deficient temporal graph G, we may speak
of an agent following a walk W in the underlying graph G. By this, we mean
that the agent traverses in G the edges in the same order as they are traversed
by W , and does this whenever it is possible to do so, i.e., whenever the next
edge e traversed by W is present in the current timestep t. If that edge is not
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present, the agent is blocked on e in step t. For always-connected k-edge-deficient
temporal graphs we require that Gt = (V,E −Xt) is connected for all t ∈ [L].
We consider only always-connected, k-edge-deficient temporal graphs with finite
lifetime L ≥ n2 – as such, any temporal graph we refer to (unless stated otherwise)
is assumed to hold these properties. The following lemma from [6] will be useful.

Lemma 2.5 (Reachability lemma; Erlebach et al. [6]). Let G be an arbi-
trary always-connected temporal graph with vertex set V and lifetime L. Then an
agent situated at any vertex u ∈ V at any time t ≤ L − n can reach any other
vertex v ∈ V in at most |V | − 1 = n− 1 steps, i.e., by time step t+ n− 1.

3 O(kn log n)-Time Exploration of k-Edge-Deficient
Temporal Graphs

We present an algorithm that proceeds in rounds. In each round, it considers a
forest consisting of k+1 edge-disjoint subtrees of a spanning tree of the underlying
graph and ensures that all edges of one of these trees can be traversed in the
round. The following lemma allows us to split a tree T into a pair of edge-disjoint
subtrees (whose union covers E(T )) in a balanced way:

Lemma 3.1. Let T be a tree with m ≥ 2 edges. Then one can compute two
edge-disjoint subtrees T ′ and T ′′ such that |E(T ′)|, |E(T ′′)| ∈ [m/3, 2m/3], and
such that E(T ′) ∪ E(T ′′) = E(T ).

Say that a set S of edge-disjoint subtrees T ′ ⊆ F is a subtree-cover of a
forest F if, for every e ∈ E(F ) we have e ∈ E(T ′) for some T ′ ∈ S. Call such a
subtree-cover S balanced if it satisfies the additional property that the tree of
largest size in S contains at most three times the number of edges contained by
the smallest. By applying Lemma 3.1 to the largest tree in a balanced sub-tree
cover, we can show the following lemma:

Lemma 3.2. Let S be a balanced subtree-cover of some forest F such that |S| = x
and |E(F )| ≥ x+ 1 hold. Then one can obtain a balanced subtree cover S′ of F
such that |S′| = x+ 1.

Theorem 3.3. Let G = 〈G1, ..., GL〉 be an always-connected, k-edge-deficient
temporal graph (for some k ∈ N) with underlying graph G, and let |V (G)| = n.
Then, for any start vertex s, there is an exploration schedule W of G with
a(W) = O(kn log n). Moreover, such a schedule can be computed in polynomial
time.

Proof. For k ≥ n− 1 the result clearly holds as every always-connected temporal
graph can be explored in ≤ n(n − 1) time steps (by repeated application of
Lemma 2.5 [6]), so we assume k < n− 1 for the rest of the proof.

Compute an arbitrary spanning tree T of G, and let m = |E(T )| – assume
w.l.o.g. that m > k + 1, otherwise G can be explored in O(kn) steps via O(k)
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applications of Lemma 2.5. Let S = {T} and note that S is a balanced subtree-
cover of T . Now apply Lemma 3.2 to S k times to obtain a balanced subtree-cover
S∗ of size k + 1 (possible since k ≤ n− 2). Let F denote a forest containing all
subtrees induced by edges of T that may not yet have been traversed, initially
F = T .

We now specify our algorithm in terms of an agent that explores the graph
in consecutive rounds. We denote by t the first step of a given round, and by v
the vertex at which the agent is positioned at the beginning of timestep t. Let
m′ =

∑
Ti∈S∗ |E(Ti)|. At the beginning of the first round t = 1, v = s, F = {T},

S∗ is a balanced subtree-cover of F (with size k + 1), and m′ = m. While F
contains more than k + 1 edges, execute a round as follows: Consider the graph
from step t+ n onward, and place a single virtual agent at an arbitrary vertex vi
in each of the k+ 1 subtrees Ti ∈ S∗. For each i ∈ [k+ 1], compute an Euler tour
of Ti starting from vertex vi, then let the agents follow the Euler tours of their
respective trees for the following 6m′ steps. Since there are k + 1 virtual agents
following tours in edge-disjoint subtrees, and since G is k-edge-deficient, it follows
that there are no edges missing from at least one subtree T ′ ∈ S∗ in every step.
Let Ti∗ be the subtree that had no edges missing during the largest number of
steps in the considered 6m′-step period. Then Ti∗ had no edge missing for ≥ 6m′

k+1

steps. Since |S∗| = k + 1, the smallest tree in S∗ cannot contain > m′

k+1 edges, so

because S∗ is balanced the largest tree in S∗ contains ≤ 3m′

k+1 edges. Therefore,

the ≥ 6m′

k+1 steps in which the virtual agent positioned in Ti∗ is able to traverse
an edge are enough for that agent to complete their Euler tour of Ti∗ and arrive
back at vi∗ . Using the steps in the interval [t, t + n − 1], move the real agent,
using Lemma 2.5, from v to the vertex vi∗ at which the virtual agent began their
tour of Ti∗ . Let W ∗ be the tour followed by the virtual agent positioned in Ti∗ ;
from step t + n to step t′ = t + n + 6m′ − 1, let the real agent complete W ∗.
Once completed, check if > k + 1 edges remain untraversed; if so, consider the
set S′ = S∗ − {Ti∗} and note that |S′| = k. Observe that S′ is balanced since S∗

was balanced and removing a tree cannot violate this property. Since we have
S′ = S∗ − {Ti∗}, and since S∗ covered T , we have that S′ covers the forest F ′

obtained from F by removing the edges of Ti∗ . Apply Lemma 3.2 to S′ to obtain
a balanced subtree-cover S′′ of F ′ such that |S′′| = k + 1 – note that doing so
is valid since |E(F ′)| > k + 1 = |S′|+ 1, as is required by Lemma 3.2. Now, set
S∗ = S′′, F = F ′, v = vi∗ and t = t′+ 1 and start the next round as above. Once
a round is completed and at most k+ 1 edges remain, stop and use O(n) steps to
explore up to 2k + 2 remaining unexplored vertices one by one using Lemma 2.5.

Note that every vertex v in V (T ) = V (G) either (1) belongs to an edge of
T that was traversed by the algorithm, or (2) was visited via an application
of Lemma 2.5. Hence, the computed walk is an exploration schedule and it
remains only to bound its arrival time. In each round, a subtree containing
at least a 1

3(k+1) fraction of the edges of F is traversed in its entirety. To see

this, observe that |S∗| = k + 1, so the largest tree in S∗ must contain ≥ m′

k+1

edges; because S∗ is balanced, it follows that all trees in S∗ have size ≥ m′

3(k+1) .
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Hence, after x rounds, the total number of edges in T that have not yet been
removed from F is ≤ m(1 − 1

3(k+1) )
x. Thus, after x = 3(k + 1) ln( m

k+1 ) =

O(k logm) = O(k log n) (recall that m = |E(T )| = n − 1) rounds there are

≤ m(1− 1
3(k+1) )3(k+1) ln( m

k+1 ) ≤ k + 1 unexplored edges remaining in F . As each

round takes n + 6m′ ≤ n + 6m = O(n) steps, the total number of steps after
O(k log n) rounds is O(kn logm) = O(kn log n). A further at most (2k + 2)n
steps are needed to explore up to 2k + 2 remaining unvisited vertices. Hence, the
entire exploration takes O(kn log n) + (2k + 2)n = O(kn log n), as required.

Finally, it is easy to see that the algorithm for determining the exploration
schedule can be implemented to run in polynomial time. ut

4 Linear-Time Exploration of 1-Edge-Deficient Temporal
Graphs

A graph G = (V,E) is k-vertex-connected (or simply k-connected) if, for any
subset X ⊆ V (G) such that |X| < k, the subgraph of G induced by V −X is
connected. Let G = (V,E) be a connected graph. An edge e ∈ E is a bridge if
G′ = (V,E − {e}) is disconnected. A graph G = (V,E) is 2-edge-connected if
it is connected and does not contain a bridge. A 2-edge-connected component
(abbreviated 2-ecc) of a graph G is a vertex-maximal induced subgraph C ⊆ G
such that C is 2-edge-connected. Note that a 2-ecc can also be a single vertex.
We say that a spanning subgraph G′′ of G preserves 2-edge-connectivity if it
contains all bridges of G and, for every 2-ecc C of G, the subgraph of G′′ induced
by V (C) is 2-edge-connected. In order to show that every connected graph G has
a spanning subgraph that preserves 2-edge-connectivity and has only a linear
number of edges, we make use of the following result by Nagamochi and Ibaraki.

Theorem 4.1 (Nagamochi and Ibaraki, [18]). Every k-connected graph G =
(V,E) admits a k-connected spanning subgraph G′ = (V ′, E′) such that |E′| ≤
k|V |. Moreover, G′ can be computed in O(|E|)-time.

By applying Theorem 4.1 to each biconnected component of a given connected
graph G, we can show the following:

Lemma 4.2. Let G be an arbitrary connected graph and let C be the set of all
2-eccs of G. Then, G admits a spanning subgraph G∗ such that (1) the vertices
of each 2-ecc C ∈ C form a 2-ecc C∗ in G∗ with |E(C∗)| ≤ 5|V (C∗)|; (2)
|E(G∗)| ≤ 5|V (G)|; and (3) V (G∗) = V (G).

If G is a 1-edge-deficient, always-connected temporal graph with underlying
graph G and G∗ is a spanning subgraph of G that preserves 2-edge-connectivity,
then the temporal graph G∗ with underlying graph G∗ that is obtained from G
by removing all edges that are not in G∗ is also always-connected and 1-edge-
deficient. This also implies that every cycle C of G∗ induces a connected subgraph
in every timestep of G∗.

A circuit C in a graph G is a closed walk in G that does not repeat edges. In
1-deficient temporal graphs, a circuit behaves like an always-connected temporal
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graph with underlying cycle, as at most one edge of the circuit can be missing
in each step. Thus, we get the following theorem, which was shown in [6] for
always-connected cycles.

Theorem 4.3 (Erlebach, Hoffmann and Kammer, [6]). For every 1-edge
deficient temporal graph G with underlying circuit C, there exists a start vertex
from which the graph can be explored in at most |E(C)| − 1 steps.

The following theorem by Fan allows us to reduce the exploration of a 2-ecc to
the exploration of at most three circuits.

Theorem 4.4 (Fan, [10]). The edges of any 2-edge-connected graph G = (V,E)
can be covered by at most 3 circuits. Moreover, such a cover can be computed in
O(|E| · |V |)-time.

The edges which belong to no 2-ecc of an arbitrary connected graph G are
precisely the bridges of G. Hence, one can represent the structure of G as a
tree T , called the 2-ecc tree of G, by identifying each 2-ecc with a vertex, and
joining two vertices by an edge in T if and only if their corresponding 2-eccs are
connected by a bridge in G. In the proof of Theorem 4.6, we will therefore re-use
standard terminology for trees: We choose a 2-ecc C as the root component. If C ′

and C ′′ are 2-eccs such that C ′ lies on the path from C to C ′′ in T , then C ′′ is a
descendant of C ′. If C ′ and C ′′ correspond to neighbouring nodes in T and C ′′

is a descendant of C ′, then C ′′ is a child of C ′ and C ′ is the parent of C ′′. The
subtree rooted at a 2-ecc C ′ consists of all 2-eccs that are descendants of C ′, and
the subgraph of G consisting of all those 2-eccs and the bridge edges between
them is said to correspond to that child subtree. For any child C ′ of the root
C of the 2-ecc tree, we call the subgraph of G that corresponds to the subtree
rooted at C ′ a child subgraph.

Lemma 4.5. Let G be an arbitrary connected graph on n vertices. Then, there
is a 2-ecc C∗ of G such that rooting the 2-ecc tree of G at C∗ ensures that the
child subgraphs (i.e., the subgraphs of G corresponding to the subtrees rooted at
children of C∗) each contain at most n/2 vertices.

Proof. Consider the tree T obtained by identifying each 2-edge-connected com-
ponent C of G with a vertex vC . Root T at an arbitrary node vC′ , then process
the vertices in a bottom up manner, labelling a vertex vC with the integer
xC = |{u ∈ V (G) : u ∈ V (C ′) for a descendant C ′ of C in T}|. Select a vertex
vC∗ such that xC∗ ≥ n/2 and such that vC∗ has largest depth in T amongst all
such vertices. If vC∗ is already the root of T , we are done. Otherwise, let vC′

be the parent of vC∗ and reroot T at vC∗ to form a 2-ecc tree T ∗, in which vC′

is a child of vC∗ . We have that for every child vC 6= vC′ of vC∗ in T ∗ we have
xC < n/2, because otherwise the algorithm would have picked vC rather than
vC∗ . Furthermore, we have xC∗ ≥ n/2, and so the total number of vertices in all
components C ′′ such that vC′′ is a descendant of vC′ in T ∗ must be ≤ n/2. ut
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Theorem 4.6. Let G = 〈G1, ..., GL〉 be an always-connected, 1-edge-deficient
temporal graph with arbitrary underlying graph G, and let |V (G)| = n. Then, for
any start vertex s, there is an exploration schedule W of G with a(W) = O(n).
Moreover, such a schedule can be computed in polynomial time.

Proof. Apply Lemma 4.2 to G in order to obtain a spanning subgraph G∗ ⊆ G
(with |E(G∗)| ≤ 5n) such that each 2-ecc C of G forms a 2-ecc C∗ in G∗ with
|E(C∗)| ≤ 5|V (C∗)|. Apply Lemma 4.5 to G∗ to obtain a 2-ecc tree T of G∗ with a
root component C1 such that the child subgraphs Gi ⊆ G∗ satisfy |V (Gi)| ≤ n/2.
Let k denote the number of 2-eccs in G∗. Let T (n, k) denote the maximum number
of timesteps required to explore an arbitrary 1-edge-deficient, always-connected
temporal graph on n vertices whose underlying graph has k 2-eccs, at most 5n
edges, and is such that every 2-ecc C∗ satisfies |E(C∗)| ≤ 5|V (C∗)|, starting from
an arbitrary vertex s in the graph at timestep 1. We now specify our exploration
algorithm and prove by induction on k that T (n, k) ≤ 164n.

Base case (Arbitrary n, k = 1): G∗ consists of a single 2-ecc C1; without
loss of generality assume that |V (C1)| ≥ 3. Apply Theorem 4.4 to C1, obtaining
a circuit cover {X1, ..., Xc} of C1 containing c circuits, where 1 ≤ c ≤ 3. Consider
now the following 3 time intervals, noting that |E(Xi)| ≤ |E(C1)| ≤ 5n for all
i ∈ [3]: I1 = [n + 1, 6n], I2 = [7n + 1, 12n] and I3 = [13n + 1, 18n]. During the
steps of Ii apply Theorem 4.3 to Xi to determine a vertex vi ∈ Xi such that an
exploration schedule of Xi using at most |E(Xi)| − 1 ≤ 5n− 1 timesteps begins
at vi at the first step of Ii. Beginning at the start vertex s ∈ V (G) in timestep 1,
employ Lemma 2.5 to move in at most n steps to vertex v1, wait until the first
step of interval I1, then follow the walk obtained by the application of Theorem
4.3 during interval I1. If c > 1, repeat these steps for all remaining circuits Xi

in the computed circuit cover of C1. Once Theorem 4.3 has been applied to Xc,
notice that, for all i ∈ [c], all vertices of Xi have been visited. Since {X1, ..., Xc}
covers all edges of C1 (and also all edges of G∗ since G∗ consists only of C1), it
follows that all vertices of G∗ have been visited at least once. The number of
timesteps taken to achieve this is at most c(n+ 5n) ≤ 18n.

Inductive step (Arbitrary n, k > 1): Assume that T (n, j) ≤ 164n for all
j < k and consider the root component C1 of G∗. We now distinguish two cases:

Case 1: |C1| ≥ 2. Apply Theorem 4.4 to C1 and obtain a circuit cover
X∗ = {X1, ..., Xc} of C1 containing c circuits, where 1 ≤ c ≤ 3. Let V ′ =
{v ∈ V (C1) : v ∈ e for some bridge e}. Construct a function α : V ′ → X∗ by
arbitrarily mapping each vertex v ∈ V ′ to some circuit Xi ∈ X∗ such that v ∈ Xi.
Recall that we root the 2-ecc tree T of G∗ at C1. For each child Ci of C1 in
T , we denote by Gi the child subgraph of G∗ corresponding to the subtree of
T rooted at Ci. Let Br = {e ∈ E(G∗) : e is a bridge and e ∩ V ′ 6= ∅} and, for
any v ∈ V ′, let β(v) = {Gi : {v, u} ∈ Br for some u ∈ Gi}. For i ∈ [3], let
Fi =

⋃
{v∈V ′:α(v)=Xi} β(v).

Let GXi ⊆ G∗ be the subgraph of G∗ induced by V (Xi ∪ Fi) (i ∈ [c]). For
each i ∈ [c], we construct a closed walk in GXi

that will be followed (in opposite
directions) by two virtual agents. Both agents start at some arbitrary vertex
si ∈ V (Xi) and follow the walk in opposite directions whenever possible, i.e.,
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whenever they are not blocked on the next edge they need to cross. Starting at
some timestep ti, let the agents do the following: Move along the edges of Xi,
one in the clockwise direction (agent CW) and the other in the counter-clockwise
direction (agent CCW). Whenever either agent reaches for the first time a vertex
v ∈ V ′ such that α(v) = Xi the agent descends into each Gj ∈ β(v) via the
bridge connecting it and vertex v ∈ Xi, and explores Gj via a depth-first search.
The only exception is the vertex si: If si ∈ V ′ and α(si) = Xi, then agent CW
descends into each Gj ∈ β(si) immediately at the start of the walk (before
traversing any edge of Xi), while agent CCW does so only when it returns to
si after having traversed all edges of Xi. Agent CW processes the subgraphs
in β(v) in increasing order of their indices, whilst agent CCW processes them
in decreasing order of their indices. Once an agent has explored all subgraphs
Gj ∈ β(v), then that agent attempts to cross the next edge in Xi. Both agents
continue this until the first timestep in which both agents are blocked on the
same edge e. If every edge of G∗ were to be present in every timestep, it would
take each agent at most Exp(Xi) = |E(Xi)| +

∑
Gj∈Fi

2|V (Gj)| steps to carry
out their respective walks in GXi

: 1 step to traverse each of the edges of Xi,
2|V (Gj)| − 2 steps spent exploring Gj via a DFS, and 2 steps spent traversing
the bridge edges connecting Xi and each Gj ∈ Fi. Since G∗ is 1-edge-deficient, it
is possible for the agents to both be blocked on the same edge during the same
timestep. We distinguish three subcases as follows. Recall that ti denotes the
timestep in which the exploration of GXi begins. We use t′i to denote an upper
bound on the timestep by which the exploration of GXi

(possibly except one
subgraph, see below for details) is completed by at least one of the two agents.

Case 1.1: If the agents are never blocked on the same edge e during any step
t in [ti, t

′
i] for t′i = ti + 2Exp(Xi), then, in each timestep t ∈ [ti, t

′
i], at least one

of the two agents is able to cross the next edge of their respective walk. In this
case, we have that by the end of timestep t′i, the agent that was blocked on an
edge in the least number of timesteps t ∈ [ti, t

′
i] will have not been blocked in

≥ Exp(Xi) timesteps and, as such, will have completed their exploration of GXi
.

It remains to consider the situation that the agents are blocked on the same
edge of G∗ during some timestep in [ti, t

′
i], where t′i = ti + 3Exp(Xi) in Case 1.2

and t′i = ti + 4Exp(Xi) in Case 1.3. Consider the timestep t in which the agents
are first both blocked on the same edge e.

Case 1.2: e ∈ Xi. Check whether or not e is present during any step
t′ ∈ [t+ 1, t+ |E(Xi)|]. If yes, wait until that step, then let both agents cross e. If
not, let both agents apply Lemma 2.5 in X1, using at most |E(X1)|− 1 timesteps
to move to the opposite endpoint of e, then continue attempting to traverse
the next edge of their walk whenever possible. Notice that, during any step
t′ ∈ [ti, t− 1], at least one of the two agents was able to cross the next edge in
their respective walk, since t is the first timestep in which both agents are blocked
on the same edge. When the agents are blocked on e during step t, they either
wait at their current vertex for at most |E(Xi)| − 1 steps until e is present again,
or spend ≤ |E(Xi)| − 1 steps reaching the opposite endpoint of e by applying
Lemma 2.5 in Xi. In either case, it takes at most |E(Xi)| − 1 steps for them to
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reach the opposite endpoint of e. At this point, observe that the vertices x ∈ V (Xi)
and the Gj ∈ Fi that remain to be explored/processed by agent CW are exactly
those that have already been explored/processed by agent CCW (and vice versa).
Hence, it follows that the two agents will not be blocked on the same edge again
for the remainder of their walks. In all remaining steps, since the sets of vertices
unexplored by the walks of the two agents are disjoint, we again have that at least
one of the two agents will be able to cross the next edge of their respective walk
in all steps t′ ∈ [t+ |E(Xi)|, t′i]. Concluding, during the entire time interval [ti, t

′
i],

there are ≤ |E(Xi)| steps in which neither of the agents can cross the next edge of
their respective walk, and by step t′i ≤ ti+2Exp(Xi)+ |E(Xi)| ≤ ti+3Exp(Xi), it
is ensured that the agent who was blocked during the least number of steps since
the start of step ti has completed their exploration of GXi

in at most 3Exp(Xi)
steps.

Case 1.3: e ∈ Gj for some Gj ∈ Fi. Let b = {v, u}, where {v, u} ∈ Br, v ∈ Xi

satisfies α(v) = Xi, and u ∈ V (Gj). Consider the timestep t ∈ [ti, t
′
i], during

which the two agents are first blocked on e. Let t∗1, t
∗
2 ∈ [ti, t

′
i] denote respectively

the timesteps at which the first agent (say agent A1) and second agent (agent
A2) traverse the edge b from v toward u – clearly we have t∗1 ≤ t∗2 < t, since
e ∈ E(Gj) and any vertex in V (Gj) can only be reached from Xi by traversing b.
We now retrospectively alter the walks of both agents: First, change the walk
of A1 so that, during the interval [t∗1, t

∗
2 − 1], A1 waits at vertex v. Now, change

the walks of both A1 and A2 during the steps [t∗2, t
′
i], so that they both do not

process subgraph Gj , but continue their exploration of Xi and all Gj′ ∈ Fi such
that Gj′ 6= Gj . We claim that t∗2 ≤ ti + 2Exp(Xi). To see this, observe that
t ≤ ti + 2Exp(Xi) since, if t > ti + 2Exp(Xi), the two agents will not have been
blocked on the same edge during any of the steps [ti, ti + 2Exp(Xi)], and so the
agent who was blocked on an edge in the least amount of steps during this interval
would have traversed an edge of their walk in ≥ Exp(Xi) timesteps – enough to
have finished the entire exploration of GXi

. Hence we have t∗2 ≤ t < ti+2Exp(Xi),
as required. Both agents can then continue following their respective walks during
the interval [t∗2, t

′
i] without the possibility of being blocked on the same edge

again; by our earlier reasoning this requires of the agent that is blocked during
the least number of steps in this period another ≤ 2Exp(Xi) steps. Concluding,
one of the two agents will have visited all vertices in GXi \ V (Gj) by the end of
step t∗2 + 2Exp(Xi) ≤ ti + 4Exp(Xi).

In all three subcases, one of the two agents has explored all vertices of GXi
,

except possibly those of a single subgraph Gj of GXi
, in at most 4Exp(Xi)

timesteps, and we will let the real agent follow that agent’s walk.

After processing all c circuits Xi in this way, there will be at most c subgraphs
that have not yet been explored. We next reduce those unexplored subgraphs to
at most one: While there are two or more unexplored subgraphs, we repeatedly
(1) choose a circuit X in C1 that contains two vertices of V ′ that have a bridge
to an unexplored subgraph (note that a circuit X such that |E(X)| ≤ 2|V (C1)|
must exist), and then (2) process X and the two unexplored subgraphs in the
same way as we processed Xi for 1 ≤ i ≤ c above.
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After this, there will be at most a single subgraph Gj corresponding to a
child subtree rooted at a child of C1 in the 2-ecc tree that is not yet explored.
That subgraph has at most n/2 vertices (by choice of C1) and has at most k − 1
2-eccs (because it does not contain the 2-ecc C1). We now apply the inductive
hypothesis to explore Gj recursively in at most 164 · n/2 = 82n steps.

To bound the overall number of timesteps, we assume that c = 3, that 3
subgraphs remain unexplored after processing GXi

for i ∈ [3], that two iterations
of the procedure for reducing the number of unexplored subgraphs are needed, and
that a recursive call needs to be made to explore the final unexplored subgraph.
We omit the details, but one can straightforwardly show (via a case analysis)
that this is the worst case for the total number of steps needed to complete the
exploration.

The whole exploration then consists of the following parts: At most n steps
to move from s to a vertex v1 in X1; at most 4Exp(X1) steps to explore GX1

apart from at most one child subgraph Gj . Another at most n+ 4Exp(X2) steps
to do the same for GX2

(where the first n steps allow the agent to move from
the vertex where the exploration of GX1

ends to a vertex in X2), and another at
most n+ 4Exp(X3) steps to do the same for GX3

. Then, at most twice: n steps
to move to a vertex in a circuit X (recall that |E(X)| ≤ 2|V (C0)|) and 4Exp(X)
steps to explore it and at least one of the two subgraphs attached to it. Finally,
≤ n steps are needed to move to a vertex in the last unexplored subgraph Gj ,
and another ≤ 82n steps are required to explore that subgraph recursively.

As Exp(Xi) = |E(Xi)|+
∑
Gj∈Fi

2|V (Gj)|, we have
∑3
i=1 Exp(Xi) ≤ 3|E(C1)|+∑3

i=1

∑
Gj∈Fi

2|V (Gj)| ≤ 15|V (C1)| + 2
∑3
i=1

∑
Gj∈Fi

|V (Gj)| ≤ 15n. Further-
more, for any circuit X in C1 with two subgraphs G1 and G2 attached via
bridges, we have Exp(X) ≤ 2|V (C1)|+2|V (G1)|+2|V (G2)| ≤ 2n. Thus, the total
exploration time is at most 6n+ 4 · 15n+ 8 · 2n+ 82n = 82n+ 82n = 164n.

Case 2: |C1| = 1. In this case we apply a similar technique to that used in
Case 1, but this case is simpler as the root component consists of a single vertex
and all child subgraphs are attached to that same vertex via bridges.

Finally, we remark that all steps in the construction of the exploration schedule
can be implemented in polynomial time. ut

5 Lower Bound

To complement the upper bounds from Sections 3 and 4, we also present a lower
bound on the worst-case exploration time of k-edge-deficient temporal graphs.

Theorem 5.1. For arbitrarily large n and every k with 2 ≤ k ≤ n
2 − 1, there is

a k-edge-deficient temporal graph with n vertices for which an optimal exploration
takes Ω(n log k) steps.

The theorem can be shown by adapting the construction of a lower bound of
Ω(n log n) on the exploration time of temporal graphs with underlying planar
graphs of maximum degree 4 from [6, Theorem 2]. That construction has a
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time-varying part (in which n/2 edges are missing in each step) and a fixed part
(a static path of n/2 edges). By reducing the size of the time-varying part and
increasing the size of the static part, we obtain Theorem 5.1

6 Conclusion

We have shown that always-connected k-edge-deficient temporal graphs admit
an exploration schedule W with arrival time O(kn log n); if k = 1, the arrival
time improves to O(n). The provided proofs are both constructive, yielding
polynomial-time algorithms for computing such exploration schedules. As n− 1
steps are necessary to explore any graph, our results also yield O(k log n) and
O(1)-approximation algorithms for TEXP for the k ∈ N and k = 1 cases,
respectively, as well as an O(log n)-approximation if k = O(1). Furthermore, we
gave an infinite family of k-edge-deficient temporal graphs that require Ω(n log k)
timesteps to be explored. It would be interesting to close the gap between
the lower and upper bounds. In particular, an interesting question is whether
always-connected k-edge-deficient graphs for k = O(1) can be explored in O(n)
steps.
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