# Exploration of $\boldsymbol{k}$-Edge-Deficient Temporal Graphs 

Thomas Erlebach ${ }^{[0000-0002-4470-5868]}$ and Jakob T. Spooner ${ }^{[0000-0003-3816-6308]}$<br>School of Informatics, University of Leicester, England<br>\{te17,jts21\}@le.ac.uk


#### Abstract

An always-connected temporal graph $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ with underlying graph $G=(V, E)$ is a sequence of graphs $G_{t} \subseteq G$ such that $V\left(G_{t}\right)=V$ and $G_{t}$ is connected for all $t$. This paper considers the property of $k$-edge-deficiency for temporal graphs; such graphs satisfy $G_{t}=(V, E-$ $X_{t}$ ) for all $t$, where $X_{t} \subseteq E$ and $\left|X_{t}\right| \leq k$. We study the Temporal Exploration problem (compute a temporal walk that visits all vertices $v \in V$ at least once and finishes as early as possible) restricted to alwaysconnected, $k$-edge-deficient temporal graphs and give constructive proofs that show that $k$-edge-deficient and 1-edge-deficient temporal graphs can be explored in $O(k n \log n)$ and $O(n)$ timesteps, respectively. We also give a lower-bound construction of an infinite family of always-connected $k$ -edge-deficient temporal graphs for which any exploration schedule requires at least $\Omega(n \log k)$ timesteps.


Keywords: Graph algorithms • Temporal graphs • Graph exploration.

## 1 Introduction

Given a simple, connected, undirected graph $G$ and a start vertex $s \in V(G)$, the task of exploring $G$, i.e., computing a sequence of consecutively crossed edges $e \in E(G)$ that begins at $s$ and visits every vertex $v \in V(G)$ at least once, is both natural and well-understood. A closely related problem was initially considered by Shannon 19, who designed a mechanical maze-solving machine which implemented a depth first search-type technique in order to locate, within a given maze, a prespecified goal. This 'searching' problem is indeed related to graph exploration: if our task is to simply complete an exploration of $G$, then a solution can be straightforwardly found by performing a DFS starting from $s$ and stopping once all vertices have been visited at least once - clearly this requires $\Theta(n)$ edge-traversals in total.

The graph exploration problem in the context of temporal graphs (i.e., graphs whose edge set can change over time) has also received significant attention in recent years. This problem, known as Temporal Exploration (TEXP), but restricted to $k$-edge-deficient temporal graphs (which we define formally later) is the focus of this paper. Given a temporal graph $\mathcal{G}$, the problem asks that we compute a temporal walk, starting at some prespecified vertex $s \in V(\mathcal{G})$, that makes at most a single edge-traversal in each timestep, and that visits all vertices
at least once by the earliest time possible. We formally define the problem and temporal graph model in Section 2, but refer the interested reader to [5, 16] for more on temporal graphs in general, or [6, 17] for more on TEXP. In the most general setting, TEXP makes no assumptions about the input temporal graph, aside from the assumption that the input temporal graph is connected in each timestep (i.e., always-connected), which ensures exploration is always possible. This allows an arbitrary number of edges from the underlying graph to be missing in each timestep, and thus the graphs in different timesteps can differ substantially, which leads to pessimistic bounds on the worst-case exploration time. It is therefore interesting to study the question whether better exploration times can be guaranteed if the number of missing edges in each time step is small. To study this question, we also consider always-connected temporal graphs but, in contrast to previous work, we consider $k$-edge-deficient temporal graphs, whose structure in each step is 'close' to that of its underlying graph, in the sense that at most $k$ edges are missing. Such graphs were defined by Gotoh et al., in 11, where they were considered in a distributed setting. We assume that the temporal structure of an input temporal graph is known in full to an algorithm prior to it computing a solution, as opposed to a setting in which the structure of the graph in each step is revealed online and over time.

Contribution. We introduce the temporal graph property of $k$-edge-deficiency, and consider Temporal Exploration on always-connected temporal graphs that are $k$-edge-deficient for some $k \in \mathbb{N}$. We define the property formally in Section 2, but essentially these are temporal graphs $\mathcal{G}$ with underlying graph $G$, such that, during each timestep $t$ of $\mathcal{G}$ 's lifetime, there are at most $k$ edges $e \in E$ in the underlying graph that are untraversable in (or 'missing' from) $\mathcal{G}$. Let $n=|V(G)|$. In Section 3 we prove for arbitrary $k \in \mathbb{N}$ that $k$-edge-deficient alwaysconnected temporal graphs can be explored in $O(k n \log n)$ timesteps. In Section 4 we additionally show that 1-edge-deficient graphs can always be explored in $O(n)$ timesteps, giving a recursive exploration algorithm that exploits a number of existing structural/algorithmic results originating from traditional graph theory. Finally, in Section 5, we sketch a modification of an existing $\Omega(n \log n)$ lower bound on the number of timesteps required to explore always-connected temporal graphs with planar underlying graph of maximum degree $\leq 4$, presented in [6], that allows us to obtain an $\Omega(n \log k)$ bound on the worst-case time required to explore arbitrary always-connected $k$-edge-deficient temporal graphs.

Related work. Brodén et al. [3] consider the Temporal Travelling Salesperson Problem on a complete graph with $n$ vertices, with edge costs that can differ between 1 and 2 in each timestep. They show that when an edge's cost changes at most $k$ times over the input graph's lifetime, the problem is NPcomplete, but provide a $\left(2-\frac{2}{3 k}\right)$-approximation; for the same problem, Michail and Spirakis 17] prove APX-hardness and provide a $(1.7+\epsilon)$-approximation. Bui-Xuan et al. 4 propose multiple objectives for optimisation when computing temporal walks/paths: e.g., fastest (fewest steps used) and foremost (arriving at the destination at the earliest time possible). The decision version of the Temporal EXPLORATION problem, which asks whether or not a given temporal graph
admits a temporal walk that visits all vertices at least once, is also considered in 17. They show that the problem is NP-complete when no restrictions are placed on the input; they also propose considering the problem under the alwaysconnected assumption, which ensures that exploration is possible provided the lifetime of the input graph is sufficiently long [17. Erlebach et al. [6] further consider the optimisation variant of the TEMPORAL Exploration problem under the always-connected assumption. They prove an $\Omega\left(n^{2}\right)$ lower bound on the time needed to explore general always-connected temporal graphs, and provide a proof that temporal graphs within this class can be explored in $n^{2}$ steps. They also prove a number of bounds on the number of timesteps required to explore various restricted temporal graph classes. Bodlaender and van der Zanden [2] examine TEXP when restricted to graphs of pathwidth at most 2 in each timestep, showing the problem to be NP-complete even under these limiting restrictions. In (14 and 13], Ilcinkas et al. respectively consider TEXP restricted to temporal graphs with underlying cycle or cactus graphs. Akrida et al. 1] consider RETURN-To-BASE TEXP in which a candidate solution must return to the vertex from which it initially departed. In 7 , Erlebach et al. prove an $O\left(d n^{1.75}\right)$ bound on the number of time steps required to explore any temporal graph with degree bounded by $d$ in each step, a considerable improvement over the previously best known $O\left(\frac{n^{2} \log d}{\log n}\right)$ bound 8. In 9, a non-strict variant of TEXP is studied - here, a computed walk may make an unlimited number of edge-traversals in each given timestep. Notions of strict/non-strict paths which respectively allow for a single edge/unlimited number of edge(s) to be crossed in any timestep have been considered before, notably by Kempe et al. in 15 and Zschoche et al. in [20]. In this paper, we only consider strict temporal walks. Gotoh et al. in 12 consider TEXP on temporal graphs with underlying cycle under the so-called $(H, S)$-view, in which only the availability of edges at most $H$ hops away for at most the next $S$ timesteps is known to an algorithm. Casteigts et al. examined the fixed-parameter tractability of the problem of finding temporal paths between a source and destination that wait no longer than $\Delta$ consecutive timesteps at any vertex they visit. Temporal graph exploration has also been studied in a distributed setting: in [11], Gotoh et al. consider a variant in which a collection of cooperating mobile agents construct a map of a temporal graph. In the same paper, they defined the class of $k$-edge-deficient graphs (under a different name), proving bounds on the number of cooperating agents required to ensure that exploration is possible under a variety of different distributed settings.

## 2 Preliminaries

We denote by $[n]$ the set $\{1, \ldots, n\}$. Let $G=(V, E)$ and $G^{\prime}$ be simple, undirected graphs. We write $G^{\prime} \subseteq G$ if $G^{\prime}$ is a (not necessarily induced) subgraph of $G$. $|V|$ is the order of $G ;|E|$ is $G$ 's size. If $X \subseteq V$ is a subset of $G$ 's vertex set, we denote by $G-X$ the subgraph of $G$ induced by $V(G)-X$.

Definition 2.1 (Temporal graph). A temporal graph $\mathcal{G}=\left\langle G_{1}, G_{2}, \ldots, G_{L}\right\rangle$ with underlying graph $G=(V, E)$, order $n=|V|$ and lifetime $L$ is an ordered sequence of subgraphs $G_{t}=\left(V, E_{t}\right)$ of $G$, indexed by the timesteps $t \in[L]$. In particular, we have that $V\left(G_{t}\right)=V=V(\mathcal{G})$ and $E_{t} \subseteq E$ for all $t \in[L]$.
Let $\mathcal{G}=\left\langle G_{1}, G_{2}, \ldots, G_{L}\right\rangle$ be an arbitrary temporal graph. An edge $e \in E$ that satisfies $e \in E_{t}$ is present during timestep $t$. If $e \in E$ satisfies $e \notin E_{t}$, we say that $e$ is missing in timestep $t$. A temporal graph $\mathcal{G}=\left\langle G_{1}, G_{2}, \ldots, G_{L}\right\rangle$ is said to be always-connected if it is such that $G_{t}$ is connected for all $t \in[L]$.

Definition 2.2 (Temporal walk). A temporal walk $\mathcal{W}$ in a temporal graph $\mathcal{G}$ is an alternating sequence of vertices and edge-time pairs,

$$
\mathcal{W}=v_{1},\left(e_{1}, t_{1}\right), v_{2}, \ldots, v_{k-1},\left(e_{k-1}, t_{k-1}\right), v_{k}
$$

Each edge-time pair $\left(e_{j}, t_{j}\right)$ denotes the traversal of edge $e_{j}=\left\{v_{j}, v_{j+1}\right\}$ at timestep $t_{j}$, which implies that $e_{j} \in E_{t_{j}}$. We require that $t_{0}<t_{1}<\ldots<t_{k-1}$, i.e., that the timesteps at which the consecutive edges of $\mathcal{W}$ are traversed are strictly increasing. We say that the walk starts at vertex $v_{0}$, and for all $i \in[k]$, we say that $\mathcal{W}$ visits $v_{i} \in V(G)$.
$\mathcal{W}$ is an exploration schedule of $\mathcal{G}$ with start vertex $s \in V(\mathcal{G})$ if $\mathcal{W}$ is a temporal walk in $\mathcal{G}$ that starts at $s$ and visits all vertices $v \in V(G)$. Let $\mathcal{W}$ be an exploration schedule in a temporal graph $\mathcal{G}$ with underlying graph $G$. We denote by $a(\mathcal{W})$ the timestep at which $\mathcal{W}$ first visits the $n$-th unique vertex $v \in V(G)$; this is the arrival time of $\mathcal{W}$. If $\mathcal{W}$ satisfies $a(\mathcal{W}) \leq a\left(\mathcal{W}^{\prime}\right)$ for any other exploration schedule $\mathcal{W}^{\prime}$ with the same start vertex in $\mathcal{G}$, then we say that $\mathcal{W}$ is foremost.

Definition 2.3 (Temporal Exploration). An instance of the Temporal ExPLORATION (TEXP) problem is given as a pair $(\mathcal{G}, s)$, where $\mathcal{G}=\left\langle G_{1}, G_{2}, \ldots, G_{L}\right\rangle$ is an arbitrary temporal graph on $n$ vertices with lifetime $L \geq|V(\mathcal{G})|^{2}=n^{2}$, and $s \in V(\mathcal{G})$ is a start vertex. The problem asks that we compute an exploration schedule $\mathcal{W}$ such that $\mathcal{W}$ is foremost and starts at vertex s. It is assumed that $G_{t}$ $(t \in[L])$ is known to an algorithm prior to it computing a solution.

It was proven in [6] that arbitrary always-connected temporal graphs admit at least one exploration schedule $\mathcal{W}$ such that $\alpha(\mathcal{W}) \leq n^{2}$. Hence having $L \geq|V(\mathcal{G})|^{2}$ ensures that an exploration schedule exists.

Definition 2.4 ( $k$-edge-deficient). Let $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ be a temporal graph with underlying graph $G=(V, E)$ and order $n=|V|$. Then $\mathcal{G}$ is $k$-edge-deficient (for $k \in \mathbb{N}$ ) if, for all $t \in[L]$, we have $G_{t}=\left(V, E-X_{t}\right)$ for some $X_{t} \subseteq E$ with $\left|X_{t}\right| \leq k$.

When constructing a walk in a $k$-edge-deficient temporal graph $\mathcal{G}$, we may speak of an agent following a walk $W$ in the underlying graph $G$. By this, we mean that the agent traverses in $\mathcal{G}$ the edges in the same order as they are traversed by $W$, and does this whenever it is possible to do so, i.e., whenever the next edge $e$ traversed by $W$ is present in the current timestep $t$. If that edge is not
present, the agent is blocked on e in step $t$. For always-connected $k$-edge-deficient temporal graphs we require that $G_{t}=\left(V, E-X_{t}\right)$ is connected for all $t \in[L]$. We consider only always-connected, $k$-edge-deficient temporal graphs with finite lifetime $L \geq n^{2}$ - as such, any temporal graph we refer to (unless stated otherwise) is assumed to hold these properties. The following lemma from [6] will be useful.

Lemma 2.5 (Reachability lemma; Erlebach et al. [6]). Let $\mathcal{G}$ be an arbitrary always-connected temporal graph with vertex set $V$ and lifetime $L$. Then an agent situated at any vertex $u \in V$ at any time $t \leq L-n$ can reach any other vertex $v \in V$ in at most $|V|-1=n-1$ steps, i.e., by time step $t+n-1$.

## $3 \boldsymbol{O}(\boldsymbol{k} \boldsymbol{n} \log \boldsymbol{n})$-Time Exploration of $\boldsymbol{k}$-Edge-Deficient Temporal Graphs

We present an algorithm that proceeds in rounds. In each round, it considers a forest consisting of $k+1$ edge-disjoint subtrees of a spanning tree of the underlying graph and ensures that all edges of one of these trees can be traversed in the round. The following lemma allows us to split a tree $T$ into a pair of edge-disjoint subtrees (whose union covers $E(T)$ ) in a balanced way:

Lemma 3.1. Let $T$ be a tree with $m \geq 2$ edges. Then one can compute two edge-disjoint subtrees $T^{\prime}$ and $T^{\prime \prime}$ such that $\left|E\left(T^{\prime}\right)\right|,\left|E\left(T^{\prime \prime}\right)\right| \in[m / 3,2 m / 3]$, and such that $E\left(T^{\prime}\right) \cup E\left(T^{\prime \prime}\right)=E(T)$.

Say that a set $S$ of edge-disjoint subtrees $T^{\prime} \subseteq F$ is a subtree-cover of a forest $F$ if, for every $e \in E(F)$ we have $e \in E\left(T^{\prime}\right)$ for some $T^{\prime} \in S$. Call such a subtree-cover $S$ balanced if it satisfies the additional property that the tree of largest size in $S$ contains at most three times the number of edges contained by the smallest. By applying Lemma 3.1 to the largest tree in a balanced sub-tree cover, we can show the following lemma:

Lemma 3.2. Let $S$ be a balanced subtree-cover of some forest $F$ such that $|S|=x$ and $|E(F)| \geq x+1$ hold. Then one can obtain a balanced subtree cover $S^{\prime}$ of $F$ such that $\left|S^{\prime}\right|=x+1$.

Theorem 3.3. Let $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ be an always-connected, $k$-edge-deficient temporal graph (for some $k \in \mathbb{N}$ ) with underlying graph $G$, and let $|V(G)|=n$. Then, for any start vertex $s$, there is an exploration schedule $\mathcal{W}$ of $\mathcal{G}$ with $a(\mathcal{W})=O(k n \log n)$. Moreover, such a schedule can be computed in polynomial time.

Proof. For $k \geq n-1$ the result clearly holds as every always-connected temporal graph can be explored in $\leq n(n-1$ ) time steps (by repeated application of Lemma 2.5 (6), so we assume $k<n-1$ for the rest of the proof.

Compute an arbitrary spanning tree $T$ of $G$, and let $m=|E(T)|$ - assume w.l.o.g. that $m>k+1$, otherwise $G$ can be explored in $O(k n)$ steps via $O(k)$
applications of Lemma 2.5. Let $S=\{T\}$ and note that $S$ is a balanced subtreecover of $T$. Now apply Lemma 3.2 to $S k$ times to obtain a balanced subtree-cover $S^{*}$ of size $k+1$ (possible since $k \leq n-2$ ). Let $F$ denote a forest containing all subtrees induced by edges of $T$ that may not yet have been traversed, initially $F=T$.

We now specify our algorithm in terms of an agent that explores the graph in consecutive rounds. We denote by $t$ the first step of a given round, and by $v$ the vertex at which the agent is positioned at the beginning of timestep $t$. Let $m^{\prime}=\sum_{T_{i} \in S^{*}}\left|E\left(T_{i}\right)\right|$. At the beginning of the first round $t=1, v=s, F=\{T\}$, $S^{*}$ is a balanced subtree-cover of $F$ (with size $k+1$ ), and $m^{\prime}=m$. While $F$ contains more than $k+1$ edges, execute a round as follows: Consider the graph from step $t+n$ onward, and place a single virtual agent at an arbitrary vertex $v_{i}$ in each of the $k+1$ subtrees $T_{i} \in S^{*}$. For each $i \in[k+1]$, compute an Euler tour of $T_{i}$ starting from vertex $v_{i}$, then let the agents follow the Euler tours of their respective trees for the following $6 m^{\prime}$ steps. Since there are $k+1$ virtual agents following tours in edge-disjoint subtrees, and since $\mathcal{G}$ is $k$-edge-deficient, it follows that there are no edges missing from at least one subtree $T^{\prime} \in S^{*}$ in every step. Let $T_{i^{*}}$ be the subtree that had no edges missing during the largest number of steps in the considered $6 m^{\prime}$-step period. Then $T_{i^{*}}$ had no edge missing for $\geq \frac{6 m^{\prime}}{k+1}$ steps. Since $\left|S^{*}\right|=k+1$, the smallest tree in $S^{*}$ cannot contain $>\frac{m^{\prime}}{k+1}$ edges, so because $S^{*}$ is balanced the largest tree in $S^{*}$ contains $\leq \frac{3 m^{\prime}}{k+1}$ edges. Therefore, the $\geq \frac{6 m^{\prime}}{k+1}$ steps in which the virtual agent positioned in $T_{i^{*}}$ is able to traverse an edge are enough for that agent to complete their Euler tour of $T_{i^{*}}$ and arrive back at $v_{i^{*}}$. Using the steps in the interval $[t, t+n-1]$, move the real agent, using Lemma 2.5, from $v$ to the vertex $v_{i^{*}}$ at which the virtual agent began their tour of $T_{i^{*}}$. Let $W^{*}$ be the tour followed by the virtual agent positioned in $T_{i^{*}}$; from step $t+n$ to step $t^{\prime}=t+n+6 m^{\prime}-1$, let the real agent complete $W^{*}$. Once completed, check if $>k+1$ edges remain untraversed; if so, consider the set $S^{\prime}=S^{*}-\left\{T_{i^{*}}\right\}$ and note that $\left|S^{\prime}\right|=k$. Observe that $S^{\prime}$ is balanced since $S^{*}$ was balanced and removing a tree cannot violate this property. Since we have $S^{\prime}=S^{*}-\left\{T_{i^{*}}\right\}$, and since $S^{*}$ covered $T$, we have that $S^{\prime}$ covers the forest $F^{\prime}$ obtained from $F$ by removing the edges of $T_{i^{*}}$. Apply Lemma 3.2 to $S^{\prime}$ to obtain a balanced subtree-cover $S^{\prime \prime}$ of $F^{\prime}$ such that $\left|S^{\prime \prime}\right|=k+1$ - note that doing so is valid since $\left|E\left(F^{\prime}\right)\right|>k+1=\left|S^{\prime}\right|+1$, as is required by Lemma 3.2. Now, set $S^{*}=S^{\prime \prime}, F=F^{\prime}, v=v_{i^{*}}$ and $t=t^{\prime}+1$ and start the next round as above. Once a round is completed and at most $k+1$ edges remain, stop and use $O(n)$ steps to explore up to $2 k+2$ remaining unexplored vertices one by one using Lemma 2.5

Note that every vertex $v$ in $V(T)=V(G)$ either (1) belongs to an edge of $T$ that was traversed by the algorithm, or (2) was visited via an application of Lemma 2.5. Hence, the computed walk is an exploration schedule and it remains only to bound its arrival time. In each round, a subtree containing at least a $\frac{1}{3(k+1)}$ fraction of the edges of $F$ is traversed in its entirety. To see this, observe that $\left|S^{*}\right|=k+1$, so the largest tree in $S^{*}$ must contain $\geq \frac{m^{\prime}}{k+1}$ edges; because $S^{*}$ is balanced, it follows that all trees in $S^{*}$ have size $\geq \frac{m^{\prime}}{3(k+1)}$.

Hence, after $x$ rounds, the total number of edges in $T$ that have not yet been removed from $F$ is $\leq m\left(1-\frac{1}{3(k+1)}\right)^{x}$. Thus, after $x=3(k+1) \ln \left(\frac{m}{k+1}\right)=$ $O(k \log m)=O(k \log n)$ (recall that $m=|E(T)|=n-1)$ rounds there are $\leq m\left(1-\frac{1}{3(k+1)}\right)^{3(k+1) \ln \left(\frac{m}{k+1}\right)} \leq k+1$ unexplored edges remaining in $F$. As each round takes $n+6 m^{\prime} \leq n+6 m=O(n)$ steps, the total number of steps after $O(k \log n)$ rounds is $O(k n \log m)=O(k n \log n)$. A further at most $(2 k+2) n$ steps are needed to explore up to $2 k+2$ remaining unvisited vertices. Hence, the entire exploration takes $O(k n \log n)+(2 k+2) n=O(k n \log n)$, as required.

Finally, it is easy to see that the algorithm for determining the exploration schedule can be implemented to run in polynomial time.

## 4 Linear-Time Exploration of 1-Edge-Deficient Temporal Graphs

A graph $G=(V, E)$ is $k$-vertex-connected (or simply $k$-connected) if, for any subset $X \subseteq V(G)$ such that $|X|<k$, the subgraph of $G$ induced by $V-X$ is connected. Let $G=(V, E)$ be a connected graph. An edge $e \in E$ is a bridge if $G^{\prime}=(V, E-\{e\})$ is disconnected. A graph $G=(V, E)$ is 2-edge-connected if it is connected and does not contain a bridge. A 2-edge-connected component (abbreviated 2-ecc) of a graph $G$ is a vertex-maximal induced subgraph $C \subseteq G$ such that $C$ is 2-edge-connected. Note that a 2 -ecc can also be a single vertex. We say that a spanning subgraph $G^{\prime \prime}$ of $G$ preserves 2 -edge-connectivity if it contains all bridges of $G$ and, for every 2-ecc $C$ of $G$, the subgraph of $G^{\prime \prime}$ induced by $V(C)$ is 2-edge-connected. In order to show that every connected graph $G$ has a spanning subgraph that preserves 2-edge-connectivity and has only a linear number of edges, we make use of the following result by Nagamochi and Ibaraki.

Theorem 4.1 (Nagamochi and Ibaraki, $\mathbf{1 8}]$ ). Every $k$-connected graph $G=$ $(V, E)$ admits a $k$-connected spanning subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that $\left|E^{\prime}\right| \leq$ $k|V|$. Moreover, $G^{\prime}$ can be computed in $O(|E|)$-time.

By applying Theorem 4.1 to each biconnected component of a given connected graph $G$, we can show the following:

Lemma 4.2. Let $G$ be an arbitrary connected graph and let $\mathcal{C}$ be the set of all 2-eccs of $G$. Then, $G$ admits a spanning subgraph $G^{*}$ such that (1) the vertices of each 2-ecc $C \in \mathcal{C}$ form a 2-ecc $C^{*}$ in $G^{*}$ with $\left|E\left(C^{*}\right)\right| \leq 5\left|V\left(C^{*}\right)\right|$; (2) $\left|E\left(G^{*}\right)\right| \leq 5|V(G)| ;$ and (3) $V\left(G^{*}\right)=V(G)$.

If $\mathcal{G}$ is a 1-edge-deficient, always-connected temporal graph with underlying graph $G$ and $G^{*}$ is a spanning subgraph of $G$ that preserves 2-edge-connectivity, then the temporal graph $\mathcal{G}^{*}$ with underlying graph $G^{*}$ that is obtained from $\mathcal{G}$ by removing all edges that are not in $G^{*}$ is also always-connected and 1-edgedeficient. This also implies that every cycle $C$ of $G^{*}$ induces a connected subgraph in every timestep of $\mathcal{G}^{*}$.

A circuit $C$ in a graph $G$ is a closed walk in $G$ that does not repeat edges. In 1-deficient temporal graphs, a circuit behaves like an always-connected temporal
graph with underlying cycle, as at most one edge of the circuit can be missing in each step. Thus, we get the following theorem, which was shown in 6] for always-connected cycles.

Theorem 4.3 (Erlebach, Hoffmann and Kammer, [6]). For every 1-edge deficient temporal graph $\mathcal{G}$ with underlying circuit $C$, there exists a start vertex from which the graph can be explored in at most $|E(C)|-1$ steps.

The following theorem by Fan allows us to reduce the exploration of a 2-ecc to the exploration of at most three circuits.

Theorem 4.4 (Fan, $[\mathbf{1 0}])$. The edges of any 2-edge-connected graph $G=(V, E)$ can be covered by at most 3 circuits. Moreover, such a cover can be computed in $O(|E| \cdot|V|)$-time.

The edges which belong to no 2-ecc of an arbitrary connected graph $G$ are precisely the bridges of $G$. Hence, one can represent the structure of $G$ as a tree $T$, called the 2 -ecc tree of $G$, by identifying each 2 -ecc with a vertex, and joining two vertices by an edge in $T$ if and only if their corresponding 2-eccs are connected by a bridge in $G$. In the proof of Theorem4.6, we will therefore re-use standard terminology for trees: We choose a 2-ecc $C$ as the root component. If $C^{\prime}$ and $C^{\prime \prime}$ are 2-eccs such that $C^{\prime}$ lies on the path from $C$ to $C^{\prime \prime}$ in $T$, then $C^{\prime \prime}$ is a descendant of $C^{\prime}$. If $C^{\prime}$ and $C^{\prime \prime}$ correspond to neighbouring nodes in $T$ and $C^{\prime \prime}$ is a descendant of $C^{\prime}$, then $C^{\prime \prime}$ is a child of $C^{\prime}$ and $C^{\prime}$ is the parent of $C^{\prime \prime}$. The subtree rooted at a 2 -ecc $C^{\prime}$ consists of all 2 -eccs that are descendants of $C^{\prime}$, and the subgraph of $G$ consisting of all those 2 -eccs and the bridge edges between them is said to correspond to that child subtree. For any child $C^{\prime}$ of the root $C$ of the 2-ecc tree, we call the subgraph of $G$ that corresponds to the subtree rooted at $C^{\prime}$ a child subgraph.

Lemma 4.5. Let $G$ be an arbitrary connected graph on $n$ vertices. Then, there is a 2 -ecc $C^{*}$ of $G$ such that rooting the 2 -ecc tree of $G$ at $C^{*}$ ensures that the child subgraphs (i.e., the subgraphs of $G$ corresponding to the subtrees rooted at children of $\left.C^{*}\right)$ each contain at most $n / 2$ vertices.

Proof. Consider the tree $T$ obtained by identifying each 2-edge-connected component $C$ of $G$ with a vertex $v_{C}$. Root $T$ at an arbitrary node $v_{C^{\prime}}$, then process the vertices in a bottom up manner, labelling a vertex $v_{C}$ with the integer $x_{C}=\mid\left\{u \in V(G): u \in V\left(C^{\prime}\right)\right.$ for a descendant $C^{\prime}$ of $C$ in $\left.T\right\} \mid$. Select a vertex $v_{C^{*}}$ such that $x_{C^{*}} \geq n / 2$ and such that $v_{C^{*}}$ has largest depth in $T$ amongst all such vertices. If $v_{C^{*}}$ is already the root of $T$, we are done. Otherwise, let $v_{C^{\prime}}$ be the parent of $v_{C^{*}}$ and reroot $T$ at $v_{C^{*}}$ to form a 2 -ecc tree $T^{*}$, in which $v_{C^{\prime}}$ is a child of $v_{C^{*}}$. We have that for every child $v_{C} \neq v_{C^{\prime}}$ of $v_{C^{*}}$ in $T^{*}$ we have $x_{C}<n / 2$, because otherwise the algorithm would have picked $v_{C}$ rather than $v_{C^{*}}$. Furthermore, we have $x_{C^{*}} \geq n / 2$, and so the total number of vertices in all components $C^{\prime \prime}$ such that $v_{C^{\prime \prime}}$ is a descendant of $v_{C^{\prime}}$ in $T^{*}$ must be $\leq n / 2$.

Theorem 4.6. Let $\mathcal{G}=\left\langle G_{1}, \ldots, G_{L}\right\rangle$ be an always-connected, 1-edge-deficient temporal graph with arbitrary underlying graph $G$, and let $|V(G)|=n$. Then, for any start vertex $s$, there is an exploration schedule $\mathcal{W}$ of $\mathcal{G}$ with $a(\mathcal{W})=O(n)$. Moreover, such a schedule can be computed in polynomial time.

Proof. Apply Lemma 4.2 to $G$ in order to obtain a spanning subgraph $G^{*} \subseteq G$ (with $\left|E\left(G^{*}\right)\right| \leq 5 n$ ) such that each 2-ecc $C$ of $G$ forms a 2-ecc $C^{*}$ in $G^{*}$ with $\left|E\left(C^{*}\right)\right| \leq 5\left|V\left(C^{*}\right)\right|$. Apply Lemma 4.5 to $G^{*}$ to obtain a 2-ecc tree $T$ of $G^{*}$ with a root component $C_{1}$ such that the child subgraphs $G_{i} \subseteq G^{*}$ satisfy $\left|V\left(G_{i}\right)\right| \leq n / 2$. Let $k$ denote the number of 2 -eccs in $G^{*}$. Let $T(n, k)$ denote the maximum number of timesteps required to explore an arbitrary 1-edge-deficient, always-connected temporal graph on $n$ vertices whose underlying graph has $k 2$-eccs, at most $5 n$ edges, and is such that every 2-ecc $C^{*}$ satisfies $\left|E\left(C^{*}\right)\right| \leq 5\left|V\left(C^{*}\right)\right|$, starting from an arbitrary vertex $s$ in the graph at timestep 1 . We now specify our exploration algorithm and prove by induction on $k$ that $T(n, k) \leq 164 n$.

Base case (Arbitrary $n, k=1$ ): $G^{*}$ consists of a single 2-ecc $C_{1}$; without loss of generality assume that $\left|V\left(C_{1}\right)\right| \geq 3$. Apply Theorem 4.4 to $C_{1}$, obtaining a circuit cover $\left\{X_{1}, \ldots, X_{c}\right\}$ of $C_{1}$ containing $c$ circuits, where $1 \leq c \leq 3$. Consider now the following 3 time intervals, noting that $\left|E\left(X_{i}\right)\right| \leq\left|E\left(C_{1}\right)\right| \leq 5 n$ for all $i \in[3]: I_{1}=[n+1,6 n], I_{2}=[7 n+1,12 n]$ and $I_{3}=[13 n+1,18 n]$. During the steps of $I_{i}$ apply Theorem 4.3 to $X_{i}$ to determine a vertex $v_{i} \in X_{i}$ such that an exploration schedule of $X_{i}$ using at most $\left|E\left(X_{i}\right)\right|-1 \leq 5 n-1$ timesteps begins at $v_{i}$ at the first step of $I_{i}$. Beginning at the start vertex $s \in V(G)$ in timestep 1, employ Lemma 2.5 to move in at most $n$ steps to vertex $v_{1}$, wait until the first step of interval $I_{1}$, then follow the walk obtained by the application of Theorem 4.3 during interval $I_{1}$. If $c>1$, repeat these steps for all remaining circuits $X_{i}$ in the computed circuit cover of $C_{1}$. Once Theorem 4.3 has been applied to $X_{c}$, notice that, for all $i \in[c]$, all vertices of $X_{i}$ have been visited. Since $\left\{X_{1}, \ldots, X_{c}\right\}$ covers all edges of $C_{1}$ (and also all edges of $G^{*}$ since $G^{*}$ consists only of $C_{1}$ ), it follows that all vertices of $G^{*}$ have been visited at least once. The number of timesteps taken to achieve this is at most $c(n+5 n) \leq 18 n$.

Inductive step (Arbitrary $n, k>1$ ): Assume that $T(n, j) \leq 164 n$ for all $j<k$ and consider the root component $C_{1}$ of $G^{*}$. We now distinguish two cases:

Case 1: $\left|C_{1}\right| \geq 2$. Apply Theorem 4.4 to $C_{1}$ and obtain a circuit cover $X^{*}=\left\{X_{1}, \ldots, X_{c}\right\}$ of $C_{1}$ containing $c$ circuits, where $1 \leq c \leq 3$. Let $V^{\prime}=$ $\left\{v \in V\left(C_{1}\right): v \in e\right.$ for some bridge $\left.e\right\}$. Construct a function $\alpha: V^{\prime} \rightarrow X^{*}$ by arbitrarily mapping each vertex $v \in V^{\prime}$ to some circuit $X_{i} \in X^{*}$ such that $v \in X_{i}$. Recall that we root the 2 -ecc tree $T$ of $G^{*}$ at $C_{1}$. For each child $C_{i}$ of $C_{1}$ in $T$, we denote by $G_{i}$ the child subgraph of $G^{*}$ corresponding to the subtree of $T$ rooted at $C_{i}$. Let $\mathrm{Br}=\left\{e \in E\left(G^{*}\right): e\right.$ is a bridge and $\left.e \cap V^{\prime} \neq \emptyset\right\}$ and, for any $v \in V^{\prime}$, let $\beta(v)=\left\{G_{i}:\{v, u\} \in \operatorname{Br}\right.$ for some $\left.u \in G_{i}\right\}$. For $i \in$ [3], let $F_{i}=\bigcup_{\left\{v \in V^{\prime}: \alpha(v)=X_{i}\right\}} \beta(v)$.

Let $G_{X_{i}} \subseteq G^{*}$ be the subgraph of $G^{*}$ induced by $V\left(X_{i} \cup F_{i}\right)(i \in[c])$. For each $i \in[c]$, we construct a closed walk in $G_{X_{i}}$ that will be followed (in opposite directions) by two virtual agents. Both agents start at some arbitrary vertex $s_{i} \in V\left(X_{i}\right)$ and follow the walk in opposite directions whenever possible, i.e.,
whenever they are not blocked on the next edge they need to cross. Starting at some timestep $t_{i}$, let the agents do the following: Move along the edges of $X_{i}$, one in the clockwise direction (agent CW) and the other in the counter-clockwise direction (agent CCW). Whenever either agent reaches for the first time a vertex $v \in V^{\prime}$ such that $\alpha(v)=X_{i}$ the agent descends into each $G_{j} \in \beta(v)$ via the bridge connecting it and vertex $v \in X_{i}$, and explores $G_{j}$ via a depth-first search. The only exception is the vertex $s_{i}$ : If $s_{i} \in V^{\prime}$ and $\alpha\left(s_{i}\right)=X_{i}$, then agent CW descends into each $G_{j} \in \beta\left(s_{i}\right)$ immediately at the start of the walk (before traversing any edge of $X_{i}$ ), while agent CCW does so only when it returns to $s_{i}$ after having traversed all edges of $X_{i}$. Agent CW processes the subgraphs in $\beta(v)$ in increasing order of their indices, whilst agent CCW processes them in decreasing order of their indices. Once an agent has explored all subgraphs $G_{j} \in \beta(v)$, then that agent attempts to cross the next edge in $X_{i}$. Both agents continue this until the first timestep in which both agents are blocked on the same edge $e$. If every edge of $G^{*}$ were to be present in every timestep, it would take each agent at most $\operatorname{Exp}\left(X_{i}\right)=\left|E\left(X_{i}\right)\right|+\sum_{G_{j} \in F_{i}} 2\left|V\left(G_{j}\right)\right|$ steps to carry out their respective walks in $G_{X_{i}}: 1$ step to traverse each of the edges of $X_{i}$, $2\left|V\left(G_{j}\right)\right|-2$ steps spent exploring $G_{j}$ via a DFS, and 2 steps spent traversing the bridge edges connecting $X_{i}$ and each $G_{j} \in F_{i}$. Since $G^{*}$ is 1-edge-deficient, it is possible for the agents to both be blocked on the same edge during the same timestep. We distinguish three subcases as follows. Recall that $t_{i}$ denotes the timestep in which the exploration of $G_{X_{i}}$ begins. We use $t_{i}^{\prime}$ to denote an upper bound on the timestep by which the exploration of $G_{X_{i}}$ (possibly except one subgraph, see below for details) is completed by at least one of the two agents.

Case 1.1: If the agents are never blocked on the same edge $e$ during any step $t$ in $\left[t_{i}, t_{i}^{\prime}\right]$ for $t_{i}^{\prime}=t_{i}+2 \operatorname{Exp}\left(X_{i}\right)$, then, in each timestep $t \in\left[t_{i}, t_{i}^{\prime}\right]$, at least one of the two agents is able to cross the next edge of their respective walk. In this case, we have that by the end of timestep $t_{i}^{\prime}$, the agent that was blocked on an edge in the least number of timesteps $t \in\left[t_{i}, t_{i}^{\prime}\right]$ will have not been blocked in $\geq \operatorname{Exp}\left(X_{i}\right)$ timesteps and, as such, will have completed their exploration of $G_{X_{i}}$.

It remains to consider the situation that the agents are blocked on the same edge of $G^{*}$ during some timestep in $\left[t_{i}, t_{i}^{\prime}\right]$, where $t_{i}^{\prime}=t_{i}+3 \operatorname{Exp}\left(X_{i}\right)$ in Case 1.2 and $t_{i}^{\prime}=t_{i}+4 \operatorname{Exp}\left(X_{i}\right)$ in Case 1.3. Consider the timestep $t$ in which the agents are first both blocked on the same edge $e$.

Case 1.2: $e \in X_{i}$. Check whether or not $e$ is present during any step $t^{\prime} \in\left[t+1, t+\left|E\left(X_{i}\right)\right|\right]$. If yes, wait until that step, then let both agents cross $e$. If not, let both agents apply Lemma 2.5 in $X_{1}$, using at most $\left|E\left(X_{1}\right)\right|-1$ timesteps to move to the opposite endpoint of $e$, then continue attempting to traverse the next edge of their walk whenever possible. Notice that, during any step $t^{\prime} \in\left[t_{i}, t-1\right]$, at least one of the two agents was able to cross the next edge in their respective walk, since $t$ is the first timestep in which both agents are blocked on the same edge. When the agents are blocked on $e$ during step $t$, they either wait at their current vertex for at most $\left|E\left(X_{i}\right)\right|-1$ steps until $e$ is present again, or spend $\leq\left|E\left(X_{i}\right)\right|-1$ steps reaching the opposite endpoint of $e$ by applying Lemma 2.5 in $X_{i}$. In either case, it takes at most $\left|E\left(X_{i}\right)\right|-1$ steps for them to
reach the opposite endpoint of $e$. At this point, observe that the vertices $x \in V\left(X_{i}\right)$ and the $G_{j} \in F_{i}$ that remain to be explored/processed by agent CW are exactly those that have already been explored/processed by agent CCW (and vice versa). Hence, it follows that the two agents will not be blocked on the same edge again for the remainder of their walks. In all remaining steps, since the sets of vertices unexplored by the walks of the two agents are disjoint, we again have that at least one of the two agents will be able to cross the next edge of their respective walk in all steps $t^{\prime} \in\left[t+\left|E\left(X_{i}\right)\right|, t_{i}^{\prime}\right]$. Concluding, during the entire time interval $\left[t_{i}, t_{i}^{\prime}\right]$, there are $\leq\left|E\left(X_{i}\right)\right|$ steps in which neither of the agents can cross the next edge of their respective walk, and by step $t_{i}^{\prime} \leq t_{i}+2 \operatorname{Exp}\left(X_{i}\right)+\left|E\left(X_{i}\right)\right| \leq t_{i}+3 \operatorname{Exp}\left(X_{i}\right)$, it is ensured that the agent who was blocked during the least number of steps since the start of step $t_{i}$ has completed their exploration of $G_{X_{i}}$ in at most $3 \operatorname{Exp}\left(X_{i}\right)$ steps.

Case 1.3: $e \in G_{j}$ for some $G_{j} \in F_{i}$. Let $b=\{v, u\}$, where $\{v, u\} \in \operatorname{Br}, v \in X_{i}$ satisfies $\alpha(v)=X_{i}$, and $u \in V\left(G_{j}\right)$. Consider the timestep $t \in\left[t_{i}, t_{i}^{\prime}\right]$, during which the two agents are first blocked on $e$. Let $t_{1}^{*}, t_{2}^{*} \in\left[t_{i}, t_{i}^{\prime}\right]$ denote respectively the timesteps at which the first agent (say agent $\mathrm{A}_{1}$ ) and second agent (agent $\mathrm{A}_{2}$ ) traverse the edge $b$ from $v$ toward $u$ - clearly we have $t_{1}^{*} \leq t_{2}^{*}<t$, since $e \in E\left(G_{j}\right)$ and any vertex in $V\left(G_{j}\right)$ can only be reached from $X_{i}$ by traversing $b$. We now retrospectively alter the walks of both agents: First, change the walk of $\mathrm{A}_{1}$ so that, during the interval $\left[t_{1}^{*}, t_{2}^{*}-1\right], \mathrm{A}_{1}$ waits at vertex $v$. Now, change the walks of both $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ during the steps $\left[t_{2}^{*}, t_{i}^{\prime}\right]$, so that they both do not process subgraph $G_{j}$, but continue their exploration of $X_{i}$ and all $G_{j^{\prime}} \in F_{i}$ such that $G_{j^{\prime}} \neq G_{j}$. We claim that $t_{2}^{*} \leq t_{i}+2 \operatorname{Exp}\left(X_{i}\right)$. To see this, observe that $t \leq t_{i}+2 \operatorname{Exp}\left(X_{i}\right)$ since, if $t>t_{i}+2 \operatorname{Exp}\left(X_{i}\right)$, the two agents will not have been blocked on the same edge during any of the steps $\left[t_{i}, t_{i}+2 \operatorname{Exp}\left(X_{i}\right)\right]$, and so the agent who was blocked on an edge in the least amount of steps during this interval would have traversed an edge of their walk in $\geq \operatorname{Exp}\left(X_{i}\right)$ timesteps - enough to have finished the entire exploration of $G_{X_{i}}$. Hence we have $t_{2}^{*} \leq t<t_{i}+2 \operatorname{Exp}\left(X_{i}\right)$, as required. Both agents can then continue following their respective walks during the interval $\left[t_{2}^{*}, t_{i}^{\prime}\right]$ without the possibility of being blocked on the same edge again; by our earlier reasoning this requires of the agent that is blocked during the least number of steps in this period another $\leq 2 \operatorname{Exp}\left(X_{i}\right)$ steps. Concluding, one of the two agents will have visited all vertices in $G_{X_{i}} \backslash V\left(G_{j}\right)$ by the end of step $t_{2}^{*}+2 \operatorname{Exp}\left(X_{i}\right) \leq t_{i}+4 \operatorname{Exp}\left(X_{i}\right)$.

In all three subcases, one of the two agents has explored all vertices of $G_{X_{i}}$, except possibly those of a single subgraph $G_{j}$ of $G_{X_{i}}$, in at most $4 \operatorname{Exp}\left(X_{i}\right)$ timesteps, and we will let the real agent follow that agent's walk.

After processing all $c$ circuits $X_{i}$ in this way, there will be at most $c$ subgraphs that have not yet been explored. We next reduce those unexplored subgraphs to at most one: While there are two or more unexplored subgraphs, we repeatedly (1) choose a circuit $X$ in $C_{1}$ that contains two vertices of $V^{\prime}$ that have a bridge to an unexplored subgraph (note that a circuit $X$ such that $|E(X)| \leq 2\left|V\left(C_{1}\right)\right|$ must exist), and then (2) process $X$ and the two unexplored subgraphs in the same way as we processed $X_{i}$ for $1 \leq i \leq c$ above.

After this, there will be at most a single subgraph $G_{j}$ corresponding to a child subtree rooted at a child of $C_{1}$ in the 2-ecc tree that is not yet explored. That subgraph has at most $n / 2$ vertices (by choice of $C_{1}$ ) and has at most $k-1$ 2 -eccs (because it does not contain the 2 -ecc $C_{1}$ ). We now apply the inductive hypothesis to explore $G_{j}$ recursively in at most $164 \cdot n / 2=82 n$ steps.

To bound the overall number of timesteps, we assume that $c=3$, that 3 subgraphs remain unexplored after processing $G_{X_{i}}$ for $i \in[3]$, that two iterations of the procedure for reducing the number of unexplored subgraphs are needed, and that a recursive call needs to be made to explore the final unexplored subgraph. We omit the details, but one can straightforwardly show (via a case analysis) that this is the worst case for the total number of steps needed to complete the exploration.

The whole exploration then consists of the following parts: At most $n$ steps to move from $s$ to a vertex $v_{1}$ in $X_{1}$; at most $4 \operatorname{Exp}\left(X_{1}\right)$ steps to explore $G_{X_{1}}$ apart from at most one child subgraph $G_{j}$. Another at most $n+4 \operatorname{Exp}\left(X_{2}\right)$ steps to do the same for $G_{X_{2}}$ (where the first $n$ steps allow the agent to move from the vertex where the exploration of $G_{X_{1}}$ ends to a vertex in $X_{2}$ ), and another at most $n+4 \operatorname{Exp}\left(X_{3}\right)$ steps to do the same for $G_{X_{3}}$. Then, at most twice: $n$ steps to move to a vertex in a circuit $X$ (recall that $\left.|E(X)| \leq 2\left|V\left(C_{0}\right)\right|\right)$ and $4 \operatorname{Exp}(X)$ steps to explore it and at least one of the two subgraphs attached to it. Finally, $\leq n$ steps are needed to move to a vertex in the last unexplored subgraph $G_{j}$, and another $\leq 82 n$ steps are required to explore that subgraph recursively.

As $\operatorname{Exp}\left(X_{i}\right)=\left|E\left(X_{i}\right)\right|+\sum_{G_{j} \in F_{i}} 2\left|V\left(G_{j}\right)\right|$, we have $\sum_{i=1}^{3} \operatorname{Exp}\left(X_{i}\right) \leq 3\left|E\left(C_{1}\right)\right|+$ $\sum_{i=1}^{3} \sum_{G_{j} \in F_{i}} 2\left|V\left(G_{j}\right)\right| \leq 15\left|V\left(C_{1}\right)\right|+2 \sum_{i=1}^{3} \sum_{G_{j} \in F_{i}}\left|V\left(G_{j}\right)\right| \leq 15 n$. Furthermore, for any circuit $X$ in $C_{1}$ with two subgraphs $G_{1}$ and $G_{2}$ attached via bridges, we have $\operatorname{Exp}(X) \leq 2\left|V\left(C_{1}\right)\right|+2\left|V\left(G_{1}\right)\right|+2\left|V\left(G_{2}\right)\right| \leq 2 n$. Thus, the total exploration time is at most $6 n+4 \cdot 15 n+8 \cdot 2 n+82 n=82 n+82 n=164 n$.

Case 2: $\left|C_{1}\right|=1$. In this case we apply a similar technique to that used in Case 1, but this case is simpler as the root component consists of a single vertex and all child subgraphs are attached to that same vertex via bridges.

Finally, we remark that all steps in the construction of the exploration schedule can be implemented in polynomial time.

## 5 Lower Bound

To complement the upper bounds from Sections 3 and 4 , we also present a lower bound on the worst-case exploration time of $k$-edge-deficient temporal graphs.

Theorem 5.1. For arbitrarily large $n$ and every $k$ with $2 \leq k \leq \frac{n}{2}-1$, there is a $k$-edge-deficient temporal graph with $n$ vertices for which an optimal exploration takes $\Omega(n \log k)$ steps.

The theorem can be shown by adapting the construction of a lower bound of $\Omega(n \log n)$ on the exploration time of temporal graphs with underlying planar graphs of maximum degree 4 from [6, Theorem 2]. That construction has a
time-varying part (in which $n / 2$ edges are missing in each step) and a fixed part (a static path of $n / 2$ edges). By reducing the size of the time-varying part and increasing the size of the static part, we obtain Theorem 5.1

## 6 Conclusion

We have shown that always-connected $k$-edge-deficient temporal graphs admit an exploration schedule $\mathcal{W}$ with arrival time $O(k n \log n)$; if $k=1$, the arrival time improves to $O(n)$. The provided proofs are both constructive, yielding polynomial-time algorithms for computing such exploration schedules. As $n-1$ steps are necessary to explore any graph, our results also yield $O(k \log n)$ and $O(1)$-approximation algorithms for TEXP for the $k \in \mathbb{N}$ and $k=1$ cases, respectively, as well as an $O(\log n)$-approximation if $k=O(1)$. Furthermore, we gave an infinite family of $k$-edge-deficient temporal graphs that require $\Omega(n \log k)$ timesteps to be explored. It would be interesting to close the gap between the lower and upper bounds. In particular, an interesting question is whether always-connected $k$-edge-deficient graphs for $k=O(1)$ can be explored in $O(n)$ steps.

## References

1. Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns to the base. In: Heggernes, P. (ed.) 11th International Conference on Algorithms and Complexity (CIAC 2019). Lecture Notes in Computer Science, vol. 11485, pp. 13-24. Springer (2019). https://doi.org/10.1007/978-3-030-17402-6_2
2. Bodlaender, H.L., van der Zanden, T.C.: On exploring always-connected temporal graphs of small pathwidth. Information Processing Letters 142, 68-71 (2019). https://doi.org/10.1016/j.ipl.2018.10.016
3. Brodén, B., Hammar, M., Nilsson, B.J.: Online and Offline Algorithms for the Time-Dependent TSP with Time Zones. Algorithmica 39(4), 299-319 (2004). https://doi.org/10.1007/s00453-004-1088-z
4. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing Shortest, Fastest, and Foremost Journeys in Dynamic Networks. Int. J. Found. Comput. Sci. 14(2), 267-285 (2003). https://doi.org/10.1142/S0129054103001728
5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst. 27(5), 387-408 (2012). https://doi.org/10.1080/17445760.2012.668546
6. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. Journal of Computer and System Sciences 119, 1-18 (2021). https://doi.org/10.1016/j.jcss.2021.01.005
7. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two Moves per Time Step Make a Difference. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132, pp. 141:1-141:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.141
8. Erlebach, T., Spooner, J.T.: Faster Exploration of Degree-Bounded Temporal Graphs. In: Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 117, pp. 36:1-36:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.36
9. Erlebach, T., Spooner, J.T.: Non-strict Temporal Exploration. In: Richa, A.W., Scheideler, C. (eds.) 27th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2020). Lecture Notes in Computer Science, vol. 12156, pp. 129-145. Springer (2020). https://doi.org/10.1007/978-3-030-54921-3-8
10. Fan, G.: Covering graphs by cycles. SIAM Journal on Discrete Mathematics 5(4), 491-496 (1992). https://doi.org/10.1137/0405039
11. Gotoh, T., Flocchini, P., Masuzawa, T., Santoro, N.: Tight Bounds on Distributed Exploration of Temporal Graphs. In: Felber, P., Friedman, R., Gilbert, S., Miller, A. (eds.) 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 153, pp. 22:1-22:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.OPODIS.2019.22
12. Gotoh, T., Sudo, Y., Ooshita, F., Masuzawa, T.: Dynamic ring exploration with (H,S) view. Algorithms 13(6) (2020). https://doi.org/10.3390/a13060141
13. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of Constantly Connected Dynamic Graphs Based on Cactuses. In: Halldórsson, M.M. (ed.) 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO 2014). Lecture Notes in Computer Science, vol. 8576, pp. 250-262. Springer (2014). https://doi.org/10.1007/978-3-319-09620-9_20
14. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: The case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2013). Lecture Notes in Computer Science, vol. 8179, pp. 13-23. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-9_2
15. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and Inference Problems for Temporal Networks. J. Comput. Syst. Sci. 64(4), 820-842 (2002). https://doi.org/10.1006/jcss.2002.1829
16. Michail, O.: An introduction to temporal graphs: An algorithmic perspective. In: Zaroliagis, C., Pantziou, G., Kontogiannis, S. (eds.) Algorithms, Probability, Networks, and Games: Scientific Papers and Essays Dedicated to Paul G. Spirakis on the Occasion of His 60th Birthday, pp. 308-343. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24024-4_18
17. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theor. Comput. Sci. 634, 1-23 (2016). https://doi.org/10.1016/j.tcs.2016.04.006
18. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7(5\&6), 583-596 (1992). https://doi.org/10.1007/BF01758778
19. Shannon, C.E.: Presentation of a maze-solving machine. In: Sloane, N.J.A., Wyner, A.D. (eds.) Claude Elwood Shannon - Collected Papers, pp. 681-687. IEEE Press (1993)
20. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators in temporal graphs. Journal of Computer and System Sciences 107, 72-92 (2020). https://doi.org/10.1016/j.jcss.2019.07.006
