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Abstract: This work is driven by a practical question: corrections of Artificial Intelligence (AI) errors.
These corrections should be quick and non-iterative. To solve this problem without modification of a
legacy AI system, we propose special ‘external’ devices, correctors. Elementary correctors consist
of two parts, a classifier that separates the situations with high risk of error from the situations
in which the legacy AI system works well and a new decision that should be recommended for
situations with potential errors. Input signals for the correctors can be the inputs of the legacy
AI system, its internal signals, and outputs. If the intrinsic dimensionality of data is high enough
then the classifiers for correction of small number of errors can be very simple. According to the
blessing of dimensionality effects, even simple and robust Fisher’s discriminants can be used for
one-shot learning of AI correctors. Stochastic separation theorems provide the mathematical basis for
this one-short learning. However, as the number of correctors needed grows, the cluster structure
of data becomes important and a new family of stochastic separation theorems is required. We
refuse the classical hypothesis of the regularity of the data distribution and assume that the data can
have a rich fine-grained structure with many clusters and corresponding peaks in the probability
density. New stochastic separation theorems for data with fine-grained structure are formulated
and proved. On the basis of these theorems, the multi-correctors for granular data are proposed.
The advantages of the multi-corrector technology were demonstrated by examples of correcting
errors and learning new classes of objects by a deep convolutional neural network on the CIFAR-10
dataset. The key problems of the non-classical high-dimensional data analysis are reviewed together
with the basic preprocessing steps including the correlation transformation, supervised Principal
Component Analysis (PCA), semi-supervised PCA, transfer component analysis, and new domain
adaptation PCA.

Keywords: Artificial Intelligence; blessing of dimensionality; clusters; errors; separability; discrimi-
nant; dimensionality reduction

1. Introduction
1.1. AI Errors and Correctors

The main driver of our research is the problem of Artificial Intelligence (AI) errors
and their correction: all AI systems sometimes make errors and will make errors in the future.
These errors must be detected and corrected immediately and locally in the networks
of AI systems. If we do not solve this problem, then a new AI winter will come. Recall
that the previous AI winters came after the hype peaks of inflated expectations and bold
advertising: the general overconfidence of experts was a typical symptom of inflated
expectations before the winter came [1]. “It was recognised that AI advocates were called
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to account for making promises that they could not fulfill. There was disillusionment” [2]
and “significant investments were made, but real breakthroughs were very rare and both
time and patience ran out...” [3]. A richer picture of the AI winter, including the dynamics
of government funding, the motivation of AI researchers, the transfer of AI to industry,
and hardware development, was sketched in [4]. The winter may come back and we better
be ready [5]. For the detailed discussion of AI trust, limitations, conflation, and hype we
refer to the analytic review of Bowman and Grindrod [6].

Gartner’s Hype Cycle is a convenient tool to represent of R&D trends. According to
Gartner [7], the data-driven Artificial Intelligence (AI) has already left the Peak of Inflated
Expectation and is descending into the Trough of Disillusionment. If we look at Gartner’s
Hype Cycle in more detail, we will see that Machine Learning and Deep Learning are
going down. Explainable AI joined them in 2020, but Responsible AI, Generative AI, and
Self-Supervising Learning are still climbing up the peak. [8].

According to Gartner’s Hype cycle model, the Trough of Disillusionment will turn
into the Slope of Enlightenment that leads to the Plateau of Productivity. The modern Peak
and Trough are not the first in the history of AI. Surprisingly, previous troughs (AI winters)
did not turn into the performance plateaus. Instead they went through new peaks of hype
and inflated expectations (Figure 1) [9].

We are here

Figure 1. Gartner Hype Cycle and its phases. Position of the data-driven AI on the hype cycle is marked by a four-pointed
star. A possible new hype peak (new wave) is represented by the dashed line.

What pushes the AI downhill now? Is it the same problem that pushed the AI down
previous slopes decades ago? Data driven systems “will inevitably and unavoidably
generate errors”, and this is of great concern [10]. The main problem for the widespread
use of AI around the world is unexpected errors in real-life applications:

• The mistakes can be dangerous;
• Usually, it remains unclear who is responsible for them;
• The types of errors are numerous and often unpredictable;
• The real world is not a good i.i.d. (independent identically distributed) sample;
• We cannot rely on a statistical estimate of the probability of errors in real life.
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The hypothesis of i.i.d. data samples is very popular in machine learning theory. It
means that there exists a probability measure on the data space and the data points are
drawn from the space according to this measure independently [11]. It is worth mentioning
that the data point for supervising learning includes both the input and the desired output
and the probability is defined on the input× output space. Existence and stationarity of the
probability distribution in real life is a very strong hypothesis. To weaken this assumption,
many auxiliary concepts have been developed, such as concept drift. Nevertheless, i.i.d
samples remain a central assumption of statistical learning theory: the dataset is presumed
to be an i.i.d. random sample drawn from a probability distribution [12].

Fundamental origins of AI errors could be different. Of course, they include software
errors, unexpected human behaviour, and non-intended use as well as many other possible
reasons. Nevertheless, the universal cause of errors is uncertainty in training data and in
training process. The real world possibilities are not covered by the dataset.

The mistakes should be corrected. The systematic retraining of a big AI system seems
to be rarely possible (here and below, AI skill means the ability to correctly solve a group
of similar tasks):

• To preserve existing skills we must use the full set of training data;
• This approach requires significant computational resources for each error;
• However, new errors may appear in the course of retraining;
• The preservation of existing skills is not guaranteed;
• The probability of damage to skills is a priori unknown.

Therefore, quick non-iterative methods which are free from the disadvantages listed
above are required. This is the main challenge for the one- and few-shot learning methods.

To provide fast error correction, we must consider developing correctors , external
devices that complement legacy Artificial Intelligence systems, diagnose the risk of error,
and correct errors. The original AI system remains a part of the extended ’system +
corrector’ complex. Therefore, the correction is reversible, and the original system can
always be extracted from the augmented AI complex. Correctors have two different
functions: (1) they should recognise potential errors and (2) provide corrected outputs for
situations with potential errors. The idealised scheme of a legacy AI system augmented
with an elementary corrector is presented in Figure 2. Here, the legacy AI system is
represented as a transformation that maps the input signals into internal signals and then
into output signals: inputs→ internal → outputs. The elementary corrector takes all these
signals as inputs and makes a decision about correction (see Figure 2).

 

 
 

Decision about correction 

Legacy AI System 

Internal signals 
Inputs Outputs 

Corrector 

Request for  
correction 

Signals  
transmission 

Figure 2. A scheme of the operation of an elementary corrector of legacy AI systems. The elementary
corrector receives the input signals of legacy AI system, the internal signals generated by this system
in the decision-making process, and its output signals. The corrector then assesses the need for
correction. The elementary corrector includes a binary classifier that separates situations with a high
risk of error from normal functioning. If correction is required, the corrector sends a warning signal
and a modified output for further use.
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The universal part of the AI corrector is a classifier that should separate situations
with erroneous behaviour from normal operation. It is a binary classifier for all types
of AI. The generalisation ability of this classifier is its ability to recognise errors that it
had never seen before. The training set for corrector consists of a collection of situations
with normal operation of the legacy AI system (the ‘normal’ class) and a set of labelled
errors. The detection and labelling of errors for training correctors can be performed by
various methods, which include human inspection, decisions of other AI systems of their
committees, signals of success or failure from the outer world, and other possibilities that
are outside the scope of our work.

We can usually expect that a normal class of error-free operations includes many more
examples than a set of labelled errors. Moreover, even the situation with one newly labelled
error is of considerable interest. All the stochastic separation theorems were invented
to develop the one- of few-shot learning rules for the binary error/normal operation
classifiers.

A specific component of the AI corrector is the modified decision rule (the ‘correction’
itself). Of course, the general theory and algorithms are focused on the universal part
of the correctors. For many classical families of data distributions, it is proved that the
well-known Fisher discriminant is surprisingly a powerful tool for constructing correctors
if the dimension of the data space is sufficiently high (most results of this type are collected
in [13]). This is proven for a wide class of distributions, including log-concave distributions,
their convex combinations, and product distributions with bounded support.

In this article, we refuse the classical hypothesis of the regularity of the data distribu-
tion and assume that the data can have a rich fine-grained structure with many clusters
and corresponding peaks in the probability density. Moreover, the very notion of probabil-
ity distribution in high dimensions may sometimes create more questions than answers.
Therefore, after developing new stochastic separation theorems for data with fine-grained
clusters, we present a possibility to substitute the probabilistic approach to foundations
of the theory by more robust methods of functional analysis with the limit transition to
infinite dimension.

The idea of the presence of fine-grained structures in data seems to be very natural
and universal: the observable world consists of things. The data points represent situations.
The qualitative difference between situations is in existence/absence of notable things
there.

Many approaches to machine learning are based on the correction of errors. A
well-known example is the backpropagation of errors, from the classical perceptron algo-
rithms [14] to modern deep learning [15]. The need for correction of AI errors has been
discussed in the reinforcement learning literature. In the area of model-based reinforce-
ment learning, the motivation stems from inevitable discrepancies between the models of
environments used for training an agent and the reality this agent operates in. In order
to address the problem, a meta-learning approach, Hallucinated Replay, was suggested
in [16]. In this approach, the agent is trained to predict correct states of the real environment
from states generated by the model [17]. Formal justifications and performance bounds
for Hallucinated Replay were established in [18]. Notwithstanding these successful de-
velopments, we note that the settings to which such strategies apply are largely Markov
Decision Processes. Their practical relevance is therefore constrained by dimensionality of
the system’s state. In high dimension, the costs of exploring all states grows exponentially
with dimension and, as a result, alternative approaches are needed. Most error correction
algorithms use large training sets to prevent new errors from being created in situations
where the system was operating normally. These algorithms are iterative in nature. On the
contrary, the corrector technology in high dimension aims at non-iterative one- or few–shot
error corrections.
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1.2. One- and Few-Shot Learning

A set of labelled errors is needed for creation of AI corrector. If we have such a set,
then the main problem is the fast non-iterative training of classifiers that separate situations
with a high risk of error from situations in which the legacy AI system works well. Thus,
the corrector problem includes the one- or few-shot learning problem, and one class is
presented by a relatively small sample of errors.

Learning new concepts rapidly from small low-sample data is a key challenge in
machine learning [19]. Despite the widespread perception of neural networks as monstrous
giant systems, whose iterative training requires a lot of time and resources, mounting
empirical evidence points to numerous successful examples of learning from modestly-
sized datasets [20]. Moreover, training with one or several shots is possible. By definition,
which has already become classic, “one-shot learning”, consists of learning a class from
a single labelled example [19]. In “few-shot learning” a classifier must generalise to new
classes not seen in the training set, given only a small number of examples of each new
class [21].

Several modern approaches to enabling this type of learning require preliminary
training tasks that are similar but not fully identical to new tasks to be learned. After such
preliminary training the system acquires new meta-skills: it can now learn new tasks, which
are not crucially different from the previous ones, without the need for large training sets
and training time. This heuristic is utilised in various constructions of one- and few-shot
learning algorithms [22,23]. Similar meta-skills and learnability can also be gained through
previous experience of solving various relevant problems or an appropriately organised
meta-learning [21,24].

In general, a large body of one- and few-shot learning algorithms is based on combi-
nations of a reasonable preparatory learning that aims to increase learnability and create
meta-skills and simple learning routines facilitating learning from small number of ex-
amples after this propaedeutics. These simple methods create appropriate latent feature
spaces for the trained models which are preconditioned for the task of learning from few or
single examples. Typically, a copy of the same pretrained system is used for different one-
and few-shot learning tasks. Nevertheless, plenty of approaches are applicable to few-shot
minor modifications of the features using new tasks.

Despite a large number of different algorithms implementing one- and few-shot learn-
ing schemes have been proposed to date, effectiveness of one- and few-shot simple methods
is based on either significant dimensionality reductions or the blessing of dimensionality effects
[25,26].

A significant reduction in dimensionality means that several features have been ex-
tracted that are already sufficient for the purposes of learning. Thereafter, a well-elaborated
library of efficient lower-dimensional statistical learning methods can be applied to solve
new problems using the same features.

The blessing of dimensionality is a relatively new idea [27–30]. It means that simple
classical techniques like linear Fisher’s discriminants become unexpectedly powerful in
high dimensions under some mild assumptions about regularity of probability distribu-
tions [31–33]. These assumptions typically require absence of extremely dense lumps of
data, which can be defined as areas with relatively low volume but unexpectedly high
probability (for more detail we refer to [13]). These lumps correspond to narrow but high
peaks of probability density.

If a dataset consists of k such lumps then, for moderate values of k, this can be
considered as a special case of dimensionality reduction. The centres of clusters are
considered as ‘principal points’ to stress the analogy with principal components [34,35].
Such a clustered structure in system’s latent space may emerge in the course of preparatory
learning: images of data points in the latent space ’attract similar and repulse dissimilar’ data
points.

The one- and few-shot learning can be organised in all three situations described above:
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1. If the feature space is effectively reduced, then the challenge of large dataset can
be mitigated and we can rely on classical linear or non-linear methods of statistical
learning.

2. In the situation of ‘blessing of dimensionality’, with sufficiently regular probability
distribution in high dimensions, the simple linear (or kernel [36]) one- and few-shot
methods become effective [13,26,33].

3. If the data points in the latent space form dense clusters, then position of new data
with respect to these clusters can be utilised for solving new tasks. We can also
expect that new data may introduce new clusters, but persistence of the cluster
structure seems to be important. The clusters themselves can be distributed in a
multidimensional feature space. This is the novel and more general setting we are
going to focus on below in Section 3.

There is a rich set of tools for dimensionality reduction. It includes the classical
prototype, principal component analysis (PCA) (see, [35,37] and Appendix A.2), and
many generalisations, from principal manifolds [38] and kernel PCA [39] to principal
graphs [35,40] and autoencoders [41,42]. We briefly describe some of these elementary
tools in the context of data preprocessing (Appendix A), but the detailed analysis of
dimensionality reduction is out of the main scope of the paper.

In a series of previous works, we focused on the second item [13,25,30–33,43]. The
blessing of dimensionality effects that make the one- and few-shot learning possible for
regular distributions of data are based on the stochastic separation theorems. All these
theorems have a similar structure: for large dimensions, even in an exponentially large
(relatively to the dimension) set of points, each point is separable from the rest by a linear
functional, which is given by a simple explicit formula. These blessings of dimensionality
phenomena are closely connected to the concentration of measure [44–48] and to the various
versions of the central limit theorem in probability theory [49]. Of course, there remain
open questions about sharp estimates for some distribution classes, but the general picture
seems to be clear now.

In this work, we focus mainly on the third point and explore the blessings of dimen-
sionality and related methods of one- and few-shot learning for multidimensional data with
rich cluster structure. Such datasets cannot be described by regular probability densities
with a priori bounded Lipschitz constants. Even more general assumptions about absence
of sets with relatively small volume but relatively high probability fail. We believe that this
option is especially important for applications.

1.3. Bibliographic Comments

All references presented in the paper matter. However, a separate quick guide to the
bibliographic references about the main ideas may be helpful:

• Blessing of dimensionality. In data analysis, the idea of blessing of dimensionality
was formulated by Kainen [27]. Donoho considered the effects of the dimensionality
blessing to be the main direction of the development of modern data science [28].
The mathematical backgrounds of blessing of dimensionality are in the measure
concentration phenomena. The same phenomena form the background of statistical
physics (Gibbs, Einstein, Khinchin—see the review [25]). Two modern books include
most of the classical results and many new achievements of concentration of measure
phenomena needed in data science [44,45] (but they do not include new stochastic
separation theorems). Links between the blessing of dimensionality and the classical
central limit theorems are recently discussed in [49].

• One-shot and few-shot learning. This is a new direction in machine learning. Two papers
give a nice introduction in this area [19,20]. Stochastic separation theorems explained
ubiquity of one- and few-shot learning [26].

• AI errors. The problem of AI errors is widely recognised. This is becoming the most
important issue of serious concern when trying to use AI in real life. The Council of
Europe Study report [10] demonstrates that the inevitability of errors of data-driven
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AI is now a big problem for society. Many discouraging examples of such errors are
published [50,51], collected in reviews [52], and accumulated in a special database,
Artificial Intelligence Incident Database (AIID) [53,54]. The research interest to this
problem increases as an answer of the scientific community to the request of AI
users. There are several fundamental origins of AI errors including uncertainty in
training data, uncertainty in training process, and uncertainty of real world—reality
can deviate significantly from the fitted model. The systematic manifestations of these
deviations are known as concept drift or model degradation phenomena [55].

• AI correctors. The idea of elementary corrector together with statistical foundations
was proposed in [30]. First stochastic separation theorems were proved for several
simple data distributions (uniform distributions in a ball and product distributions
with bounded support) [31]. The collection of results for many practically important
classes of distributions, including convex combinations of log-concave distributions is
presented in [13]. Kernel version of stochastic separation theorem was proved [36].
The stochastic separation theorems were used for development of correctors tested
on various data and problems, from the straightforward correction of errors [32] to
knowledge transfer between AI systems [56].

• Data compactness. This is an old and celebrated idea proposed by Braverman in early
1960s [57]. Several methods of measurement compactness of data clouds were in-
vented [58]. The possibility to replace data points by compacta in training of neural
networks was discussed [59]. Besides theoretical backgrounds of AI and data mining,
data compactness was used for unsupervised outlier detection in high dimensions [60]
and other practical needs.

1.4. The Structure of the Paper

In Section 2 we briefly discuss the phenomenon of post-classical data. We begin
with Donoho’s definition of post-classical data analysis problems, where the number of
attributes is greater than the number of data points [28]. Then we discuss alternative
definitions and end with a real case study that started with a dataset in the dimension
5× 105 and ended with five features that give an effective solution to the initial classification
problem.

Section 3 includes the main theoretical results of the paper, the stochastic separation
theorems for the data distributions with fine-grained structure. For these theorems, we
model clusters by geometric bodies (balls or ellipsoids) and work with distributions of ellip-
soids in high dimensions. The hierarchical structure of data universe is introduced where
each data cluster has a granular internal structure, etc. Separation theorems in infinite-
dimensional limits are proven under assumptions of compact embedding of patterns into
data space.

In Section 4, the algorithms (multi-correctors) for corrections of AI errors that work for
multiple clusters of error are developed and tested. For such datasets, several elementary
correctors and a dispatcher are required, which distributes situations for analysis to the
most appropriate elementary corrector. In multi-corrector, each elementary corrector
separates its own area of high-risk error situations and contains an alternative rule for
making decisions in situations from this area. The input signals of the correctors are
the input, internal, and output signals of the AI system to be corrected as well as any
other available attributes of the situation. The system of correctors is controlled by a
dispatcher, which is formed on the basis of a cluster analysis of errors and distributes the
situations specified by the signal vectors between elementary correctors for evaluation and,
if necessary, correction.

Multi-correctors are tested on the CIFAR-10 dataset. In this case study, we will illus-
trate how ’clustered’ or ’granular universes’ can arise in real data and show how a granular
representation based multi-correctors structure can be used in challenging machine learn-
ing and Artificial Intelligence problems. These problems include learning new classes of
data in legacy deep learning AI models and predicting AI errors. We present simple algo-
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rithms and workflows which can be used to solve these challenging tasks circumventing
the needs for computationally expensive retraining. We also illustrate potential technical
pitfalls and dichotomies requiring additional attention from the algorithms’ users and
designers.

In conclusion, we briefly review the results (Section 5). Discussion (Section 6) aims at
explaining the main message: the success or failure of many machine learning algorithms,
the possibility of meta-learning, and opportunities to learn continuously from relatively
small data samples depend on the world structure. The capability of representing a real
world situation as a collection of things with some features (properties) and relationships
between these entities is the fundamental basis of knowledge of both humans and AI.

Appendices include auxiliary mathematical results and relevant technical information.
In particular, in Appendix A we discuss the following preprocessing operations that may
move the dataset from the postclassical area:

• Correlation transformation that maps the dataspace into cross-correlation space be-
tween data samples:

• PCA;
• Supervised PCA;
• Semi-supervised PCA;
• Transfer Component Analysis (TCA);
• The novel expectation-maximization Domain Adaptation PCA (‘DAPCA’).

2. Postclassical Data

High-dimensional post-classical world was defined in [28] by the inequality

The number of attributes d� The number of examples N. (1)

This post-classical world is different from the ‘classical world’, where we can consider
infinite growth of the sample size for the given number of attributes. The classical statistical
methodology was developed for the classical world based on the assumption of

d < N and N → ∞.

Thus, the classical statistical learning theory is mostly useless in the multidimensional
post-classical world. These results all fail if d > N. The d > N case is not anomalous for
the modern big data problems. It is the generic case: both the sample size and the number
of attributes grow, but in many important cases the number of attributes grows faster than
the number of labelled examples [28].

High-dimensional effects of the curse and blessing of dimensionality appear in a much
wider area than specified by the inequality (1). A typical example gives the penomenon of
quasiorthogonal dimension [61–63]: for a given ε > 0 and ϑ > 0 (assumed small) a random
set of N vectors xi on a high-dimensional unit d-dimensional sphere satisfies the inequality

|(xi, xj)| < ε

for all i 6= j with probability p > 1− ϑ when N < a exp(bd) and a and b depend on ε
and ϑ only. This means that the quasiorthogonal dimension of an Euclidean space grows
exponentially with dimension d. Such effects are important in machine learning [63].
Therefore, the Donoho boundary should be modified: the postclassical effects appear in
high dimension when

d� logN. (2)

The two different definitions of postclassical area, (1) and (2), are illustrated in Figure 3a.
The definition of the postclassical data world needs one more comment. The inequali-

ties (1) and (2) used the number of attributes as the equivalent of the dimension of the data
space. Behind this approach is the hypothesis that there is no strong dependency between
attributes. In the real situations, the data dimensionality can be much less that the number
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of attributes, for example, in the case of the strong multicollinearity. If, say, the data are
located along a straight line then for most approaches the dimension of the dataset is 1 and
the value of d does not matter. Therefore, the definition (2) of the postclassical world needs
to be modified further with the dimension of the dataset, dim(DataSet) instead of d:

dim(DataSet)� log N. (3)

There are many various definitions of data dimensionality, see a brief review in [64,65].
For all of them, we can assume that dim(DataSet) < N and dim(DataSet) ≤ d (see
Figure 3b). It may happen that the intrinsic dimensionality of the datasets is surprisingly
low and variables have hidden interdependencies. The structure of multidimensional data
point clouds can have globally complicated organisation which is sometimes difficult to
represent with regular mathematical objects (such as manifolds) [65,66].

Post-classical area

d

N

a)

dim(DataSet)

N

b)

Figure 3. Different zones of data world: (a) Separation of Donoho’s postclassical data world, where
d > N (below the bisector), the classical world, where d� logN and the ‘postclassical’ area below
the exponent, d� logN; (b) Classical and postclassical data worlds according to the definition (3)
(the area below the bisector is empty). The gray areas around the borders between the different
areas symbolise the fuzziness of the borders. Here, d is the number of attributes, N is the number
of samples, and dim(DataSet) is the intrinsic dimensionality of the dataset, d ≥ dim(DataSet) and
N > dim(DataSet).
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The postclassical world effects include the blessing and curse of dimensionality. The
blessing and curse are based on the concentration of measure phenomena [44,46–48] and
are, in that sense, two sides of the same coin [33,43].

It may be possible to resolve the difficulties with the data analysis in Donoho area
by adequate preprocessing described in Appendix A. Consider an example of successful
descent from data dimension 5× 105 to five-dimensional decision space [67]. The problem
was to develop an ‘optical tongue’ that recognises toxicity of various substances. The
optical assay included a mixture of sensitive fluorescent dyes and human skin cells. They
generate fluorescence spectra distinctive for particular conditions. The system produced
characteristic response to toxic chemicals.

Two fluorescence images were received for each chemical: with growing cells and
without them (control). The images were 511× 511 arrays of fluorescence intensities as
functions of emission and excitation. The dataset included 34 irritating and 28 non-irritating
(Non-IRR) compounds (62 chemicals in total). The input data vector for each compound
had dimension 522,242. This dataset belonged to the Donoho area.

After selection of a training set, each fluorescence image was represented by the vector
of its correlation coefficients with the images from the training set. The size of the training
set was 43 examples (with several randomised training set/test set splittings) or 61 example
(for leave one out cross-validation). After that, the data matrix was 43× 43 or 61× 61
symmetric matrix. Then the classical PCA was applied with the standard selection of
the number of components by Kaiser rule that returned five components. Finally, in the
reduced space the classical classification algorithms were applied (kNN, decision tree,
linear discriminant, and other). Both sensitivity and specificity of the 3NN classifiers with
adaptive distance and of decision tree exceeded 90% in leave one out cross-validation.

This case study demonstrates that simple preprocessing can sometimes return post-
classical data to the classical domain. However, in truly multidimensional datasets, this
approach can fail due to the quasiorthogonality effect [61–63]: centralised random vectors
in large dimensions are nearly orthogonal under very broad assumptions, and the matrix of
empirical correlation coefficients with high probability is often close to the identity matrix
even for exponentially large data samples [63].

3. Stochastic Separation for Fine-Grained Distributions
3.1. Fisher Separability

Recall that the classical Fisher discriminant between two classes with means µ1 and
µ2 is separation of the classes by a hyperplane orthogonal to µ1 − µ2 in the inner product

〈x, y〉 = (x, S−1y), (4)

where (·, ·) is the standard inner product and S is the average (or the weighted average) of
the sample covariance matrix of these two classes.

Let the dataset be preprocessed. In particular, we assume that it is centralised, nor-
malised, and approximately whitened. In this case, we use in the definition of Fisher’s discrim-
inant the standard inner product instead of 〈·, ·〉.

Definition 1. A point x is Fisher separable from a set Y ⊂ Rn with threshold α ∈ (0, 1], or
α-Fisher separable in short, if inequality

α(x, x) ≥ (x, y), (5)

holds for all y ∈ Y.

Definition 2. A finite set Y ⊂ Rn is Fisher separable with threshold α ∈ (0, 1], or α-Fisher
separable in short, if inequality (5) holds for all x, y ∈ Y such that x 6= y.
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Separation of points by simple and explicit inner products (5) is, from the practical
point of view, more convenient than general linear separability that can be provided by
support vector machines, for example. Of course, linear separability is more general than
Fisher separability. This is obvious from the everyday low-dimensional experience, but in
high dimensions Fisher separability becomes a generic phenomenon [30,31].

Theorem 1 below is a prototype of most stochastic separation theorems. Two heuris-
tic conditions for the probability distribution of data points are used in the stochastic
separation theorems:

• The probability distribution has no heavy tails;
• The sets of relatively small volume should not have large probability.

These conditions are not necessary and could be relaxed [13].
In the following Theorem 1 [32] the absence of heavy tails is formalised as the tail

cut: the support of the distribution is a subset of the n-dimensional unit ball Bn. The
absence of the sets of small volume but large probability is formalised in this theorem by
the inequality:

ρ(x) <
C

rnVn(Bn)
, (6)

where ρ is the distribution density, C > 0 is an arbitrary constant, Vn(Bn) is the volume of
the ball Bn and 1 > r > 1/(2α). This inequality guarantees that the probability measure
of each ball with the radius R ≤ 1/(2α) decays for n → ∞ in a geometric progression
with denominator R/r. Condition 1 > r > 1/(2α) is possible only if α > 0.5, hence, in
Theorem 1 we assume α ∈ (0.5, 1].

Theorem 1 ([32]). Let 1 ≥ α > 1/2, 1 > r > 1/(2α), 1 > δ > 0, Y ⊂ Bn be a finite set,
|Y| < δ(2rα)n/C and x be a randomly chosen point from a distribution in the unit ball with the
bounded probability density ρ(x). Assume that ρ(x) satisfies inequality (6). Then with probability
p > 1− δ point x is Fisher-separable from Y with threshold α (5).

Proof. For a given y, the set of such x that x is not α-Fisher separable from y by inequality (5)
is a ball given by inequality (5) {

z
∣∣∣∣ ∥∥∥z− y

2α

∥∥∥ <
‖y‖
2α

}
. (7)

This is the ball of excluded volume. The volume of the ball (7) does not exceed

V =
(

1
2α

)n
Vn(Bn) for each y ∈ Y. The probability that point x belongs to such a ball does

not exceed

V sup
z∈Bn

ρ(z) ≤ C
(

1
2rα

)n
.

The probability that x belongs to the union of |Y| such balls does not exceed |Y|C
(

1
2rα

)n
.

For |Y| < δ(2rα)n/C this probability is smaller than δ and p > 1− δ.

Note that:

• The finite set Y in Theorem 1 is just a finite subset of the ball Bn without any as-
sumption of its randomness. We only used the assumption about distribution of
x.

• The distribution of x may deviate significantly from the uniform distribution in the ball
Bn. Moreover, this deviation may grow with dimension n as a geometric progression:

ρ(x)/ρuniform ≤ C/rn,

where ρuniform = 1/Vn(Bn) is the density of uniform distribution and 1/(2α) < r < 1
under assumption that 1/2 < α ≤ 1.
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Let, for example, α = 0.8, r = 0.9, C = 1, δ = 0.01. Table 1 shows the upper bounds
on |Y| given by Theorem 1 in various dimensions n that guarantees α-Fisher separability of
a random point x from Y with probability ≥ 0.99 if the ratio ρ(x)/ρuniform is bounded by
the geometric progression 1/rn.

Table 1. The upper bound on |Y| that guarantees separation of x from Y by Fisher’s discriminant
with probability 0.99 according to Theorem 1 for α = 0.8, r = 0.9, C = 1 in various dimensions.

n 10 25 50 100 150 200

|Y| ≤ 0.38 91 8.28× 105 6.85× 1013 5.68× 1021 4.70× 1029

ρ(x)/ρuniform ≤ 2.86 13.9 194 3.76× 104 7.30× 106 1.41× 109

For example, for n = 100, we see that for any set with |Y| < 6.85× 1013 points in the
unit ball and any distribution whose density ρ deviates from the uniform one by a factor at
most 3.76× 104, a random point from this distribution is Fisher-separable (2) with α = 0.8
from all points in Y with 99% probability.

If we consider Y as a random set in Bn that satisfies (6) for each point then with high
probability Y is α-Fisher separable (each point from the rest of Y) under some constraints
of |Y| from above. From Theorem 1 we get the following corollary.

Corollary 1. If Y ⊂ Bn is a random set Y = {y1, . . . , y|Y|} and for each j the conditional
distributions of vector yj for any given positions of the other yk in Bn satisfy the same conditions as
the distribution of x in Theorem 1, then the probability of the random set Y to be α-Fisher separable
can be easily estimated:

p ≥ 1− |Y|2C
(

1
2rα

)n
.

Thus, let us take, for example, p > 0.99 if |Y| < (1/10)C−1/2(2rα)n/2 (Table 2).

Table 2. The upper bound on |Y| that guarantees α-Fisher’s separability of Y with probability ≥ 0.99
according to Corollary 1 for α = 0.8, r = 0.9, C = 1 in various dimensions.

n 10 25 50 100 150 200

|Y| ≤ 0.61 9.5 910 8.28× 106 7.53× 1010 6.85× 1014

Multiple generalisations of Theorem 1 are proven with sharp estimates of |Y| for
various families of probability distributions. In this section, we derive the stochastic
separation theorems for distributions with cluster structure that violate significantly the
assumption (6). For this purpose, in the following subsections we introduce models of
cluster structures and modify the notion of Fisher separability to separate clusters. The
structure of separation functionals remains explicit with a one-shot non-iterative learning
but assimilates both information about the entire distribution and about the cluster being
separated.

3.2. Granular Models of Clusters

The simplest model of a fine-grained distribution of data assumes that the data are
grouped into dense clusters and each cluster is located inside a relatively small body (a
granule) with random position. Under these conditions, the distributions of data inside the
small granules do not matter and may be put out of consideration. What is important is the
geometric characteristics of the granules and their distribution. This is a simple one-level
version of the granular data representation [68,69]. The possibility to replace points by
compacts in neural network learning was considered by Kainen [59]. He developed the
idea that ’compacta can replace points’. In discussion, we will touch also a promising
multilevel hierarchical granular representation.
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Spherical granules allows a simple straightforward generalisation of Theorem 1. Con-
sider spherical granules Gz of radius R with centres z ∈ Bn:

Gz = {z′ | ‖z′ − z‖ ≤ R}.

Let Gx and Gy be two such granules. Let us reformulate the Fisher separation condition
with threshold α for granules:

α(x, x′) ≥ (x, y′) for all x′ ∈ Gx, y′ ∈ Gy. (8)

Elementary geometric reasoning gives that the separability condition (8) holds if x
(the centre of Gx) does not belong to the ball with radius 1

2α‖y‖+ R(1 + 1
α ) centred at 1

2α y:

x /∈
{

z
∣∣∣∣ ∥∥∥z− y

2α

∥∥∥ <
‖y‖
2α

+ R
(

1 +
1
α

)}
. (9)

This is analogous to the ball of excluded volume (7) for spherical granules. The
difference from (7) is that both z and y are inflated into balls of radius R.

Let B be the closure of the ball defined in (7):

B =

{
z
∣∣∣∣ ∥∥∥z− y

2α

∥∥∥ ≤ ‖y‖
2α

}
.

Condition (9) implies that the distance between x and B is at least R(1 + 1
α ). In

particular, ‖x− βx‖ ≥ R(1 + 1
α ), where β is the largest real number such that βx ∈ B. Then

βx belongs to the boundary of B, hence (5) holds as an equality for βx:

α(βx, βx) = (βx, y),

or, equivalently, αβ‖x‖2 = (x, y). Then

α(x, x) = α‖x‖ · ‖x− βx‖+ αβ‖x‖2 ≥ α‖x‖ · R
(

1 +
1
α

)
+ (x, y) = (1 + α)R‖x‖+ (x, y).

Thus, if x satisfies (9) then

α(x, x) ≥ (1 + α)R‖x‖+ (x, y) that is α((x, x)− R‖x‖) ≥ (x, y) + R‖x‖. (10)

Let x′ ∈ Gx, y′ ∈ Gy. The Cauchy–Schwarz inequality gives |(x′ − x, x)| ≤ ‖x′ −
x‖‖x‖ ≤ R‖x‖ and |(y′ − y, x)| ≤ ‖y′ − y‖‖x‖ ≤ R‖x‖. Therefore, (x, x′) ≥ (x, x) −
R‖x‖ and (x, y) + R‖x‖ ≥ (x, y′). Combination of two last inequalities with (10) gives
separability (8).

If the point y belongs to the unit ball Bn then the radius of the ball of excluded volume
(9) does not exceed

ξ =
1

2α
+ R

(
1 +

1
α

)
. (11)

Further on, the assumption ξ < 1 is used.

Theorem 2. Consider a finite set of spherical granules Gy with radius R and set of centres Y in
Bn. Let Gx be a granule with radius R and a randomly chosen centre x from a distribution in the
unit ball with the bounded probability density ρ(x). Assume that ρ(x) satisfies inequality (6) and
the upper estimate of the radius of excluded ball (11) ξ < 1. Let 1 > r > ξ and

|Y| < δ
1
C

(
r
ξ

)n
. (12)

Then the separability condition (8) holds for Gx and all Gy (y ∈ Y) with probability p > 1− δ.
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Proof. The separability condition (8) holds for the granule Gx and all Gy (y ∈ Y) if x
does not belong to the excluded ball (9) for all y ∈ Y. The volume of the excluded ball is
V = ξnVn(Bn) for each y ∈ Y. The probability that point x belongs to such a ball does not

exceed C
(

ξ
r

)n
in accordance with the boundedness condition (6). Therefore, the probability

that x belongs to the union of such balls does not exceed |Y|C
(

ξ
r

)n
. This probability is less

than δ if |Y| < δ 1
C

(
r
ξ

)n
.

Table 3 shows how the number |Y| that guarantees separability (8) of a random
granule Gx from an arbitrarily selected set of |Y| granules with probability 0.99 grows with
dimension for α = 0.9, r = 0.9, C = 1 and R = 0.1.

Table 3. The upper bound on |Y| that guarantees separation of granules Gx and all Gy (y ∈ Y)
(8) with probability 0.99 according to Theorem 2 for α = 0.9, r = 0.9, C = 1 and R = 0.1 in
various dimensions.

n 25 50 100 150 200

|Y| ≤ 0.55 30 9.26× 104 2.81× 108 8.58× 1011

The separability condition (8) can be considered as Fisher separability (5) with inflation
points to granules. From this point of view, Theorem 2 is a version of Theorem 1 with
inflated points. An inflated version of Corollary 1 also exists.

Corollary 2. Let Y ⊂ Bn be a random set Y = {y1, . . . , y|Y|}. Assume that for each j the density
of conditional distribution of vector yj for any given positions of the other yk in Bn exists and
satisfies inequality (6). Consider a finite set of spherical granules Gy with radius R and centres
y ∈ Y in Bn. For the radius of the excluded ball (11) assume ξ < r, where r < 1 is defined in (6).
Then, with probability

p ≥ 1− |Y|2C
(

ξ

r

)n

for every two x, y ∈ Y (x 6= y) the separability condition (8) holds. Equivalently, it holds with
probability p > 1− δ (δ > 0) if

|Y| <
√

δ

C

(
r
ξ

)n/2
.

This upper border of |Y| grows with n in geometric progression.

The idea of spherical granules implies that, in relation to the entire dataset, the
granules are more or less uniformly compressed in all directions and their diameter is
relatively small (or, equivalently, the granules are inflated points, and this inflation is
limited isotropically). Looking around, we can hypothesise quite different properties: in
some directions, the granules can have large variety, it can be as large of variety as the
whole set, but the dispersion decays in the sequence of the granule’s principal components
while the entire set is assumed to be whitened. Large diameter of granules is not an
obstacle to the stochastic separation theorems. The following proposition gives a simple
but instructive example.

Proposition 1. Let 1 ≥ α > 1/2, 1 > r > 1/(2α), 1 > δ > 0. Consider an arbitrary set of N
intervals Ij = [uj, vj] ∈ Bn (j = 1, . . . , N). Let x be a randomly chosen point from a distribution
in the unit ball with the bounded probability density ρ(x). Assume that ρ(x) satisfies inequality
(6) and N < δ

2C (2rα)n. Then with probability p > 1− δ point x is Fisher-separable from any
y ∈ ∪j Ij with threshold α (5).
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Proof. For given x and α, the Fisher’s separability inequality defines a half-space for y (5).
An interval I = [u, v] belongs to this half-space if and only if its ends, u and v, belong to it,
that is, x is α-Fisher separable from u and v. Therefore, we can apply Theorem 1 to prove
α-Fisher separability of x from the set Y = {uj} ∪ {vj}, |Y| = 2N.

The same statements are true for separation of a point from a set of simplexes of
various dimension. For such estimates, only the number of vertices matters.

Consider granules in the form of ellipsoids with decaying sequence of length of the
principal axes. Let d1 > d2 > .... (di > 0) be an infinite sequence of the upper bounds for
semi-axes. Each ellipsoid granule in Rn has a centre, z, an orthonormal basis of principal
axes E = {e1, e2, . . . , en}, and a sequence of semi-axes, A = {a1 ≥ a2 ≥ . . . ≥ an}
(di ≥ ai > 0). This ellipsoid is given by the inequality:

Sz,E,A =

{
z′
∣∣∣∣∣ n

∑
j=1

1
a2

j
(z′ − z, ej)

2 ≤ 1

}
. (13)

Let the sequence d1 > d2 > .... (di > 0, di → 0) be given.

Theorem 3. Consider a set of N elliptic granules (13) with centres z ∈ Bn and ai ≤ di. Let D be
the union of all these granules. Assume that x ∈ Bn is a random point from a distribution in the
unit ball with the bounded probability density ρ(x) ≤ ρmax. Then for positive ε, ς

P((x, z′) < ε for all z′ ∈ D, & (x, x) > 1− ς) > 1− NρmaxVn(Bn)a exp(−bn), (14)

where a and b do not depend on the dimensionality.

In proof of Theorem 3 we construct explicit estimates of probability in (14). This
construction (Equation (21) below) is an important part of Theorem 3. It is based on the
following lemmas about quasiorthogonality of random vectors.

Lemma 1. Let e ∈ Rn be any normalised vector, ‖e‖ = 1. Assume that x ∈ Bn is a random point
from a distribution in Bn with the bounded probability density ρ(x) ≤ ρmax. Then, for any ε > 0
the probability

P((x, e) ≥ ε) ≤ 1
2

ρmaxVn(Bn)(
√

1− ε2)n. (15)

Proof. The inequality (x, e) ≥ ε defines a spherical cap. This spherical cap can be estimated
from above by the volume of a hemisphere of radius

√
1− ε2 (Figure 4). The volume W of

this hemisphere is

W =
1
2

Vn(Bn)(
√

1− ε2)n

The probability that x belongs to this cap is bounded from above by the value ρmaxW,
which gives the estimate (15).
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ε
𝔹𝑛

1
e

Figure 4. Approximation of a spherical cap by a hemisphere. A spherical cap is portion of Bn cut off
by a plane on distance ε from the centre. It is approximated from above by a hemisphere of radius√

1− ε2. The vector x should belong to this spherical cap to ensure the inequality (x, e) ≥ ε.

Lemma 2. Let e1, . . . , eN ∈ Rn be normalised vectors,‖ei‖ = 1. Assume that x ∈ Bn is a random
point from a distribution in Bn with the bounded probability density ρ(x) ≤ ρmax. Then, for any
ε > 0 the probability

P((x, ei) ≤ ε for all i = 1, . . . , N) ≥ 1− 1
2

NρmaxVn(Bn)(
√

1− ε2)n (16)

Proof. Notice that

P((x, ei) ≤ ε for all i = 1, . . . , N) ≥ 1−∑
i

P((x, ei) ≥ ε).

According to Lemma 1, each term in the last sum is estimated from above by the
expression 1

2 ρmaxVn(Bn)(
√

1− ε2)n (15).

It is worth mentioning that the term (
√

1− ε2)n decays exponentially when n in-
creases.

Let Sz,E,A be an ellipsoid (13). Decompose a vector x ∈ Rn in an orthonormal basis
E = {e1, . . . , en}: x = ∑i(x, ei)ei = ‖x‖∑i ei cos αi, where cos αi = (x, ei)/‖x‖. Notice that
∑i cos2 αi = 1 (the n-dimensional Pythagoras theorem).

Lemma 3. For a given x ∈ Rn. Maximisation of a linear functional (x, z′) on an ellipsoid (13)
gives

max
z′∈Sz,E,A

(x, z′) = (x, z) + ‖x‖
√

∑
i

a2
i cosα2

i , (17)

and the maximiser has the following coordinates in the principal axes:

z′i = zi +
a2

i cos αi√
∑i a2

i cos α2
i

, (18)

where z′i = (z′, ei), and zi = (z, ei) are coordinates of the vectors z′, z in the basis E.

Proof. Introduce coordinates in the ellipsoid Sz,E,A (13): ∆i = z′i − zi. In these coordinates,
the objective function is

(x, z′) = (x, z) + ‖x‖∑
i

∆i cos αi.
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For given x, z we have to maximise ∑i ∆i cos αi under the equality constraints:

F(∆1, . . . , ∆n) =
1
2 ∑

i

∆2
i

a2
i
=

1
2

,

because the maximiser of a linear functional on a convex compact set belongs to the border
of this compact.

The method of Lagrange multipliers gives:

cos αi = λ
∂F
∂∆i

= λ
∆i

a2
i

, ∆i =
1
λ

a2
i cos αi.

To find the Lagrange multiplier λ, we use the equality constrain again and get

1
λ2 ∑

i
a2

i cos2 αi = 1, λ = ±
√

∑
i

a2
i cos2 αi,

where the ‘+’ sign corresponds to the maximum and the ‘–’ sign corresponds to the mini-
mum of the objective function. Therefore, the required maximiser has the form (18) and the
corresponding maximal value is given by (17).

Proof of Theorem 3 . The proof is organised as follows. Select sufficiently small R > 0
and find such k that dk+1 < R. For each elliptic granule select the first k vectors of its
principal axes. There will be N vectors of the first axes, N vectors of the second axes, etc.
Denote these families of vectors E1, E2, ..., Ek: Ei is a set of vectors of the ith principal
axis for granules. Let E0 be the set of the centres of granules. Select a small ϑ > 0. Use
Lemma 2 and find the probability that for all e ∈ Ei and for all i = 1, . . . , k the following
quasiorthogonality condition holds: |(x, e)| ≤ ϑ√

kdi
. Under this condition, evaluate the

value of the separation functionals (17) in all granules as

(x, z′) ≤ (x, z) + ‖x‖
√

∑
i

a2
i cosα2

i ≤ (x, z) +
√

ϑ2 + R2, (19)

where z is the centre of the granule. Indeed,

‖x‖2 ∑
i

a2
i cosα2

i ≤
k

∑
i=1

d2
i (x, ei)

2 +
n

∑
i=k+1

‖x‖2R2cosα2
i .

The quasiorthogonality condition gives that the first sum does not exceed ϑ. Recall
that ‖x‖ ≤ 1 and ∑i cosα2

i = 1. Therefore, the second sum does not exceed R2. This gives
us the required estimate (19).

The first term, (x, z) is also small with high probability. This quasiorthogonality of
x and N vectors of the centres of granules follows from Lemma 2. It should be noted
that the requirement of qusiorthogonality of x to several families of vectors (N centres
and kN principal axes) increases the pre-exponential factor in the negative term in (16).
This increase can be compensated by a slight increase in the dimensionality because of the
exponential factor there.

Let us construct the explicit estimates for given ε > 0, ς > 0. Take

ϑ = R = ε/(1 +
√

2). (20)

Under conditions of Theorem 3 several explicit exponential estimates of probabili-
ties hold:
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1. Volume of a ball with radius 1− ς is Vn(Bn)(1− ς)n. therefore for probability of x
belong to this ball, we have

P((x, x) ≤ 1− ς) ≤ ρmaxVn(Bn)(1− ς)n;

2. For every z ∈ E0,

P((x, z) ≥ ϑ) ≤ ρmax
1
2

Vn(Bn)(
√

1− ϑ2)n;

3. For every e ∈ Ei

P
(
|(x, e)| ≥ ϑ√

kdi

)
≤ ρmaxVn(Bn)

√1−
(

ϑ√
kdi

)2
n

.

Thus, the probability

P
(
(x, x) ≥ 1− ς & (x, z) ≤ ϑ for all z ∈ E0 & |(x, e)| ≤ ϑ√

kdi
for all e ∈ Ei, i = 1, . . . , k

)

≥ 1− ρmaxVn(Bn)

(1− ς)n +
1
2

N(
√

1− ϑ2)n + N
k

∑
i=1

√1−
(

ϑ√
kdi

)2
n.

(21)

If (x, z) ≤ ϑ for all z ∈ E0 and |(x, e)| ≤ ϑ√
kdi

for all e ∈ Ei, i = 1, . . . , k then, according

to the choice of ϑ (20) and inequality (19), (x, z′) ≤ ε for all points from the granules z′ ∈ D.
Therefore, (21) proves Theorem 3 with explicit estimate of the probability.
If, in addition, (x, x) ≥ 1− ς, 0 < α ≤ 1 and α(1− ς) > ε then

α(x, x) > (x, z′) for all z′ ∈ D

for all points from the granules z′ ∈ D. This is the analogue of α-Fisher separability of
point x from elliptic granules.

Theorem 3 describes stochastic separation of a random point in n-dimensional datas-
pace from a set of N elliptic granules. For given N probability of α-Fisher separability
exponentially approaches 1 with dimensionality growth. Equivalently, for a given probabil-
ity, the upper bound on the number of granules that guarantees such a separation with this
probability grows exponentially with the dimension of the data. We require two properties
of the probability distribution: compact support and the existence of a probability density
bounded from above. The interplay between the dependence of the maximal density on the
dimension (similarly to (6)) and the exponents in the probability estimates (21) determines
the estimate of the separation probability.

In Theorem 3 we analysed separation of a random point from a set of granules but it
seems to be much more practical to consider separation of a random granule from a set of
granules. For analysis of random granules a joint distribution of the position of the centre
and the basis of principal axes is needed. Existence of strong dependencies between the
position of the centre and the directions of principal axes may in special cases destroy the
separability phenomenon. For example, if the first principal axis has length 1 or more and
is parallel to the vector of the centre (i.e., e1 = x/‖x‖) then this granule is not separated
even from the origin. On the other hand, independence of these distributions guarantees
stochastic separability, as follows from Theorem 4 below. Independence by itself is not
needed. The essential condition is that for each orientation of the granule, the position of
its centre remains rather uncertain.
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Theorem 4. Consider a set of N elliptic granules (13) with centres z ∈ Bn and ai ≤ di. Let D
be the union of all these granules. Assume that x ∈ Bn is a random point from a distribution in
the unit ball with the bounded probability density ρ(x) ≤ ρmax. Let x be a centre of a random
elliptic granule Sx = Sx,Ex ,Ax (13). Assume that for any basis of principal axes E and sequence
of semi-axes A = {ai} (ai ≤ di) the conditional distribution of the centres of granules x given
Ex = E, Ax = A has a density in Bn uniformly bounded from above:

ρ(x | Ex = E, Ax = A) ≤ ρmax

and ρmax does not depend on Ex, Ax Then for positive ε, ς

P((x, z′) ≤ ε for all z′ ∈ D & (x, x′) ≥ (x, x)− ε for all x′ ∈ Sx & (x, x) ≥ 1− ς

≥ 1− NρmaxVn(Bn)a exp(−bn),
(22)

where a and b do not depend on the dimensionality.

In the proof of Theorem 4 we estimate the probability (22) by a sum of decaying
exponentials, which give explicit formulas for a and b as was done for Theorem 3 in (21).

Proof. We will prove (22) for an elipsoid Sx (13) with given (not random) basis E and
semiaxes ai ≤ di, and with a random centre x ∈ Bn assuming that the distribution density
of x is bounded from above by ρmax.

Select sufficiently small R > 0 and find such k that dk+1 < R. For each granule,
including Sx with the centre x select the first k vectors of its principal axes. There will be
N + 1 vectors of the first axes, N + 1 vectors of the second axes, etc. Denote these families
of vectors E1, E2, ..., Ek: Ei is a set of vectors of the ith principal axis for all granules, Sx. Let
E0 be the set of of the centres of granules (excluding the centre x of the granule Sx. )

For a given ϑ > 0 the following estimate of probability holds (analogously to (21)).

P
(
(x, x) ≥ 1− ϑ & (x, z) ≤ ϑ for all z ∈ E0 & |(x, e)| ≤ ϑ√

kdi
for all e ∈ Ei, i = 1, . . . , k

)

≥ 1− ρmaxVn(Bn)

(1− ϑ)n +
1
2

N(
√

1− ϑ2)n + (N + 1)
k

∑
i=1

√1−
(

ϑ√
kdi

)2
n.

(23)

If (x, x) ≥ 1− ϑ and (x, z) ≤ ϑ for all z ∈ E0, and |(x, e)| ≤ ϑ√
kdi

for all e ∈ Ei, i =
1, . . . , k, then by (19)

(x, z′) ≤ ϑ +
√

ϑ2 + R2 & (x, x′) ≥ 1− ϑ−
√

ϑ2 + R2 for all z′ ∈ D, x′ ∈ Sx.

Therefore, if we select R = ε
1+
√

2
and ϑ = min

{
ς, ε

1+
√

2

}
, then the estimate (23) proves

Theorem 4. Additionally, for this choice, (x, x′) ≥ 1− ε for all x′ ∈ Sx. Therefore, if ε < α
1+α ,

then α(x, x′) > (x, z′) for all z′ ∈ D and x′ ∈ Sx with probability estimated in (23). This
result can be considered as α-Fisher separability of elliptic granules in high dimensions
with high probability.

Note that the the proof does not actually use that di → 0. All that we use that
lim sup

i→∞
di < R for R = ε

1+
√

2
, where ε < α

1+α . Hence the proof remains valid whenever

lim sup
i→∞

di <
α

(1+
√

2)(1+α)
.

It may be useful to formulate a version of Theorem 4 when Sx is the granule of an
arbitrary (non-random) shape but with a random centre as a separate Proposition.

Proposition 2. Let D be the union of N elliptic granules (13) with centres in Bn with ai ≤ di. Let
Sz,E,A be one more such granule. Let x ∈ Bn be a random point from a distribution in the unit
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ball with the bounded probability density ρ(x) ≤ ρmax. Let Sx = Sz,E,A + (x− z) be the granule
Sz,E,A shifted such that its centre becomes x. Then Theorem 4 is true for Sx.

The proof is the same as the proof of Theorem 4.
The estimates (21) and (23) are far from being sharp. Detailed analysis for various

classes of distributions may give better estimates as it was done for separation of finite
sets [13]. This work needs to be done for separation of granules as well.

3.3. Superstatistic Presentation of ’Granules’

The alternative approach to the granular structure of the distributions are soft clusters.
They can be studied in the frame of superstatistical approach with representation of data
distribution by a random mixture of distributions of points in individual clusters. We start
with the following remark. Notice that Proposition 2 has the following easy corollary.

Corollary 3. Let Sx and D be as in Proposition 2. Let x′ and z′ be the points selected uniformly at
random from Sx and D, correspondingly. Then for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− NρmaxVn(Bn)a exp(−bn),

where the constants a, b are the same as in Theorem 4.

Proof. Let f (n) = NρmaxVn(Bn)a exp(−bn). Let A ⊂ Bn be the set of x such that (22)
holds. Proposition 2 states that P(x ∈ A) ≥ 1− f (n). Let E be the event that (x, z′) ≤
ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ. By the law of total probability,

P(E) = P(E|x ∈ A)P(x ∈ A) + P(E|x 6∈ A)P(x 6∈ A)

≥ P(E|x ∈ A)P(x ∈ A) = 1 · P(x ∈ A) ≥ 1− f (n).

Corollary 3 is weaker than Proposition 2. While Proposition 2 states that, with probabil-
ity at least 1− f (n), the whole granule Sx can be separated from all points in D, Corollary 3
allows for the possibility that there could be a small portions of Sx and D which are not
separated from each other. As we will see below, this weakening allows us to prove the
result in much greater generality, where the uniform distribution in granules is replaced by
much more general log-concave distributions.

We say that density ρ : Rn → [0, ∞) of random vector x (and the corresponding
probability distribution) is log-concave, if set K = {z ∈ Rn | ρ(z) > 0} is convex and
g(z) = − log(ρ(z)) is a convex function on K. For example, the uniform distribution in any
full-dimensional subset of Rn (and in particular uniform distribution in granules (13)) has
a log-concave density.

We say that ρ is whitened, or isotropic, if E[x] = 0, and

E[(x, θ)2)] = 1 ∀θ ∈ Sn−1, (24)

where Sn−1 is the unit sphere in Rn. Equation (24) is equivalent to the statement that
the variance-covariance matrix for the components of x is the identity matrix. This can
be achieved by linear transformation, hence every log-concave random vector x can be
represented as

x = Σy + x0, (25)

where x0 = E[x], Σ is (non-random) matrix and y is some isotropic log-concave random
vector.

An example of standard normal distribution shows that the support of isotropic log-
concave distribution may be the whole Rn. However, such distributions are known to be
concentrated in a ball of radius

√
n(1 + δ) with high probability.
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Specifically, ([70], Theorem 1.1) implies that for any δ ∈ (0, 1) and any isotropic
log-concave random vector in Rn,

P(‖x‖ ≤ (1 + δ)
√

n) ≥ 1− c exp(−c′δ3√n) (26)

where c, c′ > 0 are some absolute constants. Note that we have
√

n but not n in the exponent,
and this cannot be improved without requiring extra conditions on the distribution. We
say that density ρ : Rn → [0, ∞) is strongly log-concave with constant γ > 0, or γ-SLC in
short, if g(z) = − log(ρ(z)) is strongly convex, that is, g(z)− γ

2 ‖z‖ is a convex function on
K. ([70], Theorem 1.1) also implies that

P(‖x‖ ≤ (1 + δ)
√

n) ≥ 1− c exp(−c′δ4n) (27)

for any δ ∈ (0, 1), and any isotropic strongly log-concave random vector x in Rn.
Fix some δ > 0 and infinite sequence d = (d1 > d2 > . . . ) with each di > 0 and di → 0.

Let us call log-concave random vector x (δ, d)-admissible if set Σ · B(0, (1 + δ)
√

n) + x0 is a
subset of some ellipsoid Sx0,E,A (13), where Σ and x0 are defined in (25) and B(0, (1+ δ)

√
n)

is the ball with centre 0 and radius (1 + δ)
√

n. Then (26) and (27) imply that x ∈ Sx0,E,A
with high probability. In combination with Proposition 2, this implies the following results.

Proposition 3. Let δ > 0 and infinite sequence d = (d1 > d2 > . . . ) with each di > 0 and
di → 0 be fixed. Let x ∈ Bn be a random point from a distribution in the unit ball with the
bounded probability density ρ(x) ≤ ρmax. Let x′′ be a point selected from some (δ, d)-admissible
log-concave distribution, and let x′ = x′′ −E[x′′] + x. Let z′ be the point selected from a mixture
of N (δ, d)-admissible log-concave distributions with centres in Bn. Then for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− NρmaxVn(Bn)a exp(−bn)− 2c exp(−c′δ3√n),

for some constants a, b, c, c′ that do not depend on the dimensionality.

Proof. If follows from (26) and (δ, d)-admissibility of the distribution from which x′′ has
been selected that

P(x′ 6∈ S0) ≤ c exp(−c′δ3√n)

for some ellipsoid S0 (13). Similarly, since z′ is selected from a mixture of N (δ, d)-
admissible log-concave distributions, we have

P

(
z′ 6∈

N⋃
i=1

Si

)
≤ c exp(−c′δ3√n)

for some ellipsoids S1, . . . , SN (13). Let E be the event that (x, z′) ≤ ε & (x, x′) ≥ (x, x)−
ε & (x, x) ≥ 1− ζ. If E does not happen than either (i) x′ 6∈ S0, or (ii) z′ 6∈ ⋃N

i=1 Si, or (iii)
x′ ∈ S0 and z′ ∈ ⋃N

i=1 Si, but E still does not happen. The probabilities of (i) and (ii) are at
most c exp(−c′δ3√n), while the probability of (iii) is at most NρmaxVn(Bn)a exp(−bn) by
Proposition 2.

Exactly the same proof in combination with (27) implies the following version for
strongly log-concave distributions.

Proposition 4. Let δ, γ > 0 and infinite sequence d = (d1 > d2 > . . . ) with each di > 0 and
di → 0 be fixed. Let x ∈ Bn be a random point from a distribution in the unit ball with the
bounded probability density ρ(x) ≤ ρmax. Let x′′ be a point selected from some (δ, d)-admissible
γ-SLC distribution, and let x′ = x′′ −E[x′′] + x. Let z′ be the point selected from a mixture of N
(δ, d)-admissible γ-SLC distributions with centres in Bn. Then for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− NρmaxVn(Bn)a exp(−bn)− 2c exp(−c′δ4n),

for some constants a, b, c, c′ that do not depend on the dimensionality.
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3.4. The Superstatistic form of the Prototype Stochastic Separation Theorem

Theorem 1 evaluates the probability that a random point x ∈ Bn with bounded
probability density is α-Fisher separable from an exponentially large finite set Y and
demonstrates that under some natural conditions this probability tends to zero when
dimension n tends to ∞. This phenomenon has a simple explanation: for any y ∈ Bn the
set of such x ∈ Bn that x is not α-Fisher separable from y is a ball with radius ‖y‖/(2α) < 1
and the fraction of this volume in Bn decays as(

‖y‖
2α

)n
.

These arguments can be generalised with some efforts for the situation when we
consider an elliptic granule instead of a random point x and an arbitrary probability
distribution instead of a finite set Y. Instead of the estimate of the probability of a point
x falling into a the ball of excluded volume (7), we use the following proposition for
separability of a random point x′ of a granule Sx with a random centre x from an arbitrary
point z′ ∈ Bn.

Proposition 5. Let Sx be the granule defined in Proposition 2. Let x′ be the point selected uniformly
at random from Sx. Let z′ ∈ Bn be an arbitrary (non-random) point. Then for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− ρmaxVn(Bn)a exp(−bn),

where the constants a, b do not depend on the dimensionality.

Proof. The fact that

P((x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− ρmaxVn(Bn)a exp(−bn)

is proved in Theorem 4, while the fact that

P((x, z′) ≤ ε) ≥ 1− ρmaxVn(Bn)a exp(−bn)

follows from Lemma 1.

Propositions 3 and 4 can be straightforwardly generalised in the same way

Proposition 6. Let δ > 0 and infinite sequence d = (d1 > d2 > . . . ) with each di > 0 and
di → 0 be fixed. Let x ∈ Bn be a random point from a distribution in the unit ball with the bounded
probability density ρ(x) ≤ ρmax. Let x′′ be a point selected from some (δ, d)-admissible log-concave
distribution, and let x′ = x′′ −E[x′′] + x. Let z′ ∈ Bn be an arbitrary (non-random) point. Then
for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− ρmaxVn(Bn)a exp(−bn)− c exp(−c′δ3√n),

for some constants a, b, c, c′ that do not depend on the dimensionality.

Proposition 7. Let δ, γ > 0 and infinite sequence d = (d1 > d2 > . . . ) with each di > 0 and
di → 0 be fixed. Let x ∈ Bn be a random point from a distribution in the unit ball with the bounded
probability density ρ(x) ≤ ρmax. Let x′′ be a point selected from some (δ, d)-admissible γ-SLC
distribution, and let x′ = x′′ −E[x′′] + x. Let z′ ∈ Bn be an arbitrary (non-random) point. Then
for positive ε, ζ

P((x, z′) ≤ ε & (x, x′) ≥ (x, x)− ε & (x, x) ≥ 1− ζ) ≥ 1− ρmaxVn(Bn)a exp(−bn)− c exp(−c′δ4n),

for some constants a, b, c, c′ that do not depend on the dimensionality.
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We remark that because Propositions 5–7 hold for an arbitrary (non-random) point
z′ ∈ Bn, they also hold for point selected from any probability distribution within Bn, and
in particular if point z′ selected uniformly at random from any set D ⊂ Bn.

3.5. Compact Embedding of Patterns and Hierarchical Universe

Stochastic separation theorems tell us that in large dimensions, randomly selected
data points (or clusters of data) can be separated by simple and explicit functionals from
an existing dataset with high probability, as long as the dataset is not too large (or the
number of data clusters is not too large). The number of data points (or clusters) allowed
in conditions of these theorems is bounded from above by an exponential function of
dimension. Such theorems for data points (see, for example, Teorem 1 and [13]) or clusters
(Theorems 2–4) are valid for broad families of probability distributions. Explicit estimations
of probability to violate the separability property were found.

There is a circumstance that can devalue this (and many other) probabilistic results in
high dimension. We almost never know the probability of a multivariate data distribution
beyond strong simplification assumptions. In the postclassical world, observations cannot
really help because we never have enough data to restore the probability density (again,
strong simplification like independence assumption or dimensionality reduction can help,
but this is not a general multidimensional case). A radical point of view is possible,
according to which there is no such thing as a general multivariate probability distribution,
since it is unobservable.

In the infinite-dimensional limit the situation can look simpler: instead of finite
but small probabilities that decrease and tend to zero with increasing dimension (like in
(21) and (23)) some statements become generic and hold ’almost always’. Such limits for
concentrations on spheres and their equators were discussed by Lévy [71] as an important
part of the measure concentration effects. In physics, this limit corresponds to the so-called
thermodynamic limit of statistical mechanics [72,73]. In the infinite-dimensional limit many
statements about high or low probabilities transform into 0-1 laws: something happens
almost always or almost newer. The original Kolmogorov 0-1 law states, roughly speaking,
that an event that depends on an infinite collection of independent random variables but is
independent of any finite subset of these variables has probability zero or one (for precise
formulation we refer to the monograph [74]). The infinite-dimensional 0-1 asymptotic
might bring more light and be more transparent than the probabilistic formulas.

From the infinite-dimensional point of view, the ‘elliptic granule’ (13) with decaying
sequence of diameters d1 > d2 > .... (di > 0, di → 0) is a compact. The specific elliptic
shape used in Theorem 3 is not very important and many generalisations are possible for
the granules with decaying sequence of diameters. The main idea, from this point of view,
is compact embedding of specific patterns into general population of data. This point of
view was influenced by the hierarchy of Sobolev Embedding Theorems where the balls of
embedded spaces appear to be compact in the image space.

The finite-dimensional hypothesis about granular structure of the datasets can be
transformed into the infinite-dimensional view about compact embedding: the patterns
correspond to the compact subsets of the dataspace. Moreover, this hypothesis can be
extended to the hypothesis about hierarchical structure (Figure 5): the data that correspond
to a pattern also have the intrernal granular structure. To reveal this structure, we can
apply centralisation and whitening to a granule. After that, the granule will transform into
a new unit ball, the external set (the former ‘Universe’) will typically become infinitely far
(‘invisible’), and the internal structure can be seeking in the form of collection of compact
granules in new topology.
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“Universe”

Compact clusters

Whitening

New “Universe”

Compact clusters

Whitening

New “Universe”

Compact clusters

Figure 5. Hierarchical Universe. Each pattern is represented by a compact set embedded in the data universe. When we
select this compact and apply whitening, it becomes a new universe and we see a set of compact patterns inside, etc.

It should be stressed that this vision is not a theorem. It is proposed instead of typical
dominance of smooth or even uniform distributions that populate theoretical studies in
machine learning. On another hand, hierarchical structure was observed in various data
analytics exercises: if there exists a natural semantic structure then we expect that data have
the corresponding cluster structure. Moreover, various preprocessing operations make this
structure more visible (see, for example, discussion of preprocessing in Appendix A).

The compact embedding idea was recently explicitly used in data analysis (see, for
example, [75–77]).

The infinite-dimensional representation and compact embedding hypothesis brings
light to the very popular phenomenon of vulnerability of AI decisions in high-dimension
world. According to recent research, such vulnerability seems to be a generic prop-
erty of various formalisations of learning and attack processes in high-dimensional sys-
tems [78–80].

Let Q be an infinite-dimensional Banach space. The patterns, representations of a
pattern, or their images in an observer systems, etc. are modelled below by compact subsets
of Q.

Theorem 5 (Theorem of high-dimensional vulnerability). Consider two compact sets, K0,1 ⊂
Q. For almost every y ∈ Q there exists such continuous linear functional l on Q, l ∈ Q∗, that

l(x1 − x0) > 0 for all x0 ∈ K0, x1 ∈ (K1 + y). (28)

In particular, for every ε > 0 there exist such y ∈ Q and continuous linear functional
l on Q, l ∈ Q∗, that ‖y‖ < ε and (28) holds. If (28) holds, then K0 ∩ (K1 + y) = ∅. The
perturbation y takes K1 out of the intersection with K0. Moreover, linear separation of
K0 and perturbed K1 (i.e., (K1 + y)) is possible for almost always (28) (for almost any
perturbation).

The definition of “almost always” is clarified in detail in Appendix B. The set of
exclusions, i.e., the perturbations that do not satisfy (28) in Theorem 5, is completely thin
in the following sense, according to Definition A1. A set Y ⊂ Q is completely thin, if for
any compact space K the set of continuous maps Ψ : K → Q with non-empty intersection
Ψ(K) ∩Y 6= ∅ is set of first Bair category in the Banach space C(K, Q) of continuous maps
K → Q equipped by the maximum norm.

Proof of Theorem 5 . Let co(V) be a closed convex hull of a set V ⊂ Q. The following sets
are convex compacts in Q: co(K0), co(K1), and co(K0)− co(K1). Let

y /∈ (co(K0)− co(K1)). (29)

Then the set co(K1) + y− co(K0) does not contain zero. It is a convex compact set.
According to the Hahn–Banach separation theorem [81], there exists a continuous linear
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separating functional l ∈ Q∗ that separates the convex compact co(K1) + y− co(K0) from
0. The same functional separates its subset, K1 + y− K0 from zero, as required.

The set of exclusions, co(K0)− co(K1) (see (29)) is a compact convex set in Q. Accord-
ing to Riesz’s theorem, it is nowhere dense in Q [81]. Moreover, for any compact space
K the set of continuous maps Ψ : K → Q with non-empty intersection Ψ(K) ∩Y 6= ∅ is a
nowhere dense subset of Banach space C(K, Q) of continuous maps K → Q equipped by
the maximum norm.

Indeed, let Ψ(K) ∩ Y 6= ∅. The set Ψ(K) is compact. Therefore, as it is proven,
an arbitrary small perturbation y exists that takes Ψ(K) out of the intersection with Y:
(Ψ(K) + y) ∩Y = ∅. The minimal value

min
x1∈(Ψ(K)+y), x2∈Y

‖x1 − x2‖ = δ > 0

exists and is positive because compactness (Ψ(K) + y) and Y.
Therefore, Ψ′(K) ∩Y = ∅ for all Ψ′ from a ball of maps in C(K, Q){

Ψ′
∣∣∣∣‖Ψ′ − (Ψ + y)‖ < δ

2

}
This proofs that the set of continuous maps Ψ : K → Q with non-empty intersection

Ψ(K) ∩Y is a nowhere dense subset of C(K, Q). Thus, the set of exclusions is completely
thin.

The following Corollary is simple but it may seem counterintuitive:

Corollary 4. A compact set K0 ⊂ Q can be separated from a countable set of compacts Ki ⊂ Q by
a single and arbitrary small perturbation y (y < ε for an arbitrary ε > 0):

(K0 + y) ∩ Ki = ∅.

Almost all perturbations y ∈ Q provide this separation and the set of exclusions is completely
thin.

Proof. First, refer to Theorem 5 (for separability of K0 from one Ki). Then mention that
countable union of completely thin set of exclusions is completely thin, whereas the whole
Q is not (according to the Bair theorem, Q is not a set of first category).

Separability theorems for compactly embedded patterns might explain why the vul-
nerability to adversarial perturbations and stealth attacks is typical for high-dimensional
AI systems based on data [78,79]. Two properties are important simultaneously: high
dimensionality and compactness of patterns.

4. Multi-Correctors of AI Systems
4.1. Structure of Multi-Correctors

In this section, we present the construction of error correctors for multidimensional AI
systems operating in a multidimensional world. It combines a set of elementary correctors
(Figure 2) and a dispatcher that distributes the tasks between them. The population of
possible errors is presented as a collection of clusters. Each elementary corrector works
with its own cluster of situations with a high risk of error. It includes a binary classifier that
separates that cluster from the rest of situations. Dispatcher is based on an unsupervised
classifier that performs cluster analysis of errors, selects the most appropriate cluster for
each operating situation, transmits the signals for analysis to the corresponding elementary
corrector, and requests the correction decision from it (Figure 6).
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Figure 6. Multi-corrector—a system of elementary correctors, controlled by the dispatcher, for
reversible correction of legacy AI systems. The dispatcher receives signals from the AI system to be
corrected (input signals of the AI system, internal signals generated in the decision-making process,
and output signals) and selects from the elementary correctors the one that most corresponds to the
situation and will process this situation to resolve the issue of correction. The decision rule, on the
basis of which the dispatcher distributes situations between elementary correctors, is formed as a
result of a cluster analysis of situations with diagnosed errors. Each elementary corrector processes
situations from one cluster. When new errors are detected, the dispatcher modifies the definition of
clusters. Cluster models are prepared and modified using the data stream online algorithms.

In brief, operation of multi-correctors (Figure 6) can be described as follows:

• The correction system is organised as a set of elementary correctors, controlled by the
dispatcher;

• Each elementary corrector ‘owns’ a certain class of errors and includes a binary
classifier that separates situations with a high risk of these errors, which it owns, from
other situations;

• For each elementary corrector, a modified rule is set for operating of the corrected
AI system in a situation with a high risk of error diagnosed by the classifier of this
corrector;

• The input to the corrector is a complete vector of signals, consisting of the input,
internal, and output signals of the corrected Artificial Intelligence system, (as well as,
if available, any other available attributes of the situation);

• The dispatcher distributes situations between elementary correctors;
• The decision rule, based on which the dispatcher distributes situations between

elementary correctors, is formed as a result of cluster analysis of situations with
diagnosed errors;

• Cluster analysis of situations with diagnosed errors is performed using an online
algorithm;

• Each elementary corrector owns situations with errors from a single cluster;
• After receiving a signal about the detection of new errors, the dispatcher modifies

the definition of clusters according to the selected online algorithm and accordingly
modifies the decision rule, on the basis of which situations are distributed between
elementary correctors;

• After receiving a signal about detection of new errors, the dispatcher chooses an
elementary corrector, which must process the situation, and the classifier of this
corrector learns according to a non-iterative explicit rule.

Flowcharts of these operations are presented in Appendix C. Multi-correctors satisfy
the following requirements:

1. Simplicity of construction;
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2. Correction should not damage the existing skills of the system;
3. Speed (fast non-iterative learning);
4. Correction of new errors without destroying previous corrections.

For implementation of this structure, the construction of classifiers for elementary
correctors and the online algorithms for clustering should be specified. For elementary
correctors many choices are possible, for example:

• Fisher’s linear discriminant is simple, robust, and is proven to be applicable in high-
dimensional data analysis [13,32];

• Kernel versions of non-iterative linear discriminants extend the area of application of
the proposed systems, their separability properties were quantified and tested [36];

• Decision trees of mentioned elementary discriminants with bounded depth. These
algorithms require small (bounded) number of iterations.

The population of clustering algorithms is huge [82]. The first choice for testing of
multi-correctors [83] was partitioning around centroids by k means algorithm. The closest
candidates for future development are multi-centroid algorithms that present clusters by
networks if centroids (see, for example, [84]. This approach to clustering meets the idea of
compact embedding, when the network of centres corresponds to the ε-net approximating
the compact.

4.2. Multi-correctors in Clustered Universe: A Case Study
4.2.1. Datasets

In what follows our use-cases will evolve around a standard problem of supervised
multi-class classification. In order to be specific and to ensure reproducibility of our
observations and results, we will work with a well-known and widely available CIFAR-10
dataset [85,86]. The CIFAR-10 dataset is a collection of 32× 32 colour images that are split
across 10 classes:

‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’

with ‘airplane’ being a label of Class 1, and ‘truck’ being a label of Class 10. The original
CIFAR-10 dataset is further split into two subsets: a training set containing 5000 images
per class (total number of images in the training set is 50,000), and a testing set with 1000
images per class (total number of images in the testing set is 10,000).

4.2.2. Tasks and Approach

We focus on two fundamental tasks: for a given legacy classifier:

• (Task 1) devise an algorithm to learn a new class without catastrophic forgetting and
retraining, and;

• (Task 2) develop an algorithm to predict classification errors in the legacy classifier.

Let us now specify these tasks in more detail.
As a legacy classifier we have used a deep convolutional neural network whose

structure is shown in Table 4. The network’s training set comprised 45,000 images cor-
responding to Class 1–9 (5000 images per class), and the test set comprised 9000 images
from the CIFAR-10 testing set (1000 images per class). No data augmentation was invoked
as a part of the training process. The network by stochastic gradient descent with the
momentum parameter was set to 0.9 and mini-batches were of size 128. Overall, we trained
the network over 70 epochs executed in 7 training episodes of 10-epoch training, and the
learning rate was equal to 0.1/(1 + 0.001k), where k is the index of a training instance (a
mini-batch) within a training episode.

The network’s accuracy, expressed as the percentage of correct classifications, was
0.84 and 0.73 on the training and testing sets, respectively (rounded to the second decimal
point). The network was trained in MATLAB R2021a. Each 10-epoch training episode took
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approximately 1.5 h to complete on an HP Zbook 15 G3 laptop with a Core i7-6820HQ
CPU, 16 Gb of RAM, and Nvidia Quadro 1000M GPU.

Table 4. Architecture of the legacy classifier.

Layer Number Type Size

1 Input 32× 32× 3

2 Conv2d 4× 4× 64
3 ReLU
4 Batch normalization
5 Dropout 0.25

6 Conv2d 2× 2× 64
7 ReLU
8 Batch normalization
9 Dropout 0.25

10 Conv2d 3× 3× 32
11 ReLU
12 Batch normalization
13 Dropout 0.25

14 Conv2d 3× 3× 32
15 ReLU
16 Batch normalization
17 Maxpool pool size 2× 2, stride 2× 2
18 Dropout 0.25

19 Fully connected 128
20 ReLU
21 Dropout 0.25

22 Fully connected 128
23 ReLU
24 Dropout 0.25

25 Fully connected 9
26 Softmax 9

Task 1 (learning a new class). Our first task was to equip the trained network with a
capability to learn a new class without expensive retraining. In order to achieve this aim
we adopted an approach and algorithms presented in [25,83]. According to this approach,
for every input image u we generated its latent representation x of which the composition
is shown in Table 5. In our experiments we kept all dropout layers active after training.
This was implemented by using “forward” method instead of “predict” when accessing
feature vectors of relevant layers in the trained network. The procedure enabled us to
simulate an environment in which AI correctors operate on data that are subjected to
random perturbations.

This process constituted our legacy AI system.

Table 5. Latent representation of an image.

Attributes x1, . . . , x9 x10, . . . , x137 x138, . . . , x265 x266, . . . , x393

Layers 26 (Softmax) 19 (Fully connected) 22 (Fully connected) 23 (ReLU)
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Using these latent representations of images, we formed two sets: X and Y . The set
X contained latent representations of the new class (Class 10—‘trucks’) from the CIFAR-10
training set (5000 images), and the set Y contained latent representations of all other images
in CIFAR-10 training set (45,000 images). These sets have then been used to construct a
multi-corrector in accordance with the following algorithm presented in [83].

Algorithm 1: (Few-shot AI corrector [83]: 1NN version. Training). Input: sets
X , Y ; the number of clusters, k; threshold, θ (or thresholds θ1, . . . , θk).

1. Determining the centroid x̄ of the X . Generate two sets, Xc, the centralised
set X , and Y∗, the set obtained from Y by subtracting x̄ from each of its
elements.

2. Construct Principal Components for the centralised set Xc.
3. Using Kaiser, broken stick, conditioning rule, or otherwise, select m ≤ n

Principal Components, h1, . . . , hm, corresponding to the first largest
eivenvalues λ1 ≥ · · · ≥ λm > 0 of the covariance matrix of the set Xc,
and project the centralized set Xc as well as Y∗ onto these vectors.
The operation returns sets Xr and Y∗r , respectively:

Xr = {x|x = Hz, z ∈ Xc}

Y∗r = {y|y = Hz, z ∈ Y∗}, H =

 hT
1
...

hT
m

.

4. Construct matrix W

W = diag
(

1√
λ1

, . . . ,
1√
λm

)
corresponding to the whitening transformation for the set Xr. Apply the
whitening transformation to sets Xr and Y∗r . This returns sets Xw and Y∗w:

Xw = {x|x = Wz, z ∈ Xr}
Y∗w = {y|y = Wz, z ∈ Y∗r }.

5. Cluster the set Y∗w into k clusters Y∗w,1, . . . ,Y∗w,k (using e.g. the k-means
algorithm or otherwise). Let ȳ1, . . . , ȳk be their corresponding centroids.

6. For each pair (Xw,Y∗w,i), i = 1, . . . , k, construct (normalised) Fisher
discriminants w1, . . . , wk:

wi =
(Cov(Xw) + Cov(Y∗w,i))

−1ȳi

‖(Cov(Xw) + Cov(Y∗w,i))
−1ȳi‖

.

An element z is associated with the set Y∗w,i if (wi, z) > θ and with the set
Xw if (wi, z) ≤ θ.
If multiple thresholds are given then an element z is associated with the
set Y∗w,i if (wi, z) > θi and with the set Xw if (wi, z) ≤ θi.

Output: vectors wi, x̄, i = 1, . . . , k, matrices H and W.

Integration logic of the multi-corrector into the final system was as follows [83]:

Remark 1. Since the set Y corresponds to data samples from previously learned classes, a
positive response in the multi-corrector (condition (w`, xw) > θ holds) ’flags’ that this data
point is to be associated with classes that have already been learned (Classes 1–9). Absence
of a positive response indicates that the data point is to be associated with the new class
(Class 10).
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Task 2 (predicting errors of a trained legacy classifier). In addition to learning a new class
without retraining, we considered the problem of predicting correct performance of a
trained legacy classifier. In this setting, the set X of vectors corresponding to incorrect classi-
fications on CIFAR-10 training set, and the set Y contained latent representations of images
form CIFAR-10 training set that have been correctly classified. Similar to the previous task,
predictor of the classifier’s error was constructed in accordance with Algorithms 1 and 2.

Algorithm 2: (Few-shot AI corrector [83]: 1NN version. Deployment). Input:
a data vector x, the set’s X centroid vector x̄, matrices H, W, the number of
clusters, k, cluster centroids ȳ1, . . . , ȳk, threshold, θ (or thresholds θ1, . . . , θk),
discriminant vectors, wi, i = 1, . . . , k.

1. Compute
xw = WH(x− x̄)

2. Determine
` = arg min

i
‖xw − ȳi‖.

3. Associate the vector x with the set Y if (w`, xw) > θ and with the set X
otherwise. If multiple thresholds are given then associate the vector x
with the set Y if (w`, xw) > θ` and with the set X otherwise.

Output: a label attributed to the vector x.

Testing protocols. Performance of the algorithms was assessed on CIFAR-10 testing set.
For Task 1, we tested how well our new system—the legacy network shown in Table 4
combined with the multi-corrector constructed by Algorithms 1 and 2—performs on images
from CIFAR-10 testing set. For Task 2, we assessed how well the multi-corrector, trained on
CIFAR-10 training set, predicts errors of the legacy network for images of 9 classes (Class
1—9) taken from CIFAR-10 testing set.

4.2.3. Results

Task 1 (learning a new class). Performance of the multi-corrector in the task of learning
a new class is illustrated in Figure 7. In these experiments, we projected onto the first 20
principal components. The rationale for choosing these 20 principal components was that
for these components the ratio of the largest eigenvalue to the eigenvalue that is associated
with the principal component is always smaller than 10. The figure shows ROC curves in
which true positives are images from the new class and identified as a new class, and False
positives are defined as images from already learned classes (Classes 1—9) but identified as
a new class (Class 10) by the combined system. As we can see from Figure 7, performance
of the system saturates at about 10 clusters which indicates a peculiar granular structure of
the data universe in this example: clusters are apparently not equal in terms of their impact
on the overall performance, and the benefit of using more clusters decays rapidly as the
number of clusters grows.
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Figure 7. Clustered universe in learning a new class. Arrows and numbers show the number of clusters in the multi-corrector
for which that specific ROC curve was constructed. The squares (blue on the left and black on the right) correspond to an
elementary corrector with one cluster, other lines (green on the right and red on the left) correspond to the multi-correctors
with 2, 5, and 10 clusters.

We note that the system performance and generalisation depends on both ambient
dimension (the number of principal components used) and the number of clusters. This
phenomenon is illustrated in in Figure 8. When the number of dimensions increases (top
row in Figure 8), the gap between a single-cluster corrector and a multi-cluster corrector
narrows. Yet, as can be observed from this experiment, the system generalises well.

When the number of clusters increases from 10 to 300, the system overfits. This is not
surprising as given the size of our training set (50,000 images to learn from) splitting the
data into 300 clusters implies that each 100-dimensional discriminant in Algorithm 1 is
constructed, on average, from mere 170 samples. The lack of data to learn from and ’diffu-
sion’ and shattering of clusters in high dimension could be contributors to the instability.
Nevertheless, as the right plot shows, the system still generalises at the level that is similar
to the 10-cluster scenario.

When the ambient dimension increases further we observe a dramatic performance
collapse for the multi-corrector constructed by Algorithms 1 and 2. Now 300-dimensional
vectors are built from on average 170 points. The procedure is inherently unstable and in
this sense such results are expected in this limit.

Task 2 (predicting errors). A very similar picture occurs in the task of predicting errors
of legacy classifiers. For our specific case, performance of 10-cluster multi-corrector with
projection onto 20 principal components in shown in Figure 9. In this task, true positives
are errors of the original classifier which have been correctly identified as errors by the
corrector. False positives are data correctly classified by the original deep neural network
but which nevertheless have been labelled as errors by the corrector. According to Figure 9,
the multi-corrector model generalises well and delivers circa 70% specificity and sensitivity
on the test set.
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Figure 8. Clustered universe in learning a new class—the impact of dimension of the ambient space. Curves marked
with squares (blue on the left and black on the right) correspond to corrector with a single cluster, curves marked by
green triangles on the left and and red circles on the right correspond to correctors with multiple clusters. Top panel: the
application of Algorithms 1 and 2 to the same data but with retained first 100 principal components instead of the first 20
components (see Figure 7). Middle panel: projecting onto the first 100 principal components and using 300 clusters. Bottom
panel: projecting onto the first 300 principal components and using 300 clusters.
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Figure 9. Prediction of errors. Solid curves marked by green triangles (on the left) and red circles (on the right) correspond
to 10-cluster multi-corrector. Solid curves marked by squares (blue on the left and black on the right) are produced by a
single-cluster elementary corrector. Dashed lines with the same marks show performance of the same system but constructed
on datasets in the reduced feature space formed by attributes 1–137 (see Table 5).

Another interesting phenomenon illustrated by Figure 9 is the apparent importance
of how the information from the legacy AI model is aggregated into correcting cascades.
Dashed lines in Figure 9 show what happens if latent representations are formed by
signals taken from layers 26 and 19 only. In this case the impact of clustering becomes less
pronounced, suggesting the importance of feature selection for optimal performance.

Computational efficiency. Computational costs of constructing multi-correctors is re-
markably small. For example, learning a new class with a 10-cluster multi-corrector and
20 principal components took 1.32 seconds on the same hardware used to train the original
legacy classifier. When the number of clusters and dimension increases to 300 and 300,
respectively, the amount of time needed to construct the multi-corrector was 37.7 s. These
figures show that not only clustered universes and multi-correctors are feasible in applica-
tions but they are also extremely efficient computationally. We do not wish to suggest that
they are a replacement of deeper retraining. Yet, as we see from these experiments, they
can be particularly efficient in the tasks of incremental learning—learning an additional
class in a multi-class problem—if implemented appropriately.

4.2.4. Dimensionality and Multi-Corrector Performance

The CIFAR-10 training set contains 5000 images per class, and the testing set contains
1000 image per class. The total number of data samples is 60,000. Dimension of the input
space is 3072. Dimension of the space of latent representation is 393. The shortened
feature space with coordinates x1− x137 is also used. Three versions of PCA dimensionality
reduction were tested, with 20, 100, and 300 principal components. We can see that the
number of samples significantly exceeds all the dimensions (60,000 versus 20, 100, 137,
300, and 393). The question arises: is this classical or already postclassical zone of data
dimensionality (see Figure 3)?

Compare the number of samples to the critical size |Y| of the dataset Y that allows one
to separate a random point x from the set Y by Fisher’s discriminant (Definition 1) with
threshold α = 0.8 and probability p = 1− δ = 0.99. Theorem 1 gives this estimate. If x is
uniformly distributed in a ball then, according to Theorem 1, we produce the following
table.

Table 6 ensures us that for dimensions 100, 137, 300, and 393 the CIFAR-10 dataset
is very deeply in the postclassical area. The only question appeared for dimension 20.
Theorem 1 gives that for this dimension, the postclassical area ends at |Y| > 121. Neverthe-
less, the multi-correctors work well in this dimension. The reason for this efficiency could
be the fine-grained cluster structure of the dataset. Theorem 1 is true for any dataset Y
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without any hypothesis about data distribution. It estimates the number of points |Y|. On
the contrary, according to Theorems 2 and 3, for a fine-grained structure the number of
granules should be counted and not the number of points.

Table 6. The upper bound on |Y| that guarantees separation of a random point x, uniformly
distributed in a ball, from set Y by Fisher’s discriminant with probability 0.99 for α = 0.8, in various
dimensions.

n 20 100 137 300 393

|Y| ≤ 1.21× 102 2.58× 1018 9.21× 1025 1.72× 1059 1.65× 1078

Stochastic separation theorems are needed to evaluate the areas of applicability of
machine learning algorithms in the multidimensional world of postclassical data. They
also provide ideas for developing appropriate algorithms. The first stochastic separation
theorems led to elementary correctors (Figure 2) [30,31]. The theorems for data with fine-
grained distributions are related to the multi-corrector algorithm. Of course, the detailed
structure of multi-correctors may vary, and in this work we considered the first and basic
version.

5. Conclusions

In this work, we used the modified Donoho’s definition of postclassical data (Section 2).
The postclassical data are defined by relations between the intrinsic dimensionality of the
data dim(DataSet) and the logarithm of the number of data samples (2), dim(DataSet)�
log N. In the postclassical area (Figure 3), the classical statistical learning approaches
may become useless and the phenomena of curse and blessing of dimensionality become
important. Among these phenomena are quasiorthogonality [61–63], systematically used
in our work, and stochastic separation theorems [13,31].

Distributions of data in real life tasks can be far from any regular distribution. One of
the typical phenomena is rich cluster structure. Multi-clustering and recently described
hubness phenomena are important in high-dimensional data analysis and it is impossible
to analyse the real life datasets without accounting of them [66,87–89]. We used the
granular distributions as models for multi-clustered data. Three models of clusters are
proposed: spherical clusters, elliptic clusters, and superstatistical model, where clusters are
represented by the peaks of distribution density and the whole distribution is a random
mixture of these such peaks.

Hypothesis of compactness of granules has different forms for these cluster models.
For spherical clusters, compactness is considered as a relatively small diameter of the
granules comparing to the data standard deviation. This approach is close to the Duin
measurement of compactness [58]. For the elliptic granules, the diameter can be large, but
the sequence of the main diameters should decay. This idea is borrowed from functional
analysis, the theory of Kolmogorov n-width [90–92] in its simplest form.

In Section 3, we formulated and proved stochastic separation theorems for fine-grained
distributions. Instead of separation of random points we considered separation of clusters.
The multi-clustered datasets demonstrate the curse and blessing of dimensionality effects
for smaller dimensions than the classical distributions with the same number of data
points because these effects depend on the number of clusters and their compactness
characteristics, see Theorem 2 for spheric granules, Theorems 3 and 4 for elliptic granules,
and Propositions 3–5 for granules modelled by the distribution peaks of different shapes.

The probability of a multivariate real-life data distribution is usually unknown and we
never have enough data to restore the probability density for postclassical data. Therefore,
in Section 3.5 we developed the infinite-dimensional approach that does not use the
unobservable probability distributions. For measure concentration on spheres and equators,
infinite-dimensional limit was considered by Lévy in his functional analysis book [71].
Instead of spheric or elliptic granules, just compact subsets are considered and Theorem 5
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about separability in families of compact sets explains why the vulnerability to adversarial
perturbations and stealth attacks is typical for high-dimensional AI systems based on
data [78,79]. Two properties are important simultaneously: high dimensionality and
compactness of patterns.

Multi-corrector, a special ideal device for correction of AI errors in the worlds of high-
dimensional multi-clustered data, is developed and tested (Section 4). It includes a family
of elementary correctors managed by a dispatcher (Figure 6). The dispatcher distributes
situations between elementary correctors using a classification model created in the course
of cluster analysis of diagnosed errors. Each elementary corrector deals with its own cluster.
Multi-correctors are tested on the CIFAR-10 database solving two tasks: (i) learn a new class
(without catastrophic forgetting and retraining) and (ii) predict classification errors. Testing
was organised for a different number of principal components involved and for a different
number of clusters. The tests demonstrates that the multi-corrector model generalises well
with appropriate specificity and sensitivity on the test set. The details are presented in
Figures 7–9.

Several directions of future work have become open. The main challenge is to develop
a technology for creating reliable and self-correcting augmented AI ecosystems in which
each AI is dressed-up with a cloud of correctors. These correctors increase the reliability of
AI by removing errors and at the same time serve as a special storage device—a memory
of detected errors for further interiorisation. The correctors also enable knowledge transfer
between AIs and can be used to protect their “host” AI from various attacks by repairing
the effects of malicious actions. In addition, they may model attacks on AIs [78,79], opening
new ways to assess the efficiency of defence measures and protocols employed by AI
owners. There are also many special technical questions that require further attention
and work. These include the analysis of reducibility of multidimensional data and the
development of precise criteria, enabling one to decide if a given dataset is a postclassical
dataset, to which our current work applies, or if it is the classical one, to which conventional
statistical learning approaches may still be applicable.

6. Discussion

The preprocessing in the postclassical data world (Figure 3 and Appendix A) is a
challenging task because no classical statistical methods are applicable when the sample
size is much smaller than data dimensionality (the Donoho area (Section 2, (1) [28]). The
correlation transformation (Appendix A.1) moves data out of the Donoho area yet, certain
specific non-classical effects still persist when the sample size remains much smaller than
the exponential of the data dimensionality (2). Dimensionality reduction methods should
combine two sets of goals: sensible grouping and extraction of relevant features. For these
purposes, combining supervised and unsupervised learning techniques is necessary. Data
labels from supervised approaches add sense and context to the subsequent analysis of
unlabelled data. The simple geometric methods like supervised PCA, semisupervised PCA
(Appendix A.2), and Domain Adaptation PCA (DAPCA) (Appendix A.2) may serve as
prototypes of more complex and less controllable approaches. They can also be used to
simplify large deep learning systems [93].

Data in postlclassical world are rarefied. At the same time, values of regular func-
tionals on data are concentrated near their median values [44,46]. Combinations of these
properties produce the ‘blessing of dimensionality’ [27,28,71]. The most important man-
ifestation of these effects for applied data analysis beyond the central limit theorem are
quasiorthogonality [61–63] and stochastic separation theorems [13,31]. These results give
the theoretical backgrounds for creation of intellectual devices of a new type: correctors of
AI systems. In this paper, we presented a new family of stochastic separation theorems
for fine-grained data distributions with different geometry of clusters (Section 3). These
results enable development of multi-correctors for multidimensional AI with a granular
distribution of errors. On real data, such correctors showed better performance than simple
correctors.
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Various versions of multi-correctors that provide fast and reversible correction of
AI errors should be supplemented by an additional special operation of interiorisation
of corrections. Accumulation of many corrections will, step by step, spend the blessing
of dimensionality resource: after implementing elementary corrections, the probability
of success for new correctors may decrease. This can be considered as accumulation of
technical debt. In psychology, interiorisation is the process of making skills, attitudes,
thoughts, and knowledge an integrated part of one’s own being. For large legacy AI
systems, interiorisation of corrections means the supervising retraining of the system. Here
a complex “legacy system+multi-corrector” acts as a supervisor and labels the data, while
the system itself learns by assimilating the fast flow of generated data.

The construction of correctors with their subsequent interiorisation can be considered
as a tool for solving the problem of model degradation and concept drift. An increase
in the error rate is a signal of degradation of the model and a systematic decrease in
performance [55]. The nature of data changes in time, due to the evolution of the sys-
tem under analysis. Coping with this phenomena required combination of supervised,
semi-supervised, and even unsupervised learning. Semi-supervised and unsupervised
methods help to self-assess model degradation in preprocessing mode in real time and
modify the classification model and features before actual errors occur [94]. Error correc-
tors provide reversible modification of AI systems without iterative retraining and can
assimilate significant concept drift.

We refuse the classical hypothesis of the regularity of the data distribution and assume
that the data can have a rich fine-grained structure with many clusters and corresponding
peaks in the probability density. In this work, we generalise this framework and ideas
to a much richer class of distributions. We introduce a new model of data—a possibly
infinite-dimensional data universe with hierarchical structure in which each data cluster has
a granular internal structure, etc. The idealised concept of granular Hierarchical Universe
(Figure 5) is intended to replace the ideal picture of a smooth unimodal distribution popular
in statistical science.

The infinite-dimensional version of theorems about separation of compact clusters
and families of such clusters demonstrates the importance of the hypothesis about compact
embedding of data clusters (Section 3.5). The hypothesis of images compactness appeared
in data analysis and machine learning several times in many different forms. Perhaps, it
was first introduced by E.M. Braverman [57]. This was a guess about the data structure
in the real world. It is now widely accepted that real data are rarely i.i.d samples from a
regular distribution. Getting the right guess about the distribution of data is essential to
the success of machine learning.

According to a modern deep learning textbook, “the goal of machine learning research
is not to seek a universal learning algorithm or the absolute best learning algorithm. Instead,
our goal is to understand what kinds of distributions are relevant to the ’real world’ that an
AI agent experiences and what kinds of machine learning algorithms perform well on data
drawn from the kinds of data generating distributions we care about” ([15], Section 5.5.2]).
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Appendix A. Elementary Preprocessing of Postclassical Data

Appendix A.1. Measure Examples by Examples and Reduce the Number of Attributes to
dim(DataSet)

Assume that the number of data points is less than the number of attributes (1). In
this situation, we can decrease the dimension of space by many simple transformations.
It is possible to apply PCA and delete all the components with vanishing eigenvalues.
This could be a non-optimal approach if originally d is very large. It is also possible to
restrict the analysis by the space generated by the data vectors. Let the data sample be a
set of N vectors xi in Rd. One way to reduce the description is the following correlation
transformation that maps the dataspace into cross-correlation space:

1. Centralize data (subtract the mean);
2. Delete coordinates with vanishing variance; (Caution: signals with small variance may

be important, whereas signals with large variance may be irrelevant for the target
task! This standard operation can help but can also impair the results.)

3. Standardise data (normalise to unit standard deviations in coordinates), or use another
normalisation, if this is more appropriate; (Caution: transformation to the dimension-
less variables is necessary but selection of the scale (standard deviation) affects the
relative importance of the signals and can impair the results.)

4. Normalise the data vectors to unit length: xi 7→ xi/‖xi‖ (Caution: this simple normali-
sation is convenient but deletes one attribute, the length. If this attribute is expected
to be important than it could be reasonable to use the mean value of ‖xi‖ that gives
normalisation to the unit average length.)

5. Introduce coordinates in the subspace spanned by the dataset, Span{xi} using projec-
tions on xi.

6. Each new data point y will be represented by a N-dimensional vector of inner products
with coordinates (y, xi).

After this transformation, the data matrix becomes the Gram matrix (xi, xj). For the
centralised and normalised data, these inner products can be considered as correlation
coefficients. For such datasets, the number of attributes coincides with the number of
data points. The next step may be PCA or another method of dimensionality reduction.
The simple and routine formalisation operations can significantly affect the results of data
analysis and choosing the right option cannot be done a priori.

However, if the dataset is truly multidimensional, then the correlation transformation
can return a data matrix with strong diagonal dominance. Centralised random vectors will
be almost orthogonal due to the phenomenon of quasi-orthogonality [61,63]. This effect
can make the application of PCA after the correlation transformation less efficient.

There is a different approach to dealing with relatively small samples in multidimen-
sional data spaces. In the Donoho area (see (1) and Figure 3a) we can try to produce a
probabilistic generative model and then use it for generating additional data.
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The zeroth approximation is the naïve Bayes model. This means assuming that the
attributes are independent. The probability distribution is the product of distributions of
attributes values. In dimension d, we need to fit the d one-dimensional densities, which is
much easier than reconstructing the d-dimensional density in the entire data space. The
naïve Bayes approximation can be augmented by accounting strong pair correlations, etc.
The resulting approximation may be represented in the form of a Bayesian network [95,96].

There are many methods for generating the probability distribution from data, based
on the maximum likelihood estimation married with the network representation of the
distribution, like deep latent Gaussian models [97].

The physical interpretation of the log-likelihood as energy (or free energy) gave rise to
many popular heuristic approaches like the Boltzmann machine or restricted Boltzmann
machine [98] that create approximation of the energy.

Extensive experience was accumulated in the use of various generative models of
probability distribution. They can be used to leave the Donoho area by augmentation
of the dataset with additional samples generated by the model. The statistical status of
such augmentation is not always clear because selection of the best model is an intractable
problem and we never have enough data and time to solve it. In large dimension, the
models are tested on a standard task: accurate imputations of missing data for the samples
never seen before. These tests should check if the majority of correlations captured by the
model are significant (and not spurious) and may be used to evaluate the False Discovery
Rate (FDR).

A good heuristic should provide a reasonable balance between the risk of missing
significant correlations and the risk of including spurious correlations. This is a typical
multiple testing problem and in the postclassical data world we cannot be always sure
that we solved this problem properly. The standard correcting for multiplicity (see, for
example, [99]) may result in too many false negative errors (missed correlations). However,
without such corrections, any findings should be seen as hypothesis generating and not as
definitive results [100]. This difficulty can be considered as the fundamental incompleteness
of the postclassical datasets.

Appendix A.2. Unsupervised, Supervised, and Semisupervised PCA

PCA remains the standard and very popular tool for dimensionality reduction and
unsupervised data preprocessing. It was introduced by K. Pearson in 1900 as a tool for data
approximation by straight lines and planes of best fit. Of course, minimisation of the mean
square distance from the data point to its projection on a plane (i.e., mean square error of
the approximation) is equivalent to maximisation of the variance of projections (because
Pythagorean theorem). This second formulation became the main definition of PCA in
textbooks [37]. The third definition of PCA, which we will use below, is more convenient
for developing various generalisations. [35].

Let a data sample xi ∈ Rd (i = 1, . . . , N) be given and centralised, and let Π be a
projector of Rd on a q-dimensional plane. The problem is to find the q-dimensional plane
that maximises the scattering of the data projections

1
2

n

∑
i,j=1
‖Π(xi − xj)‖2. (A1)

For projection on a straight line (1D subspace) with the normalised basis vector e the
scattering (A1) is

1
2

N

∑
i,j=1

(xi − xj, e)2 = N
N

∑
i=1

(xi, e)2 = N(N − 1)(e, Qe) (A2)

where the coefficients of the quadratic form (e, Qe) are the sample covariance coefficients
qlm = 1

N−1 ∑i xil xim, and xil (l = 1, . . . , d) are coordinates of the data vector xi.



Entropy 2021, 23, 1090 39 of 55

If {e1, . . . , eq} is an orthonormal basis of the q-dimensional plane in data space, then
the maximum scattering of data projections (A1) is achieved, when e1, . . . , eq are eigenvec-
tors of Q that correspond to the q largest eigenvalues of Q (taking into account possible
multiplicity) λ1 ≥ λ2 ≥ . . . ≥ λq. This is the standard PCA exactly. A deep problem
with using PCA in data analysis is that the major components are not necessarily the
most important or even relevant for the target task. Users rarely need to simply explain
a certain fraction of variance. Instead, they need to solve a classification, prediction, or
other meaningful task. Discarding certain major principal components is a common prac-
tice in many applications. First principal components are frequently considered to be
associated with technical artifacts in the analysis of omics datasets in bioinformatics, and
their removal might improve the downstream analyses [101,102]. Even more than 10 first
principal components have to be removed sometimes, in order to increase the signal/noise
ratio [103].

The component ranking can be made more meaningful if we change the form (A1)
and include additional information about the target problem in the principal component
definition. The form (A1) allows many useful generalisations. Introduce weight Wij for
each pair:

H =
1
2

n

∑
i,j=1

Wij‖Π(xi − xj)‖2. (A3)

The weight Wij may be positive for some pairs (repulsion) or negative for some other
pairs (attraction). The weight matrix is symmetric, Wij = Wji. Again, the problem of H
maximisation leads to a diagonalisation of a symmetric matrix. Consider projection on
a 1D subspace with the normalised basis vector e and define a new quadratic form with
coefficients qW

lm:

H = ∑
lm

[
∑

i

(
∑

r
Wir

)
xil xim −∑

ij
Wijxil xjm

]
elem = ∑

lm
qW

lmelem. (A4)

Maximum of H (A3) on q-dimensional planes is achieved when this plane is spanned
by q eigenvectors of the matrix QW = (qW

lm) (A4) that correspond to q largest eigenvalues
of QW (taking into account possible multiplicity) λ1 ≥ λ2 ≥ . . . ≥ λq.

To prove this statement we can mention that the functional H for a q-dimensional
plane (A3) is the sum of the functionals (A4) calculated for vectors from any orthonormal
basis of this plane. Let this basis be {e1, . . . , eq}. Decompose each ei in the orthonormal
basis of QW eigenvectors and follow the classical proof for PCA.

There are several methods for the weights assignment:

• Classical PCA, Wij ≡ 1;
• Supervised PCA for classification tasks [104,105]. The dataset is split into several classes,

Kv (v = 1, 2, . . . , r). Follow the strategy ’attract similar and repulse dissimilar’. If xi
and xj belong to the same class, then Wij = −α < 0 (attraction). If xi and xj belong to
different classes, then Wij = 1 (repulsion). This preprocessing can substitute several
layers of feature extraction deep learning network [93].

• Supervised PCA for any supervising task. The dataset for supervising tasks is augmented
by labels (the desired outputs). There is proximity (or distance, if possible) between
these desired outputs. The weight Wij is defined as a function of this proximity. The
closer the desired outputs are, the smaller the weights should be. They can change
sign (from classical repulsion, Wij > 0 to attraction, Wij < 0) or simply change the
strength of repulsion.

• Semi-supervised PCA was defined for a mixture of labelled and unlabelled data [106].
The data are labelled for classification task. For the labelled data, weights are defined
as above for supervised PCA. Inside the set of unlabelled data the classical PCA
repulsion is used.



Entropy 2021, 23, 1090 40 of 55

All these modifications of PCA are formally very close. They are defined by a maximi-
sation of the functional (A3) for different distributions of weights. This maximisation is
transformed into the spectral problem of a symmetric matrix QW (see (A4) or its simple
modification (A5)). The dimensionality reduction is achieved by projection of data onto
linear span of q eigenvectors of QW that correspond to the largest eigenvalues.

How many components to retain is a nontrivial question even for the classic PCA [107].
The methods based on the evaluation of the fraction of variance unexplained or, what is the
same, the relative mean square error of the data approximation by the projection, are popu-
lar but we should have in mind that this projection should not only approximate the data
but also be a filter that selects meaningful features. Therefore, the selection of components
to keep depends on the problem we aim to solve and heuristic approaches with several
trials of different numbers of components may be more useful than an unambiguous formal
criterion. Special attention is needed to the cases when some eigenvalues of QW become
negative. Let λ1 ≥ λ2 ≥ . . . ≥ λr > 0 but for other eigenvalues 0 ≥ λr+1 ≥ . . .. In this
case, a further increase in the dimension of the approximating plane above r does not lead
to an increase in H but definitely increases the quality of data approximation. The standard
practice is not to use eigenvectors that correspond to non-positive eigenvalues [93].

Appendix A.3. DAPCA—Domain Adaptation PCA

The classical hypothesis of machine learning is existence of the probability distribution
and the same (even unknown) distribution for the training and test sets. The problem of
domain adaptation arises when the training set differs from the data that the system should
work with under operational conditions. Such situations are typical. The problem is that
the new data have no known labels. We have to utilise a known labelled training set (from
the “source domain’) and a new unlabelled training set (from the ’target domain’). The
idea is to modify the data and to make the non-labelled data as close to the labelled one as
possible. This transformation should erase the difference between the data distributions
in two sets and, at the same time, do not destroy the possibility to solve effectively the
machine learning problem for the labelled set.

The key question in domain learning is definition of the objective functional: how to
measure the difference in distributions between the source domain sample and the target
domain sample. The clue to the answer gives the idea [108]:

• Select a family of classifiers in data space;
• Choose the best classifier from this family for separation the source domain samples

from the target domain samples;
• The error of this classifier is an objective function for maximisation (large classification

error means that the samples are indistinguishable by the selected family of classifiers).

Ideally, there are two systems: a classifier that distinguishes the feature vector as
either a source or target and a feature generator that learns a combination of tasks: to
mimic the discriminator and to ensure the successful learning in the source domain. There
are many attempts to implement this idea [109,110]. In particular, an effective neural
network realisation trains a deep neural network system to accurately classify source
samples but decreases the ability of the associated classifier that uses the same feature set to
detect whether each example belongs to the source or target domains [111]. The scattering
objective function (A3) can combine these two targets for learning of feature generation:
success in the learning in the source domain and indistinguishability of the source and
target datasets.

Transfer Component Analysis (TCA) was proposed to specify attraction between the
clouds of projections of labelled and unlabelled data [112]. The distance between the
source and target samples was defined as the distance between the projections of their
mean points. Attraction between the mean points of the labelled and unlabelled data was
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postulated. Let µL and µU be these mean points. Their attraction means that a new term
should be added to QW (A4):

qW
lm = ∑

i

(
∑

r
Wir

)
xil xim −∑

ij
Wijxil xjm − β(µLl − µUl)(µLm − µUm), (A5)

where weights Wir are assigned by the same rules as in semisupervised PCA, and β > 0
is the attraction coefficient between the mean points of the labelled and unlabelled data
samples.

Domain Adaptation PCA (DAPCA) also takes advantage of this idea of task mix within
a weighted PCA framework (A3). The classifier used is the classical kNN (k nearest
neighbours). Let the source dataset (input vectors) be X, the target dataset be Y, X is split
into different classes: X = K1 ∪ . . . ∪ Kr. Enumerate points in Y ∪ X The weights are:

• If xi, xj ∈ Kv then Wij = −α < 0 (the source samples from one class, attraction);
• If xi ∈ Ku xj ∈ Kv (u 6= v) then Wij = 1 (the source samples from different classes,

repulsion);
• xi, xj ∈ Y then Wij = β > 0 (the target samples, repulsion);
• For each target sample xi ∈ Y find k closest source samples in X. Denote this set Ei.

For each xj ∈ Ei, Wij = −γ < 0 (the weight for connections of a target sample and the
k closest source samples, attraction).

The weights in this method depend on three non-negative numbers, α, β, and γ and
on the number of nearest neighbours, k. Of course, the values of the constants can vary for
different samples and classes, if there is sufficient reason for such a generalisation.

kNN classification can be affected by irrelevant features that create difference between
the source and target domains and should be erased in the feature selection procedure.
This difficulty can be resolved by the iterative DAPCA. Use the basic algorithm as the first
iteration. It gives the q-dimensional plane of major components (the eigenvectors QW) with
the orthogonal projector in it Π1. Find for each target sample k nearest neighbours from the
source samples in the projection on this plane (use for definition of k nearest neighbours
the seminorm ‖Π1(x)−Π1(y‖). Assign new Wij using these nearest neighbours. Find
new projector Π2 and new nearest neighbours. Iterate. The iterations converge in a finite
number of steps, because the functional H (A4) increases at each step (as in the k-means
and similar splitting algorithms). Even if the convergence (in high dimensions) is too
long, then the early stop can produce a useful feature set. The iterative DAPCA helps also
to resolve the classical distance concentration difficulty: in essentially large dimensional
distributions the kNN search may be affected by the distance concentration phenomena:
most of the distances are close to the median value [113]. Even use of fractional norms or
quasinorms do not save the situation [114], but dimensionality reduction with deleting the
irrelevant features may help.

If the target domain is empty then TPA, DAPSA, and iterative DAPCA degenerate
to the semi-supervised PCA in the source domain. If there is no source domain then they
turn into classical PCA in the target domain.

The described procedures of supervised PCA, semi-supervised PCA, TCA, DAPCA,
or iterative DAPCA prepare a relevant feature space. The distribution of data in this space
is expectedly far from a regular unimodal distribution. It is assumed that in this space the
samples will form dense clumps with a lower data density between them.

Appendix B. ’Almost Always’ in Infinite-Dimensional Spaces

As it was mentioned in Section 3.5, in the infinite-dimensional limit many statements
about high or low probabilities transform into 0-1 laws: something happens almost always
or almost newer. Such limits for concentrations on spheres and their equators were
discussed by Lévy [71] as an important part of the measure concentration effects. In physics,
this limit corresponds to the so-called thermodynamic limit of statistical mechanics [72,73].
The original Kolmogorov 0-1 law states, roughly speaking, that an event that depends on
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an infinite collection of independent random variables but is independent of any finite
subset of these variables, has probability zero or one (for precise formulation we refer to
the monograph [74]). The infinite-dimensional 0-1 asymptotic might bring more light and
be more transparent than the probabilistic formulas.

This may be surprising, but the problem is what ’almost always’ means. Formally,
various definitions of genericity are constructed as follows. All systems (or cases, or
situations, and so on) under consideration are somehow parameterised—by sets of vectors,
functions, matrices, etc. Thus, the ’space of systems’ Q can be described. Then the ’meagre
(or thin) sets’ are introduced into Q, i.e., the sets, which we shall later neglect. The union of
a finite or countable number of meager sets, as well as the intersection of any number of
them should be meager set again, while the whole Q is not thin. There are two traditional
ways to determine thinness.

1. The sets of measure zero are negligible.
2. The sets of Baire first category are negligible.

The first definition requires existence of a special measure such that all relevant
distributions are expected to be absolute continuous with respect to it. In Theorem 1,
for example, we assumed that the probability distribution (yet unknown) has density
and is absolutely continuous with respect to Lebesgue measure. Moreover, we used a
version of the ’Smeared (or Smoothed) Absolute Continuity’ (SmAC) condition (6) [9,32],
which means that the sets of relatively small volume cannot have high probability, whereas
absolute continuity means that sets of zero volume have probability zero. Unfortunately, in
the infinite-dimensional spaces we usually do not have such a sensible measure. It is very
easy to understand if we look on the volumes of balls in Hilbert space with orthonormal
basis {ei}. If the measure of a ball is function of its radius and the measure of a ball of
radius R is finite, then the balls of radius R/4 have zero measure (because infinitely many
such balls with the centres at points Rei/2 can be packed in the ball of radius R/4), and,
therefore, the ball of radius R has zero measure because it can be covered by a countable
set of balls of radius R/4. Hence, all balls have either zero or infinite measure.

The second definition is widely accepted when we deal with the functional parameters.
The construction begins with nowhere dense sets. The set Y is nowhere dense in Q, if in
any non-empty open set V ⊂ Q (for example, in a ball) there exists a non-empty open
subset W ⊂ V (for example, a ball), which does not intersect with Y: W ∩Y = ∅. Roughly
speaking, Y is ’full of holes’—in any neighbourhood of any point of the set Y there is an
open hole. Countable union of nowhere dense sets is called the set of first category. The
second usual way is to define thin sets as the sets of first category. A residual set (a ’thick’ set)
is the complement of a set of the first category. If a set is not meagre it is said to be of the
second category. The Baire classification is nontrivial in the so-called Baire spaces, where
every intersection of a countable collection of open dense sets is also dense. Complete
metric spaces and, in particular, Banach spaces are Baire spaces. Therefore, for Banach
spaces of functions, the common definition of negligible set is ’set of first Baire category’.
Such famous results as transversality theorem in differential topology [115] or Pugh closing
lemma [116] and Kupka-Smale theorem [117] in differential dynamics.

Despite these great successes, it is also widely recognised that the Bair category
approach to generic properties requires at least great care. Here are some examples
of correct but useless statements about ’generic’ properties of function: almost every
continuous function is not differentiable; almost every C1-function is not convex. Their
meaning for applications is most probably this: the genericity used above for continuous
functions or for C1-function is irrelevant to the subject.

Contradictions between the measure-based and category-based definitions of negligi-
ble sets are well known even in dimension one: even the real line R can be divided into
two sets, one of which has zero measure, the other is of first category [118]. Genericity
in the sense of measure and genericity in the sense of category differ significantly in the
applications where both concepts can be used.
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The conflict between the two main views on genericity and negligibility stimulated
efforts to invent new and stronger approaches. The formal requirements to new definitions
are:

• A union of countable family of thin sets should be thin.
• Any subset of a thin set should be thin.
• The whole space is not thin.

Of course, if we take care not to throw the baby out with the bath water then in
Rn, where both classical definition are applicable, we expect that thin sets should be of
first category and have zero measure. It was not clear a priori whether such a theory
is possible with proof nontrivial and important generic properties. It turned out that it
is possible. To substantiate the effectiveness of evolutionary optimisation, a theory of
completely negligible sets in Banach spaces was developed. [119,120].

Let Q be a real Banach space. Consider compact subsets in Q parameterised by points
of a compact space K. It can be presented as a Banach space C(K, Q) of continuous maps
K → Q in the maximum norm.

Definition A1. A set Y ⊂ Q is completely thin, if for any compact space K the set of continuous
maps Ψ : K → Q with non-empty intersection Ψ(K) ∩Y 6= ∅ is set of first Bair category.

The union of a finite or countable number of completely thin sets is completely thin.
Any subset of a completely thin point is completely thin, while the whole Q is not. A set
Y in the Banach space Q is completely thin, if for any compact set K in Q and arbitrary
positive ε > 0 there exists a vector q ∈ Q, such that ‖q‖ < ε and K + q does not intersect Y:
(K + q) ∩Y = ∅. All compact sets in infinite-dimensional Banach spaces and closed linear
subspaces with infinite codimension are completely thin.

Only empty set is completely thin in a finite-dimensional space Rn.
Examples below demonstrate that almost all continuous functions have very natural

properties: the set of zeros is nowhere dense, and the (global) maximiser is unique. Below
the wording ’almost always’ means: the set of exclusions is completely thin.

Proposition A1 ([119,120]). Let X have no isolated points. Then

• Almost always a function f ∈ C(X) has nowhere dense set of zeros {x ∈ X | f (x) = 0} (the
set of exclusions is completely thin in C(X)).

• Almost always a function f ∈ C(X) has only one point of global maximum.

The following proposition is a tool for proof that some typical properties of functions
hold almost always for all functions from a generic compact set.

Proposition A2 ([119,120]). If a set Y in the Banach space Q is completely thin, then for any
compact metric space K the set of continuous maps Ψ : K → Q with non-empty intersection
Ψ(K) ∩Y 6= ∅ is completely thin in the Banach space C(K, Q).

Proposition A3 ([119,120]). Let X have no isolated points. Then for any compact space K and
almost every continuous map Ψ : K → C(X) all functions f ∈ Ψ(K) have nowhere dense sets of
zeros (the set of exclusions is completely thin in C(K, C(X))).

In other words, in almost every compact family of continuous functions all the func-
tions have nowhere dense sets of zeros.

Qualitatively, the concept of a completely thin set was introduced as a tool for identi-
fying typical properties of infinite-dimensional objects, the violation of which is unlikely
(‘improbable’) in any reasonable sense.
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Appendix C. Flowchart of Multi-Corrector Operation

In Section 4, we introduced multi-corrector of AI systems. The basic scheme of this
device is presented in Figure 6. It includes several elementary correctors (see Figure 2) and
a dispatcher. A cluster of errors is owned by each elementary corrector. An elementary
corrector evaluates the risk of errors from its own cluster for an arbitrary operation situation
and takes the decision to correct or not to correct the legacy AI decision for this situation.
For any situation, the dispatcher selects the most appropriate elementary corrector to
make a decision about correction. To find a suitable corrector, it uses a cluster error model.
When new errors are found, the cluster model changes. More detailed presentation of
multi-corrector operation is given by the following flowcharts. The notations are described
in Figure A1.

Data Procedure Decision point 

  
 

 

Inputs AI system Is correction 

necessary? 

Figure A1. Notations used in the flowcharts. All flowcharts use a unified set of blocks: blocks in the form of parallelograms
display data, rectangular blocks display procedures, and blocks in the form of rhombuses display the branching points of
processes (algorithms) or decision points. The arrows reflect the transfer of data and control.

Flowcharts and blocks are numbered. The flowchart number is mentioned at the top
of the drawings. If a block is present in different flowcharts, then it carries the number
assigned to it in the top-level flowchart. The relations between different flowcharts are
presented in Figure A2.
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AI system with 

correctors 

Flowchart 10 

Legacy AI system 

Flowchart 12 

Correction system 

Flowchart 14 

Single corrector  

Flowchart 143 

Dispatcher of 

correction  

Flowchart 141 

Modifying the 

clustering model on 

the fly 

Flowchart 1416 

Figure A2. The tree of flowcharts: 10—Operation of the modified AI system (Figure A3); 12—Operation of the legacy AI
system (Figure A4), 14— Operation of the correction system (Figure A5); 143—Single corrector operation (Figure A6);
141—The work of the dispatcher (Figure A7); 1415— Online modification of the cluster model (Figure A8).
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Operation of the modified AI system (10) 

Inputs  

Legacy AI system 

Complete set 

of signals for 

correctors 

Correction system 

Corrected 

outputs 

11 

12 

13 

14 

15 

10 

Figure A3. Operation of the modified AI system (10). Input signals (11) are fed to the input of the AI system (12), which at the
output gives out the complete vector of the signal (13) that can be used for correction. The complete signal vector (13) is fed
to the input of the correction system (14). The correction system (14) calculates the correction of the output signals (15).
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Legacy AI system (12) 

Complete set 

of signals for 

correctors 

Inputs Legacy AI system 

Internal 

signals 

Outputs 

11 121 122 

123 

13 

12 

Figure A4. Operation of the legacy AI system (12). Input signals (11) are fed to the input of the AI
system. The AI system generates vectors of internal signals (123) and output signals (122). Input
signals (11), internal signals (123), and output signals (122) form the complete signal vector (13).

 

Operation of the correction system (14) 14 

Complete set 

of signals for 

correctors 

Dispatcher 

Correction of outputs 

Corrected 

outputs 

13 

141 

143 

15 

Selected 

corrector 
142 

Figure A5. Operation of the correction system (14). The complete vector of signals (13) is fed to the
dispatcher input (141). The dispatcher (141) selects from the correctors the one that most closely
matches the situation (142). The selected corrector (142) and the complete signal vector (13) are used
to correct the signals (13). The computed corrected outputs (15) are returned.
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Yes 

Single corrector operation 

Complete set  

of signals for 

correctors 

Is correction necessary? 

Is correction 

necessary? 

Correction of outputs 

Corrected 

outputs 

No Use the outputs of  

the legacy AI system 

143 

13 

1431 

1433 

1434 

Indicator of 

correction 

necessity 
1432 

1435 

15 

Figure A6. Single corrector operation (143). The complete vector of signals (13) is used to decide whether a correction is
needed (1431). If it is necessary, then correction (1435) is performed, and the resulting vector of output signals (15) is sent to
the output. If there is no need for correction, then the vector of output signals is extracted (1434) from the complete vector of
signals (13), and the resulting vector of output signals (15) is transmitted to the output.
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No 

Yes 

The work of the dispatcher 141 

Online 

modification of 

clustering model 

Error flag 

Use current  

cluster model 

Selected 

corrector 

Is there 

an error? 

Complete set 

of signals for 

correctors 

Current 

cluster 

model 

Current 

cluster 

model 

Select the most 

suitable cluster 

Select 

corresponding 

corrector 

1411 1412 13 

1413 
1414 

1411 

1416 

1415 

142 

1417 

Figure A7. The work of the dispatcher (141). If the error flag (1412) is detected (1414), then the current cluster model (1411)
and the complete signal vector (13) are used to modify the cluster model (1415) online. The modified cluster model becomes
the current one (1411). If the error flag (1412) is not detected (1414), then the current cluster model (1411) is selected (1413)
for use (1411). Based on the cluster model (1411) and the complete signal vector (13), the most suitable cluster (1416) is
selected. Then, the corrector (142) corresponding to this cluster is selected (1417).
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Online modification of clustering model 1415 

Online modification of 

the most suitable cluster 

search model 

Modified 

corrector 

Complete set 

of signals for 

correctors 

Current 

cluster 

model 

Selected 

cluster 

Select the most 

suitable cluster 

Explicit modification of 

classification system to 

identify necessity of 

correction 

1411 

1416 

13 

Current 

cluster 

model 

14151 

14152 

1411 142 

14153 

Figure A8. Online modification of the cluster model (1415). Based on the current cluster model (1411) and the complete signal
vector (13), the most suitable cluster (14151) is selected (1416). Online modification of the rule for determining the most
suitable cluster (14152) is performed. After setting up the new cluster model (1411), the classifier for this corrector to make a
decision about the need for correction is explicitly modified (14153). The modified corrector (142) together with the new
cluster model (1411) forms an updated version of the correction system (14).
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