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Abstract: In this article, we consider a version of the challenging problem of learning from datasets
whose size is too limited to allow generalisation beyond the training set. To address the challenge,
we propose to use a transfer learning approach whereby the model is first trained on a synthetic
dataset replicating features of the original objects. In this study, the objects were smartphone
photographs of near-complete Roman terra sigillata pottery vessels from the collection of the Museum
of London. Taking the replicated features from published profile drawings of pottery forms allowed
the integration of expert knowledge into the process through our synthetic data generator. After this
first initial training the model was fine-tuned with data from photographs of real vessels. We show,
through exhaustive experiments across several popular deep learning architectures, different test
priors, and considering the impact of the photograph viewpoint and excessive damage to the vessels,
that the proposed hybrid approach enables the creation of classifiers with appropriate generalisation
performance. This performance is significantly better than that of classifiers trained exclusively on
the original data, which shows the promise of the approach to alleviate the fundamental issue of
learning from small datasets.

Keywords: deep learning; machine learning; image classification; simulated data; learning from
scarce information; Roman pottery (terra sigillata)

MSC: 68T10; 68T45

1. Introduction

State-of-the-art deep learning models in artficial intelligence (AI), approaching or even
surpassing humans’ object classifying capabilities (such as [1,2]), require vast training sets
comprising millions of training data [3,4]. According to classical statistical learning theory
and other relevant machine learning literature [5–7], these requirements are often necessary
to ensure that such advanced learning machines do not merely memorise input-output
relationships but also generalize well beyond the data they have been trained on. Indeed,
in the simplest binary classification setting with the loss function returning 0 for correct
classification and 1 otherwise, expected performance R of the classifier, expressed as a
mathematical expectation of the loss function, can be estimated as follows [6]:

R ≤ Rtrain + 2

√√√√
2

h log
(

2eNtrain
h

)
+ log 2

δ

Ntrain
, (1)
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where Rtrain is the empirical mean of the classifier’s performance on the training set, Ntrain
is the size of the training set, 1− δ is the probability that the expected behaviour of the
classifier is within this bound, and h is a measure of the classifier’s complexity (Vapnik-
Chervonenkis or VC dimension).

For a feed-forward network with Rectified Linear Unit (ReLU) neurons, the VC
dimension of the whole network is larger than the VC dimension of a single neuron in
the network. The latter, in turn, equals the number of its adjustable parameters. Modern
deep learning models have thousands of ReLU neurons with many thousands of adjustable
parameters. For example, ReLU neurons in the fully connected layers of VGG19 [8] have
4096 adjustable weights, and hence the value of h for such networks exceeds 4096. Thus,
if (1) is employed to inform our data acquisition processes, ensuring that the model’s
expected performance R does not exceed the value of Rtrain + 0.1 with probability at least
0.95 requires

Ntrain ≥ 35, 238, 500 > 35M

data points. Sharper upper and lower bounds of h for entire networks can be derived
from [9,10]. According to [9] (Theorem 2.1), the value of h for a network with W parameters,
k ReLU neurons, and L layers is bounded from above as

h ≤ 2WL log (2eWLk) + 2WL2 log(2) + 2L,

which emphasizes the need for large training sets even further.
Unfortunately, sufficiently large and fully annotated datasets are not available in

many applications or research fields. In archaeology, for instance, datasets almost never
reach such orders of magnitude. Where datasets approaching such a size do exist, they
are certainly not comprehensively recorded and photographed, and are not digitally
available. Moreover, prior to excavation, these archaeological remains have typically been
subjected to various mechanical, chemical, or environmental perturbations that result in
their fragmentation (into sherds), introducing a near infinite amount of variability to the
dataset that adversely affects the statistical properties of any practical/empirical sample.
Because of the immense diversity of breaking patterns resulting from these factors, despite
the volumes of pottery collected, even larger datasets are required for the learning machine
to generate the features necessary for classification from these data. Few-shot learning
alternatives (methods and networks capable of learning from merely a few examples, such
as matching or prototypical networks [11,12]), do not address the issue as they either
require extensive pre-training on labelled data or assume that data distributions in the
AI’s latent spaces satisfy some additional constraints [13,14] which may or may not hold
for a randomly initiated network. Recent successful applications of deep learning in this
area [15] exploit identifiable decorative patterns on ceramic vessels to improve ceramic
dating processes, but acknowledge the need for larger numbers of typed artefacts for
greater accuracy. Such decorative features are also not always available for all ceramics or
other types of artefacts.

In this paper, we propose and empirically verify through extensive computational
experiments that much-needed information for training advanced large-scale AI models,
including deep neural networks, can be extracted from abundantly available published
knowledge of experts (in our case Roman ceramic specialists) and fed into model training
pipelines [16]. Not only will this enable us to address the issue of insufficient data but also
this will allow us to properly calibrate and control bias in the training data.

To demonstrate the feasibility of the approach, we focus on a particular class of
artefacts—pottery remains of a particular fabric type, terra sigillata. Terra sigillata is a high-
quality wheel thrown pottery fabric produced throughout the Roman Empire that can be im-
portant for studying cultural differences among past eating and drinking practices [17,18].
We concentrate on terra sigillata found in Britain, which was mainly produced in Gaul
and the German provinces of the Roman Empire. Focusing on a specific type of artefact
enables us to better illustrate the challenge of bias in real-life training data. This is particu-
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larly important because of the fact that among the pottery remains of a particular fabric
type (e.g., terra sigillata) the quantities of each of the available forms are not uniformly
distributed across the typological spectrum for that fabric. That is, some forms (or classes)
are represented in higher numbers than others. Undoubtedly, this is at least partly the
result of past popularity of particular vessel types, and therefore relevant to their diverse
uses, or the result of differing physical characteristics of particular classes (some forms
are more robust than others), and this might be further complicated by selective collection
during post-excavation and then by further biased selection processes in museum collection
practices. We are therefore dealing with a dataset that is affected by various factors that
push the distribution away from the uniform in unpredictable ways.

By basing the perturbations and variations in our simulated models of the artefacts
of interest (in our case terra sigillata vessels) on a widely used British handbook of terra
sigillata [19], we were able to integrate available domain knowledge into our synthetic
datasets. The original objects were photographs which we collected from the Museum of
London (MoL) as a part of the Arch-I-Scan project. The project, directed by P. Allison and I.
Tyukin, out of which the current article flows aims to use thousands of images of pottery
fragments to train an AI classifier for Roman fine tablewares focusing on terra sigillata. This
is high-quality wheel thrown pottery fabric produced throughout the Roman Empire. Terra
sigillata found in Britain was mainly produced in Gaul and German provinces of Roman
Empire and it is this material the project focuses on. From this collection, being one of
the most extensive collections of complete or near complete Roman fine ware vessels in
Britain, we took 5373 images of 162 different near-complete terra sigillata vessels. These
original images were used to fine-tune and test our system. Using four popular deep
learning architectures, Inception v3 [20], Mobilenet v2 [21], Resnet50 v2 [22] and VGG19 [8],
we evaluated our approach by assessing its performance in the task of predicting the vessel
class from a single photograph.

The use of synthetic data is very appealing in other areas as well, such as for deep
reinforcement learning [23], bioinformatics [24], and optoelectronic device design [25].
Multiple synthetic datasets [26–28] or engines [29–31] to generate them are now available
for AI research. Until recently, the domain gap between the synthetic dataset and the real
one usually made synthetic-only training non-competitive, but with today’s rendering pro-
grams enabling the creation of large datasets of various objects [32,33] and entire cities [34],
the generalization error is becoming comparable to that between two similar real-life
datasets [35]. Several procedures (for example generative adversarial networks [36,37])
have been proposed to deal with the reality gap. In this article, we focus on domain ran-
domization [38–41] to reduce the gap by encouraging variability of simulation properties,
such as object’s color, illumination, noise, and so forth. For object detection problems, it has
been shown that training part of the system on real data and the remaining with realistic
synthetic images achieves a good performance [42].

The novel contribution of this work is that we demonstrate, both qualitatively and
quantitatively, the advantage of exploiting simulated datasets in tasks requiring identifica-
tion of highly variable real-life objects such as archaeological artefacts from modestly-sized
sets of photographs taken in realistic settings and without precise calibration of the cameras.
The challenge of scarce volumes of data is fundamentally inherent in modern post-classical
data analysis [43,44]. Traditionally, this challenge is addressed through aggressive dimen-
sionality and model reduction [45], by resorting to models of relatively low complexity
even when simulated data are used [24], or by regularisation [46]. Simulation of data and
environments [47] are promising alternatives. Here we show that simulated datasets enable
the application of advanced machine learning models such as convolutional deep neural
networks to a class of problems in which the volumes of data available for training and
testing are incompatibly small relative to the complexities of these models. We show that
pre-training on appropriately generated simulated datasets may lead to drastic increase of
accuracy of up to 20% relative to baseline models pre-trained on ImageNet [3] (Section 3). In
view of “no free lunch” theorems [48] (Theorem 7.2, p. 114), knowledge that an algorithm
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or an approach is successful at a machine learning task is particularly important. Here
we present one of such positive results: overcoming the challenge of scarce information
could be possible in tasks involving classification of damaged 3D objects from 2D images
by using simulated datasets created from textbook drawings.

The rest of the article is organised in four sections. Section 2 details data acquisition
processes, the preprocessing of the images, the design of the different experiments and
how the different simulated datasets were created. Discussion of the experiment results
can be found in Section 3. Finally, in Section 4 the conclusions of this work are reported.

2. Materials and Methods

In this section we will explain the procedure used to create and evaluate the perfor-
mance of an artificial intelligence classifier of the pottery forms in our dataset of images
from the MoL collection. The two main difficulties to overcome were the small number of
examples per class and the imbalance in the number of pots in each class in the dataset
(see Section 2.1). Even if we produced many images per vessel, we did not have enough
different vessels for each class of the dataset to create a classifier for all forms of the estab-
lished terra sigillata classification system based on Dragendorff’s work [49]. This issue has
been alleviated, to some degree, by aggregating some similar forms into one. Furthermore,
rouletted (or “R”) variants of Dragendorff forms have been aggregated into their main
form as the main difference is a rouletted impression that is usually only visible in a zenith
view (see Figure 1). For example, our class Dr18 contains Dragendorff forms: 18, 18–31 and
31, as well as their rouletted variants 18R, 18-31R and 31R.

Figure 1. Example of plain variant of the Dragendorff 18 form (left) and a rouletted variant of
Dragendorff 18-31 (18-31R; right). Both are part of our class Dr18. Photos taken by Arch-I-Scan with
permission from the Museum of London.

The limited number of pots per class, even where we have combined several Dragen-
dorff forms into a single class, as for Dr18, limits the possibilities of extensively evaluating
architectures and hyperparameter tuning. Thus, we limited ourselves to four standard
architectures (see Section 2.2) and we evaluated the possibility of improving their per-
formance when pre-training them with different simulated pot datasets. The simulated
images of pots were used to augment the dataset of photos we had taken in the MoL
collection to make sure the size of the training set was closer to the standards required to
train AI classifiers. Note that the dataset of real pot photographs only contains 5373 images
of 162 different vessels for all pot classes, whereas in the simulation datasets every image
is of a different vessel. Each simulated dataset has at least a thousand images per class (see
Section 2.3). To ensure the classifier did not become desensitised to the real photos as a
result of being overwhelmingly shown synthetic images, it was trained in two phases. In
the first pre-training phase, the classifier was trained using synthetic images (or left with
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the initial ImageNet weights in the control condition). After that, a second training was
completed using the photos of real vessels.

In setting up the experiment, the following steps were taken:

1. The four neural network architectures used in this experiment were modified from
their standard and initialised with the ImageNet weights (see Section 2.2).

2. Three different sets of simulated pottery vessels were generated so that the impact
of (the quality of) simulation on the classifier’s performance could be assessed by
comparison. The production of the synthetic datasets is discussed in Section 2.3.

3. Training, validating, and testing the different neural networks was done using the
smartphone photographs of real terra sigillata vessels from the Museum of London.
To make sure these photographs were usable, we created an algorithm which au-
tomatically detects the pot, centers it in the photograph and crops out unnecessary
surroundings. This process is detailed in Section 2.4.

4. To mitigate the impact of small sample size on our performance metrics, we created 20
different training-validation-test partitions, the creation process of which is detailed
in Section 2.5.

5. We then trained each of the combinations of four networks and four sets of initial
weights with these partitions.

6. The results of each of 16 combinations of network architectures and pre-training
regimes were assessed across the 20 training-validation-test partitions. The definition
of the metrics used for this evaluation is discussed in Section 2.6, the results themselves
are detailed in Section 3.

2.1. Data Collection

In December 2019, the Arch-I-Scan project research team, with student volunteers
from the University of Leicester, took 12,395 photographs of 384 Roman pottery vessels
in the MoL antiquarian collection. These comprised complete and near complete vessels
of different fineware fabrics. In particular they included 8702 photographs of 247 terra
sigillata tableware vessels. For the experiments reported in this article, however, only
5373 images of 162 terra sigillata vessels were used. This was because for most of the
standard Dragendorff forms of terra sigillata (see [19] for an introduction to the standard
terra sigillata classification forms in Britain) we only had very small numbers of vessels, so
these poorly represented forms were excluded from this experiment. The dataset used here
is therefore much smaller than that recorded, being made up of only those terra sigillata
forms for which we had 8 or more pots (see Figure 2).

50 

 40

10 

 Dr18 Dr24-25 Dr27   Dr29 Dr33   Dr35   Dr36   Dr37 Dr38 

30

20

0

Class # Pots

Dr18 51

Dr24-25 8

Dr27 28

Dr29 18

Dr33 13

Dr35 12

Dr36 15

Dr37 9

Dr38 8

Figure 2. Bar chart and table detailing the number of different pots per class in our dataset. Classes
are labelled starting with Dr followed by the number of the Dragendorff form they are based on [19].
The table gives the exact number of vessels per class.
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Photographs were taken within three settings all with approximately the same charac-
teristics except for their position and lighting conditions. That is, each setting comprised
a 90 degree corner wrapped with a light blue cloth to create a chromatic difference from
the usual pot colors (i.e., reddish brown for terra sigillata and dark grey for other London
finewares). In order to indicate the sizes of vessels in the photos a set of 3D-scales was
used (see Figure 3 for an illustration of the setting which we used to take photographs
of the pots). Automatic measurement of vessel size or rim falls outside the scope of this
article, however.

Figure 3. Daniël van Helden photographing a near complete terra sigillata vessel, with a complete
profile from rim to base, in the antiquarian collection of the Museum of London (photo taken by
Victoria Szafara).

To illuminate each setting, the main light source was provided by overhead reading
lamps. In some cases, photographs exhibited a colder illumination when the only light
source was the museum basement lights. In order not to have a unique direction of the
main light source, the lamp was placed in a different position at each setting.

In each setting photographs were taken by a team of two people. As required by MoL
regulations, the vessels were carried in and out of each setting by the museum curator, then
one member of the team manipulated each vessel for the different views while the other
took the photographs. Different smart phones with different camera resolution and optics
were used throughout the recording session to reduce the uniformity of the photographs
(see Table 1).

Table 1. Mobile phones used to take pictures of pots, in the MoL storerooms, and relevant properties
of their cameras.

Phone Model Camera Resolution Aperture Focal Length Pixel Size

Samsung Galaxy A20e 13 MP f/1.9 28 mm 1.4 µm
Apple iPhone 6 8 MP f/2.2 29 mm 1.5 µm

Motorola Moto E Play 5th gen. 8 MP f/2.0 28.3 mm 1.12 µm
Samsung Galaxy A70 32 MP f/1.7 26 mm 0.8 µm
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The following strategy was used to take photos from a range of different views:

1. With the vessel placed upright on its base and assuming the origin of coordinates is
located at the center of the pot, photographs were taken from azimuth angles of 0, 45
and 90 degrees and declination angles 0, 45 and 90 degrees. A last photograph with a
declination higher than 90 degrees was taken by resting the mobile on the table.

2. The vessel was rotated by an azimuth angle of 90 degrees and the process of point
1 repeated.

3. The vessel was then turned upside down, thus using the rim to support it, and 4 pho-
tographs at azimuth 45 degrees from the declination detailed in point 1 were taken.

This strategy was generally followed, though deviations from this standard were
frequent. This means that, while we have standardised photo positions, for certain vessels
we have many more photos than described in the process above and for a few vessels we
have fewer. This introduces some imbalances in the dataset.

All photographs where standardised and cropped to size in accordance with the
procedure described in Section 2.4 and Algorithm 1. No further image alignment proce-
dures were employed including matching of holography points and landmarks [50] or via
homography transformations.

As a final step, images were manually labelled (see Figure 4). As well as the museum
inventory number for the pot this label includes information about the perspective from
which the photo was taken or the vessel condition. The standard label was given to those
vessels that were standing in their natural orientation and photographed from declination
angles of 45º, 90º and greater than 90º. This includes, but is not restricted to, the profile
perspective generally used in archaeology. The zenith label was given to those photographs
that were taken from above with the vessel standing upright as normally. The goal was
to achieve angle 0º, but as can be seen from Figure 4, this angle was not always perfect.
All those photographs in which the vessel was supported by its rim, irrespective of the
angle of the photograph, were given the label flipped. Finally, the label damaged was given
to those vessels with half their azimuth or more in a poor condition.

standard zenith flipped damaged 

Figure 4. Example of the three different perspectives (standard, zenith, flipped; seen in the three
left-most images) and the damaged condition (right-most image) using photos from class Dr18. Note
that images have already been through the automatic cropping procedure detailed in Section 2.4.
Photos taken by Arch-I-Scan with permission from the Museum of London.

The pre-processed dataset along with other relevant data can be found in [51].

2.2. Neural Nets Configurations

As we have a very limited number of pots per class, a robust exploration of different
architectures and finetuning their hyperparameters is not possible. Therefore, we limited
ourselves to standard architectures used in image classification problems, namely: Inception
v3 [20], Mobilenet v2 [21], Resnet50 [22] and VGG19 [8]. We used the ImageNet problem [1–3]
initialization weights, though we pre-trained with three different simulated datasets in
order to improve the performance through domain adaptation. We will show how the
pre-training with synthetic pot images results in improvement in the accuracy of the model
that increases as we consider more realistically simulated pots (the details of the simulated
datasets are discussed in Section 2.3).
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With the exception of the image size (224× 224 for Mobilenet v2, Resnet50 v2 and
VGG19; and 299× 299 for Inception v3), all nets were trained with the same configuration
(see also Figure 5):

• Backbone convolutional neural net base architecture (i.e., the last layers of these
architectures were removed until the convolutional structure);

• A global average pooling layer after the convolutional structure;
• A drop out layer with 0.3 exclusion probability;
• A final bottleneck dense layer with softmax activation, that is, a linear dense layer

followed by a softmax transformation of the outputs.

Figure 5. Diagram of the neural nets considered in the article. Four different base architectures are
considered: Mobilenet v2, Inception v3, Resnet50 v2 and VGG19. The last layers of these architectures
were removed up to the convolutional structure and substituted by a Global Average Pooling layer
followed by a Drop Out layer with 0.3 drop probability and a final dense layer with softmax activation
and 9 nodes (one for each of the 9 pot classes).

2.3. Pot Simulations

To pre-train the neural nets into a domain closer to our problem, we developed two
procedures to generate datasets of simulated pots. The first one uses the Python package
Matplotlib [52] to generate a simple form of the different classes. The other uses Blender [53],
an open source 3D modelling tool, to easily create simulated images very close to real
images. The rationale behind using different packages to produce simulated images was to
investigate how sensitive the overall approach is to different degrees of realism reflected in
the simulated data, with Matplotlib generating coarse images of pots and Blender enabling
the generation of realistically looking images (see [51] for the entire dataset we produced
using Matplotlib and Blender). For a comprehensive overview of other image synthesis
methods we refer the reader to [54].

Both procedures take as input the profile of each vessel. In order to obtain these
profiles we scanned Webster’s [19] profile drawings corresponding to the Dragendorff
forms present in our dataset. We manually erased all the details that were not part of the
rotational symmetric shape and thereby created a collection of digitised black and white
drawings of these pot profiles. So, if we define xi,j ∈ {0, 1} as the pixel in position (i, j)
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with only two possible colors/values: 0 for white/background and 1 black/profile, the
border pixel set can be detected as:

border ≡ {(i, j) : |xi,j − xi−1,j|+ |xi,j − xi,j−1| > 0},

which basically computes the vertical and horizontal differences and sums their absolute
values. A single difference would not be enough as wherever the border follows a vertical
or horizontal trajectory some pixels would not be detected. Finally, we merely have to order
the border set, resulting in a list in which for each element its two neighbours correspond
to the two pixels closest to its position (i, j). The list of points is used by each procedure to
draw an axial section, which is rotated to generate a 3D mesh of points that corresponds to
the rotationally symmetric shape of each vessel. Figure 6 shows a diagram of this process
(see [16,55,56] for comparable processes).

100 Matplotlib 

80 

60 

40 

20 

50 100 150 200 Blender 

Figure 6. Diagram of the pot simulation. Starting from a digitized profile drawing the profile is
extracted as an ordered list of points. With that profile we generated simulated photographs using
the package Matplotlib or the 3D modelling tool Blender.

As we have previously discussed, almost all photographed real pots have at least
some degree of damage. Each pot had its own characteristic damage pattern. In order
to simulate such breaks we designed an automatic breaking procedure for both software
programs. Each break was generated by choosing a random position, P, near the pot
mesh. The points of the mesh inside a sphere of radius R from P were susceptible to being
removed. After that, we randomly chose n points, {p}, between distances rmin and rmax
from P. We then erased any part of the vessel which is inside the sphere of radius R and
closer to P than to a new point, {p}. This procedure is implemented in different ways
depending on the software used. While in Blender the points are actually removed from
the mesh using the Boolean transformation tool, when using Matplotlib we set the alpha
(opacity) channel of these points facets to zero. By modifying the number of breaks and the
different parameters (R, n, rmin and rmax) we created different random breaking patterns,
as well as a variety of viewing angles, that gave us enough variability to create a good
simulated training dataset (please see [51] for the full simulated dataset we produced).
Figure 7 shows a diagram of this process.
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Figure 7. 2D diagram of the breaking procedure. Mesh points that fall within radius R (purple circle)
from P (purple point) are susceptible to being removed. Points {p} (green points) are inside the
crown of radii rmin and rmax (green circles), the lines that separate mesh points closer to {p} than P
are indicated as a dashed cyan line. Black points in the pot mesh are not susceptible to be removed;
orange ones are susceptible, but have been pardoned because they are closer to a green point {p}
than to P (purple); and lastly, red ones have been removed.

We have created three different simulated datasets:

• Matplotlib (1000 images per class):
To generate this dataset, the Python package Matplotlib [52] was used. The simulated
pot was floated in a homogeneous background, no shadow is projected but the pot
color is affected by the light. The light source is a point far away so only the angle
has been changed. The profiles were softened to avoid their small defects creating
circular patterns that could be identified by the neural net. For the same reason, a
small amount of random noise was added to the surface mesh points position.

• Blender1 (1400 images per class):
This dataset was generated using Blender [53]. We built a background set close to
the original photography setting with a uniform color. The lighting conditions were
randomly chosen using the different lighting classes available, namely: sun, spot,
point. Thanks to the rendering feature Cycles, we could simulate shadow projections
as well as changes of illumination in both pot and setting. The profile was softened by
distance using the software and no noise was added. The material properties where
not changed from the default ones except for the color.

• Blender2 (1300 images per class):
The process followed to create this dataset is similar to the one used to create Blender1,
however, the material properties were changed to make them more similar to the terra
sigillata pots. Thus, some images exhibit simulated pots with a reflective material
which creates light-saturated regions in the image of the pot. We also added decoration
and motifs to some classes, namely:

– Dr24–25: half of the images show a striped pattern near the top.
– Dr35 & Dr36: half of the images show a pattern of four or six leaves on their rim.
– Dr29 & Dr37: The decoration has a lot of variability in reality. We have simulated

it in half of the images through two noise pattern displacements (Blender Musgrave
and Magic textures).

No other decoration or characteristic details were reproduced in our simulated data.
Finally, we sieved each synthetic dataset, removing images that were taken from too
close or show some defects resulting from the simulated breaking procedure.
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Some samples of the different simulation datasets for all the Dragendorff pot forms
included in this study can be seen in Figure 8.

Figure 8. Examples of all simulated datasets and real photograph of our 9 different Dr classes. From
left to right: Matplotlib, Blender1, Blender2, real photo. Photos taken by Arch-I-Scan with permission
from the Museum of London.

2.4. Pot Detector: Cropping and Centering the Images

Although not the main focus of this article, cropping and centering the pot image is a
vital step in order to have a good automatic classifier. Object detection is a field that has
seen huge development in recent years [57]. As with image classification problems these
developments have been propelled by convolutional neural networks. Several architectures
and approaches can be considered for an object detection problem, but they should basically
cover three steps [57]: generating crops of the image, extracting features out of each crop,
and assessing which class the object belongs to.

The controlled conditions in which our photographs were taken mean that our task
was relatively simple compared to the complexity of problems which state-of-the-art
object detection algorithms were designed to tackle. Due to the uniformity of the image
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background and the homogeneity of color, terra sigillata vessels can be located using color
histograms. As we deliberately did not standardise the lighting conditions, however, some
parts of the pot were in shadow. To deal with some of the errors introduced in some
photographs by these factors, we used a different method. It was still based on color
properties and position rather than on pot-shape learning, though.

The algorithm first reduces the image size to 30× 30 pixels; this particular size was
manually chosen. For each pixel we transformed its color to the Hue-Saturation-Value
basis. This kind of pottery has a high Saturation and Value in comparison with the
background. For each image a dataset was created where each row corresponded to a
pixel and included the pixel position in the x-dimension (posx) and y-dimension (posy), to
encourage spatially compact groups. Thus, the final features were: Saturation, Value, posx
and posy. The features were linearly normalized into the [0, 1] interval. Using the DBSCAN
algorithm [58,59] with the maximum distance between two pixels to be considered in
the same neighborhood set to Eps = 0.1 and the number of points in the neighborhood
(including itself) to be considered a core point set to MinPts = 5, we could group the pixels
of the image. After that, we filtered those groups with a small number of pixels, a threshold
of 25 pixels was manually tuned. Finally, we exploited the fact that the pot is usually
centered in the photograph and computed for each group the average distance to the center
of the photograph. We selected as the pot group that with the minimum average distance.

Once the pot was located we made a square crop in the original image with the pot
cluster’s mean position, (posx, posy), in its center. Note that the location of each pixel was
scaled to the image original size. Note that, in order to do that we calculated the smallest
rectangle containing the cluster and obtained its larger side, L0. We increased the initial side
length, L = 1.5 · L0, to avoid cropping the borders of the pot. An outline of the procedure
to locate and crop the pot can be found in Algorithm 1.

Algorithm 1: Locate and crop pot images
Input: Image
Output: Image_output. Cropped and centered pot image.

scaled_image = scale input Image to 30× 30;
scaled_image = change color basis from RGB to HSV;
dataset_pixels = create dataset where each pixel in scaled_image have features:

[Saturation, Value, positionx, positiony];
dataset_pixels = linearly normalize dataset_pixels features into [0,1] interval;
pixel_group = assign cluster to each pixel using DBSCAN (Eps = 0.1, MinPts = 5)

algorithm;
dataset_pixels = dataset_pixels remove pixels of groups with less than 25 pixels;
group_distance = for all groups compute

mean((positionx − 0.5)2+(positiony − 0.5)2 );
pot_group = argmin(group_distance);
dataset_pixels = dataset_pixels remove pixels not in pot_group;
Lx = max(positionx)) −min(positionx));
Ly = max(positiony)) −min(positiony));
scale Lx and Ly to the original size;
L = 1.5 ·max(Lx, Ly);
L_half = integer_part(L/2);
centerx = mean(positionx);
centery = mean(positiony);
Image_output = Image[from centerx − L_half to centerx + L_half, from centery
− L_half to centery + L_half];
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2.5. Training-Validation-Test Partitions

The limited number of vessels we have means that a classifier’s performance can be
very dependent on whether a certain vessel is allocated to the training, test, or validation
set. This leads to a high variance in the performance metrics and, as a result, low confidence
in the reliability of the estimations of the classifier’s accuracy. To ensure a more robust
estimation of the fitted model’s accuracy and variance, we generated 20 different training-
validation-test partitions and considered the model’s performance across these partitions.
For each training set we randomly chose four different vessels per class. Another two
vessels per class were used for validation, and the remaining vessels were used as the test
set. By having the same number of vessels for each class in the training sets we reduced the
risk of an unbalanced training, though the number of different vessels available for training
was small. We also had a larger test set and, therefore, more reliable error estimations.
We used the same 20 training-validation-test partitions to train each of the four network
architectures. The average performance across the partitions was used to evaluate the
effect of the quality of simulated vessels (see Section 2.3) on the overall performance of the
model.

In order to train the networks, we chose to minimize the categorical cross entropy. As
was decided during an initial exploration, we used an Adam [60] optimizer with learning
rate 5× 10−5 (except for VGG19 for which the learning rate was reduced to 5× 10−6).
The batch size was chosen to be 8 to fit in our computational resources and a patience
of 10 epochs was set to stop the training. The weights of the epoch with best validation
categorical cross entropy were selected as a training outcome.

2.6. Performance Metrics

The objective of this work was to create an algorithm, ĜD : X → G , trained with the
training dataset D, that, given an image x in the space of pot images, x ∈ X , maps it into
g ∈ G, where G is the set of pot classes. The training dataset is a random sample from some
probability distribution D ≡ {(x, v, g)} ∼ Ptrain(X, V, G) such that X is random variable
representing the image, V is a random variable that takes values in V the set of all pots
(vessels) and G represents the class it belongs to.

Let fD : X → Rcard(G) represent the neural net trained with the training dataset D
that takes an image as input and returns a vector with the prediction scores for each class,
fDi (X); i ∈ {1, . . . , card(G)} (the cardinality, card, is the number of elements of a set; in
our case card(G) = 9, the number of pot type forms in our dataset), thus we can define our
classifier as,

ĜD(X) = arg max
i

fDi (X).

The performance of the algorithm can be assessed using the test dataset Dt ≡ {(x, v, g)} ∼
Ptest(X, V, G). With δi,j being the Kronecker delta (which is 1 if i = j and 0 otherwise) and
E the expected value, we can define the accuracy of ĜD in Ptest as

acc[ĜD , Ptest] ≡ E(x,v,g)∼Ptest

[
δg, ĜD(x)

]
. (2)

Given a test dataset, Dt, we can write an estimate for this accuracy as,

âcc
[

ĜD ,Dt
]
=

1
card(Dt) ∑

(x,g)∈Dt

δg, ĜD(x).

We would like to estimate accuracy (2) for the hypothetical distribution, Ptest(X, V, G),
of a final user testing the classifier on pots not previously seen by the classifier. However,
we only have the dataset that we have collected, which is imbalanced in both number of
different pots per class (see Figure 2) and number of photos per pot (from a minimum of 14
to a maximum of 100). If we simply consider each photo as a random sample our metric
will depend on the imbalances mentioned. Thus we have to make assumptions about the
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real distribution Ptest(X, V, G) and modify the sampling of our test dataset accordingly.
Firstly, we decided that the test sampling probability must not privilege any particular pot
or photograph. Unif(Z,Z) being the uniform distribution of Z over the set Z that means,

Ptest(X, G, V) = Ptest(X|G, V) · Ptest(V|G) · Ptest(G)

= Unif
(
X,
{

x ∈ X |(x, v, g) ∈ Dt; v = V; g = G
})

·Unif
(
V,
{

v ∈ V|(x, v, g) ∈ Dt; g = G
})
· Ptest(G). (3)

Secondly, we assigned Ptest(G) considering two scenarios:

• Uniform prior: all classes have the same probability and, thus, are equally weighted
in the final metrics.

Ptest(G) =
1

card(G) =
1
9

. (4)

• MoL prior: We assume that the MoL pot classes distribution is a good estimator of
Ptest(G). Let Ddataset be the full dataset of our collection, the probability will be given
by the number of pots of class i over the total number of pots:

Ptest(G = i) =
card({v ∈ V|∃(x, v, g) ∈ Ddataset; g = i})

card({v ∈ V|∃(x, v, g) ∈ Ddataset})
. (5)

Each prior provides us with an interesting perspective. On the one hand, the uniform prior
assesses how well the algorithm has learnt the classes without prioritising any one class.
On the other hand, were the MoL prior close to the field frequency of the classes, it would
give us scores closer to the user performance perception who would find more frequent
classes more often.

Thus, given a test dataset of our collection, Dtest-collection ≡ Dt-c, we will mod-

ify the sampling probabilities to fulfill either (3) and (4), or (3) and (5). If n(photos)
ij =

card({(x, v, g) ∈ Dt-c|g = i; v = j}) is the number of photos of pot j that belongs to class i
and n(pots)

i = card({v ∈ V|∃(x, v, g) ∈ Dt-c; g = i}) is the number of pots of class i, we can
write the sampling probability for the test dataset of our collection as,

Psamp(X = x, V = v, G = g) = Psamp(X = x|V = v, G = g)

· Psamp(V = v|G = g) · Psamp(G = g)

=
1

n(photos)
gv

· 1

n(pots)
g

· Ptest(G = g); ∀(x, v, g) ∈ Dt-c,

where Ptest(G) follows one of the prior distributions assumed, namely the uniform prior (4)
or the MoL prior (5).

This way we can obtain an expression for the estimated accuracy:

âcc
[

ĜD , Psamp

]
= ∑

(x,v,g)∈Dt-c

1

n(photos)
gv

· 1

n(pots)
g

· Ptest(G = g) · δg, ĜD(x). (6)

One of the main results of this paper is evaluating the effect of pre-training with
synthetic datasets on the performance of the classifier. However, our very limited number
of pots would impede reliable estimations of the effect if we restrict ourselves to a single test
set. To obtain a more robust estimation let us define an equivalence relation,R, between
training datasets randomly generated through the procedure described in Section 2.5. Let
the set of all equivalent training datasets be represented by D/R, using (2) the expected
accuracy for an equivalent training dataset can be defined as:
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acc
[

Ĝ, Ptest

]
≡ ED/R

[
acc[ĜD , Ptest]

]
= ED/R

[
E(x,g)∼Ptest

[
δg, ĜD(x)

]]
. (7)

By generating nsplits = 20 train-validation-test splits as explained in Section 2.5, we can
give an estimation of (7). Di being the training set andDt-c

i the test dataset for each partition
i ∈ {1, . . . , nsplits}, the estimation can be written as

âcc
[

Ĝ, Psamp

]
=

1
nsplits

nsplits

∑
i=1

∑
(x,v,g)∈Dt-c

i

1

n(photos)
gv

· 1

n(pots)
g

· Ptest(G = g) · δg, ĜDi (x).

This quantity estimates the bias of the model Ĝ when trained with a dataset in D/R.
The variance,

σ2
acc[Ĝ,Ptest]

≡ ED/R

[(
E(x,g)∼Ptest

[
δg, ĜD(x)

]
− acc

[
Ĝ, Ptest

])2
]

,

can be estimated in the same spirit by

σ̂2
acc[Ĝ,Psamp]

=
1

nsplits − 1

nsplits

∑
i=1

(
âcc
[

ĜDi , Psamp

]
− âcc

[
Ĝ, Psamp

])2
.

Along with these metrics we can study the confusions between two classes using a
normalized confusion matrix, m̂, that measures the frequency of predicting ĜD(x) = j
given that the real class is G = i, that is,

m̂ij

[
Ĝ, Psamp

]
=

1
nsplits

nsplits

∑
i=1

∑
(x,v,g)∈Dt-c

i

1

n(photos)
gv

· 1

n(pots)
g

· δg,i · δĜDi (x),j. (8)

Notice that ∑j m̂ij = 1.

3. Results

In this section, we present results of the application of our approach to training four
deep nerual networks architectures (Inception v3, Resnet50 v2, Mobilenet v2 and VGG19)
in different pre-training scenarious (ImageNet, Matplotlib, Blender1 and Blender2). In order
to evaluate the effect of pre-trainings, we use various performance metrics described in
Section 2.6. We demonstrate the positive effect of the different pre-trainings with simulated
photographs in all architectures performance. The effect of pot damage and the photo
viewpoint are also assessed as they are important factors to be considered. A sample of
trained models can be accessed at [51].

3.1. Accuracy

Two tables summarizing the accuracy results for the 20 partitions can be found in
Table 2, for the uniform prior, and in Table 3, for the MoL prior. The best results are obtained
by the architecture with Inception V3 backbone that surpasses the 80% accuracy with the
best pre-training (Blender2). As can be seen, the pre-training with simulated photographs
has a considerable positive effect irrespective of architectures. A graphical visualization of
these results can be seen in Figure 9.

The best model for each architecture is the one pre-trained with Blender2 dataset. The
average accuracy is within the two sigma region of the models pre-trained with Blender1,
though systematically higher for all architectures. The estimated variance, σ̂acc, for Blender2
pre-training is slightly smaller as well. A comparison of the results for each partition can
be found in Figure 10, which also shows that the pre-training with Blender2 dataset could
be slightly better than with Blender1.
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Table 2. Summary of accuracy results using the uniform prior. The different statistics are computed
over the 20 test results for each partition (numbers are rounded up to two significant digits after
zeros): acc is the average accuracy with its two sigma bootstrap error, σacc is the variance estimation,
minacc is the minimum result and maxacc is the maximum. Each statistic is computed for the four
architectures (model) and all the different initial weights considered (pre-train).

Model Pretrain âcc σ̂acc minâcc maxâcc

Inception v3 Blender2 0.818 ± 0.008 0.021 0.78 0.87
Inception v3 Blender1 0.809 ± 0.011 0.025 0.76 0.84
Inception v3 Matplotlib 0.771 ± 0.014 0.033 0.72 0.85
Inception v3 ImageNet 0.719 ± 0.020 0.047 0.61 0.82

Resnet50 v2 Blender2 0.779 ± 0.010 0.023 0.74 0.82
Resnet50 v2 Blender1 0.765 ± 0.013 0.030 0.72 0.82
Resnet50 v2 Matplotlib 0.726 ± 0.014 0.034 0.67 0.82
Resnet50 v2 ImageNet 0.667 ± 0.020 0.047 0.55 0.77

Mobilenet v2 Blender2 0.769 ± 0.014 0.032 0.72 0.84
Mobilenet v2 Blender1 0.752 ± 0.012 0.028 0.70 0.82
Mobilenet v2 Matplotlib 0.705 ± 0.017 0.039 0.65 0.78
Mobilenet v2 ImageNet 0.655 ± 0.021 0.049 0.56 0.76

VGG19 Blender2 0.735 ± 0.010 0.025 0.69 0.77
VGG19 Blender1 0.727 ± 0.010 0.024 0.69 0.78
VGG19 Matplotlib 0.671 ± 0.017 0.039 0.60 0.74
VGG19 ImageNet 0.552± 0.024 0.057 0.47 0.65

Table 3. Summary of accuracy results using the MoL prior. The different statistics are computed
over the 20 test results for each partition: acc is the average accuracy with its two sigma bootstrap
error, σacc is the variance estimation, minacc is the minimum result and maxacc is the maximum.
Each statistic is computed for the four architectures (model) and all the different initial weights
considered (pre-train).

Model Pretrain âcc σ̂acc minâcc maxâcc

Inception v3 Blender2 0.821 ± 0.009 0.020 0.78 0.86
Inception v3 Blender1 0.814 ± 0.008 0.020 0.78 0.85
Inception v3 Matplotlib 0.763 ± 0.015 0.035 0.71 0.82
Inception v3 ImageNet 0.698 ± 0.020 0.047 0.62 0.80

Resnet50 v2 Blender2 0.778 ± 0.008 0.018 0.74 0.81
Resnet50 v2 Blender1 0.772 ± 0.011 0.025 0.73 0.81
Resnet50 v2 Matplotlib 0.719 ± 0.012 0.029 0.66 0.79
Resnet50 v2 ImageNet 0.651 ± 0.018 0.042 0.54 0.74

Mobilenet v2 Blender2 0.760 ± 0.012 0.028 0.71 0.81
Mobilenet v2 Blender1 0.750 ± 0.014 0.032 0.69 0.81
Mobilenet v2 Matplotlib 0.699 ± 0.020 0.046 0.59 0.77
Mobilenet v2 ImageNet 0.663 ± 0.022 0.052 0.55 0.74

VGG19 Blender2 0.732 ± 0.010 0.024 0.68 0.77
VGG19 Blender1 0.719 ± 0.011 0.026 0.67 0.77
VGG19 Matplotlib 0.656 ± 0.014 0.034 0.58 0.72
VGG19 ImageNet 0.532 ± 0.021 0.048 0.46 0.61
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Figure 9. Two plots showing accuracy results for the four architectures considered: Inception v3
(green), Resnet50 v2 (blue), Mobilenet v2 (orange) and VGG19 (red). The figure on the left shows
accuracy using the uniform prior, the one on the right using the MoL prior. The different pre-training
regimes considered are displayed along the x-axis. Each point indicates the value of âcc with its two
sigma error band draw as a line. The transparent band shows ±σ̂acc.
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Figure 10. Four plots showing the accuracy results of the pre-training regimes relative to each other,
using the uniform prior, for the four networks: Inception v3 (superior left), Resnet50 v2 (superior
right), Mobilenet v2 (inferior left) and VGG19 (inferior right). Each point represents a single training-
validation-test partition with the system pre-trained with the Blender dataset (blue) and Matplotlib
dataset (red) where their positions are given as the relative percentage with respect to the uniform
prior accuracy in the same partition for Blender2 pre-training (Y axis) and ImageNet pre-training
(X axis). As can be seen, most of the points are located above 0% with respect to ImageNet accuracy
and below for Blender2.
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3.2. Confusion Matrix

The normalized confusion matrix defined in Equation (8) shows the main instances of
error between two classes of pot. To simplify discussion of the results we will focus on the
best architecture, Inception v3, for the extreme cases of ImageNet and Blender2 pre-trainings.
The normalized confusion matrix, m̂ij, can be seen in Tables 4 and 5 for each of these,
respectively. We will consider off-diagonal elements a major instance of confusion when
they exceed double the expected probability if the incorrect identifications would have
been uniformly distributed across the classes, that is:

m̂ij

[
Ĝ, Psamp

]
> 2

1− m̂ii

[
Ĝ, Psamp

]
nclasses − 1

, (9)

with nclasses = 9 the number of classes in our dataset.

Table 4. Normalized confusion matrix of Equation (8) for Inception v3 pre-trained with the ImageNet
dataset. Diagonal elements are highlighted in green, whereas major instances of confusion are
marked in red. Major instances of confusion are those off-diagonal elements which exceed double
the expected probability if the incorrect identifications would have been uniformly distributed across
the classes, see Equation (9).

Predicted Class

Real Class Dr18 Dr24–25 Dr27 Dr29 Dr33 Dr35 Dr36 Dr37 Dr38

Dr18 63 4 2 2 6 2 14 3 3

Dr24-25 5 76 5 1 3 3 2 1 4

Dr27 2 4 74 2 2 9 2 2 4

Dr29 2 2 3 74 2 1 4 7 5

Dr33 3 2 2 1 89 2 0 1 1

Dr35 1 4 11 1 1 67 11 1 3

Dr36 8 4 2 4 1 12 60 2 8

Dr37 2 9 1 11 3 1 1 68 4

Dr38 1 6 2 3 2 2 7 1 76

Table 5. Normalized confusion matrix of Equation (8) for Inception v3 pre-trained with the Blender2
dataset. Diagonal elements are highlighted in green, whereas major instances of confusion are
marked in red. Major instances of confusion are those off-diagonal elements which exceed double
the expected probability if the incorrect identifications would have been uniformly distributed across
the classes, see Equation (9).

Predicted Class

Real Class Dr18 Dr24–25 Dr27 Dr29 Dr33 Dr35 Dr36 Dr37 Dr38

Dr18 81 2 1 3 2 1 7 2 1

Dr24-25 3 80 1 2 2 3 2 2 6

Dr27 1 2 87 1 3 3 1 1 1

Dr29 2 2 1 81 2 1 2 7 3

Dr33 0 1 0 1 95 1 0 0 0

Dr35 1 0 4 1 1 80 10 0 2

Dr36 6 2 0 1 1 11 72 1 6

Dr37 1 6 1 7 1 0 0 82 3

Dr38 2 3 2 1 1 3 8 1 79
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We can see that pre-training with the simulation photographs seems to have resolved
some confusions such as Dr35 with Dr27 or Dr18 with Dr36. However, there are other mix-
ups that seem to be difficult to correct, for example Dr35 with Dr36. This latter confusion
was to be expected as these vessel forms have near identical shape and decoration, the
main difference being size and height-radius ratio [19]. A similar thing happens with the
confusion between the two decorated forms Dr37 and Dr29. Other confusions are more
difficult to explain, for example, Dr38 with Dr36.

3.3. Effects of Damage

As we have previously discussed, some of the pots are severely damaged. Even if a
complete profile can be recovered from the vessel, extreme damage can adversely affect
the classifier’s predictions. In this section, we will evaluate the influence of damage on
the performance.

Those vessels with large breaks affecting more than half of their rotational shapes were
manually labelled as damaged. In order to evaluate the influence of damage, we measured
the accuracy for damaged and non damaged vessels at each of the 20 train-validation-test
partitions. The number of damaged pots in this dataset is small, however, and can vary
at each partition. It is even possible not to have any samples for some classes at a given
partition. Therefore, we weight the accuracy for each class, proportional to the number
of damaged vessels. Thus, with âcc(dam)

i and âcc(nodam)
i being the accuracy described in (6)

restricted to damaged or non damaged) pots of class i. The accuracy per pot class can be seen
in Table 6 (damaged) and in Table 7 ( non damaged) for the best model, that is, the model
based on Inception v3 architecture. As we can see, there is a huge general fall in accuracy
for damaged pots, which pre-training seems to help to mitigate, at least in the case of the
Inception v3 model.

Table 6. Table showing accuracy results of the Inception v3 model for vessels labelled damaged. ndam

indicates the average number of damaged pots in each class at a split in the test set, thus lower
numbers are less reliable. Notice that the results for damaged vessels of class Dr35 could not be
computed as there are no damaged samples.

Damaged

Class ImageNet Matplotlib Blender1 Blender2 ndam

Dr18 0.48 0.52 0.55 0.60 13.60
Dr24–25 0.31 0.56 0.41 0.36 0.20

Dr27 0.53 0.60 0.69 0.69 4.75
Dr29 0.69 0.73 0.77 0.72 5.55
Dr33 0.81 0.85 0.91 0.93 1.95
Dr35 - - - - 0.00
Dr36 0.53 0.62 0.60 0.63 3.05
Dr37 0.56 0.33 0.69 0.76 0.40
Dr38 0.79 0.74 0.78 0.78 1.05

Table 7. Table showing accuracy results of the Inception v3 model for non-damaged vessels. nno dam

indicates the average number of non-damaged pots in each class at a split in the test set, thus lower
numbers are less reliable.

Non-Damaged

Class ImageNet Matplotlib Blender1 Blender2 nno dam

Dr18 0.70 0.81 0.90 0.90 31.40
Dr24–25 0.86 0.89 0.85 0.89 1.80

Dr27 0.8 0.90 0.92 0.92 17.25
Dr29 0.79 0.82 0.89 0.88 6.45
Dr33 0.92 0.91 0.95 0.96 5.05
Dr35 0.67 0.69 0.78 0.80 6.00
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Table 7. Cont.

Non-Damaged

Class ImageNet Matplotlib Blender1 Blender2 nno dam

Dr36 0.64 0.72 0.79 0.77 5.95
Dr37 0.64 0.86 0.79 0.82 2.60
Dr38 0.75 0.81 0.77 0.82 0.95

3.4. Effects of Viewpoint

Another interesting division of the dataset is the viewpoint from which the photograph
was taken. We have manually labelled three viewpoints, namely: standard view, zenith view,
flipped vessel. An example of each viewpoint can be seen in Figure 4. In both standard and
zenith views the vessel is standing on its base, whereas in flipped view it is supported by
its rim.

A comparison between the difference in performance per viewpoint of Inception v3
with Blender2 and ImageNet pre-trainings is shown in Figure 11. Improvement in accuracy
seems to have a similar intensity for all viewpoints. This global shift seems to be constant
for the whole ImageNet accuracy range. Finally, a comparison of the accuracy per pot
class and view for the best model Inception v3 with Blender2 pre-training can be found in
Figure 12.
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Figure 11. Plot detailing the accuracy of the Inception v3 model across the different viewpoints and
comparing performance with Blender2 and ImageNet pre-training. Each point represents the accuracy
for each pot class and viewpoint: standard (s, green triangle), zenith (t, orange cross), flipped (f, blue
point). The dashed grey line shows the point where the accuracies of both pre-training regimes are
the same. The fact that most of the points are well above these lines shows how pre-training with
Blender2 improves the performance in general. Notice also that the standard view shows generally a
better performance in both models in comparison with the zenith and flipped views.
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Figure 12. Plot showing the variation in the accuracy of the Inception v3 model pre-trained with
Blender2 across viewpoints and different pot classes.

The zenith view is a special viewpoint as the profile is very hard to see. This fact
together with the lower occurrence might explain its worse performance compared to
other viewpoints. On the other hand, although the flipped view is a very nice viewpoint
to get an idea of the profile, we still have a score that is worse than the standard view. A
possible explanation for this result is the imbalance in the number of images. Across all
photographs taken at the MoL, including the ones used for this experiment, the standard
view outnumbers the flipped photographs six to one. Thus, the features created by the
machines might be more likely to focus on the standard images.

3.5. Reality Gap

An interesting question that arises from the different pre-trainings is whether the
neural nets trained with only simulated images are good enough models for classifying real
photographs. The difference between the performance of a model trained with real images
and the same model trained with simulations is usually called the reality gap [31,38].

In Figure 13 accuracies for the different pot classes are shown for each simulated
dataset and architecture. As we can see there are huge differences in the performance of
Matplotlib and Blender datasets. This is to be expected as the quality of the images using
Blender was improved substantially, see Figure 8. It is also interesting to notice the huge
variability per pot class and, how some profiles always have a good performance such as
Dr38, while others like Dr18 usually have poor results, though the latter is perhaps not
very surprising as this concerns a class into which multiple types have been amalgamated,
potentially making it more difficult for the classifier to extract distinguishing features. An
aggregated comparison can be found in Table 8 for Inception v3 model, where we can see
that Blender datasets outperform Matplotlib.

Table 8. Table showing summary statistics for the performance of the Inception v3 based model trained
only with the simulated images of datasets: Matplotlib, Blender1, Blender2. The mean corresponds to
an estimation of the uniform prior accuracy defined in Section 3.1. We can see the improvement in
Blender datasets compared with Matplotlib dataset.

Matplotlib Blender1 Blender2

Model Mean Std Mean Std Mean Std

Inception v3 0.20 0.28 0.35 0.21 0.33 0.24
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Figure 13. Plot of the Inception v3 model accuracy for each pre-training for the different pot classes.
The horizontal dashed grey line points out the random assignment accuracy 1/9.

4. Conclusions

In this article, we have proposed that creating synthetic datasets can be used as a
way of augmenting inherently limited real-world datasets. Through this dataset creation,
expert knowledge beyond the identification of real artefacts can be incorporated into the
process of machine learning from scarce information. Furthermore, we have demonstrated,
through experimentation with different network architectures and the consideration of
the impact of photograph viewpoint and damage to the original vessels, that a hybrid
approach using synthetic data to pre-train a machine that is subsequently trained with real-
world data has the potential to transcend the possibilities of a machine trained exclusively
on real-world data. Since the number of fields where non-ideally sized or distributed
datasets predominate is likely to significantly outnumber the fields where huge, balanced
datasets are readily available, our results signal the expanded potential for machine learning
applications in new fields.

Using a dataset of 5373 photos of 162 near-complete Roman terra sigillata vessels from
the Museum of London, spread unequally over nine typological classes, we have shown
that it is possible to create a single image classifier that acceptably generalizes beyond the
training set. By digitizing pottery drawings, we were able to include expert knowledge in
synthetic data generation, which allowed us not only to augment the size of the dataset,
but also to somewhat counteract the skewed distribution in the real-world dataset. Both
these aspects are crucial to the potential application of machine learning to domains where
there are no perfect datasets. As compared to some other solutions to the problem of
classifying archaeological ceramics, such as the ArchAIDE project [16,55,56], we do not rely
on the user’s input beyond the photograph. As such, we aim to include expert knowledge
in training the classifier only, so that as little expertise as possible is required from any
potential end user, making any eventual tool more widely usable. We envision that several
other applications and tasks requiring the classification of 3D objects can benefit from
the same approach, including in the detection of pathologies in medical imaging or in
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the framework of creating and using digital twins and possibly in the area of virtual or
augmented reality.

We have also quantified how other factors, such as the photograph viewpoint or
excessive damage to the pot, affect the results. The possible instances of confusion between
classes were also discussed and shown how simulation can help to reduce them in some
cases. Due to the relatively uniform shapes and the relative simplicity of their simulations,
vessel classification provides an excellent test bench for sim2real and 3D shape computer
vision experiments. Here, the limitations of the experiments described in this article need
to be borne in mind. The shape repertoire that the classifier was confronted with is rather
limited and, even when augmented with synthetic images, the total dataset is rather small.
It is therefore not the results of the performance that should be taken as an indication of
the success of the model, nor the relative performance of the network architectures, but
rather the improvement between different training regimes. It is these results that show
the potential for using simulation to improve training image classifiers able to generalize
beyond the training set in cases where only small or biased datasets are available, be this in
archaeological ceramics or beyond.
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