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by
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This thesis considers a range of methodological challenges related to the trial-level
validation of surrogate endpoints in disease areas where precision medicine have
played an important role, and aims to addressed them by proposing novel statistical
methodology.

Firstly, the thesis introduces two hierarchical meta-analytic methods which allow for
modeling differences in trial-level surrogacy patterns. Trial-level surrogacy patterns
may vary across treatment classes due to, for example, the diversity of the mechanisms
of action of targeted therapies. A simple way to examine potential differences in
surrogacy patterns across treatment classes is by performing subgroup analysis using
a bivariate meta-analytic method. However, this approach fails to estimate trial-level
association patterns effectively when data are limited in terms of the number of
studies. The two hierarchical meta-analytic methods aim to improve the inference
about the parameters describing the surrogacy patterns within a treatment class as
they borrow information for these parameters across classes.

Secondly, the thesis proposes a new method which is appropriate for modeling
correlated binomial aggregate data with very rare or frequent events. Targeted
treatments are usually much more successful compared to standard of care resulting
in very high numbers of treatment responses and reduced numbers of events. When
standard approaches for trial-level validation of surrogate endpoints are applied to
such binomial data, they may lead to poor inferences about surrogacy patterns due to
inappropriate assumptions. They transform the binomial data on the log odds ratio
scale and model the within-study variability using a bivariate normal distribution as
data measured on this scale are assumed to be approximately normally distributed.
However, this assumption is inappropriate when events occur rarely or very frequently.
The proposed hierarchical method allows for modeling the within-study variability
on the original binomial scale and accounts for the within-study associations leading
to more precise inferences about the trial-level surrogacy patterns.

Finally, this thesis develops a hierarchical method for combining data from
randomised control trials and data from single-arm observational studies in a
single bivariate meta-analysis. Very often data measured on a short-term final
endpoint are not sufficiently mature, or there is limited number of trials published.
In these situations trial-level surrogacy patterns cannot be estimated accurately
as randomised control trials do not provide sufficient information. The proposed
methodology aims to improve inferences for trial-level surrogacy patterns, when
randomised control trials offer limited information and evidence from different study
designs need to be included for such validation.

The performance of the proposed methodologies were extensively assessed and
compared against the standard approaches in various simulated data scenarios. They
were also illustrated in data examples where targeted treatments were used.
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Chapter 1

Introduction

1.1 Aims of the thesis

Bivariate meta-analytic methods provide a natural framework to model the

trial-level surrogacy relationships, combining evidence obtained from randomised

controlled trials (RCTs). They, by nature, account not only for the between-studies

correlation between the treatment effects measured on the surrogate endpoint and

the final outcome, but also all related uncertainty required both at within-study

and between-studies levels. Accounting for the between-studies correlation, either

directly or through some linear relationship between the treatment effects, allows

the bivariate meta-analytic methods to quantify the strength of trial-level surrogate

relationships. However, the trial-level validation of surrogate endpoints based

on data from modern clinical trials of targeted therapies present a number of

methodological challenges. This thesis aims to address three methodological

challenges related to the trial-level validation of surrogate endpoints in disease

areas where precision medicine have played an important role. These challenges are

addressed, by proposing novel methodology for each of the following three aims:

• Improve the trial-level validation of surrogate endpoints within a specific class

of treatment in disease areas where trial-level surrogacy patterns vary across

treatment classes due to, for example, the diversity of the mechanisms of action

of targeted therapies.

• Improve the trial-level validation of surrogate endpoints, when such validation
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Chapter 1. Introduction

is based on correlated binomial aggregate data with high or low proportions

of events (such as high response rate or low death rate due to the increase

effectiveness of targeted treatments)

• Strengthen the trial-level validation of surrogate endpoints when RCTs offer

limited information by allowing for external evidence from different study

designs to be included in such validation.

In the remainder of this chapter, we introduce the background of this thesis and

the motivating data examples in Section 1.2, the concept of surrogate endpoints in

Section 1.3 and the structure of the thesis in Section 1.4.

1.2 Background to the thesis

New advances in molecular science have unveiled a vast genetic heterogeneity

among tumors, even within a tumor entity[1]. This knowledge has opened a new

area in oncology, shifting cancer treatment from the traditional "one-size-fits all"

approach for large groups of population to therapies tailored to specific subgroups

of patients according to the genomic signature [2]. Precision medicine is the

term that is increasingly being used to describe targeted treatments, diagnosis

and disease prevention of individuals or of small groups of patient populations

based on the molecular understanding of their disease. Precision medicine became

extremely popular in oncology when a Obama’s precision medicine initiative was

launched in the United states (US) in 2015[3], aiming to accelerate progress towards

the development of biomarker-driven treatments. The identification of reliable

biomarkers is one of the most important aspects of precision medicine. Biomarkers

can be a unique mutated gene, a protein or group of proteins, that allow cancer

cells to grow and survive. Personalised treatments target these cancer specific genes

resulting in significantly improved overall survival (OS). One of the first targeted

therapies was imatinib [4–6] developed as treatment of chronic myeloid leukaemia

CML. Imatinib targets a mutant protein which is found only in the cancer cells

of CML patients and was approved by the Food and Drug Administration (FDA)

in 2001. Since then, a multitude of targeted treatments have been developed in

various disease areas, such as anti-epidermal growth factor receptor (anti-EGFR)
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Chapter 1. Introduction

therapies used in non-small cell lung cancer and some types of colorectal cancer,

such as advanced colorectal cancer (aCRC).

Before a new therapy is licensed for market assess, its safety and efficacy has to

be assessed. The evaluation process can last several years before the drug can be

deemed safe to be released to the population. Usually, it takes considerable time for

data measured on the final outcome to become mature enough for the effectiveness

to be measured on this outcome. Furthermore, as therapies are targeted, the disease

population may be small and therefore trials are often of small size. In addition, such

novel targeted therapies are often very successful, resulting in very few events (such

as deaths) early in the trial. The small sample size and lack of recorded events lead

to considerable uncertainty around early measurements of treatment effectiveness on

the final outcome. For instance, in slow progressing diseases with very few events

(e.g. deaths) such as CML, the estimation of treatment effect on the final outcomes

is obtained with high uncertainty.

There is, also, increased pressure on regulatory agencies, such as FDA and European

Medicines Agency (EMA), to approve new promising therapies quickly making

approvals based on the long-term final outcomes almost impossible. Regulatory

agencies have introduced conditional licensing based on early measurement of

treatment effect measured on a surrogate endpoint [7, 8] as it often can be obtained

with lower uncertainty.

These challenges generate the need for surrogate endpoints that can be measured more

reliably and earlier compared to long-term final outcomes such as OS [9]. Surrogate

endpoints should be validated for their predictive value of clinical benefit or harm,

by assessing association patterns between the treatment effects on the surrogate

endpoint and the treatment effects on the final outcome. The validation of candidate

endpoints as reliable surrogate endpoints has been challenging process. The complete

validation of surrogate endpoints requires three evaluation levels. Firstly, there must

be biological plausibility of the association between the two outcomes (the surrogate

and the final), secondly, an individual-level association between the two outcomes

needs to be evaluated and lastly, a trial-level association between the treatment

effects on the two outcomes needs to be valid to ensure that the surrogate endpoint

is a good predictor of clinical benefit (the evaluation levels are discussed in detail
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in section 1.3.2). Trial-level surrogate relationships can be assessed using bivariate

meta-analytic methods as they take into account the between-studies association

between treatment effects on the surrogate endpoint and the final outcome and all

the necessary sources of uncertainty [10]. However, data from modern clinical trials

of targeted therapies present a number of methodological challenges in surrogate

endpoint validation, due to, for example, the diversity of the mechanisms of action

of new therapies, high rate of response to these therapies and small sample sizes

of the trials. As discussed in Section 1.1, the aim of this thesis is to address three

methodological challenges related to the trial-level validation of surrogate endpoints

in the era of precision medicine. Here, we discuss the aims in more detail, describing

also the two motivating data examples:

1. Association patterns between treatment effects on the surrogate endpoint

and the final outcome may differ across classes of treatment when targeted

therapies are applied to subgroups of population with unique tumour

characteristics (mutations). For instance, Ciani et al.[11] found sub-optimal

surrogate relationship between treatment effects on progression-free-survival

(PFS) and OS based on data from trials of therapies across all treatment

classes in aCRC. On the other hand, Buyse et al.[12] found strong surrogacy

pattern between the treatment effects on these two outcomes in aCRC using

data consisting of only one treatment class. Therefore, the assumption that

surrogate relationships remain the same across treatment classes of different

mechanisms of action or lines of treatment in aCRC does not seem plausible.

A simple way to examine potential differences in surrogate relationships

across treatment classes is by performing subgroup analysis using a bivariate

meta-analytic method [13–16]. This type of analysis is very practical when

there are sufficient data within treatment classes, but it may fail to estimate

association patterns effectively when data are limited in terms of the number

of studies. The first aim of this thesis is to develop a meta-analytic method

allowing for trial-level validation of surrogate endpoints within each treatment

class, whilst borrowing of information for the parameters describing surrogate

relationships across classes.

2. Standard bivariate meta-analytic methods can be used to investigate trial-level
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surrogate relationships. These methods model the observed treatment effects

on the surrogate and final outcome jointly using a bivariate normal distribution.

When these methods are applied to correlated binomial aggregate data, the

numbers of events in each arm across outcomes are transformed to obtain

treatment effects on log odds ratio scale which are assumed to be approximately

normally distributed. Hamza et al.[17] have shown that (in the univariate case)

this assumption is reasonable only when the proportions of events are close

to 0.5, otherwise (when the proportions are close to 0 or 1) it leads to biased

results and estimates with considerable uncertainty. The high effectiveness of

targeted therapies results in large proportions of responders and very small

proportions of progressions or deaths. Therefore, modeling binomial aggregate

data from trials of such therapies using the normal approximation may lead

to poor inferences of trial-level surrogate relationships. For example in CML,

which is a slow progressive disease with small death rates, the introduction

of tyrosine kinase inhibitors (TKIs) dramatically improved long-term survival.

Therefore, use of such approximation is inappropriate and can result in

inaccurate surrogate endpoint validation. To overcome this methodological

challenge, we aim to develop methods which allow for modelling correlated

binomial aggregate data on the original binomial scale, avoiding the normal

approximation and also accounting for within-study associations.

3. Often trial-level validation of surrogate endpoints fails due to limited evidence.

In many cases, either RCTs do not provide sufficient evidence to validate a

candidate endpoint as a surrogate, as data measured on the final endpoint

are not mature enough, or there is limited number of trials published. In

these situations, the standard meta-analytic methods struggle to estimate the

between-studies association between the treatment effects on the surrogate

endpoint and the final outcome precisely, affecting the trial-level validation of

surrogate endpoints. For instance, in CML, RCTs usually report treatment

effects on event-free-survival (EFS) at 2 years and OS at 2 years where the

data are not mature enough [18, 19] and only a few trials provide long-term

outcomes such as OS at 3 or 4 years. The final aim of the thesis is to explore

the use of observational evidence, for example from single-arm observational
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cohort studies, as source of suitable (large or long term follow-up) data for

trial-level surrogate endpoint evaluation, and to develop methodological tools

to incorporate such data into a single meta-analysis.

1.3 The concept of surrogate endpoints

This section outlines the concept of surrogate endpoints highlighting early successes

and failures and the necessary steps for the validation of an endpoint as a surrogate.

Probably the most important factor affecting the duration and the complexity of

development of new therapies is the choice of the endpoint to measure the efficacy of

the new treatment. The sensitivity of the endpoint to detect treatment effects and

its clinical relevance are the two main criteria of selection [20]. Clinical relevance

depends on whether evidence of biological activity of the therapy is sought or whether

a final evaluation of clinical benefit to patients has to be done. For example, in

life-threatening diseases like aCRC or cardiovascular diseases, the most clinically

relevant endpoint of a therapy is OS.

However, often the most relevant and sensitive clinical endpoint which will be referred

to as final clinical outcome or final outcome throughout this thesis, may be difficult

to use in clinical trials for a number of reasons [21]:

• it may be costly to measure treatment effect on the final outcome (e.g. cachexia

is a condition associated with malnutrition, involving muscle and fat tissue loss

and requires expensive equipment to measure content of potassium, nitrogen

and water in patients)

• measuring treatment effect on the final outcome requires long follow-up times

(e.g. in early stage cancers, it take long time to measure overall survival

which conflicts with the need to deliver new treatments to patients quickly. In

addition, such long follow up time may lead to the treatment effect on the final

outcome to be confounded by other therapies.)

• final endpoints may require a large sample size if the event of interest has low

incidence (e.g. The increased effectiveness of therapies targeted to specific,

often small, patient populations reduce the number of events or deaths making
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the measurement of treatment effect difficult)

• final outcomes may be difficult to measure (e.g quality of life or pain assessment

includes multi-dimensional instruments that are hard to validate)

In such circumstances, the increased complexity and the duration of the research

make use of the final endpoint not feasible. A potential solution is to investigate

alternative endpoints which can be measured earlier, more frequently, with lower

cost and more conveniently than the final endpoint. Such ’alternative’ endpoints are

defined as surrogate endpoints [22]. Figure 1.1 provides a graphical representation of

the definition of surrogate endpoints and their relationship with the final outcome.

Figure 1.1: Definition of surrogate endpoints

The Biomarker Definitions Working Group [23] proposed formal definitions that have

been widely adopted:

Definition 1.3.1 A final outcome is considered the most credible indicator of drug

response and defined as a characteristic or variable that reflects how a patient feels,

functions, or survives.

Definition 1.3.2 A biomarker is defined as a characteristic that can be objectively

measured as an indicator of healthy or pathological biological processes, or

pharmacological responses to therapeutic interventions. For example, blood or urine

measurements and cell mutations can be used as biomarkers.

Definition 1.3.3 A surrogate endpoint is a biomarker that is intended for

substituting a final outcome. A surrogate endpoint is expected to predict benefit,
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harm, or lack of these.

1.3.1 Early successes and failures with surrogate endpoints

Due to the potential advantages, surrogate endpoints have been used in medical

research under the assumption that high efficacy of a treatment on a surrogate

endpoint would imply automatically an impact on a final outcome. Table 1.1 presents

several examples of candidate endpoints evaluated based on an established association

between treatment effects the potential surrogate endpoints and the effects on the

corresponding final outcomes [24].

Table 1.1: Examples of potential surrogate endpoints used in medical research

Disease candidate surrogate endpoint Final/ clinical outcome

advanced cancer progression free survival overall survival

hypertension blood pressure cardiovascular mortality

Arrhythmia arrhythmic episodes survival

glaucoma intraoccular pressure vision loss

HIV infection CD4 counts, viral load progression to AIDS

However, the existence of an association between a candidate endpoint and a final

outcome does not sufficiently imply that the candidate endpoint can be used as a

surrogate. As Fleming and DeMets stated, ’a correlate does not make a surrogate’[25].

What is really required is that the treatment effects on the candidate endpoint

should reliably predict the treatment effects on the final endpoint. Unfortunately,

this condition was not checked sufficiently enough in the early attempts due to lack

of appropriate methodology. For example, the most known case of unsuccessful

replacement of the final endpoint was the approval of three anti-arrhythmic drugs

(encainide, flecainide and moricizine) by the FDA in the US. This decision was based

on the fact that they were shown high efficacy on the suppression of arrhythmias. It

was believed that, as arrhythmias are associated with an almost fourfold increase in

the rate of cardiac-complication-related death, treatments that reduced arrhythmic

episodes would also reduce the death rate. However, the Cardiac Arrhythmia

Suppression Trial (CAST) study [26], conducted after the drugs had been approved

by the FDA, showed that the death rate was twice higher for patients who had
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treated with the approved drugs compared to the patients who had received placebo.

The main reason for this failure was the incorrect assumption of surrogacy. This

assumption seemed to be reasonable due to the association between the candidate

endpoint and final outcome. This and other unsuccessful examples led to scepticism

and negative opinions about the usefulness of surrogate endpoints in the assessment

of treatment efficacy [25, 27–30].

Despite the early failures, there were many cases where their application proved

vital for the drug development process, having remarkable results in a number

of disease areas. For instance, during the first stages of the AIDS epidemic, the

impressively early encouraging results obtained with zidovudine led to the use of

CD4+ T-lymphocyte counts as a successful surrogate endpoint of progression to

AIDS resulting in the fast approval of new successful therapies [13].

1.3.2 Validation of surrogate endpoints

Regardless of the failed attempts in the past, the importance of surrogate endpoints

in drug development process requires that candidate endpoints should be validated

before deciding on the use of such endpoints. Consequently, formal methodology

allowing for validation is required. In practice, the most common way to validate

a candidate endpoint as a surrogate is to examine whether or not it satisfies three

levels of association proposed by the International Conference on Harmonisation

(ICH) Guidelines on Statistical Principles for clinical trials [31].

1. There must be biological plausibility of the association between the candidate

surrogate endpoint and the final outcome. This association involves biological

rather than statistical considerations.

2. Epidemiological studies should demonstrate the prognostic value of the

candidate surrogate endpoint for the final outcome. In other words, treatment

effect on a candidate surrogate endpoint may be used to predict the course of

a disease in an individual patient. This situation is referred to in the literature

as individual-level surrogacy.

3. There must be evidence from multiple clinical trials that treatment effects

on the candidate surrogate endpoint correspond to the treatment effects on

9
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the final outcome. This situation is referred to in the literature as trial-level

surrogacy.

The second and the third level of surrogacy are independent from each other, which

is highlighted in the ICH guidelines [31].

1.3.3 Individual versus trial level surrogacy

Surrogate endpoints can be applied for different purposes depending on the

phase of drug development. Early and intermediate endpoints are appropriate in

non-randomised phase I or II trials when they have been shown strong individual

level surrogacy. However, very few of these endpoints have been also shown

acceptable trial level surrogate relationships and can replace a final outcome in

multiple phase III clinical trials [21].

When data from only a single study are available, only individual-level surrogacy

can be examined unless the size of the trial is substantial and the data can divided

into smaller units by, for example, countries or regions. Most of the attempts to

validate a Surrogate using data from a single study have been unsuccessful and more

recently the attention has shifted to the meta-analytic framework where multiple

trials they can be analysed simultaneously when individual patient data (IPD) are

available. This allows full surrogate endpoint evaluation both at the individual and

trial-level [32].

1.4 Structure of the thesis

This thesis is structured into seven chapters, where the first chapter provides an

introduction of the concepts of surrogate endpoints and presents the methodological

challenges that this PhD thesis aims to address.

Chapter 2 and 3 highlight the meta-analytic framework, outline important aspects of

Bayesian statistics and present the most important meta-analytic methods developed

for individual and trial-level surrogate endpoint evaluation. The methods discussed

in these two chapters will be used and extended further for development of novel

methodology in Chapters 4, 5 and 6 as briefly described below.
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Chapter 4 introduces two new methods to address the first of the methodological

challenges. The proposed methods investigate surrogate relationships within

treatment classes assuming different levels of exchangeability about the parameters

describing surrogate relationships, thus facilitating different degrees of borrowing

of information across the classes. They extend a standard meta-analytic model

for trial-level evaluation of surrogate endpoints by adding another level to its

hierarchical structure in order to account for differences in surrogacy patterns across

classes of treatment. This leads to more precise inferences about the association

patterns between the treatment effects on the surrogate and the final outcome

compared to subgroup analysis due to borrowing of information across treatment

classes.

Chapter 5 addresses the second methodological challenge by proposing a new

method which allows for modelling binomial data on the original scale and accounts

for within-study associations. The proposed method models the numbers of

events on the first and the second outcome jointly using a bivariate density with

binomial marginals constructed with copulas. This allows the model to account

for within-study associations between the numbers of events on two (surrogate and

final) binomial outcomes. An additional method is also presented in this Chapter

to highlight the importance of accounting for within-study associations. This

additional method models the within-study variability using binomial likelihoods,

but ignores within-study association. Overall, modeling the within-study variability

on the original binomial scale and accounting for within-study associations improves

the trial-level validation of surrogate endpoints, resulting in reduced bias and

increase the precision of the estimates of the parameters describing the surrogate

relationships.

Chapter 6 presents two approaches aiming to improve the trial-level validation of

surrogate endpoints when evidence from RCTs are limited and observational evidence

are required for such validation. It introduces a hierarchical method that incorporates

data from all available sources such as observational cohort studies or non-randomised

single arm phase II trials in the surrogate endpoint evaluation, combining these

data with data from RCTs. Under this approach, non-comparative observational

studies contribute to the estimation of the between-studies association of the relative
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treatment effects and can potentially improve the trial-level surrogate endpoint

validation. Two extensions of the method were also developed. The first version

accounts for systematic biases, whilst the second one can effectively model correlated

binomial aggregate data with high proportions of events using a bivariate density

with binomial marginals constructed with copulas (similarly as in Chapter 5).

Chapter 7 concludes the thesis by summarising the findings and the conclusions

from Chapters 4, 5 and 6 and discusses how the proposed methodology can improve

the trial-level validation of surrogate endpoints. Limitations in the application of

the proposed methodologies are outlined and opportunities for further work are also

discussed.
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Chapter 2

Bayesian statistics and Meta-analytic

framework

2.1 Chapter overview

This chapter presents the statistical concepts and methodologies used and extended

throughout this PhD thesis. In this thesis, the proposed methodology was developed

in the Bayesian framework, as it offers a very flexible way to model all relevant

uncertainty. The Chapter begins with a brief review of the Bayesian statistics

defining the necessary terminology, the discussion of the Markov chain Monte Carlo

sampling methods and the statistical software used to perform Bayesian statistical

analysis. This is followed by a review of the fundamental meta-analytic methods

highlighting the key assumptions and setting the scene for more complex hierarchical

meta-analytic methods discussed later in the thesis.

2.2 Bayesian inference

The origins of Bayes theorem dates back to 1763 when Thomas Bayes’ work was

published posthumously [33]. In this work Bayes and Price proposed a theorem to

relate marginal and conditional probabilities for observed events, which termed as

Bayes’ theorem. In Bayesian statistics if θ is the unknown parameter of interest and

Y is data describing θ, Bayes’ theorem takes the following form:
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p(θ|Y ) =
p(θ)p(Y |θ)∫
p(θ)p(Y |θ)dθ

(2.1)

and is commonly expressed such as:

p(θ|Y ) ∝ p(θ)p(Y |θ) (2.2)

i.e Posterior ∝ Likelihood× Prior

where p(Y |θ) is the likelihood of θ, p(θ) is the prior probability density of beliefs for

θ and p(θ|Y ) is the resulting posterior probability density for θ after combining the

likelihood with the prior beliefs. The main characteristic of Bayesian statistics is

that data are supplemented using prior beliefs or external evidence. Bayes theorem

updates the prior beliefs regarding θ multiplying the likelihood density p(Y |θ) by

the prior distribution p(θ). By including the normalising constant
∫
p(θ)p(Y |θ) the

posterior probability function p(θ|Y ) is a proper probability density function and

inferences regarding the parameter θ can be obtained by using this density. In

contrast to the frequentist approach, where the parameter θ is a fixed unknown

number, in the Bayesian framework θ is treated as random variable and hence

probability distributions can be specified for this parameter [34]. A careful selection

of a prior distribution is crucial in Bayesian statistics. Prior distributions typically

take one of the following forms.

• non-informative - vague priors: They do not express any prior belief or

information about the parameter of interest considering all values of θ equally

likely e.g. θ ∼ U(a, b). These priors are useful when initial beliefs concerning

θ are very limited or we prefer to base our inferences on collected data. A

characteristic example of a vague prior distribution when it has infinite variance

e.g. θ ∼ N(µ, s2) where s is very large i.e. s→∞ [35].

• informative priors: These priors are often constructed based on historical

data or subjective beliefs elicited from "experts" or external evidence [36]. They

have a considerable influence on the posterior distribution especially when data

are limited and they should be used with caution[37].
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Figure 2.1 illustrates the impact of non-informative and informative prior

distributions on the posterior distributions. On the left hand side the

non-informative prior distribution plays a minimal role in the posterior distribution

allowing the likelihood to dominate the prior. On the other hand, on the right hand

side, the informative prior distribution has a substantial impact on the shape of the

posterior distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

θ

D
en

si
ty

Prior
Likelihood
Posterior

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

θ

D
en

si
ty

Prior
Likelihood
Posterior

Figure 2.1: Non-informative (left) and informative prior (right) distributions and
their impact on the posterior distribution

One of the disadvantages of Bayesian statistics includes the incorporation of prior

beliefs. This makes the analysis no longer completely objective, and hence defining

a reasonable prior distribution may be a difficult task. When the inclusion of prior

beliefs is inappropriate, vague/non-informative prior distributions can be applied to

allow the data dominate the prior. However, defining the appropriate vague prior

distributions can be a difficult task especially for variance parameters [38]. Therefore,

it is important to assess prior distribution specification through sensitivity analysis.

2.2.1 Bayesian point estimates and credible intervals

In this thesis the estimation of posterior distributions is of most interest and

specifically the estimation of the parameters describing the surrogacy patterns.

Posterior mean is used as point estimate when the posterior is symmetric and

posterior median is used in situations where the distribution is skewed. Typically,

posterior distributions are presented with Bayesian credible intervals (CrIs) and can
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be considered as a Bayesian equivalent to frequentist confidence intervals (CIs).

However, definition of the CrI is slightly different compared to CI. Specifically, the

width of CrIs is determined by the standard deviation of the posterior distribution,

whilst the width of CIs is determined by the standard error of the estimate.

Therefore, the interpretation of CrIs is also slightly different and more intuitive

compared to the CIs. Bayesian CrIs have a probabilistic interpretation, whereas the

correct interpretation for frequentist CIs refer to the long-term success rate of the

method i.e. after a long series of 95% CIs constructed from replicated experiments,

95% of them will contain the true value of θ [34].

2.2.2 Bayes factors

Bayes factors (BFs) are used to provide a natural way to compare two alternative

hypotheses. This approach does not rely on arbitrary significance levels compared

to the traditional frequentist hypothesis testing which are also very dependent on

sample size. If we consider two hypotheses H0 and H1, with prior probabilities p(H0)

and p(H1) and likelihoods p(y|H0) and p(y|H1) respectively, we can compare the two

hypotheses by calculating the following relative probabilities:

p(H0|y)

p(H1|y)︸ ︷︷ ︸
posterior odds

=
p(y|H0)

p(y|H1)︸ ︷︷ ︸
Bayes Factor

× p(H0)

p(H1)︸ ︷︷ ︸
prior odds

(2.3)

The relative likelihood of the two hypotheses is also known as BF and contains all

the evidence that can be extracted from the data about the two hypotheses. BFs can

vary from 0 to ∞, with small values considered as both evidence against H0 and for

H1. The following table proposed by Jeffreys [39] provides a scale of the BF range.

2.2.3 Markov chain Monte Carlo

The application of Bayes’ theorem is straightforward when a prior probability density

combined with the a likelihood function result in a posterior distribution which

belongs in the same family of distributions as the prior distribution. Models with

such property are termed as conjugate models. However, there are situations

where conjugate models are not feasible. This can be the case when the unknown
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Table 2.1: Calibration of BFs provided by Jeffreys

Bayes factor range Strength of evidence in favour of H0 and against H1

>100 Decisive

32 to 100 Very strong

10 to 32 strong

3.2 to 10 Substantial

1 to 3.2 Not worth more than a bare mention

Strength of evidence in against H0 and in favour of H1

1 to 1/3.2 Not worth more than a bare mention

1/3.2 to 1/10 Substantial

1/10 to 1/100 Strong

1/32 to 1/100 Very strong

<1/100 Decisive

parameter θ has high dimensionality and the application of Bayes’ Theorem yields

a multi-dimensional joint posterior probability density for θ, making the analytical

calculation of the marginal posterior distribution for each individual parameter

a difficult task [40]. Markov chain Monte Carlo (MCMC) methods provide an

efficient way to numerically estimate these multi-dimensional integrals [36] and

their use dramatically increased in the last two decades. MCMC methods were

firstly introduced by Metropolis in 1953 [41] and extended by Hasting in 1970 [42].

However, they remained completely unused until 1984 when Gibbs sampler was

proposed by Geman and Geman [43]. MCMC methods are a group of iterative

algorithms for drawing random samples from a probability distribution by using the

main properties of Markov chains and Monte Carlo integration. A Markov chain is a

sequence of random variables θ(1), θ(2), θ(3), θ(4),. . . satisfying the following property:

P (θ(t+1)|θ(1), θ(2), . . . , θ(n)) = P (θ(n+1)|θ(n)) i.e the future of the chain depends on

the present only. Under regularity conditions, a Markov chain θ(n) converges to an

"equilibrium distribution" as n→∞ regardless of the initial point θ(1). Therefore, a

sample of the distribution of interest is obtained when the Markov chain reaches its

"equilibrium distribution" after a number of iterations in the algorithm. Using the

generated sample, point estimates can be obtained for the distribution of interest

[44]. Estimating for instance the mean of a sample is much easier task than solving

equations analytically. The Markov chain converges to its equilibrium distribution

after a considerable number of iterations and convergence in MCMC refers to the final
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and stable set of samples from the equilibrium or "stationary" posterior distribution

(i.e. values should look like a random scatter around a stable mean). It is important

to highlight that a series of samples converges to a distribution and not a specific

value. A number of iterations that precedes convergence should be discarded from

the generated sample and this initial number of iterations defined as "burn-in" period.

There is no specific rule about the length of the burn-in period and it exclusively

depends on the Markov chain and how fast it converges.

2.2.4 Gibbs sampler

One of the most popular and simplest MCMC methods is Gibbs sampler [43]. In

Gibbs sampling the idea is to break the sampling of the multivariate high-dimensional

posterior distribution into a series of samples from low-dimensional conditional

distributions. The method takes sequentially each parameter of a model and draws a

random sample from its posterior distribution, conditional on all the other parameters

being fixed. Considering a situation of a model with four parameters (x, θ, ψ, γ), the

algorithm takes the following form:

Gibbs Sampler algorithm:

1. Initialisation: initialise the parameter space (x(0), θ(0), ψ(0), γ(0)) and the

number of samples N

2. for i = 0 to N − 1 do

• Simulate x(i+1) ∼ p(x|θ(i), ψ(i), γ(i)).

• Simulate θ(i+1) ∼ p(θ|x(i+1), ψ(i), γ(i)).

• Simulate ψ(i+1) ∼ p(ψ|x(i+1), θ(i+1), γ(i)).

• Simulate γ(i+1) ∼ p(γ|x(i+1), θ(i+1), ψ(i+1)).

3. return ({(x(i), θ(i), ψ(i), γ(i))}Ni=0)

Although Gibbs sampler algorithm is a very popular method, it is not without

drawbacks and limitations. Gibbs sampling requires the posterior conditional

distribution for each of the variables, however, in many cases it is not an easy task.

Even if the conditional distributions can be extracted, they may not be in known

forms, so samples cannot be drawn from them. Additionally, drawing from multiple
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conditional distributions may be slow and inefficient. As variables become more

correlated, the performance of the Gibbs sampling decreases. This behaviour leads

to higher correlations between samples and slow mixing of the chain [45]. In this

thesis we focus on the development of complex hierarchical models consisting of

many parameters and layers of hierarchy. In this kind of structures, the correlations

between the parameters in multiple layers of the hierarchical models can be

substantial and the efficiency of sampling methods such as Gibbs sampling become

limited.

2.2.5 WinBUGS/ OpenBUGS

WinBUGS and OpenBUGS [46–51] are statistical packages developed for Bayesian

analysis using MCMC methods. They use Gibbs sampling as their main MCMC

method and require the probability model to be specified in BUGS language. The

flexibility of these packages allow of modelling relatively complex methods, however,

they suffer from the inefficiencies of Gibbs sampling methods. R2OpenBUGS [50] and

R2WinBUGS [49] are very popular statistical packages to perform Bayesian inference,

linking R software to OpenBUGS and WinBUGS. They exploit data management

functionality of R allowing OpenBUGS code to be executed in R environment. In

this thesis, R2OpenBUGS was used for the implementation of the methods discussed

in Chapter 4.

2.2.6 Hamiltonian Monte Carlo

As described in section 2.2.4, sampling high-dimensional posterior distributions

with Gibbs sampling becomes very inefficient in practice. An alternative and more

efficient scheme is called Hamiltonian Monte Carlo (HMC) [52, 53]. HMC is one of

the algorithms of the Markov chain Monte Carlo methods that utilises differential

geometry techniques to generate transitions spanning the full marginal variance.

The method can avoids the random walk behavior endemic to Gibbs sampler and

achieves a more consistent and effective exploration of the probability space, being

less sensitive to correlated parameters. The algorithm uses a physical system known

as Hamiltonian dynamics.
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If p(θ|y) is the target posterior distribution for parameters θ give data y, HMC

generates auxiliary momentum variables r drawing it from a joint probability density

p(r, θ) = p(r|θ)p(θ). In principle r is drawn from: r ∼ MVN(0,M) that does not

depend on θ. The joint density p(r, θ) defines a Hamiltonian,

H(r, θ) = −logp(r, θ) (2.4)

= −logp(r|θ)− logp(θ) (2.5)

= T (r|θ) + V (θ) (2.6)

= T (r) + V (θ) (2.7)

where T (r|θ) is defined as "kinetic energy" and V (θ) as "potential energy". Starting

from the current value of the parameter θ, a transition to a new state is generated

in two steps before being assessed by a Metropolis accept step. First, a value for

the momentum is drawn independently of the current values of θ. Next, the joint

system (r, θ) using the current values of θ and r is evolved according to Hamilton’s

equations:

∂H

∂r
=

∂T

∂r
+
∂V

∂r
=

∂T

∂r
(2.8)

∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
= −∂V

∂θ
(2.9)

As explained previously, the momentum is independent of θ i.e. p(r|θ) = p(r)

(r ∼ MVN(0,M)), thus the first term in equation (2.9) is zero (−∂T
∂θ

= 0). The

last part of the method solves the two-stage differential equation using a numerical

integration algorithm called leapfrog integrator. The algorithm starts by drawing a

new momentum value which is independent of the values of θ or the previous values

of the momentum. Next it updates the parameters and the momentum according

to the following equations:

rt+ε/2 = rt − ε

2

∂V

∂θ
(θt), θt+ε = θt + ε

∂T

∂r
(rt+ε/2), rt+ε = rt+ε/2 − ε

2

∂V

∂θ
(θt+ε)

where t is time, ε is a discrete step of some small time interval and L is the number of

repetitions. Finally, to account for numerical errors during the numerical integration,
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a Metropolis acceptance step is applied, with probability of keeping the proposed

values (r∗, θ∗), generated from transition (r, θ) to be :

min(1, exp(H(r, θ)−H(r∗, θ∗))) (2.10)

if the proposed values are not accepted, the previous parameter values are returned

for the next draw and used to initialize the next iteration.

Summarising all aforementioned elements, the HMC algorithm can be described as

follows:

HMC Algorithm :
Given θ0, ε, L,M

For i = 1 to N iterations do

1. r0 ∼ N(0,M)

2. Set: θi ← θi−1, θ∗ ← θi−1, r∗ ← r0

3. For j = 1 to L do

Set (r∗, θ∗)←Leapfrog(θ∗, r∗, ε)

end for

4. Set θi ← θ∗ with probability: min(1, exp(H(r, θ)−H(r∗, θ∗)))

end for

Function Leapfrog(θ, r, ε)

Set r∗ = r − ε
2
∂V
∂θ

(θ)

Set θ∗ = θ + ε∂T
∂r

(r∗)

Set r∗ = r∗ − ε
2
∂V
∂θ

(θ∗)

return (r∗, θ∗)

Unfortunately, the performance of HMC is highly affected by the choice of the

hyperparameters for t and ε. A poor choice of hyperparameters can potentially

dramatically decreases the efficiency of HMC [54]. Hoffman and Gelman developed

the No-U-Turn Sampler (NUTS) to mitigate the challenges of tuning the parameters

[54]. NUTS uses a recursive algorithm to automatically tune the HMC algorithm
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without requiring an external intervention or costly tuning runs. These improvements

have been packaged into a modelling software called Stan [55–57].

2.2.7 STAN

Stan is a platform for statistical modeling and high-performance statistical

computing. Using Stan, a user can perform full Bayesian statistical inference,

posterior visualisations and leave-one-out cross-validation. In contrast to WinBUGS,

Stan allows for user-defined functions and distributions. This was extremely

important, as the proposed methodology in Chapters 5 and 6 uses bivariate copula

densities which are not included as build-in distributions in WinBUGS.

In addition to its standard features, Stan also offers a variety of coding techniques

such as variable re-parameterisation, multiple indexing, statistical and computational

efficiency. In this section, we present a small sample of Stan’s statistical and

computational efficiency techniques used in the proposed hierarchical models.

There is a main difference between computational and statistical efficiency for

Stan programs. Computational efficiency measures the amount of memory or time

required for a step in a calculation, such as the evaluation of a posterior distribution.

On the other hand Statistical efficiency typically involves requiring fewer steps in

algorithms by improving the statistical formulation and making a model better

behaved. The standard way to do this is by applying reparameterising variables

so that MCMC algorithm is able to mix better. Sampling posterior distributions

with difficult geometries is a difficult task for sampler such as NUTS. A typical

way to speed up hierarchical models is via reparameterisation [58]. In specific

situations, an appropriate parameterisation can dramatically improve chain mixing

and convergence.

Choosing between centred and non-centred parameterisations

The choice of the correct parameterisation applies to any MCMC sampler, however,

it is particularly important in Stan as it has substantial impact on the performance

of the NUTS sampler. To illustrate the problem better we considered a simple
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hierarchical normal model given by:

yi ∼ N(µi, σ
2
i )

µi ∼ N(µ, τ 2), for i = 1, . . . , n (2.11)

In terms of notation φ = (µ, τ) will be referred as global parameters, µi as local

parameters and Di = (yi, σi) as data. Figure 2.2a visualises how the local parameters

µi interact through a common dependency on the global parameters φ and how the

interactions allow the data Di to inform all the local parameters µi. As the bottom

of the hierarchical structure (Di) depends on φ, a small change in φ induces large

changes in the density. Consequently, when data are sparse, the posterior density

looks like a "funnel" [59] which has a high density and low volume area at the bottom

and an area with low density and high volume at the top. In this situations sampling

algorithms including NUTS struggle to generate samples from the neck of the funnel

(where φ is small) and fail to explore the posterior distribution fully (Figure 2.2b) .

Figure 2.2: a)Layers of Hierarchy, b)Neal’s Funnel

Hierarchical models such as the normal model 2.11 suffer from this kind of

inefficiencies as µi and φ = (µ, τ) are correlated. The strength of this correlation

depends on the amount of data with Neal’s funnel being more extreme when data

are very sparse [58]. This behaviour is very usual in meta-analysis where the

number of studies is often limited. However, in circumstances where data are very

informative, centred parameterisation is more efficient [60].

An easy way to reduce the correlation between the successive layers of the hierarchical
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structure and improve sampling is to separate each layer with auxiliary variables.

For instance the second level of the model 2.11 can be written:

µi = µ+ τzi, zi ∼ N(0, 1) (2.12)

This is called non-centred parameterisation [61] and helps the layers to become

independent conditioned on z. With this type of parameterisation, the MCMC

sampler can efficiently sample from the target distribution (Figure 2.3).

Figure 2.3: a)centred parameterisation, b)non-centred parameterisation

To illustrate the performance of the non-centred parameterisation we generated 10

data points from the normal model using the following values µ = 3, τ = 3 and

σi ∼ Unif(9, 10). Two versions of the normal model (2.11) fitted to this dataset,

one with centred parameterisation and one non-centred parameterisation. Figure 2.4

presents the values between log(τ) and µ1 under the two versions of the model (the

code of the model can be found in the Appendix A.1). Stan under the non-centred

parameterisation, samples from the neck of the funnel much more efficiently using

the non-centred parameterisation compared to centred.

Vectorisation

Stan spends the vast majority of the time computing the gradient of log probability

functions, making gradients an obvious target for optimisation. Gradient

calculations of Stan require a template expression to be allocated and constructed

for each sub-expression such as the parameters of a Stan model. Vectorising

these sub-expressions i.e. parameters of the model, reduce the time of gradient

calculations. In this thesis the probability functions of the hierarchical models
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Figure 2.4: Posterior distributions
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developed in Stan were vectorised. This makes some of the "for loops" in the code

redundant speeding-up the model substantially.

2.2.8 Convergence

As discussed in section 2.2.3, a Markov chain converges to its equilibrium distribution

after a considerable number of iterations and convergence in MCMC refers to the

final stable set of samples from the equilibrium or "stationary" posterior distribution.

In this thesis the proposed methodology was implemented in R2OpenBUGS and

RSTAN. In both software convergence was assessed visually by checking the trace

plots posterior density plots and autocorrelation plots using graphical tools in R

and by running multiple chains (n=3). When OpenBUGS was used, where posterior

estimates were obtained using MCMC simulations performing 50000 iterations after

discarding 20000 iterations as burn-in period. STAN required a much smaller number

of iterations and achieved convergence after 5000 iterations (after excluding 1000

iterations as warm-up period). Trace and density plots of the proposed methods can

be found in the Appendix B.7, C.8 and D.4.

2.3 Introduction to meta-analysis

Meta-analyses have firstly been discussed by Glass [62] as "the statistical analysis

of large collection of analysis results from individual studies for the purpose of
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integrating the finding". Typically, it is defined as the statistical part of a systematic

review process integrating the results of several independent studies considered to

be similar. It includes the analysis of extracted data from the primary research

by using quantitative methods to explore the heterogeneity of the data (studies)

and to estimate overall measures of effects. Additionally, it can be used to assess

the validity of the results to possible threats such as publication bias or bad study

quality. When many trials investigate the same question, such as the effectiveness

of a treatment, it is likely that the smaller studies have conflicting findings due to

lack of statistical power. Hence, some may show results favouring a treatment and

others show no treatment benefit at all. Pooling all the relevant studies together

leads to more reliable and precise estimates of treatment effect. In situations where

treatment benefit or harm is small or at best is modest the required sample size for an

individual study to detect significant statistical difference between treatment groups

may need to be substantial. In these cases, it is the increased power from synthesising

findings from a number of trials that make systematic reviews and meta-analysis

such important tools [63].

Meta-analytic methods started to be used more frequently in health care after the

mid-1980s, when Yusuf [64] published the results from his systematic review and

meta-analysis on beta blockers in myocardial infraction and became increasingly

popular in the early 90s [65]. Nowadays meta-analyses include several studies

which examine the same question, incorporating more patients than any single

study potentially reducing the random error in the assessment of a treatment [66].

Furthermore, including results from many studies carried out in different places,

having possibly slightly different selection criteria may produce more generalisable

results averaging over all settings and contexts.

2.4 Concept of Bayesian meta-analysis and basic

meta-analytic methods

The Bayesian meta-analysis involves four fundamental steps [67]:

1. Prior beliefs: The first step of Bayesian meta-analysis is to summarise evidence
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external to observed data by identifying appropriate prior distributions. For

instance additional evidence from observational studies, systematic reviews,

RCTs and expert’s opinions can be incorporated as prior distributions which

can inform the meta-analytic model. These prior distributions are placed on

the unknown parameters of meta-analytic models [37].

2. Observed data: Data collected from different RCTs answering the same

question constitute the likelihood function of the parameters.

3. Posterior: External sources of evidence combined with data obtained from

RCTs form a current state of knowledge regarding the parameters of interest

(e.g. treatment effects). Thus, posterior distributions are obtained from the

combination of likelihood functions and prior distributions for the parameters

of interest. Any inferences in the Bayesian meta-analysis are based on the

posterior distributions.

4. Summarising: The final step is to estimate point estimates from the posterior

distribution. As it was mentioned in Section 2.2, summary estimates such as

mean, standard deviation, 95% CrIs etc. are estimated from samples obtained

from simulation techniques such as MCMC.

Similarly to traditional meta-analysis, two of the most commonly used models

in Bayesian meta-analysis are the: fixed effect meta-analysis and random effects

meta-analysis.

2.4.1 Fixed-effect meta-analysis of normally distributed data

A fixed effect meta-analysis model assumes homogeneity between studies, hence the

observed treatment effect across studies estimate the same underlying pooled effect

d. Algebraically, the observed treatment effects yi follow a normal distribution with

a single common pooled effect d and within-study variance σ2
i .

yi ∼ N(d, σ2
i ) (2.13)

The mean d corresponds to the true treatment effect and it is assumed to be common

across all studies [68]. The within-study variances σ2
i are assumed known, however,
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in circumstances where they are not reported a prior distribution can be specified [68].

Implementing the model in the Bayesian framework a prior distribution for the pooled

effect d needs to be specified. In the absence of prior beliefs, a vague prior distribution

using a normal distribution is suitable when the outcome is continuous or is specified

on the log-odds ratio scale. This normal distribution should be centred at zero (no

effect) with large variance relative to the scale of the outcome e.g. d ∼ N(0, 102).

2.4.2 Random-effects meta analysis of normally distributed

data

Random effects meta-analysis model assumes that each study has its own true effect

δi differing from the effects of other studies. Algebraically, the true treatment effects

follow a common normal distribution and therefore are called random effects as

they are drawn randomly from this common normal distribution. The model can

be described by the following hierarchical structure. At the within-study level, the

observed treatment effects yi are assumed normally distributed with individual mean

true treatment effects δi and within-study variances σ2
i

yi ∼ N(δi, σ
2
i ) (2.14)

δi ∼ N(d, τ 2). (2.15)

The "random" true effects δi follow a normal distribution with mean d and variance

τ 2 at the between studies level. The parameter d is the pooled treatment effect and

τ 2 is the between-studies variance. When there is no heterogeneity between studies

i.e. τ 2 = 0, random effects meta-analysis is reduced to fixed effects meta-analysis.

As described in section 2.4.1, in the absence of prior beliefs about the pooled

effect d a vague prior distribution such as a normal prior distribution centred at

0 with sufficiently large variance should be used. Alternatively when there is

suitable evidence external to the meta-analysis regarding d, for instance observational

studies, such evidence can be incorporated in the analysis in the form of a the

prior distribution. For the between-studies variance τ 2, prior distribution should be

selected ensuring that only positive values are sampled. For instance inverse gamma

or uniform or half normal distributions can be placed on standard deviation τ as
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prior distributions [16]. In any case, the use of prior distributions should be assessed

via a sensitivity analysis [38].

2.4.3 Bayesian meta-analysis for binomial data

A typical way to perform random effects meta-analysis for binary outcomes is to work

with observed treatment effects on the log odds ratio scale. Under this approach the

summary data should be transformed to obtain observed treatment effects on the

log odds ratio scale using the following formulas:

yi = log(
rBi

NBi − rBi
)− log(

rAi
NAi − rAi

) (2.16)

with corresponding variances:

σ2
i =

1

rBi
+

1

NBi − rBi
+

1

rAi
+

1

NAi − rAi
(2.17)

where rAi, rBi are the numbers of events in treatment arms A and B, in study i

and NAi and NBi are the total numbers of patients in arm A and B in study i.

The observed treatment effects are assumed approximately normally distributed.

However, it is questionable whether the within-study variability should be modelled

via a normal approximation especially when the events are rare [17, 69].

Another modeling issue occurs when there are no events in either of the treatment

arms or the number of events are equal to the number of patients in either of arms

A and B. In this situation the log odds ratios yi and their corresponding variances

cannot be defined. A simple way to tackle this problem is to apply a correction, for

example, by adding a constant number such as 0.5. However, in some situations the

effect of adding a constant may lead to biased results [70, 71].

Smith et al. [72] proposed a different Bayesian univariate random effects model

assuming that the number of events in the control arm rAi and in the new treatment

arm rBi of the ith trial follow independent binomial likelihoods.

rAi ∼ Bin(NAi, pAi), rBi ∼ Bin(NBi, pBi) (2.18)

NAi andNBi are the total numbers of individuals in arm A and B in study i whilst, the
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true probabilities of occurrence of an event in the arms A an B are pAi, pBi respectively.

The baseline effects µi are calculated by transforming the true probabilities to the

real line scale via a logit link function and hence the Bayesian random effects model

can be written as follows:

logit(pAi) = µi, logit(pBi) = µi + δi (2.19)

δi ∼ N(d, τ 2) (2.20)

At the between-studies level, the "random" true effects δi are modelled in the

same way as the random effects model for normally distributed data (eq. 2.15).

Additionally, in the Bayesian framework, a prior distribution needs to be placed on

the baseline effects such as N(0, b) (where b is assumed sufficiently large), the pooled

effect d and the between-studies variance τ 2.

2.4.4 Heterogeneity

Random-effects model account for differences between the true effects across studies,

but it does not sufficiently account for all sources of variation. Between-studies

variability in the treatment effects include differences in patient population,

administration of interventions, changes in medical practice or design of clinical

trials. Systematic differences in treatment effects that are more than this, can be

attributed to sampling error alone are termed statistical heterogeneity [68, 73].

Between-studies heterogeneity can be problematic in meta-analysis and sources of

variability should be investigated and accounted for in the analysis [10]. When

there are evidence of substantial between-studies heterogeneity, subgroup analyses

for discrete characteristics, stratified by the covariates of interest can be performed.

Alternatively, a meta-regression method can be applied to explore sources of

heterogeneity, incorporating covariates such as, for example, average age [74].

2.4.5 Meta-regression

The random effects meta-analysis accounts for between-studies heterogeneity, but

does not explicitly explain it. Meta-regression can be used to measure the association

between the treatment effects and the measurable characteristics such as age using
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regression techniques. when the method is applied to random-effects meta-analysis

it explains the residual between-studies heterogeneity using study-level covariates

[75]. Using the previous notations the random-effects meta-regression can be written

as follows:

yi ∼ N(δi + β(xi − x̄), σ2
i ) (2.21)

δi ∼ N(d, τ 2)

where β is the regression coefficient, xi is the study-level covariate of interest in

study i and x̄ is the mean value of the covariate across all studies. Centering the

study-level covariate around the mean allows d to be interpreted as the pooled effect

for the average study characteristic. For instance, if the study-level covariate is age,

d can be interpreted as the pooled effect for a patient of average age in the included

studies. To perform this model in the Bayesian framework prior distributions need

to be placed on the unknown parameters d, τ and β. As the regression coefficient β

is unconstrained, it can be given a normal prior distribution with large variance. The

remaining parameters can follow the same prior distributions as in sections 2.4.2 and

2.4.1. However, when the data are sparse, meta-regression may suffer from lack of

sufficient power to detect the relationships it intends to estimate [76]. Furthermore,

the analysis can be susceptible to unknown confounding factors and aggregation bias

if the relationship between summary data do not reflect the true relationship at IPD

level. Thus, meta-regression should be treated with caution and the relationship as

associative than causative [68].
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Chapter 3

Methods for surrogate endpoint

evaluation

This chapter reviews existing methodology developed to evaluate surrogate

relationships regardless of statistical framework. The first part focuses on methods

investigating the individual-level surrogacy. These methods estimate a surrogate

relationship between the two outcomes (the surrogate endpoint and the final

outcome) using data from single trial, hence they are referred to in the literature

as single-trial surrogate endpoint evaluation methods [77–80]. It is important

to highlight that all these methods have fundamental theoretical and applied

problems and they are discussed simply to set the scene for the multiple-trial

surrogate evaluation methods. Meta-analysis provides a robust framework for

combining information across studies investigating the same question and has been

widely utilised to combine evidence from clinical trials to evaluate treatment

efficacy. Bivariate meta-analysis can also be used for trial-level surrogate endpoint

evaluation investigating the between-studies association between treatment effects

on the surrogate and treatment effects on the final outcome. The second part of

this chapter presents currently available meta-analytic methods used for trial-level

surrogate endpoint evaluation, as well as, the criteria for surrogacy proposed by

different researchers.
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3.1 Single-trial evaluation methods for surrogate

endpoints

In this section the seminal methods of Prentice [77], Freedman et al. [78], and

Buyse and Molenberghs [79] are described to set the scene for more complex research

methods.

3.1.1 Prentice’s approach

Prentice formally defined a surrogate endpoint as: "a response variable for which

a test of the null hypothesis of no relationship to the treatment groups under

comparison is also a valid test of the corresponding null hypothesis based on the

true endpoint" [77]. This definition represents the case where the surrogate endpoint

should capture any relationship between therapies and final endpoint [81]. This

definition can be written as:

p(S|Z) = p(S)⇔ p(T |Z) = p(T )

where p(S) and p(T ) denote the probability distributions of the random variables S

(surrogate endpoint) and T (final outcome). The distributions, p(T |Z) and p(S|Z)

denote the conditional probability distributions of S and T given Z. This definition

includes the random variables T, S, Z, so S can be considered as a surrogate endpoint

of the final outcome T given only to the effect of some specific treatment Z and

not necessarily for a different treatment. Prentice proposed and formulated four

operational criteria to validate a candidate surrogate endpoint. The candidate

endpoint should fulfil all four criteria at the same time to be deemed a valid surrogate

endpoint:
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p(S|Z) 6= p(S) (3.1)

p(T |Z) 6= p(T ) (3.2)

p(T |S) 6= p(T ) (3.3)

p(T |S,Z) = p(T |S) (3.4)

The equation (eq. 3.1) represents that the treatment Z should have a statistically

significant effect on the candidate surrogate endpoint S. Similarly, Z should have a

statistically significant effect on the final outcome T (eq. 3.2), the candidate endpoint

S should have a significant effect on the final endpoint T (eq. 3.3) The last equation

(eq. 3.4) describes that the effect of the treatment Z on T should be captured by

the candidate endpoint S.

If the surrogate endpoint S and the final outcome T are assumed to be normally

distributed then the first two criteria can be examined by fitting a bivariate linear

regression model:

Sj = µS + αZj + εSj
(3.5)

Tj = µT + βZj + εTj (3.6)

where α and β are the treatment effects and εSj
and εTj the error terms on the

surrogate endpoint and the final outcome respectively. The errors are also assumed

to be normally distributed, following bivariate normal distribution with zero mean:

εSj

εTj

 ∼ N

0

0

,
σSS σST

σST σTT

 . (3.7)

The third criterion (equation 3.3) can be examined by fitting the following univariate
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liner regression model:

Tj = µ+ γSj + εj (3.8)

Finally, the fourth criterion (equation 3.4) can be explored by fitting another

univariate linear regression model.

Tj = µ̃T + βSZj + γZSj + ε̃Tj (3.9)

where

βS = β − σSTσ−1
SSα (3.10)

γZ = σSTσ
−1
SS (3.11)

and the variance of ε̃T is given by:

V ar(ε̃T ) = σTT − σ2
STσ

−1
SS (3.12)

For the Prentice’s criteria to be satisfied, the hypotheses H0 : α = 0, H0 : β = 0

and H0 : γ = 0 (eq, 3.5, eq. 3.6 and eq, 3.8) should be rejected and the hypothesis

H0 : βS = 0 should not be rejected.

3.1.1.1 Issues with Prentice’s approach

The Prentice criteria are very practical and straightforward to be tested but there

are some fundamental problems.

Firstly, the fourth criterion (eq. 3.4) requires the null hypothesis H0 : βS = 0 not

to be rejected. This criterion works fine for rejection of a poor surrogate endpoint

showing that βS is not significant. However, this criterion is not appropriate for

validation of a surrogate endpoint as, this statistical test does not prove that βS = 0.

When the null hypothesis (H0: βS = 0) is not rejected, this may be due to the lack

of statistical power due to small sample size in a study. Secondly, the result of the

hypothesis test of the fourth criterion cannot prove that the effect of treatment Z on
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the final outcome T is fully captured by the surrogate endpoint S [80, 82] and in any

practical setting, it would be more realistic for a surrogate endpoint to explain a part

of a treatment effect on the final endpoint than the full treatment effect. Thirdly,

Buyse and Molenberghs showed [79] that Prentice’s surrogate endpoint validation

criteria are only equivalent to his definition when both the surrogate endpoint S, and

the final outcome T are binary outcomes implying that the criteria do not guarantee

that a candidate endpoint is a valid surrogate endpoint unless S, T and Z are all

binary. Lastly, a potential surrogate endpoint S can only be validated when the

treatment Z has significant impact on both outcomes S and T (eq. 3.1, eq. 3.2).

Hence, data from a clinical trial where a treatment does not have a statistically

significant effect on S and/or T cannot be used to validate a candidate endpoint as

surrogate at the individual-level.

All these issues led Freedman et al. [78] to propose an estimation framework, i.e.

a quantitative rating of the appropriateness of a candidate endpoint S shifting the

attention from hypothesis testing where a is ’yes’ or ’no’ answer is expected.

3.1.2 Freedman’s et al. approach

Freedman et al. [78] proposed the proportion explained (PE) to quantify surrogate

relationship as the proportion of the effect of treatment Z on the final outcome T

that it is explained by the surrogate endpoint S

PE(T, S, Z) =
β − βS
β

= 1− βS
β
, (3.13)

where β is the estimated effect of treatment Z on the final outcome T without

correction for S and βS is the estimates of the effect of treatment Z on the final

outcome T with correction for S. The idea behind PE is that if all of the effect

is mediated by S i.e., βS = 0 then PE = 1. PE is a ratio of parameters and its

confidence interval can be calculated using delta method or Fieller’s theorem. [80].

We expect that a good surrogate endpoint S should have a lower limit of the (1-α)%

CI for PE close to 1. Using Filler’s theorem the (1-α)% CI of PE is given by

1− A±
√
A2 −BC
B

(3.14)

36



Chapter 3. Methods for surrogate endpoint evaluation

where,

A = ββS − Z2
αCov(β, βS)

B = β2 − Z2
αV ar(β)

C = βS − Z2
αV ar(βS)

where Zα is the (1-α/2) percentile of the normal distribution while, the variances of

β and βS can be obtained by fitting the models described in equations (eq. 3.9 and

eq. 3.10). In addition, Freedman et al. [78] proposed an efficient way to calculate

the covariance between β and βS.

3.1.2.1 Issues with Proportion Explained ratio

Similarly as the Prentice’s approach, there are several problems with PE. The idea

behind this quantity is that PE = 1 (βS = 0) when all of the treatment effect is

mediated and PE = 0 when there is not mediation (β = βS). Unfortunately this

idea is problematic, as βS is not necessarily zero when there is full mediation, and β

is not always equal to βS when there is no mediation. Freedman et al. showed that

if treatment effect on final outcome T is small and the size of study is not large, the

CI of PE tends to be wide, spanning almost the entire [0,1] interval. Hence, it is not

possible to draw any inferences from such an interval. Freedman reported [78] that

to achieve 80% power for a hypothesis test that the surrogate explains more than

50% of treatment effect the ratio β/SE(β̂) should be ≥ 5. This requirement makes

the use of PE infeasible. Also, PE approach is problematic when the assumption

of normality for the surrogate endpoint S and final outcome T is incorrect. In this

case PE ceases to have a simple interpretation and the validation process stops.

Moreover, in practice after validating an outcome as a surrogate endpoint we should

be able to make predictions about the treatment effect on the final outcome T . Such

predictions should be obtained using the treatment effect on the surrogate endpoint

S. It is not clear how it can be achieved within PE setting.
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3.1.3 Buyse and Molenberghs’s approach

Considering complications with the PE approach, Buyse and Molenberghs [79]

introduced two new measures for quantifying strength of the surrogate relationship,

relative effect (RE) and the adjusted association (ρZ) under the assumption that

both outcomes S and T are normally distributed. RE is defined as the ratio of the

effects of treatment Z upon the surrogate endpoint S and the final outcome T .

RE(T, S, Z) =
β

α
(3.15)

Where α and β are the effects of treatment Z measured on the surrogate endpoint

and the final outcome respectively. RE can be interpret as the slope of a regression

line between β and α and is expected to be equal to 1 if the effect of treatment Z

on the surrogate endpoint S is identical to the effect of treatment Z on the final

outcome T . If the multiplicative relationship (eq. 3.15) could be assumed and if RE

were known exactly, then it could be used to predict the effect of treatment Z on

the final outcome T based on an observed effect of treatment Z on the surrogate

endpoint S. In reality RE needs to be estimated and the precision of the estimate

of RE will be relevant for the precision of prediction.

Buyse and Molenberghs also introduced the association ρZ after adjustment for

treatment Z to quantify the strength of the individual-level association between the

surrogate endpoint S and final outcome T .

ρZ =
σST√
σSSσTT ,

(3.16)

where σST , σSS, σTT are the variances of the covariance matrix of the normal

distribution in equation 3.7. RE quantifies the strength of association between

S and T at the individual level thus, when ρZ = 1 then, the effect of treatment Z on

the final endpoint T for an individual patient can be perfectly predicted based on

the effect of treatment Z on the surrogate endpoint S. However in practice, perfect

individual-level surrogacy is unrealistic and it is important to judge whether or not

the correlation is considered sufficiently high to validate an outcome as a surrogate

endpoint.
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Similarly to PE, RE is a ratio of two parameters and its CI can be computed

based on the delta method or Fieller’s theorem [79]. The CI of ρZ quantity can be

computed using the general Fisher transformation procedure for correlations or by

bootstrapping [80].

3.1.3.1 Problems with Buyse and Molenberghs’ approach

As for the previous methods, there are also a few issues with this approach. The

problems occurring with the adjusted association and the RE are more applied,

whereas the Prentice approach and the PE face fundamental problems. The main

assumption of the adjusted association ρZ is that both T and S are continuous

normally distributed outcomes and in practice, it is simply the correlation between

these two outcomes. The estimation of this quantity is straightforward and can easily

be interpreted, its CI remains within the unit interval and it is relatively narrow

if a study has a reasonably large sample size. However, when the assumption of

normality is violated, the calculation of the adjusted association ρZ requires using

different approaches (for details see [80]). The problem with RE originates from the

fact that this quantity is based on data from a single study. If the multiplicative

relationship 3.15 is plausible then the ratio should be constant across other clinical

trials implying that the relationship between β and α is linear and passes through

the origin. However, in practice this can not be proved having data only from a

single trial.

Considering all the aforementioned problems of the ’individual-level surrogacy’

methods, it becomes clear that data from multiple trials are necessary for the

evaluation of surrogate endpoints. Meta-analysis provides a useful framework for

combining evidence across relevant studies and has been widely utilised to combine

evidence from clinical trials. The next section presents the key meta-analytic

methods for trial-level surrogate endpoint evaluation.
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3.2 Meta-analytic methods for surrogate endpoint

evaluation

Most efficient meta-analytic methods for surrogate endpoint evaluation have a

bivariate form (or multivariate for multiple surrogate endpoints) [13, 16, 83–87].

Bivariate meta-analysis can be utilised to model treatment effects measured on

the surrogate endpoint and the final outcome jointly, resulting in estimates

quantifying the association between the treatment effects. Moreover, it can be used

to predict an unreported treatment effect in a study, with the advantage of

obtaining the estimates of clinical effectiveness early. When the treatment effect

of a new intervention (being under consideration) on the final outcome is not

yet reported, regulatory licensing decision for the new treatment can be made

conditional on a surrogate endpoint. Bivariate meta-analytic methods can be used

to evaluate the trial-level surrogacy patterns as by nature take into account not

only the between-studies correlation between the treatment effects measured on

the surrogate endpoint and the final outcome, but also all related uncertainty

required in decision modelling. As stated in Section 2.21, other methods such as

meta-regression do not take into account all relevant uncertainty, whereas the

bivariate meta-analytic methods appropriately account for all relevant uncertainty,

both at within-study and between-studies levels [16]. Furthermore, without taking

the correlation into account (either directly or through some functional relationship

between the correlated effects), it is not possible to quantify the strength of the

trial-level surrogate relationship. In addition, bivariate meta-analysis can be used

to predict a likely treatment effect on the final outcome from the treatment effect

measured on the surrogate endpoint. This will allow for making conditional

licensing decisions.

A plethora of meta-analytic methods have been proposed to evaluate trial-level

surrogacy. This section introduces the key models for the trial-level evaluation of

surrogacy patterns. The first formal proposal was from Daniels and Hughes [13]

in 1997. They developed a Bayesian two-level meta-analytic method using a linear

relationship to describe the trial-level association between the true treatment effects
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on the surrogate endpoint and the final outcome. The second model that is discussed,

is the bivariate random-effects meta-analysis (BRMA) model [88] and an alternative

parameterisation of this method proposed by Bujkiewicz et al. [10, 87, 89]. Available

are also extensions of the methods to multivariate random-effects meta-analysis

(MRMA) [89]. The MRMA approach can be used to evaluate multiple trial level

surrogate relationships modelling multiple surrogate endpoints (or treatment effects

on multiple surrogate endpoints) simultaneously. The last method that is presented

is an approach developed by Buyse et al. [84], who proposed a two-stage model

which evaluates surrogacy both in individual and trial levels. It relies on IPD being

available from all of the studies and therefore, it can be used only when this is the

case.

3.2.1 Daniels and Hughes model

The following method was introduced by Daniels and Hughes [13] to model jointly

correlated outcomes or correlated treatment effects under the Bayesian framework.

Starting from the within-study variability (eq. 3.17), the observed treatment effects

y1i and y2i are assumed to follow a bivariate normal distribution estimating underlying

true treatment effects on the surrogate and the final outcomes δ1i, δ2i respectively,

for each study i, with corresponding within-study standard deviations σ1i, σ2i and

within-study correlation ρwi

y1i

y2i

 ∼ N

δ1i

δ2i

 ,

 σ2
1i σ1iσ2iρwi

σ1iσ2iρwi σ2
2i

 . (3.17)

In comparison to other approaches, the true treatment effects on the surrogate

endpoint δ1i are assumed to be fixed effects (which here means they are independent

effects across studies). Furthermore, they used a simple linear regression model (eq.

3.18) to describe the association between the true treatment effects on the surrogate

endpoint δ1i and the final outcome δ2i.

δ2i|δ1i ∼ N(λ0 + λ1δ1i, ψ
2), i = 1, 2, ..., N (3.18)
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where the slope λ1, the intercept λ0 and the conditional variance ψ2 are used as

criteria for surrogate endpoint validation as discussed in Section 3.2.1.1

By combining the within-study (eq. 3.17) and the between-studies distributions (eq.

3.18) we can obtain the marginal distribution:

y1i

y2i

 ∼ N

 δ1i

λ0 + λ1δ1i

 ,

 σ2
1i σ1iσ2iρwi

σ1iσ2iρwi σ2
2i + ψ2

 (3.19)

Implementing this method under a Bayesian setting, "non-informative" prior

distributions can be placed on the fixed effects and the regression parameters:


δ1i ∼ N(0, Aµ1i)

λ1 ∼ N(0, Aλ1)

λ0 ∼ N(0, Aλ0)

, (3.20)

considering each of Aδ1i , Aλ1 , Aλ0 to be sufficiently large. For the conditional variance

ψ2 they considered three possibilities.

1. DuMouchel prior [90]: π(ψ2) = σc
(σc+ψ)2

1
2ψ

where σ2
c is the harmonic mean of

within-study variances σ2i of treatment effects on the final outcome.

2. Shrinkage prior [91]: π(ψ2) = σ2
c

(σ2
c+ψ2)2

where σc is the same as above.

3. Flat prior [92]: π(ψ2) = ∂ψ2

More recently other researchers have suggested that vague prior distributions,

such as half normal distributions N(0, b)I(0, ) (where N(0, b)I(0, ) denotes a

truncated at mean normal distribution and b is sufficiently large [93]) or uniform

distributions U(0, b), could also be used [10]. If IPD are available, the correlations

ρwi can be obtained by bootstrapping [13]. Otherwise prior distributions can

be placed on the within-study correlations, such as, for example, uniform

distributions ranging between -1 and 1 ρwi ∼ U(−1, 1) (or weakly informative prior

allowing positive/negative values only), or a normal distribution for Fisher’s z

transformation: ρwi = tanh(z) where z ∼ N(0, 1).
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Subgroup analysis with Daniels & Hughes model is used as the standard approach

to investigate trial-level surrogacy patterns within-treatment classes in the Chapter

4. Two extensions of Daniels & Hughes model are also proposed to account for

differences in the association patterns across classes in the Chapter 4.

3.2.1.1 Criteria for surrogacy

As we mentioned previously, the parameters λ0, λ1, ψ2 play a very important role,

as they are used to evaluate surrogacy. A valid surrogate relationship should imply

that λ1 6= 0 as slope establishes the association between treatment effects on the

surrogate and the final outcome. Subsequently, having ψ2 = 0 implies that δ2i could

be perfectly predicted given δ1i. The parameter λ0 corresponds to the intercept

and is expected to be zero for a good surrogate relationship. This ensures that no

treatment effect on the surrogate will imply no effect on the final outcome.

3.2.2 BRMA model

Another meta-analytic method that can be used in the context of surrogate endpoints

is BRMA model. BRMA models correlated and normally distributed treatment

effects y1i and y2i on two outcomes. It was firstly introduced by McIntosh [94] and

since then many extensions have been proposed. One of the most popular and

practical forms was described by van Houwelingen et al. [88] and Riley et al. [15]:

y1i

y2i

 ∼ N

δ1i

δ2i

,
 σ2

1i σ1iσ2iρwi

σ1iσ2iρwi σ2
2i

 (3.21)

δ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

 . (3.22)

Here, the treatment effects on the first and the surrogate endpoint y1i and the final

outcome y2i, which for example, can be log odds ratios, are assumed to be normally

distributed. They estimate the correlated true treatment effects δ1i and δ2i with

corresponding within-study variances σ2
1i and σ2

2i and within-study correlations ρwi.

At the between-studies level, the true treatment effects are also modelled jointly

following a bivariate normal distribution with means (d1, d2) and corresponding
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to the two outcomes between-studies variances τ 2
1 and τ 2

2 and a between-studies

correlation ρb. In the context of surrogate endpoints the between-studies correlation

ρb is the main parameter of interest and it quantifies the strength of the trial-level

association between the treatment effects on the surrogate endpoint and the final

outcome. Equation (3.21) represents the within-study variation and (3.22) is the

between-studies model.

The elements of the within-study covariance matrix, σ2
1i, σ2

2i and ρwi are assumed

known. Whilst the estimates of the variances are easily obtained by taking the square

of the standard error for each outcome, the estimates of the within-study correlations

between the treatment effects on the two outcomes are more difficult to obtain as they

would not be reported in the original articles. When IPD are available, the correlation

can be obtained by bootstrapping [13] or alternatively by fitting a regression model

for the two outcomes with correlated errors [95]. Other methods of estimating the

within-study correlations have been discussed elsewhere and were summarized in

Bujkiewicz et al. [10]. Implementing the model in the Bayesian framework the

unknown parameters τ 2
1 , τ 2

2 , d1, d2 and ρb have to be estimated and therefore,

prior distributions should be specified on them. Typically, non-informative prior

distributions can be placed on the these parameters: d1,2 ∼ N(0, 102), τ1,2 ∼ U(0, 5),

to implement the natural constrain of −1 ≤ ρb ≤ 1 the Fisher’s z transformation

can be used as: ρb = tanh(z) , z ∼ N(0, 1).

3.2.2.1 Criteria for surrogacy

The main parameter of interest in this model is the between-studies correlation ρb as

it quantifies the strength of a trial-level association pattern between the treatment

effects on the surrogate endpoint and the final outcomes. For perfect surrogacy,

the between-studies correlation should be ρb = ±1. Additionally, it is important

to ensure that no treatment effect on the surrogate endpoint will imply no effect

on the final outcome - this suggest that the intercept should be very close to zero.

Although, BRMA method models the between-studies level without explicitly using

a parameter of the intercept, the between-studies parameters of BRMA have been

linked with the parameters forming the surrogacy criteria in Section 3.2.1.1 [10]. The

slope λ1, the intercept λ0 and the conditional variance ψ2 can be expressed in terms
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of the parameters of the between-study level of BRMA model as follows:

λ1 = ρb
τ2

τ1

(3.23)

λ0 = d2 − d1ρb
τ2

τ1

(3.24)

ψ2
2 = τ 2

2 (1− ρ2
b) (3.25)

Therefore, we are able to draw inferences for the intercept by expressing it in terms of

the between-studies parameters (eq. 3.24). Furthermore, from (eq. 3.25), ρ2
b = 1− ψ2

2

τ22
,

which implies that ρb = ±1 when ψ2
2 = 0. This means that the criteria for BRMA

model have the same interpretation in terms of surrogacy as the criteria proposed

by Daniels and Hughes.

3.2.3 BRMA in product normal formulation

Bujkiewicz et al.[89] proposed and extended in the context of surrogate

endpoints[87] BRMA model. They introduced an alternative form of the BRMA

model by reparameterising the between-studies level. This alternative model can be

used in a very similar way as the model proposed by Daniels and Hughes [13]. More

specifically, the between-studies model 3.22 can be presented as a product of

univariate conditional normal distributions in a product normal formulation (PNF),

whilst the within-study model 3.21 remains exactly the same.

y1i

y2i

 ∼ N

δ1i

δ2i

,
 σ2

1i σ1iσ2iρwi

σ1iσ2iρwi σ2
2i

 (3.26)


δ1i ∼ N(η1, ψ

2
1)

δ2i|δ1i ∼ N(η2i, ψ
2
2)

η2i = λ0 + λ1δ1i

(3.27)

As in the BRMA model, y1i, y2i are the observed treatment effects measured by two

correlated outcomes (the surrogate endpoint and the final outcome), δ1i and δ2i are

the true treatment effects which are correlated and are assumed exchangeable and
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normally distributed. Therefore, they are modelled as random effects with a linear

relationship. Instead of placing independent non-informative prior distributions on

all the unknown parameters of model 3.27, relationships between these parameters

and the elements of the between-studies covariance matrix (eq. 3.22) are derived to

allow for the inter-relationship between the parameters of the two parameterisations

and to ensure that the between-studies covariance matrix of the model (eq. 3.22) is

positively defined.

ψ2
1 = τ 2

1 , ψ
2
2 = τ 2

2 − λ2
1τ

2
1 , λ1 =

τ2

τ1

ρb (3.28)

d1 = η1, d2 = λ0 + λ1d1.

After establishing these three relationships, we can now place a range of different

non-informative prior distributions directly on the following between-studies

parameters: τ1,2 ∼ U(0, a) or τ1,2 ∼ N(0, b)I(0, ), ρb = tanh(z) , z ∼ N(0, 1) or

ρ ∼ U(−1, 1). The above relationships (eq. 3.28) give implied prior distributions on

λ1, ψ2
1 and ψ2

2. Vague prior distributions should also be placed on η1 ∼ N(0, c) and

λ0 ∼ N(0, c) (where a, b and c are sufficiently large).

3.2.3.1 Criteria for surrogacy

The evaluation framework proposed by Daniels & Hughes in the Section 3.2.1.1

applies also to BRMA PNF model. A valid surrogate relationship should imply that

λ1 6= 0, the parameter λ0 is expected to be zero an ψ2 is expected to be very close

to 0.

3.2.4 Multivariate meta-analytic model

Most meta-analytic methods for surrogate endpoint evaluation are designed to

evaluate a single surrogate endpoint. However, methods for multiple surrogate

endpoints evaluated as joint predictors of clinical benefit or harm have also been

proposed. The idea of evaluating multiple surrogate endpoints jointly is not new. In

the summary of a National Institutes of Health Workshop on the use of surrogate
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endpoints, Gruttola et al. [96] suggested the development of models that can allow

for modelling multiple surrogate endpoints and/or multiple final clinical outcomes.

Approaches for evaluating multiple surrogate endpoints simultaneously were also

proposed by Xu and Zeger [97] for time-to-event data modelled jointly with multiple

biomarkers measured longitudinally.

BRMA model can be straightforwardly generalised to a bivariate or multivariate

model allowing for modelling of multiple outcomes. Bujkiewicz et al.[87, 89] proposed

a Bayesian multivariate meta-analytic model aiming to include multiple surrogate

endpoints with the potential benefit of reducing the uncertainty of the parameters of

interest when making predictions. They showed that the between-study covariance

matrix of the multivariate model could also reparameterised in a PNF setting.

Analogous to the bivariate case, at the within-study level Yi = (y1i, y2i,...,y(N−1)i,yNi)

are the observed treatment effects on each of the N − 1 surrogate endpoints and

yNi is the observed treatment effect on the final outcome. These estimates follow a

multivariate normal distribution given by:

Yi ∼MVN(∆i,Σi) (3.29)

where ∆i = (δi1, ..., δin) is the vector of the true treatment effects on the surrogate

endpoints and the final outcome for each study i and Σi is within-study variance

covariance matrix. As in the bivariate case, the between-studies model makes the

same assumption of normality

∆i ∼MVN(D, T ) (3.30)

with D = (d1, ..., dn) being the vector of average effects and T an unknown covariance

matrix to be estimated.
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3.2.5 A two-stage mixed model

3.2.5.1 Full model

In the presence of individual patient data from several RCTs, Buyse et al. [84]

considered a two-stage model which evaluates both individual and trial-level

surrogacy. They considered two distinct modelling strategies for each stage, the

first one is based upon a fixed effects model while the other on random effects.

The linear predictors of the surrogate and the final outcomes are given by:

E(Sij|Zij) = µSi + αiZij

E(Tij|Zij) = µT i + βiZij

(3.31)

where, αi and βi are the study-specific fixed treatments effects and µSi and µT i are

the intercepts in this setting. These two equations are termed as a full fixed-effects

model. Consequently, it is assumed that both outcomes are normally distributed

Sij
Tij

 ∼ N

µSi + αiZij

µT i + βiZij

 ,Σ

 , (3.32)

where, the covariance matrix Σ is given by

Σ =

σSS σST

σST σTT

 . (3.33)

The second stage (between-studies level) of the model includes:



µSi = µS +mSi

µT i = µT +mT i

αi = α + ai

βi = β + bi

, (3.34)
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where mSi, mT i, ai, bi are normally distributed parameters with mean zero and

variance-covariance matrix D has the following formulation:

D =


dSS dST dSa dSb

dST dTT dTa dTb

dSa dTa daa dab

dSb dTb dab dbb

 . (3.35)

By combining the equations 3.32 and 3.34 we obtain the mixed-effects model

Sij
Tij

 ∼ N

µS +mSi + (α + ai)Zij

µT +mT i + (β + bi)Zij

, Σ

 . (3.36)

To quantify the trial-level association they proposed to use the coefficient of

determination defined as:

R2
trial(f) =

dSb
dab

T dSS dSa

dSa daa

−1 dSb
dab


dbb

, (3.37)

where the (f) index indicates that the full model is used to evaluate the surrogacy.

This modelling approach assumes that IPD are available across studies, hence the

individual level surrogacy can also be evaluated using the following measure:

R2
indiv =

σ2
ST

σSSσTT
. (3.38)

When R2
trial = 1 and R2

indiv = 1 indicate perfect surrogacy both at trial and individual

level and thus, the final endpoint can be perfectly predicted using the surrogate

endpoint at both levels. However, it is unrealistic to expect this coefficient to be 1

making the need for a realistic threshold for R2 necessary.
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3.2.5.2 Frequentist framework

Implementing the above method in a frequentist setting Buyse et al. proposed the

calculation of 95% confidence intervals for both coefficients. The R2
trial(f) coefficient

cannot take the value 1 and remains within the unit interval when D is positive

definite. The 95% confidence interval for R2
trial(f) is given by

R2
trial(f) ± 1.96

√
4R2

trial(f)(1−R2
trial(f))

2

Ntrials − 3
(3.39)

,

The variance of R2
trial(f) is estimated using the delta method (for details see [80, 84]).

A value of R2
trial(f) close to 1 implies strong surrogacy between the treatment effects

on the surrogate and final endpoints at the trial-level.

Similarly to the trial-level coefficient, a 95% confidence interval for R2
indiv can be

obtain when Σ is positive definite.

R2
indiv ± 1.96

√
4R2

indiv(1−R2
indiv)2

Ntotal − 3
(3.40)

where Ntotal represents the number of patients in a study. To estimate the variance

of R2
indiv the delta method can be used. A value of R2

indiv close to 1 indicates strong

surrogacy at individual level and thus, the final endpoint can be perfectly predicted

using the surrogate endpoint at this level. However in general, it is unrealistic to

expect these coefficients to be close to 1 making the need for a realistic threshold for

R2 necessary.
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Chapter 4

Improving the validation of surrogate

endpoints in a specific treatment

class, whilst borrowing information

across classes

4.1 Introduction

This Chapter aims to improve the trial-level validation of surrogate endpoints within

a specific class of treatment in disease areas where trial-level surrogacy patterns vary

across treatment classes, by proposing novel methodology.

Potential surrogate endpoints have been investigated in clinical trials in a number

of disease areas. These candidate endpoints need to be validated [98] as reliable

predictors of clinical benefit. This can be done by exploring the three levels of

association as described in Section 1.3. Evaluation of the association between

treatment effects on a candidate surrogate endpoint and a final outcome requires

data from a number of RCTs and it can be investigated by carrying out a bivariate

meta-analysis. A strong association pattern between treatment effects on a

candidate endpoint and treatment effects on a final outcome implies the existence

of a trial-level surrogate relationship between the two outcomes and validates the

candidate endpoint as a suitable surrogate endpoint.
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Traditionally, trial-level surrogate relationships between treatment effects on a

surrogate endpoint and treatment effects on a final outcome have been investigated

in given a disease area using data from all trials regardless of treatment classes or

limiting data to trials of the same class of treatments. For instance, in aCRC, PFS,

tumor response (TR) or time to progression (TTP) have been investigated as

potential surrogate endpoints for OS [11, 12, 99, 100]. In previous work, Buyse et

al. [12] found a strong association between treatment effects on PFS and OS in this

disease area, by including in their meta-analysis studies on one treatment class only

(cytotoxic treatments).

However, surrogacy association patterns may differ across classes of treatment when

targeted treatments are applied to subgroups of population with unique tumour

characteristics (mutations). These potential differences can simply be investigated

by performing subgroup analysis using a bivariate meta-analytic model. This type

of analysis is very practical when there are sufficient data within treatment classes,

or a specific class of interest. However, the analysis may fail to estimate a trial-level

surrogate relationship effectively when data are limited in terms of the number of

studies, resulting in estimates of the parameters describing surrogate relationships

obtained with considerable uncertainty [101]. For example, after the introduction

of targeted treatments in aCRC, Giessen et al.[99] investigated the association

patterns across treatment classes by performing subgroup analysis. They inferred

that further research was needed at that point to establish surrogate relationship

between treatment effects on PFS and treatment effects on OS in the new treatment

classes consisting of targeted treatments as the data were very sparse.

In this Chapter, we use subgroup analysis adopting a model proposed by Daniels

and Hughes (see details in Section 3.2.1) as the standard approach to investigate

association patterns (surrogate relationships) within each treatment class. To

improve the validation of surrogate endpoints in a particular treatment class and

address the limitations of subgroup analysis, we developed two meta-analytic

methods allowing for trial-level validation of surrogate endpoints within each

treatment class, whilst borrowing information across classes. Specifically, instead of

carrying out subgroup-analysis, we propose two extensions of the model proposed

by Daniels and Hughes [13] by adding another level to its hierarchical structure.
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This additional level accounts for differences in surrogate relationships between

treatment classes but at the same time assumes some level of similarity between

them. The first extension allows for full borrowing of information for surrogate

relationships across treatment classes assuming exchangeability for the parameters

describing the surrogate relationships. The second one relaxes this assumption, as

it allows for partial borrowing of information for the surrogate relationships across

treatment classes by assuming partial exchangeability [102]. In this model one or

more of the parameters describing the surrogate relationships can be either

exchangeable or non-exchangeable giving more flexibility when the assumption of

exchangeability is not reasonable. The proposed methodology and the results of the

data analysis, described in this chapter, have also been published in Statistics in

Medicine [103].

To investigate whether the proposed methods can improve the trial-level validation

of surrogate endpoints compared to subgroup analysis, we carried out a extensive

simulation study. The aim of the simulation study was to assess whether or not

the proposed methods result in less biased and more precise estimates of the

parameters describing the surrogate relationship and improve the accuracy and the

precision of the predictions of the true treatment effects on the final outcome.

Furthermore, we applied the methods (subgroup analysis with the standard model

and the two proposed methods) to a data example in aCRC which consist of three

treatment classes. As discussed previously, Buyse et al. [12] found a strong

association between treatment effects on PFS and OS in this disease area, by

including in their meta-analysis studies on one treatment class only (cytotoxic

treatments). However, more recently Ciani et al.[11] found sub-optimal surrogate

relationship between treatment effects for PFS-OS pair of outcomes concluding that

trial-level surrogate relationships could vary across treatment classes in aCrC (or

equally in other diseases) and a surrogate relationship observed in a specific

treatment class may not directly apply across other treatment classes or lines of

treatment. This may be particularly important for targeted treatments used only

in subsets of population. For instance in aCRC, anti-EGFR treatments are

recommended for patients without a KRAS/panRAS mutation as these mutations

are associated with resistance to the anti-EGFR therapies [104, 105] and the
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association pattern might be different for this particular treatment class in this

subset of population with this unique characteristic.

The existing and the proposed modeling approaches are introduced in Section 4.2, the

simulation study is presented in Section 4.3. A detailed description of the data-set

and the results of the evaluation on PFS-OS and TR-PFS pairs can be found in

section 4.4. The Chapter concludes with a discussion in Section 4.5.

4.2 Methods for trial-level surrogate endpoint

evaluation across treatment classes

This section presents existing and the proposed approaches to evaluate association

patterns of potential surrogate markers across treatment classes. Firstly, subgroup

analysis with Daniels and Hughes model is presented as the standard approach to

investigate potential differences in surrogate relationships in each treatment class

separately. Secondly, two alternative Bayesian meta-analytic methods are introduced

as alternative approaches to subgroup analysis. They allow for the association

patterns to vary across classes taking advantage of exchangeability . The use of

exchangeability across treatment effects consisting of multiple studies has a long

history in evidence synthesis. Recently, exchangeability has been assumed across

certain nodes, doses levels or treatment groups in hierarchical network meta-analysis

models [106–109]. These approaches take advantage of the attractive statistical

properties of exchangeability [110–112] leading to more precise inferences for the

parameters of interest as they allow strength to be borrowed across/within groups.

4.2.1 Subgroup analysis with a standard surrogacy model

The simplest way to investigate differences in trial-level surrogate relationships within

treatment classes is to perform subgroup analysis using a bivariate meta-analysis.

In this chapter, the Bayesian meta-analytic model proposed by Daniels and Hughes

[13] was used as evaluation method.

To perform subgroup analysis across treatment classes we applied the model (eq. 4.1

and eq 4.2) to subsets of data that consist of only one class of treatment j, examining
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surrogate relationship in each subgroup separately, taking motivation from similar

analyses in clinical trials [101, 113].

y1ij

y2ij

 ∼ N

δ1ij

δ2ij

 ,

 σ2
1ij σ1ijσ2ijρwij

σ1ijσ2ijρwij σ2
2ij

 (4.1)

δ2ij|δ1ij ∼ N(λ0j + λ1jδ1ij, ψ
2
j ) (4.2)

Equation (4.1) corresponds to the within-study model where y1ij, y2ij are the observed

treatment effects on surrogate endpoint and on the final outcome for each study i and

treatment class j. At the between-studies level (4.2) a linear relationship between the

true effects on the surrogate δ1i and the true effects on the final outcome describes

the trial-level surrogate relationship of the jth treatment class. In practice this

linear relationship can be used to predict the true effect on the final outcome from

a known true effect on the surrogate in a new study i and from a specific treatment

class j. The parameters λ0j, λ1j, ψ2
j correspond to the intercept, the slope and the

conditional variances of the linear relationship of the jth treatment class and measure

the shape of the relationship and the strength of the association between the true

treatment effects on the surrogate endpoint and the effects on the final outcome.

These parameters form the criteria of surrogate endpoint evaluation as described

in section 3.2.1.1 and in section 4.2.1.1 and should be met for each treatment class

separately.

Implementing this model in the Bayesian framework, no prior knowledge was assumed

about the parameters describing the surrogate relationships, thus non-informative

priors were placed on all the unknown parameters. This allows the data to dominate

the posterior distribution even if the data-set is relatively small, hence the following

prior distributions were used in the simulation study and the motivating example:

δ1i ∼ N(0, 100), λ0 ∼ N(0, 100), λ1 ∼ N(0, 100), ψ ∼ N(0, 100)I(0, ).

This kind of analysis is very practical when association patterns in a given disease

area are different and the treatment classes consist of many studies. By performing

subgroup analysis, potential differences in the association patterns across treatment
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classes can be explored.

4.2.1.1 Criteria for surrogacy

In this chapter the evaluation framework proposed by Daniels and Hughes[13] was

used to investigate surrogate relationship within each treatment class. As described

in section 3.2.1.1 a strong association (surrogate relationship) requires the slope

to be non zero, as it establishes the association between treatment effects on the

surrogate and the final outcome. The conditional variance should be approximately

zero as this implies that δ2i could be perfectly predicted given δ1i. The parameter λ0

corresponding to the intercept is expected to be zero which ensures that no treatment

effect on the surrogate endpoint will imply no effect on the final outcome. These

three simple rules will be referred to as surrogacy criteria in this chapter. A simple

way to examine these surrogacy criteria is to check whether or not zero is included

in the 95% credible intervals (CrIs) of λ0, λ1 and to compute the Bayes factor for

the hypothesis H1: ψ2 = 0. The model with ψ2 = 0 is a nested model within the

standard model [114], so in order to compare these models, Bayes factors can be

computed using the Savage Dickey density ratio [115]. To implement the Savage

Dickey density ratio, proper prior distributions for ψ are needed. A moderately

informative half normal prior distribution N(0, 2)I(0, ) was used for the conditional

standard deviation. The R code of the Bayes factors calculation can be found in the

Appendix B.6. A strong association pattern (surrogate relationship) requires zero to

be included in the CrI of λ0, zero not to be included in the CrI of λ1 and the Bayes

factor of ψ2 to be greater than 3.3 [39].

4.2.2 Hierarchical model with full exchangeability (F-EX)

When subgroup analysis is used to investigate the trial-level surrogate relationships

within treatment classes the validation process may fail due to limited data resulting

in estimates of the parameters describing surrogate relationships obtained with

considerable uncertainty [101]. Our first approach (Full-exchangeability (F-EX)

model) extends the standard model 4.2.1 by adding another level of hierarchy to its

hierarchical structure. By doing this, the proposed model accounts for differences

in trial-level association patterns across different treatment classes [116–118]. The
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method can be applied to continuous and normally distributed aggregate data or

it can be used for binomial or time to event data when they are transformed to

the log odds ratio scale or log hazard ratio scale respectively. Similarly as in the

standard model, at the within-study level we assume that correlated and normally

distributed observed treatment effects y1ij and y2ij (logHR or logOR) in each study i

and treatment class j estimate the true treatment effects δ1ij and δ2ij on the surrogate

and final outcomes respectively.

y1ij

y2ij

 ∼ N

δ1ij

δ2ij

,
 σ2

1ij σ1ijσ2ijρwij

σ1ijσ2ijρwij σ2
2ij

 (4.3)

δ2ij|δ1ij ∼ N(λ0j + λ1jδ1ij, ψ
2
j ) (4.4)

λ0j ∼ N(β0, ξ
2
0), λ1j ∼ N(β1, ξ

2
1) (4.5)

The parameters σ2
1ij, σ2

2ij, ρwij correspond to the within-study variances and

within-study correlations for each study i in treatment class j. The observed

estimates y1ij, y2ij, σ1ij, σ2ij are aggregate data extracted from systematic review

RCTs whilst, the within-study correlations ρwij can be calculated using a bootstrap

method from IPD [119]. The true effects δ1ij on the surrogate endpoint are

modelled as fixed effects.

In contrast to subgroup analysis with the standard model, F-EX is fitted to full

data-set and not only to a specific subgroup of data. It also assumes unique linear

relationships between true treatment effects on the surrogate endpoint and the final

outcome across treatment classes. Each relationship between the true effects on the

surrogate endpoint δ1ij and the final outcome δ2ij is described by the same linear

model (eq. 4.4) as in Daniels and Hughes model, where λ0j denotes the intercept

of the jth treatment class and λ1j establishes the relationship between treatment

effects on surrogate and final outcomes within the treatment class j. Furthermore,

the intercepts λ0j and the slopes λ1j are assumed exchangeable across treatment

classes leading to full borrowing of information across treatment classes (eq. 4.5).

This is implemented by assuming exchangeability of these parameters and placing

common normal distributions on λ0j and λ1j with means and variances β0, ξ2
0 and β1,
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ξ2
1 . Hence, when a slope and an intercept are estimated within a specific class, this

assumption allows for full borrowing of information across all treatment classes. To

evaluate whether a candidate endpoint is considered a valid surrogate endpoint in a

given treatment class, all three surrogacy criteria need to be met for this particular

class.

Implementing this model in the Bayesian framework, non-informative prior

distributions were placed on the unknown parameters of the model such

as: β0, β1 ∼ N(0, 100) and ξ0, ξ1 ∼ N(0, 100)I(0, ), δ1ij ∼ N(0, 100) and

ψj ∼ N(0, 100)I(0, ). The WinBUGS code of the model can be found in the

Appendix B.4.

Overall, F-EX model extends the standard model (described in section 3.2.1) by

including an additional layer of hierarchy to the linear relationship (eq. 4.5) between

true effects on the surrogate and the final outcome, assuming that slopes and

intercepts are exchangeable across treatment classes.

The exchangeable estimates, however, are shrunk towards the means β0, β1 and the

amount of shrinkage depends on the number of studies within each class, the between

treatment class heterogeneity [102] and the number of treatment classes. Although

these statistical properties are very attractive in terms of potential reduction of

uncertainty around the parameters of interest, they are advantageous only when the

assumption of exchangeability is reasonable, otherwise there is a danger of excessive

shrinkage.

4.2.3 Hierarchical model with partial exchangeability (P-EX)

As discussed in the previous section, when the assumption of exchangeability of

the intercepts and the slopes is not reasonable, F-EX may give biased estimates

due to excessive shrinkage towards the pooled mean [110–112]. Hence, F-EX can

be extended further allowing for tailored borrowing of information by assuming

partial exchangeability for a/some of the parameters of interest, similarly as in the

method proposed by Neuenschwander et al. [102]. Partial-exchangeability (P-EX)

model relaxes the assumption of exchangeability allowing a parameter of interest

in a specific class to be either exchangeable with all or some of the parameters
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from other treatment classes or non-exchangeable throughout the estimation process.

This model is more flexible compared to F-EX, in particular in data scenarios where

the assumption of exchangeability is not fully reasonable for some of the treatment

classes.

The within-study level (eq. 4.6) of P-EX is exactly the same as in F-EX where, y1ij,

y2ij are the treatment effects on the surrogate endpoint and the final outcome in

study i and treatment class j. These effects follow a bivariate normal distribution

with mean values corresponding to the true treatment effects δ1ij and δ2ij on the two

outcomes.

y1ij

y2ij

 ∼ N

δ1ij

δ2ij

,
 σ2

1ij σ1ijσ2ijρwij

σ1ijσ2ijρwij σ2
2ij

 (4.6)

δ2ij|δ1ij ∼ N(λ0j + λ1jδ1ij, ψ
2
j ) (4.7)

λ0j ∼ N(β0, ξ
2
0)

λ1j =

 λ1j ∼ N(β1, ξ
2
1) if pj = 1

λ1j ∼ N(0, 100) if pj = 0
(4.8)

In the between-studies model (eq. 4.8), the parameters of slopes are modelled in

a different way compared to F-EX model. In this approach two possibilities arise

for these parameters for each treatment class j. When pj = 1 the parameter λ1j in

a specific treatment class j can be exchangeable with some or all the parameters

of the slopes from the other treatment classes via an exchangeable component (i.e.

follows a common normal distribution with other slopes as in F-EX model). On the

other hand, when pj = 0 the slope can be non-exchangeable with any slopes from

the other treatment classes. In this case a vague prior distribution can be placed on

the parameter, as in the standard model.

The method uses both components during the estimation process of λ1j. Specifically,

in each MCMC iteration, the sampler chooses between the two components by using

a Bernoulli distribution pj ∼ Bernoulli(πj). By calculating the posterior mean of

this Bernoulli distribution we derive the mixture weights of each treatment class

and we are able to evaluate the degree of borrowing of information throughout
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the estimation process. The main advantage of this method is that the degree

of borrowing of information is inferred based on the similarity of the data. The

hyper-parameters πj of the Bernoulli prior distribution can be either fixed or, in a

fully Bayesian framework, they can follow a prior distribution, for example, a Beta

distribution πj ∼ Beta(1, 1).

In a special case where pj = 1 for all treatment classes, P-EX model reduces to full

exchangeability model as it uses only the exchangeable component. Having pj = 0

for all treatment classes makes the P-EX model equivalent to subgroup analysis using

the standard model as only the non-exchangeable component is used to estimate

λ1j in this case. Implementing the model in the Bayesian framework the same

non-informative prior distributions can be placed on the unknown parameters β0, β1,

ξ0, ξ1, δ1ij as in F-EX model. The WinBUGS code of the model can be found in the

Appendix B.5.

4.2.4 Cross-validation

One of the main aims of this chapter was to explore whether the methods we proposed

in the sections 4.2.2, 4.2.3, improve the predictions of the true treatment effects on the

final outcome (by reducing bias and/or uncertainty) compared to subgroup analysis

using a standard surrogacy model. To evaluate this, a cross-validation procedure

was carried out. It is a similar approach to the ’leave-one-study-out’ procedure that

was described by Daniels & Hughes [13] and it is repeated as many times as the

number of studies in the data-set.

During the cross-validation procedure, for each study i (i = 1, .., N), the treatment

effect on the final outcome y2i is omitted and assumed unknown. This effect is

then predicted from the effect on the surrogate endpoint and by taking into account

the treatment effects on both outcomes from the remaining studies. In a Bayesian

framework it can be achieved by performing MCMC simulation. In a simulated data

scenario, this procedure can be used to draw inferences about predicting the true

effect on the final endpoint δ2i in a ’new’ study i, however, in real data scenarios

the true values of the treatment effects are unknown and therefore, we can only

compare the predicted values of the true treatment effect with the values of the
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observed treatment effect y2i. In this situation the mean predicted effect is equal to

the true effect δ̂2i predicted by MCMC simulation and the variance of the predicted

effect is equal to σ2
2i+var(δ̂2i|y1i, σ1i, y1(−i), y2(−i)), where y1,2(−i) denote the observed

treatment effects from the remaining studies without the study that is omitted

in ith iteration [13]. Then it can be examined whether the 95% predictive interval

(constructed using the variance) include the observed value of the treatment difference

y2i on the final outcome.

4.3 Simulation study

We carried out a simulation study to assess the performance of the methods and to

compare them with subgroup analysis conducted using Daniels and Hughes model.

We evaluated the performance of the methods in distinct data scenarios generated

assuming different strengths of association within classes, different levels of similarity

of the association patterns across classes and different number of studies per class.

We evaluated the models’ ability to identify treatment classes with strong association

patterns and to make predictions of the treatment effect on the final outcome in a

new study from a treatment effect measured on the surrogate endpoint.

4.3.1 Simulation scenarios and generation process

Nine data scenarios were simulated with 1000 replications per scenario. In each

scenario we simulated 5 treatment classes varying the number of studies. Different

heterogeneity patterns in each treatment class were assumed hence, in order to have

a control over such heterogeneity patterns when simulating the data, an assumption

about the distribution of the true effects both on the surrogate and the final endpoints

was made. The standard model by Daniels & Hughes assumes fixed effect for the

true effects on the surrogate endpoint (no common distribution) making difficult to

control the heterogeneity patterns when simulating the data. To avoid this issue,

the data were simulated using a product normal formulation of bivariate random

effect meta-analysis (PNF of BRMA) (discussed in Section 3.2.3), assuming normal

random effects on the surrogate endpoint. Apart from this additional assumption,

this method is the same as Daniels & Hughes model using a bivariate normal
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distribution to describe the within-study variability and a linear relationship to model

the association between the surrogate and the final outcome. However, simulating

data from this model can lead to results obtained with increased uncertainty, as the

models used to analyse the data make fewer distributional assumptions.

To generate the data, the following steps were pursued:

1. Set the number of classes N = 5

2. Create three designs (a short description about the designs can be found below)

3. Create three sets of scenarios: two with fixed number of studies (nj=16 and

nj=8, j=1,...,5) per treatment class and one with unbalanced classes (n1 = 4,

n2 = 8, n3 = 6, n4 = 10, n5 = 7 ). We applied the three sets of scenarios to

each design having in total 9 scenarios (3 designs × 3 sets = 9 scenarios).

4. Simulate the true effects of the surrogate endpoint and the final outcome using

the following distributions: δ1ij ∼ N(η1j, ψ
2
1j), δ2ij|δ1ij ∼ N(η2ij, ψ

2
2j) with

η2ij = λ0j + λ1jδ1ij and ψ1j =
ψ2j

|λ1j |
√

(1/ρ2bj)−1

5. Simulate the estimates of treatment effect from the

following distribution for each class j separately:y1ij

y2ij

 ∼ N

δ1ij

δ2ij

,
 σ2

1ij σ1ijσ2ijρwij

σ1ijσ2ijρwij σ2
2ij


The values of the parameters are listed in Table 1 and a short description of each

design can be found below:

Table 4.1: Simulation designs

1st design 2nd design 3rd design
λ11 = 0.40, ρb1 = 0.89 λ11 = 0.60, ρb1 = 0.93 λ11 = 0.40, ρb1 = 0.90
λ12 = 0.45, ρb2 = 0.90 λ12 = 1.55, ρb2 = 0.99 λ12 = 0.50, ρb2 = 0.70
λ13 = 0.50, ρb3 = 0.91 λ13 = 1.60, ρb3 = 0.99 λ13 = 0.60, ρb3 = 0.93
λ14 = 0.55, ρb4 = 0.92 λ14 = 1.65, ρb4 = 0.99 λ14 = 0.70, ρb4 = 0.75
λ15 = 0.60, ρb5 = 0.93 λ15 = 1.70, ρb5 = 0.99 λ15 = 0.80, ρb5 = 0.95

λ0j = 0 λ0j = 0 λ0j = 0
σ1ij,2ij = 0.1 σ1ij,2ij = 0.1 σ1ij,2ij = 0.1
ρwij = 0.4 ρwij = 0.4 ρwij = 0.4
ψ2j = 0.08 ψ2j = 0.08 ψ21,23,25 = 0.08

ψ22,24 = 0.30
η1j = 0.3 η1j = 0.3 η1j = 0.3
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Design 1:

In the first design, the aim was to illustrate the properties of exchangeability. Five

treatment classes were generated having high degree of similarity for their slopes and

intercepts. We simulated data assuming strong association (see surrogacy criteria in

Section 4.2.1.1) in each individual class but weak overall.

Design 2:

The second design illustrates the situation where the assumption of exchangeability

is in doubt for one of the parameters describing the surrogate relationships in a

particular class. To achieve this, we simulated one treatment class with very different

slope compared to the other four treatment classes classes. Similarly as in the first

scenario, strong association patterns in each individual class were assumed.

Design 3:

In the last design we focus on the association patterns of strengths that vary across

treatment classes, investigating whether the proposed methods can estimate a strong

association pattern better compared to subgroup analysis with the standard model

and whether they can distinguish between the different association patterns despite

borrowing of information across treatment classes. To achieve this, three out of

five treatment classes were generated with strong association and the remaining two

classes with a weak association.

4.3.2 Estimands and performance measures

The primary estimand of the simulation study was the parameter of the slope λ1j.

Subgroup analysis with the standard model and the proposed hierarchical models

make different assumptions about this parameter, hence, by estimating the slopes

across the simulated scenarios we assessed the performance of these models under

different settings. The second group of estimands of the simulation study were the

predicted true treatment effects δ2ij on the final outcome, in each study i and each

treatment class j. These effects can be predicted by carrying out a cross-validation

procedure in each data scenario. In the simulation study, the true value of true

treatment effect on the final endpoint δ2ij was known, as it had been simulated,

therefore here we were able to compare the predicted effects with the true values of

true treatment effects (in real data scenarios we compare the predicted effect with the
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observed effect). The last estimand of the simulation study reflects the ability of the

models to estimate a strong association pattern in each treatment class. To assess

this, we estimated 95% CrIs of slopes, 95% CrIs of intercepts and Bayes factors of the

conditional variances in each treatment class, and used the three surrogacy criteria

(Section 4.2.1.1) proposed by Daniels and Hughes (a strong association pattern can

be inferred when the three surrogacy criteria are satisfied).

To evaluate the performance of the models we calculated and monitor the following

measures across all the simulated scenarios: coverage probability of the 95% CrIs

of λ1j and the 95% predictive intervals of δ2ij, absolute bias and root mean square

error (RMSE) of λ̂1j and δ̂2ij. Furthermore, to investigate potential decrease in

the degree of uncertainty of the estimates as a result of borrowing of information

across treatment classes, we calculated ratios of the width of the 95% CrIs. Two

width ratios were defined and used across the simulation study. The first width

ratio corresponded to F-EX model and it was defined as: wλF−EX
1j

/wλsubgr1j
, the ratio

of the widths of the CrIs of λ1j from F-EX to the width of the CrIs of λ1j from

subgroup analysis using the standard model. The second width ratio corresponded

to P-EX model and it was defined as: wλP−EX
1j

/wλsubgr1j
, the ratio of the widths of

the CrIs of λ1j from P-EX to the width of the CrIs of λ1j from subgroup analysis

with the standard model. Similarly, two width ratios were calculated and monitored

across scenarios about the predictive intervals. We evaluated the ability of subgroup

analysis and the proposed hierarchical methods to estimate a strong association

pattern, by calculating probabilities of estimating a strong association pattern, in

each treatment class across the scenarios and the models.

4.3.3 Results

This section presents the results of simulation study, reporting the average coverage

probabilities across treatment classes of the CrIs of λ1j and δ2ij in each scenario,

the average absolute bias and RMSE of λ̂1j and δ̂2ij across treatment classes, the

average width ratios of λ1j and δ2ij across treatment classes in each scenario and

the probability to estimate a strong association pattern by fitting each model. The

Figures and the Tables in the results section list the performance of the posterior

means of λ̂1j, the performance of the posterior means of δ̂2ij, and the probabilities
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of estimating a strong association pattern (see definition in Section 4.2.1.1) in each

class across methods. Detailed results for the performance of λ̂1j and δ̂2ij in each

class separately were listed in the Appendix (see sections B.1 and B.2).

4.3.3.1 Slope λ1j

Figure 4.1 presents the results across the nine scenarios reporting averages of the

performance measures over the five classes of treatment and across 1000 replications.

Table 4.2 displays the values of the mixture weights pj obtained from P-EX. These

values are used to illustrate the degree of borrowing of information in each treatment

classes.

Starting from the first design (scenarios 1, 2, 3), where the treatment classes were very

similar in terms of patterns (similar slopes), F-EX and P-EX were superior compared

to subgroup analysis as they gave estimates of slopes with lower average absolute

bias, average RMSE and reduced uncertainty (narrower 95% CrIs) due to borrowing

of information across classes. Specifically when 16 studies where available in each

treatment class, F-EX and P-EX models performed marginally better compared to

subgroup analysis in term of average absolute bias and average RMSE. However, in

the scenario with 8 studies in each treatment class and the scenario with unbalanced

treatment classes, the proposed methods resulted in estimates of λ1j with significantly

lower average absolute bias and RMSE across treatment classes compared to subgroup

analysis. Additionally, substantial improvement was observed in the precision of the

estimates of λ1j across classes. In the scenario with 8 studies in each treatment

class, the average width ratio of F-EX versus subgroup analysis was 0.60 and the

average width ratio of P-EX versus subgroup analysis was 0.61. In the scenario with

unbalanced treatment classes, the average width ratio of for F-EX was 0.50 and the

average width ratio for P-EX was 0.51. Focusing on the results of Table 4.2, P-EX

model achieved almost the same level of borrowing of information as F-EX model in

the first three scenarios (design 1) - the mixtures weights were very close to 1 across

treatment classes (Table 4.2). Overall, the proposed hierarchical models performed

better compared to subgroup analysis but the difference was more pronounced in

the scenarios with smaller number of studies.

Moving to the second design (scenarios 4, 5, 6), where the exchangeability assumption
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was not reasonable for one of the classes, P-EX model yielded the most robust

results. The model resulted in estimates with the smallest average absolute bias

and average RMSE. It is important to highlight that P-EX reduced the degree of

borrowing of information in the 1st treatment class were the true slope was distinctly

different, whilst achieved almost the same degree of borrowing of information across

the remaining classes. Table 4.2 displays the mixture weights in these scenarios

across all treatment classes. On the other hand, F-EX achieved inferior performance

compared to P-EX in terms of average absolute bias and average RMSE and average

width ratio in the scenarios with 16 and 8 studies per treatment class. Furthermore,

F-EX performed poorer compared to all the other methods in the 6th scenario with

unbalanced and relatively small number of studies per class, leading to more biased

results. This indicates that F-EX model was not an appropriate modeling approach

when the assumption of exchangeability was not reasonable. Subgroup analysis using

the standard model achieved a reasonable performance only in the forth scenario

where there were sufficient data.

In the third design (scenarios 7, 8, 9), where the strength of the association patterns

varied, the proposed models achieved superior performance compared to subgroup

analysis resulting in lower average absolute bias and lower average RMSE, similarly

as in the first three scenarios. Furthermore, they gave estimates of λ1j with reduced

uncertainty, as the average width ratios were 0.79, 0.67 and 0.56 for both methods

in each scenarios respectively.

The performance of the models varied in terms of the coverage probability of the

95% CrIs of λ1j across all scenarios. In the scenarios 1, 4 and 7 where the number of

studies per class was relatively high, the models achieved 95% coverage probabilities.

However, in the scenarios where the number of studies was smaller the coverage

probability was higher, as the 95% CrIs were wider (more conservative) due to the

sparsity of the data and likely to the fact that the model we used in the generation

process makes an additional distributional assumption compared to Daniels and

Hughes model and the proposed methods.
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Figure 4.1: Absolute bias of λ̂1j averaged over the 5 treatment classes (first row), coverage of λ1j averaged over the 5 classes (second row),
RMSE of λ̂1j averaged over the 5 classes (third row) and width ratios of λ1j averaged over the 5 classes (forth row)
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Table 4.2: Mixture weights pj across all scenarios

Scenarios

1st
treatment

class

2nd
treatment

class

3rd
treatment

class

4th
treatment

class

5th
treatment

class
1st scenario 0.99 0.99 0.99 0.99 0.99
2nd scenario 0.99 0.99 0.99 0.99 0.99
3rd scenario 0.99 0.99 0.99 0.99 0.99
4th scenario 0.56 0.98 0.98 0.98 0.98
5th scenario 0.31 0.88 0.88 0.88 0.88
6th scenario 0.80 0.98 0.98 0.98 0.98
7th scenario 0.99 0.99 0.99 0.98 0.98
8th scenario 0.98 0.99 0.99 0.98 0.98
9th scenario 0.98 0.98 0.98 0.98 0.98

4.3.3.2 Predictions of the true treatment effect on the final outcome δ̂2ij

Figure 4.2 shows the results from the cross-validation procedure which resulted in

predictions of the true treatment effects (δ̂2ij) and 95% predictive intervals of the

true effects δ2ij. It presents the same measures as Figure 4.1 averaged over the five

classes and over the number of studies.

In the first design (scenarios 1, 2, 3), F-EX and P-EX models outperformed subgroup

analysis in terms of the average absolute bias, the average RMSE and the uncertainty

around the estimate δ̂2ij. However, there was no winner between them as both

methods had almost the same degree of borrowing of information resulting in 7%,

20%, and 33% narrower on average predictive intervals compared to subgroup analysis

in these three scenarios respectively - the width ratios for both methods were 0.93

in the 1st scenario, 0.8 in the 2nd scenario, 0.67, in the 3rd one.

In the second design (scenarios 4, 5, 6), P-EX yielded predictions of the true treatment

effect on the final outcome with the smallest average absolute bias, average RMSE

and 95% CrIs of δ2ij with the smallest average width ratio. Furthermore, P-EX

method gave the most robust results for the ’extreme’ treatment class, reducing by

44%, 69% and 20% the borrowing of information in this class across the scenarios

(see the mixture weights of the 1st class in Table 4.2). In the 6th scenario F-EX

performed poorer compared to P-EX model leading to higher average absolute bias

and average RMSE. Subgroup analysis performed almost equally well as the P-EX

model in the 4th scenario where the number of studies per class was relatively large.
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The third design (scenarios 7, 8, 9) gave similar results as the first three in terms

of the uncertainty (average width ratios), the average absolute bias and the average

RMSE of δ̂2ij. F-EX, P-EX models performed equally well, whilst subgroup analysis

with the standard model was the worst approach resulting in inflated predictive

intervals and larger RMSE in all cases.

In scenarios 1, 4 and 7, the models achieved 95% coverage due to the large amount

of data, however, in the remaining scenarios where the number of studies was smaller

the models resulted in higher than 95% coverage probabilities.
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Figure 4.2: Absolute bias of δ̂2ij averaged over the 5 treatment classes and the simulated studies (first row), coverage averaged over the
5 classes of δ2ij and the simulated studies (second row), RMSE of δ̂2ij averaged over the 5 classes (third row) and width ratios of δ2ij

averaged over the 5 classes and the number of simulated studies (forth row)

1st design 2nd design 3rd design
Absolute Bias

C
overage

R
M

SE
W

idth R
atio

Fixed nj = 16 Fixed nj = 8 Unbalanced Fixed nj = 16 Fixed nj = 8 Unbalanced Fixed nj = 16 Fixed nj = 8 Unbalanced

0.00

0.05

0.10

0.15

0.20

0.95

0.97

0.99

0.0

0.1

0.2

0.7

0.8

0.9

1.0

Model Subgroup 
 analysis F−EX P−EX

70



Chapter 4. Improving the validation of surrogate endpoints in a specific treatment
class, whilst borrowing information across classes

4.3.3.3 Probabilities of estimating a strong association pattern

Another aim of the simulation study was to assess the ability of the models to

identify treatment classes with a strong association pattern. To evaluate this, we

calculated probabilities of estimating a strong association pattern obtained from

the 1000 replications in each scenario. These probabilities were based on the three

surrogacy criteria proposed by Daniels and Hughes. Table 4.3 shows the average

probabilities of estimating a strong association pattern over the five treatment classes

across the first 6 data scenarios. Overall, F-EX and P-EX methods estimated the

association patterns better compared to subgroup analysis across all scenarios. In

the first design (scenarios 1, 2, 3) where the association was designed to be strong

for all the classes, F-EX and P-EX models estimated a strong association pattern in

more than 85% of the simulations. Subgroup analysis estimated the 81% of them in

the 1st scenario but its performance reduced noticeably in the 2nd and 3rd scenario

where the data were more sparse. In the second design (scenarios 4, 5, 6) with strong

association patterns across all classes, P-EX and F-EX estimated more than 87% of

the association patterns across these three scenarios. Subgroup analysis performed

well only in the 4th scenario predicting the 89% of the association patterns but its

performance gradually reduced as the number of studies was decreased in scenario

5 and 6. The probabilities of estimating a strong association per class in designs 1

and 2 are presented in the Appendix in section B.1 (last column of the tables).

Table 4.3: Probabilities of estimating a strong association pattern averaged over the
five treatment classes, in the 1st and the 2nd design

Design Scenario
No of studies
across classes

Subgroup
Analysis

F-EX
model

P-EX
model

1st 1st Fixed (nj = 16) 0.81 0.85 0.85
2nd Fixed (nj = 8) 0.71 0.89 0.90
3rd Unbalanced 0.56 0.89 0.88

2nd 4th Fixed (nj = 16) 0.89 0.91 0.91
5th Fixed (nj = 8) 0.88 0.92 0.92
6th Unbalanced 0.72 0.88 0.87

The last design focuses on the association patterns, consisting of three treatment

classes with strong association patterns and two classes with weak surrogate

relationship. In this design, it is important to present the probabilities of

estimating a strong association pattern in each treatment class separately as the
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association patterns varied across classes.. Table 4.4 presents the probabilities in

each treatment class separately across the three models. F-EX and P-EX methods

were able to estimate a strong association pattern with higher probability compared

to subgroup analysis in the classes where the association was designed to be

strong. At the same time, the methods successfully identified classes with strong

association patterns from a mixture of classes with weak and strong association

patterns, even for the scenarios with relatively few studies per class where subgroup

analysis failed almost completely to identify. Subgroup analysis performed similarly

to the F-EX and P-EX methods in the 7th and 8th scenario but its performance

was substantially decreased in the scenario with unbalanced treatment classes and

especially in the first treatment class which consists of 4 studies.

Table 4.4: Probabilities of estimating a strong association pattern per class in the
3rd design

Scenario
No of studies
across classes

Treatment
classes

Subgroup
Analysis

F-EX
model

P-EX
model

7th Fixed (nj = 16) 1st class 0.82 0.84 0.84
2nd class∗ 0.00 0.00 0.00
3rd class 0.83 0.85 0.85
4th class∗ 0.00 0.00 0.00
5th class 0.80 0.80 0.80

8th Fixed (nj = 8) 1st class 0.78 0.89 0.89
2nd class∗ 0.04 0.05 0.05
3rd class 0.80 0.90 0.90
4th class∗ 0.06 0.06 0.06
5th class 0.85 0.87 0.86

9th Unbalanced 1st class 0.06 0.82 0.80
(n1 = 4,n2 = 8, 2nd class∗ 0.06 0.07 0.07
n3 = 6,n4 = 10, 3rd class 0.65 0.91 0.91
n5 = 7) 4th class∗ 0.03 0.03 0.03

5th class 0.82 0.89 0.89
*Treatment classes with weak association pattern
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4.3.4 Key findings

This section presents a short summary of the key finding of the simulation study:

• The aim of the simulation study was to illustrate and assess the performance

of the methods under different scenarios. The models gave 95% coverage

probabilities in the scenarios 1, 4, and 7 where the number of studies was

sufficiently large (16 for each class). However, in the remaining scenarios the

coverage probabilities were higher than 95%, which means that the methods

derived more conservative CrIs of parameters than expected. This is largely

due to the sparsity of the data in these scenarios but may also be partly due

to different models being used to simulate and analyse the data as explained

in section 4.3.1.

• In the first design (scenarios 1, 2, 3) where the assumption of exchangeability

was reasonable, F-EX and P-EX models achieved similar performance and

performed better compared to subgroup analysis giving on average narrower

95% CrIs of λ1j and 95% predictive intervals of δ2ij. This indicates that

P-EX model successfully identified the correct level of borrowing of information

inferring that the mixture weights should be very close to 1.

• P-EX model was the best choice in all the scenarios of the second design

(scenarios 4, 5, 6) where there was a treatment class with distinctly different

slope. It reduced the degree of borrowing of information for the ’extreme’

treatment class, resulting in the most accurate posterior means of the slopes

in the scenarios 4, 5 and 6 and the most precise 95% CrIs of the slopes in the

scenarios 4 and 5. P-EX model was the best choice in terms of predictions of the

true effect on the final endpoint, reducing the width of predictive intervals by

4%, 13% and 23% compared to subgroup analysis in each scenario respectively.

• Another aim of the simulation study, was to investigate whether the proposed

methods identified treatment classes with the strong association patterns better

compared to subgroup analysis across all data scenarios. In particular, in

scenarios 3, 6 and 9, where the data were sparse, the proposed hierarchical

methods were able to estimate surrogacy significantly better compared to

the subgroup analysis. This illustrates well the benefits of using hierarchical
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methods when data are limited. Furthermore, as illustrated by scenarios

7, 8 and 9, F-EX and P-EX models could easily distinguish between the

different association patterns, as they identified treatment classes with strong

association patterns and at the same time did not overestimate the strength of

the association in the classes where the association was designed to be weak.

4.4 Data example

4.4.1 Advanced colorectal cancer, treatment classes and

candidate endpoints

Advanced colorectal cancer is among the most common types of cancer worldwide

[120]. It has the third highest incident rate in the UK after breast and lung cancer.

Although the incident rates remained relatively stable for over a decade in the UK,

recent reports have shown increased rates of aCRC in economically transitioning

countries around the world [121]. Among all patients diagnosed with colorectal

cancer approximately the 20% will develop a metastasis and treatment is palliative

rather than curative as the 5-year overall survival approximately is 10% [122].

Traditional therapies form a treatment class of chemotherapy which consist of

cytotoxic agents. The most efficacious cytotoxic agents in aCRC are 5-fluorouracil

(5-FU) folinic acid, irinotecan, oxaliplatin and capecitabine. These drugs combined

consist of the chemotherapy treatment class. Some of them are: FOLFOX (folinic

acid, fluorouracil, oxaliplatin), FOLFIRI (folinic acid, fluorouracil, irinotecan) or

XELOX (capecetabine and oxaliplatin). Two newer classes of targeted treatments

have shown to improve treatment outcomes such as OS or PFS for aCRC

when combined with cytotoxic agents [123–127]. The first one is the class of

anti-angiogenic treatments. These treatments focus on stopping angiogenesis,

which is the process of making new blood vessels. Tumours use blood vessels to

grow, therefore, by blocking the flow of nutrients and oxygen to tumours they

can halt the tumour growth and stop the spread. Some of the most popular

angiogenesis inhibitors in aCrC are Bevacizumab, Regorafenib and Ziv-aflibercept.

The newer class of targeted treatments are the anti-epidermal growth factor
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receptor anti-EGFR monoclonal antibodies. Researches have found that therapies

which block EGFR can potentially be effective for stopping or slowing tumour

growth for aCRC. Anti-EGFR agents such as cetuximab and panitumumab are

widely used in combination with cytotoxic for aCRC. However, the efficacy of

EGFR inhibitors was found to vary as several studies have shown limited benefits

to patients who have tumours with K-RAS mutations [104].

The primary and long term final outcome in this disease area is OS whereas, the

most investigated surrogate endpoints are PFS, TTP and TR. These endpoints

can be defined as continuous variables, however, TR can be considered also as

categorical with four ordered categories (complete response, partial response, stable

disease, progressive disease). Several authors have investigated the validity of the

above endpoints as surrogate endpoints over the last decade [11, 12, 24, 99, 128].

In 2007, Buyse et al. [12] showed that PFS is an acceptable surrogate endpoint for

OS using trials which compare only traditional types of chemotherapy with modern

types of chemotherapy. After the introduction of targeted treatments Giessen et

al. [99] investigate the study-level surrogacy patterns across treatment classes by

performing subgroup analysis. They inferred that further research was needed to

establish a strong surrogate relationship between treatment effects on PFS and

treatment effects on OS. Ciani et al. [11] investigated surrogate relationships between

treatment effects on potential surrogate endpoints (TR and PFS) and on the final

clinical outcome (OS) using a more recent and diverse in terms of treatment classes

data-set. They carried out a systematic review which consists of 101 RCTs including

the following 5 treatment classes: the class of chemotherapy, the anti-EGFR class,

angiogenesis inhibitors, other molecular-targeted agents and intrahepatic arterial

chemotherapies. They found that the surrogate relationships between the treatment

effects on PFS/TR and the OS were suboptimal. Specifically, they stated that PFS

was an acceptable surrogate endpoint for OS however, they found weaker association

pattern between the treatment effects on PFS and OS compared to the findings by

Buyse et al. [12]. They concluded that a very strong association pattern observed in

a specific treatment class (class of chemotherapy) in aCRC, may not apply directly

across other classes of treatments. More details about the studies and how the

systematic review was designed can be found in Ciani et al. [11]. We refer these
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data as ’Ciani data’ in the remainder of this chapter.

4.4.2 Data-extraction

To illustrate the proposed methodology, we focused on a subset of the ’Ciani data’,

examining the association patterns between treatment effects on TR and PFS and

treatment effects on PFS and OS including data from three treatment classes. We

extracted data from 35 studies reporting treatment effect on PFS and OS. 15 of

them belonged to the chemotherapy treatment class, 9 of them investigated

anti-EGFR therapies and 11 anti-angiogenic treatments. To investigate the

association patterns between treatment effects on TR and PFS, we extracted

data from 35 studies reporting treatment effects on these endpoints; 17 of them

investigated chemotherapies, 8 and 10 studies anti-EGFR and anti-angiogenic

treatments respectively. TR can be evaluated as a surrogate endpoint to treatment

effect on PFS, as treatment effects on TR is typically measured earlier compared to

treatment effects on PFS. In this data-set, IPD were available from four RCTs

[124, 129–131]. Two of the studies [130, 131] belonged to the class of chemotherapy

and the other two [124, 129] to the anti-angiogenic treatment class.

Treatment effects on PFS and OS were obtained on the log hazard ratio scale

logHR(OS), logHR(PFS), whereas the treatment effects on TR were calculated

from the reported number of events an measured on log odds ratio scale logOR(TR).

We also retrieved the corresponding standard errors in each study and on each

outcome.

Figure 4.3 provides a graphical representation of the data-set we used, where the size

of each data point corresponds to the size of each study. It illustrates the association

patterns between the treatment effects on each pair of outcomes across classes.
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Figure 4.3: Scatterplots of treatment effects on PFS-OS and TR-PFS
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4.4.3 Data synthesis

The method proposed by Daniels and Hughes, F-EX and P-EX models account

for within-study associations across studies via the within-study correlations

ρwi. Within-study correlations can be estimated using a bootstrap method (the

implementation of the bootstrap method can be found in the Appendix B.3) from

IPD.

Table 4.5 presents the within-study correlations between treatment effects on each

pair of outcomes for each of the studies where IPD were available.

Table 4.5: Within-study correlations across the 4 RCTs were IPD were available

Endpoints
Studies PFS-OS TR-PFS
AVF2107g Study[124] 0.52 -0.43
ML18147 Study [129] 0.54 -0.31
NO16966 study [130] 0.55 -0.39
NO16967 Study [131] 0.55 -0.38

The within-study correlations estimated for each pair of outcomes were very similar

across these 4 studies. Hence, due to the lack of IPD for the remaining studies, we

decided to use a fixed within-study correlation for each pair of outcomes across all

the studies of the data-set. By taking the mean of the 4 correlations for each pair of

outcomes, we created the following two within-study correlations: ρw(PFS−OS) = 0.54,

ρw(TR−PFS) = −0.38.
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4.4.4 Data analysis

To explore potential differences in association patterns across treatment classes,

we performed subgroup analysis using standard model and applied the proposed

hierarchical models to the extracted data. We estimated posterior distributions

for the parameters describing the surrogate relationships in each treatment class,

monitoring the posteriors means of the intercepts λ̂0j, the slopes λ̂1j and posterior

medians of conditional variances ψ̂2
j with their corresponding 95% CrIs and BFs of

ψ̂2
j using the Savage Dickey density ratio [115]. By using the evaluation framework

proposed by Daniels and Hughes (discussed in section 4.2.1.1), we were able to infer

whether or not a candidate endpoint is a valid surrogate in each treatment class.

A cross-validation procedure was also carried out to investigate the performance of

the prediction of the true treatment effects on the final clinical outcome in terms of

precision across methods. Throughout the cross-validation procedure, we monitored

and reported the following measures: mean absolute error of the predictions across

studies, ratio of the width of the 95% predictive intervals of P-EX or F-EX to the

width of the 95% predicted interval of subgroup analysis, averaged over the studies.

4.4.4.1 Association patterns across models and treatment classes

Subgroup analysis with the standard model

Table 4.6 presents the estimates of the parameters describing the surrogate

relationship of subgroup analysis with the standard method. Strong association

patterns were found between the treatment effects on PFS and the effects on OS in

the class of chemotherapy and the anti-angiogenic treatment class, as the three

criteria for surrogacy were satisfied (the 95% CrIs of λ01 and λ03 included zero, the

95% CrIs of λ11 and λ13 did not contain zero and there was substantial evidence

using BFs in favour of the hypotheses H1 : ψ2
1 = 0, and H1 : ψ2

3 = 0, the BFs of ψ2
1

and ψ2
3 were larger than 10). On the other hand, we can infer that the association

pattern between the treatment effects on PFS and the effects on OS in the

anti-EGFR treatment class was weak, as the 95% CrI of the posterior distribution

of the slope included zero. Therefore, PFS was a valid surrogate endpoint of OS

only in the anti-angiogenic treatment class and the class of chemotherapy.
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Investigating the surrogacy on TR-PFS pair of outcomes we found a similar pattern,

thus we can infer that there was an acceptable surrogate relationship between

treatment effects on TR and PFS in the chemotherapy and the anti-angiogenic

classes. The relationship was negative overall, as the slopes were negative across

classes. Additionally, the surrogacy criteria indicated poor surrogacy between the

treatment effects on TR and the treatment effects on PFS for anti-EGFR class, since

the 95% CrI of the slope λ12 included zero.

Table 4.6: Estimates of the parameters defining the surrogacy criteria of subgroup
analysis with the standard model

Treatment
Class parameter PFS-OS TR-PFS

N=15 N=17
λ01 -0.00 (-0.06, 0.05) -0.05 (-0.16, 0.03)

chemotherapy λ11 0.31 ( 0.08, 0.55) -0.26 (-0.40,-0.10)
ψ2

1 0.00 ( 0.00, 0.01) 0.02 ( 0.00, 0.07)
BF of ψ2

1 310.43 7.89
N=9 N=8

λ02 -0.05 (-0.29, 0.29) -0.20 (-0.42, 0.03)
anti-EGFR λ12 0.12 (-0.55, 1.02) -0.14 (-0.37, 0.02)

ψ2
2 0.01 ( 0.00, 0.10) 0.01( 0.00, 0.13)

BF of ψ2
2 25.33 14.42

N=11 N=10
λ03 0.05 (-0.04, 0.15) 0.07 (-0.08, 0.23)

anti-angiogenic λ13 0.48 ( 0.18, 0.80) -0.786 (-1.20,-0.46)
ψ2

3 0.01 ( 0.00, 0.04) 0.01 ( 0.00,0.09)
BF of ψ2

3 20.98 19.83

F-EX model

Table 4.7 displays results of the parameters describing the surrogate relationships

of F-EX across the three treatment classes. PFS was deemed an valid surrogate

endpoint of OS in the anti-angiogenic and chemotherapy treatment classes as the

surrogacy criteria were satisfied in both treatment classes (i.e. the 95% CrIs of the

slopes did not contain zero, the 95% CrIs of the intercepts λ01 and λ03 and the BFs

of the conditional variances of ψ2
1 and ψ2

3 were larger than 3.3). On the other hand,

the association between the treatment effects on PFS and the treatment effects on

OS was weak in the anti-EGFR treatment class, failing to meet one of the criteria,

as the 95% CrI of the slope λ12 included zero.
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Fitting F-EX model to the data extracted on TR-PFS pair of outcomes resulted

in different inferences about the parameters describing the surrogate relationships

compared to the analysis based on subgroup analysis. Here, the three surrogacy

criteria were satisfied across all the three treatment classes. This is due to the

assumption of exchangeability of the parameters λ0j and λ1j. As a result, TR was

an acceptable surrogate endpoint of PFS across the three treatment classes in this

data-set.

Table 4.7: Estimates of the parameters defining the surrogacy criteria of F-EX model

Treatment
Class parameter PFS-OS TR-PFS

N=15 N=17
λ01 -0.00 (-0.05, 0.05) -0.05 (-0.15, 0.03)

chemotherapy λ11 0.33 ( 0.13, 0.53) -0.27 (-0.41,-0.11)
ψ2

1 0.00 ( 0.00, 0.01) 0.02 ( 0.00, 0.07)
BF of ψ2

1 300.80 9.09
N=9 N=8

λ02 0.00 (-0.15, 0.15) -0.14 (-0.34, 0.06)
anti-EGFR λ12 0.28 (-0.16, 0.63) -0.19 (-0.42,-0.03)

ψ2
2 0.01 ( 0.00, 0.08) 0.01( 0.00, 0.13)

BF of ψ2
2 18.04 14.02

N=11 N=10
λ03 0.03 (-0.04, 0.11) 0.03 (-0.13, 0.18)

anti-angiogenic λ13 0.41 ( 0.16, 0.68) -0.67 (-1.06,-0.27)
ψ2

3 0.01 ( 0.00, 0.04) 0.02 ( 0.00,0.12)
BF of ψ2

3 26.97 13.23

P-EX model

P-EX model allows the parameters of slope of each treatment class to be either

exchangeable or non-exchangeable with parameters of slopes from other classes

throughout the estimation process. For both pairs of outcomes, fixed values for

the hyper-parameters πj = (0.5, 0.5, 0.5) were chosen assuming that exchangeability

and non-exchangeability were apriori equally likely.

As in the case of F-EX model, the parameters describing the surrogate relationships

were estimated for each class. Additionally, this model regulates the degree of

borrowing of information for the parameter of the slope by using an exchangeable and

a non-exchangeable component. To estimate the degree of borrowing of information

across classes, we also monitored the mixture weights by calculating the posterior
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means of pj. Table 4.8 presents the estimates of the parameters defining the surrogacy

criteria.

For the PFS-OS pair, P-EX estimated the parameter of the slope using the

exchangeable component in the 97% of the MCMC iterations in the class of

chemotherapy in the 96% of the MCMC iterations in the anti-EGFR class and in

the 97% of the iterations in the anti-angiogenic treatment class. This indicates that

P-EX reduced borrowing of information approximately 3% in the anti-angiogenic

treatment class and the class of chemotherapy and 4% in the anti-EGFR class

compared to F-EX model. Focusing on the estimates of the parameters describing

the surrogate relationships of P-EX, we drew the same inferences as from F-EX

model. PFS was deemed as a valid surrogate endpoint of OS in the anti-angiogenic

and the chemotherapy classes. On the other hand there were not enough evidence

to validate PFS as a surrogate endpoint of OS in the anti-EGFR treatment class, as

the 95% CrI of the slope λ12 included zero.

For TR-PFS pair of outcomes, the degree of borrowing of information was smaller

compared to PFS-OS pair of outcomes. P-EX estimated the slopes, reducing the

borrowing of information by 7% in the anti-angiogenic class, by 5% in the anti-EGFR

class and 6% in the class of chemotherapy compared to F-EX model. The three

surrogacy criteria were fulfilled in each treatment classes despite the decrease in

levels of borrowing of information, indicating that TR was an acceptable surrogate

of PFS across the treatment classes of the Ciani data.4.8
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Table 4.8: Estimates of the parameters defining the surrogacy criteria of P-EX model

Treatment
Class parameter PFS-OS TR-PFS

N=15 N=17
p1 0.97 0.94
λ01 0.01 (-0.04, 0.05) -0.05 (-0.16, 0.03)

chemotherapy λ11 0.33 ( 0.13, 0.54) -0.27 (-0.40,-0.11)
ψ2

1 0.00 ( 0.00, 0.01) 0.02 ( 0.00, 0.07)
BF of ψ2

1 309.29 8.31
N=9 N=8

p2 0.96 0.95
λ02 0.01 (-0.16, 0.14) -0.14 (-0.34, 0.06)

anti-EGFR λ12 0.27 (-0.17, 0.63) -0.18 (-0.42,-0.02)
ψ2

2 0.01 ( 0.00, 0.08) 0.01( 0.00, 0.13)
BF of ψ2

2 16.94 13.52
N=11 N=10

p3 0.97 0.93
λ03 0.03 (-0.04, 0.11) 0.03 (-0.13, 0.18)

anti-angiogenic λ13 0.41 ( 0.16, 0.69) -0.69 (-1.08,-0.28)
ψ2

3 0.01 ( 0.00, 0.04) 0.02 ( 0.00,0.11)
BF of ψ2

3 27.90 14.18

As discussed in Section 4.2.3, we fitted P-EX to the data using fixed values for

the hyper-parameters πj = (0.5, 0.5, 0.5) assuming that exchangeability and

non-exchangeability were apriori equally likely. To evaluate how sensitive were the

results of the parameters describing the surrogate relationship to the values of πj,

we performed a sensitivity analysis placing a non informative prior distribution to

each πj ∼ Beta(1, 1) instead of assigning a fixed value to each parameter. Table 4.9

compares the results of P-EX having the hyperparameters πj fixed with the results

of P-EX when the hyperparameters assumed random. It can be seen that both

versions of P-EX model gave very similar results regardless off whether we used

fixed or random hyperparameters πj.
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Table 4.9: Estimates of the parameters defining the surrogacy criteria of P-EX model

P-EX model with fixed πj P-EX model with random πj
Treatment

class parameter PFS-OS TR-PFS PFS-OS TR-PFS
N=15 N=17 N=15 N=17

p1 0.97 0.94 0.98 0.94
λ01 0.01 (-0.04, 0.05) -0.05 (-0.16, 0.03) 0.00 (-0.05, 0.05) -0.05 (-0.16, 0.03)

chemotherapy λ11 0.33 ( 0.13, 0.54) -0.27 (-0.40,-0.11) 0.33 ( 0.13, 0.53) -0.27 (-0.40,-0.11)
ψ2

1 0.00 ( 0.00, 0.01) 0.02 ( 0.00, 0.07) 0.00 ( 0.00, 0.01) 0.02 ( 0.00, 0.07)
BF of ψ2

1 309.29 8.31 306.53 8.11
N=9 N=8 N=9 N=8

p2 0.96 0.95 0.96 0.95
λ02 0.01 (-0.16, 0.14) -0.14 (-0.34, 0.06) 0.01 (-0.16, 0.14) -0.15 (-0.35, 0.05)

anti-EGFR λ12 0.27 (-0.17, 0.63) -0.18 (-0.42,-0.02) 0.27 (-0.17, 0.63) -0.18 (-0.42,-0.02)
ψ2

2 0.01 ( 0.00, 0.08) 0.01( 0.00, 0.13) 0.01 ( 0.00, 0.08) 0.01( 0.00, 0.13)
BF of ψ2

2 16.94 13.52 17.70 13.92
N=11 N=10 N=11 N=10

p3 0.97 0.93 0.97 0.92
λ03 0.03 (-0.04, 0.11) 0.03 (-0.13, 0.18) 0.03 (-0.04, 0.12) 0.03 (-0.12, 0.18)

anti-angiogenic λ13 0.41 ( 0.16, 0.69) -0.69 (-1.08,-0.28) 0.41 ( 0.16, 0.70) -0.70 (-1.10,-0.29)
ψ2

3 0.01 ( 0.00, 0.04) 0.02 ( 0.00,0.11) 0.01 ( 0.00, 0.04) 0.02 ( 0.00,0.11)
BF of ψ2

3 27.90 14.18 27.67 14.93
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4.4.4.2 Results of the cross-validation procedure across models

After estimating the parameters describing the surrogate relationship and applying

the validation framework proposed by Daniels and Hughes, we carried out

cross-validation procedure to predict the treatment effects δ2i on the final outcome

(discussed in Section 4.2.4). Table 4.10 displays the results of cross-validation

procedure across models. Overall, all the methods performed almost equally well in

terms of absolute error.

Subgroup analysis with the standard model gave predictive intervals of the effects

on the final outcome containing the corresponding observed estimates y2i in the

97% of the studies for both pairs of outcomes confirming good fit of the model (first

row last column). It outperformed F-EX and P-EX models in the anti-angiogenic

class resulting in predictions of the true treatment effects with smaller on average

absolute error on TR-PFS pair of outcomes. It also performed marginally worse

compared to the proposed methods in terms of absolute error in the treatment class

of chemotherapy, where the number of studies was large on both pairs of outcomes.

In contrast to this, it performed poorly in terms of accuracy of predictions in the

anti-EGFR class (large absolute error), as the number of studies small for both pair

of outcomes.

The results from the cross-validation procedure of F-EX model showed that the

method fitted the data well. All of the predicted intervals of δ2ij contained the

observed values of the treatment effects on the final outcome on PFS-OS pair and all

but one on TR-PFS pair. The cross-validation procedure of F-EX performed slightly

better compared to subgroup analysis in chemotherapy treatment class on both pairs

of outcomes resulting in smaller on average absolute error. F-EX also was the best

method in terms of its accuracy in the anti-EGFR treatment class on PFS-OS pair. In

contrast to this, higher average absolute errors were observed in the anti-angiogenic

class on both pair of outcomes indicating that the assumption of exchangeability

of the parameters describing the surrogate relationships was fairly strong and it

was likely to affect the predictions in this particular class. The overall results of

the width ratios (second row, last two columns) imply that F-EX method gave

intervals of the true effect on the final endpoint with smaller degree of uncertainty
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compared to subgroup analysis especially on PFS-OS pair of outcomes. There

was a small decrease in the uncertainty of the predictions of δ2ij on PFS-OS pair

for the chemotherapy treatment class, as the cross-validation procedure of F-EX

model yielded 1% narrower intervals compared to subgroup analysis. Furthermore,

significantly reduced uncertainty was observed in the other two treatment classes

on PFS-OS pair of outcomes, 14% in the anti-EGFR treatment class and 7% in the

anti-angiogenic, where the number of studies was smaller. On the contrary, very

limited decrease in the degree of uncertainty was observed for the TR-PFS pair of

outcomes across all classes. Overall on TR-PFS pair, the predictive intervals were

only 1% narrower compared to subgroup analysis. The benefit was small (3.2%

reduction of the width of the predictive interval) even for the anti-EGFR treatment

class where there were only 8 studies for this pair.

Focusing on the results from the cross-validation procedure of P-EX model, all

the intervals of the predicted treatment effects on the final outcome contained the

observed treatment effects on PFS-OS pair and all but one on the TR-PFS pair.

The absolute error was smaller in chemotherapy treatment class on the PFS-OS pair

and significantly higher in the other two classes. P-EX gave almost equally accurate

estimates in the anti-EGFR and the chemotherapy treatment classes on TR-PFS pair

compared to F-EX. However, the absolute error was higher in the anti-angiogenic

treatment class where the association was much stronger compared to the other

two classes indicating potential excessive borrowing of information from the other

classes. This is likely due to that the assumption of partial exchangeability was only

applied to the slopes (the intercepts were assumed to be exchangeable across classes).

The method predicted the effects on the final outcome with reduced uncertainty

giving more precise predictions of the true effect on the final outcome compared to

subgroup analysis in the anti-EGFR class on PFS-OS pair reducing the uncertainty

by 13%. On the other hand, the predicted effects δ̂2ij had almost the same degree of

uncertainty as those of subgroup analysis on TR-PFS pair. The intervals were only

1% narrower on average across all classes compared to the subgroup analysis.
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Table 4.10: Predictions of δ2ij across treatments and models

chemotherapy anti-EGFR anti-angiogenic Overall

Models Measures PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS

Standard
Model

Performance of 95%
predictive intervals 1.00 0.94 0.89 1.00 1.00 1.00 0.97 0.97

Mean absolute error 0.05 0.11 0.14 0.13 0.10 0.15 0.09 0.12

F-EX
Performance of 95%
predictive intervals 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.97

Mean absolute error 0.04 0.10 0.10 0.11 0.12 0.21 0.09 0.13

Mean width ratio 0.99 0.99 0.86 0.97 0.93 1.00 0.95 0.99

P-EX
Performance of 95%
predictive intervals 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.97

Mean absolute error 0.04 0.10 0.13 0.11 0.11 0.21 0.09 0.13

Mean width ratio 0.99 0.99 0.87 0.98 0.93 1.00 0.96 0.99
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4.4.5 Discussion of the results of the data example across

models

In this section we compare the estimates (posterior means and 95% CrIs) of λ1j

and λ0j across the three methods, as each model makes different assumptions about

these parameters. Subgroup analysis with the standard model assumes that both

parameters are non-exchangeable across classes, F-EX assumes full exchangeability

of both parameters across treatment classes and P-EX assumes that the slopes are

partially exchangeable and the intercepts fully exchangeable across classes.

Figure 4.4 presents 95% CrIs of the slopes λ1j and intercepts λ0j on PFS-OS pair

of outcomes across the treatment classes and methods of estimation. Comparing

the aforementioned methods in regards to the surrogacy criteria on the PFS-OS

pair, we can conclude that F-EX model estimated the parameters of the surrogate

relationships with reduced uncertainty compared to the subgroup analysis and P-EX

model taking advantage of borrowing of information across classes. P-EX relaxes

Figure 4.4: 95% Credible intervals of λ1j and λ0j for the PFS-OS pair of outcomes
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the assumption of exchangeability reducing the effect of borrowing of information

on average by 3%. It gave narrower CrIs of the parameters of interest compared

to subgroup analysis but marginally wider than those obtained form F-EX model.

F-EX and P-EX models could distinguish between the different association patterns

avoiding to give over-shrunk estimates of the slopes and the intercepts, although they
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allowed different degrees of borrowing of information for the slopes. In particular,

this pair of outcomes (PFS-OS) illustrates well the impact of number of studies per

class on the degree of borrowing of information. In general, borrowing of information

is determined by the number of studies within treatment classes, between treatment

classes heterogeneity, as well as the number of treatment classes. In this case, the

fewer studies we have within a treatment class, the bigger is the impact of borrowing of

information resulting in higher reduction in uncertainty of the estimates of surrogate

relationships. This effect was particularly strong for the anti-EGFR treatment class.

On the other hand, TR-PFS pair of outcomes was a good example to illustrate the

performance of the hierarchical methods when between treatment class heterogeneity

is relatively large. In this case, subgroup analysis with the standard model performed

equally well as the proposed methods in terms of uncertainty of the CrIs of the

parameters describing the surrogate relationships. For instance by fitting F-EX

and P-EX models, we did not observe any decrease in uncertainty around λ1j

and λ0j across classes (Figure 4.5). This is because the between treatment classes

heterogeneity was relatively large for TR-PFS pair and hence there was not much

shrinkage. By performing subgroup analysis, the surrogacy criteria failed in the

anti-EGFR class (zero was included in the 95% CrI of the slope). However, the 95%

CrI in the anti-EGFR class just contained zero and substantially overlapped with

the 95% CrI of the slope in the chemotherapy treatment class. By fitting P-EX and

F-EX models, we were able to draw different inferences for the association patterns

in the anti-EGFR class, as these methods allow for borrowing of information for

the parameters describing the surrogate relationships from the other classes. As

illustrated in Figure 4.5, both hierarchical models moved the 95% CrI of the slope in

the direction of the CrIs of the other two classes resulting in the surrogacy criteria

being satisfied across all treatment classes.

When carrying out cross-validation procedure, we wish to ensure that not only

predictive intervals contain the observed values but also that they are sufficiently

narrow. In general, adding a hierarchical structure to slopes and intercepts reduces

the uncertainty and leads to more precise predictions compared to those obtained

from subgroup analysis.

Starting from the findings on PFS-OS pair of outcomes, the accuracy of the
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Figure 4.5: 95% Credible intervals of λ1j and λ0j for the TR-PFS pair of outcomes
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predictions was very similar across all methods (similar absolute errors) but the

uncertainty varied depending of the level of borrowing of information. F-EX

model gave on average the most precise predictions of the true treatment effect,

having the narrowest 95% predictive intervals (smallest width ratio seen in Table

4.10) reducing the overall uncertainly by 5%. The benefit was smaller in the

chemotherapy class where the number of studies was much larger compared to the

anti-EGFR treatment class where we had only 8 studies available. Overall, P-EX

performed better compared to subgroup analysis with the standard model and

equally well as F-EX model regarding the uncertainty of the predictions. This

indicates that the assumption of exchangeability seems to be plausible for this pair

of outcomes and P-EX model was able to identify this.

Moving to the predictions obtained on TR-PFS pair of outcomes, subgroup analysis

with the standard model was a robust approach in terms of the accuracy of its

predictions. Although the overall absolute error was very similar across models,

F-EX and P-EX yielded higher absolute error compared to subgroup analysis in

the anti-angiogenic class. This implies that the posterior means of the true effects

were to some extent ’overshrunk’ due to excessive borrowing of information from

the other classes. P-EX model was implemented allowing for partial exchangeability

of the slopes only, this decision is likely to affect the performance of the model in

terms of its predictions on TR-PFS pair of outcomes. However, the model can be
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extended allowing for partial exchangeability also of the intercepts or the conditional

variances and different combinations of these assumptions can be explored and

models compared using DIC. Similarly, there was no significant decrease in the

degree of uncertainty of the estimates δ̂2ij of F-EX and P-EX models. The results

indicated that the proposed hierarchical models performed slightly better compared

to subgroup analysis in terms of uncertainty only in the class of chemotherapy

and the anti-EGFR treatment class giving 1% and 3% narrower predictive intervals

respectively. This kind of behaviour might be caused by the relatively large between

treatment class heterogeneity (due to different definitions of TR across RCTs) [132]

and the assumption of full exchangeability of the intercepts.

4.5 Discussion

We developed two hierarchical models allowing to account for distinct treatment

classes when examining the association patterns within each treatment class. The

proposed models may be particularly useful in surrogate endpoint evaluation in

complex diseases where different treatment classes of different mechanism of action

and potential different association patterns within those classes exist. These models

investigate potential differences in trial-level surrogacy across treatment classes in

a particular disease area and can help to effectively identify treatment classes with

strong association patterns, even when data are relatively sparse. F-EX model is

somewhat restrictive, assuming full exchangeability of the parameters describing the

surrogate relationships across treatment classes. However, in many situations the

assumption of exchangeability may be too strong given the heterogeneity between

treatment classes. In such circumstances, a more flexible model such as P-EX may

be a better choice. P-EX model can infer an appropriate level of exchangeability

from the data. It regulates the degree of borrowing of information by using an

exchangeable and a non-exchangeable component throughout the estimation process,

thus relaxing the assumption of exchangeability when it is not fully reasonable. It

evaluates whether the association pattern between treatment effects on the surrogate

and the final endpoint in a specific treatment class differs from the other patterns

in other classes.
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F-EX model is appropriate only when the degree of similarity of surrogate

relationships is relatively high. It can offer substantial gains in precision, reduced

RMSE of the posterior means of the parameters describing surrogate relationships

and it can improve the predictions of the true effects on the final endpoint. For

example, F-EX model gave posterior means of the slopes and predicted effects with

reduced uncertainty (smaller credible intervals) compared to subgroup analysis in

the first design of the simulation study and for the illustrative example on PFS-OS

pair, where the parameters describing the surrogate relationship were similar

and the assumption of full exchangeability was reasonable. These findings are

consistent with the results from other hierarchical Bayesian methods which assume

full exchangeability and were developed in other research areas [116, 117]. In

addition to this, P-EX model achieved the same degree of borrowing of information

in such data scenarios making fewer assumptions compared to F-EX model.

Furthermore, when between treatment class heterogeneity is relatively large or

there is a treatment class with distinctly different pattern, P-EX model has the

advantage of avoiding the excessive borrowing of information, as illustrated in the

second design of the simulation study. All the above illustrate the benefits of

partial exchangeability, as described by Neuenschwander et al. [102] in their work.

Subgroup analysis using the standard model is a simple method which performs

well when there are sufficient data available for each treatment class, but it

produces estimates with higher bias and uncertainty when data within a treatment

class are limited.

Although the proposed methods provide additional robustness to the CrIs and the

posterior means of the parameters describing the surrogate relationships compared

to subgroup analysis, potential limitations should always be kept in mind. First, in

real data scenarios it can be challenging to find data-sets with sufficient number of

treatment classes. The small number of treatment classes can affect the performance

of hierarchical methods substantially [133] reducing the impact of borrowing of

information. For instance, fitting P-EX model to the illustrative example (in aCRC

with three treatment classes) led to a situation where in some of the MCMC iterations

only one class was deemed exchangeable by the model which is not possible since

there were no other classes to exchange information with. However, in our example
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it did not affect the performance of the model as it occurred only in the 0.5% of

the MCMC iterations. On the other hand, there is no upper limit to the number of

classes we can have. In general, the larger number of classes the easier it is for the

models to borrow information across classes.

Another limitation of the illustrative example is that treatment switching was applied

in a subset of trials in this data-set. Patients were allowed to switch from the

treatment that was initially assigned to them to the other treatment arm in the trial.

Most commonly patients switched after progression from control to experimental arm

in particular, when there was sufficient evidence during the trial that the experimental

treatment was better than control [134]. Treatment switching has diminishing effect

on the difference in treatment effects on OS when applying intention-to-treat analysis,

and the treatment effect is often obtained with larger uncertainty. This makes the

estimation of surrogacy between treatment effects on the surrogate and treatment

effects on the final outcome very challenging. Many adjustment methods have

been proposed, however, their validity is often questionable[134]. Additionally, the

evaluation of PFS as a surrogate endpoint is distinctive compared to other surrogate

endpoints as PFS can be considered as nested outcome within OS outcome. These

factors may explain the different findings for the two pairs of outcomes (PFS-OS

and TR-OS).

Furthermore, as it was mentioned in section 4.4, each treatment class consist of studies

with multiple treatment comparisons. According to Daniels and Hughes [13] and

Shanafelt et. al [135] different treatment comparisons and the use of active or inactive

control interventions may influence the surrogate relationship. This could potentially

be resolved by classifying treatment according the treatment class comparison (for

example anti-angiogenic therapies versus chemotherapy) which potentially would lead

to more treatment classes, but with reduced number of studies per class. To continue

with the same issue, in this data-set the treatment classes were defined according

to the class of the experimental treatment regardless of the control. Alternatively,

we could classify them according to the treatment contrasts taking into account the

class of the control group, however, this could result in fewer studies per class. A

network meta-analysis model was developed for this problem by Bujkiewicz et al.

[136].
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Additionally, the evaluation framework proposed by Daniels and Hughes (see section

4.2.1.1) examines whether zero is contained in the CrIs of λ1 and λ0. However, the

sparsity of data may lead to increased uncertainty around the intercept and slope.

This increased uncertainty is also likely to manifest itself in increased conditional

variance, thus invalidating the third criterion. Unsurprisingly, for sparse data it is

unlikely that all the surrogacy criteria hold and this problem is more likely to occur in

subgroup analyses. The proposed methods alleviate this problem as shown in some

of the scenarios of the simulation study. However, we used the criteria mainly for

the purpose of model comparison. In real life scenarios, when evaluating a potential

surrogate endpoint for use in regulatory decision making or clinical trials, the decision

of whether the surrogate endpoint should be used to predict clinical benefit or harm

should be based on the balance between the strength of the surrogate relationship

and the need for the decision to be made about the effectiveness of the new treatment

[21]. Typically, the strength (or weakness) of the surrogate relationship is manifested

in the width of the predicted interval of the treatment effect on the final outcome.

i.e. a wider 95% interval of intercept and slope will imply a wider interval around

the predicted effect and hence increased uncertainty about the regulatory or clinical

decision made based on such prediction. This suggests that perhaps an evaluation

framework should focus on the predictions [136]. The quality of predictions can be

evaluated through a cross-validation procedure (see section 4.2.4).

A possible extension of these methods is to add another layer of hierarchy

accounting for the different treatments within a treatment class. However, a

relatively large number of studies for each treatment and number of treatments

per class would be required to fit such model. As we mentioned in section 6.4,

P-EX model could also be extended by making additional partial-exchangeability

assumptions about the intercepts and the conditional variances, however, this

may lead to over-parameterising the model. Furthermore, taking advantage of

the setting proposed by Bujkiewicz et al. [87], both hierarchical models can be

extended to allow for modeling multiple surrogate endpoints (or the same surrogate

endpoint but reported at multiple time points) as joint predictors of treatment

effect on the final outcome.

In summary, we developed hierarchical Bayesian methods for evaluating surrogate
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relationships within treatment classes whilst borrowing of information for surrogate

relationships across treatment classes. We believe that the proposed methods have

a lot of potential for improving the validation of surrogate endpoints in the era of

personalized medicine, where the surrogacy may depend on the mechanism of action

of specific targeted therapies.
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Chapter 5

Improving the validation of surrogate

endpoints on binary outcomes when

the proportions of events occur

rarely or very frequently

5.1 Introduction

This Chapter discusses about the methodological challenges in the trial-level

validation of surrogate endpoints, when such validation is based on binomial

aggregate data with high or low proportions of events.

Bivariate meta-analysis of treatment effects on a surrogate endpoint and a final

outcome allows for the trial-level validation of a surrogate endpoint. In a bivariate

meta-analysis of correlated outcomes, two sources of association exist in the data

(one at the individual level and one at the study level). Specifically, within each

study, the treatment effects on the two outcomes are measured on the same

individuals and are therefore correlated (within-study correlation). Additionally, at

the between-studies level, the between-studies variability on both outcomes (due to,

for example, the differences in study population or treatment dose) generate

correlation at the between-studies level (between-studies correlation) [137]. This

correlation needs to be estimated with good precision and high accuracy in order to
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appropriately validate a candidate surrogate endpoint at the trial-level.

A standard way to validate the trial-level surrogate relationship is to perform a form

of bivariate meta-analysis, such as BRMA[15, 88] and estimate the between-studies

correlation parameter (or express the between-studies parameters in terms of other

parameters describing surrogacy pattern such as intercept, slope and conditional

variance). As discussed in Section 3.2.2, BRMA method models the treatment

effects on both outcomes jointly with a bivariate normal distribution accounting for

the within-study correlations. When this approach is applied to binomial data, the

proportions of events are transformed to obtain treatment effects on log odds ratio

scale which are assumed to be approximately normally distributed. However, when

modeling binomial data on log odds ratio scale, the assumption of normality may

not always be reasonable. Hamza et al. [17] showed that the normal approximation,

used for binomial data in univariate meta-analysis of diagnostic test accuracy studies,

leads to biased results, in particular when the proportions of events are very close

to zero or one and the variance is large.

When trial-level validation of surrogate endpoints is based on data from modern

clinical trials assessing personalized treatments, the high effectiveness of such targeted

therapies results in large proportions of responders and very small proportions of

progressions or deaths. Therefore, the assumption of normality when modeling

binomial aggregate data on effectiveness of such therapies may lead to poor inferences

about the parameters describing the surrogate relationship and may affect the

trial-level validation of a surrogate endpoint.

To address this issue, we present two alternative meta-analytic methods for trial-level

evaluation of surrogate relationships of the treatment effects on binomial outcomes.

The first approach is a modification of a generalised linear mixed model (GLMM)

applied to meta-analysis of diagnostic test accuracy studies [138]. It uses the

exact independent binomial likelihoods across outcomes to model the within-study

variability. This method, however, ignores potential within-study associations. In

previous work, Riley et al. [139] highlighted the importance of taking into account

the within-study correlation when using BRMA model.

To account for the within-study association on the original binomial scale, we
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developed a method which models the numbers of events on each outcome jointly

using a bivariate distribution with binomial marginal distributions constructed with

a bivariate copula. This model takes into account the within-study association

between the numbers of events on the surrogate endpoint and the final outcome

through the copula dependence parameter. This makes the model a more appropriate

approach as the events on the surrogate endpoint and the final outcome are obtained

from the same patients and therefore, they are correlated. Copulas are flexible

tools for modeling bivariate/multivariate data, as they account for dependencies

between multiple outcomes, allow for different dependence structures and for use

of exact likelihoods, such as binomial or Poisson. In the past, copulas have been

used to model individual-level surrogacy patterns modeling dependencies between,

for example, time to event surrogate and final outcomes in IPD based methods[128].

We carried out a simulation study to investigate whether the proposed method

improves the validation of surrogate endpoints compared to BRMA model using a

normal approximation. It allowed us to investigate how sensitive were the estimates

of the between-studies parameters (and in particular the between-studies correlation)

were to assumptions made when modeling the within-study variability, and in

particular when the proportions of events (such as responses to treatment or deaths)

were close to zero or one. We also applied the methods (the standard BRMA model

using log OR scale and the two proposed models) to a data example in CML, which

consists of treatment effects from RCTs of targeted treatments.

CML is a myeloproliferative neoplasm of hematipoietic stem cells associated with a

characteristic chromosomal translocation called the Philadelphia chromosome [140].

The main characteristic of CML is that it is regarded as a slow progressive disease [18].

Before the molecular pathogenesis of the disease was well understood, the median

survival was 6 years, with a predicted 5-year overall survival (OS) of 47.2% [141].

However, the introduction of TKI therapies [142] have led to dramatically improved

patients outcomes with high rates of complete cytogenetic response (CCyR) at 1

year and very few events at 2-year OS and EFS [4]. In the data example we assessed

the whether CCYR at 1 year can be considered as a valid surrogate endpoint for

EFS or OS at 2 years.

The existing and the proposed modeling approaches are introduced in Section 5.2 and
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the simulation study is presented in Section 5.3. A detailed description of the data

example and the data analysis can be found n Section 5.4. The Chapter concludes

with a discussion in Section 5.5.

5.2 Methods for trial-level surrogate endpoint

evaluation on binomial data

In this section we present methods for evaluation of trial-level association patterns of

potential surrogate endpoints, based on binomial aggregate data. Firstly, we recall

the standard BRMA model and show how this model can be applied to binomial data.

Secondly, we presents meta-analytic approaches for modeling binomial aggregate data

on the original binomial scale, giving also a brief overview of the copula theory.

5.2.1 BRMA model

A standard way to investigate trial-level surrogate relationships is to carry out a

form of bivariate meta-analysis, such as BRMA [15, 88] and estimate the

between-studies correlation, which is the main parameter of interest as it quantifies

the trial level association between the treatment effects on the surrogate endpoint

and the treatment effects on the final (see surrogacy criteria for this model in

section 3.2.2.1). BRMA method models correlated and normally distributed

treatment effects on the surrogate endpoint and on the final outcome, and a

detailed description of the method can be found in Section 3.2.2.

To apply this model to binomial data, the numbers of events (r1Ai, r1Bi, r2Ai, r2Bi)

and the numbers of patients (N1Ai, N1Bi, N2Ai, N2Bi) in each arm, and for each

outcome are transformed to obtain treatment effects (y1i, y2i) and their corresponding

variances (σ2
1i, σ2

2i) on the log odds ratio scale, which are assumed to be approximately

normally distributed (eq.5.1-5.4).

A modeling issue occurs when there are no events in either of the treatment arms as

the log odds ratios (y1i, y2i) and their variances cannot be defined. A very simple

way to tackle this problem is to apply a continuity correction, for instance, by adding

0.5. However, in some situations the effect of adding 0.5 may lead to biased results
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[70, 71].

y1i = log(
r1Bi

NBi − r1Bi

)− log(
r1Ai

NAi − r1Ai

) (5.1)

y2i = log(
r2Bi

NBi − r2Bi

)− log(
r2Ai

NAi − r2Ai

) (5.2)

σ2
1i =

1

r1Bi

+
1

NBi − r1Bi

+
1

r1Ai

+
1

NAi − r1Ai

(5.3)

σ2
2i =

1

r2Bi

+
1

NBi − r2Bi

+
1

r2Ai

+
1

NAi − r2Ai

(5.4)

BRMA model accounts for the within-study correlation ρwi between the treatment

effects on the surrogate endpoint and on the final outcome. As discussed in Section

3.2.2, when IPD are available, an estimate of ρwi can be obtained by bootstrapping.

Otherwise an weakly informative prior distribution assuming the likely direction

(positive or negative) can be placed on these parameters .

To implement the model in the Bayesian framework, the prior distributions should be

specified on the unknown parameters. For instance, the following prior distributions

can be placed on the heterogeneity parameters τ1,2 ∼ U(0, 5) and on the pooled

treatment effects on the surrogate endpoint and the final outcome d1, d2 ∼ N(0, 102).

To implement the natural constrain of the between-studies correlation −1 ≤ ρb ≤

1, we used the Fisher’s z transformation as, ρb = tanh(z) , z ∼ N(0, 1). The

implementation of the model in Stan can be found in the Appendix in Section C.1.

5.2.1.1 Criteria for Surrogacy

The primary parameter of interest is the parameter of between-studies correlation

ρb as it establishes a strong association pattern between the treatment effects on

the surrogate endpoint and on the final outcomes. For perfect surrogacy, the

between-studies correlation should be ±1. However, in practice it is difficult either to

achieve perfect surrogacy or to define a specific threshold for the correlation in order

to consider the surrogate endpoint suitable for predictions. Typically, we expect the

correlation to be relatively close to ±1. Additionally, it is important to ensure that no

treatment effect on the surrogate endpoint will imply no effect on the final outcome

- this suggest that the intercept should be very close to zero. Although, BRMA

models the between-studies level without using the parameter of the intercept λ0,
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it can be expressed in terms of the between-studies parameters (eq. 5.5) of BRMA

[10].

λ0 = d2 − d1ρb
τ2

τ1

. (5.5)

Therefore, we are able to draw inferences about the intercept by deriving λ0 and

checking whether or not a 95% CrI of λ0 contains zero (and that it is relatively

narrow).

5.2.2 Bivariate random effect meta-analysis with

independent binomial likelihoods (BRMA-IB)

In this section, we present a bivariate meta-analytic model with independent binomial

likelihoods for the first and the second outcomes at the within-study level. This

approach is very similar to a standard model for meta-analysis of diagnostic test

accuracy studies [138, 143] (where true positive and true negative observations are

not correlated within a study as they are obtained from different patients). To adapt

the model for diagnostic test accuracy studies (which are single arm studies) to the

context of bivariate meta-analysis of RCTs, we assumed that the numbers of events

r1Ai, r2Ai, in the control arm A and r1Bi, r2Bi in the experimental arm B, on the

two outcomes (the surrogate and the final outcome respectively) follow independent

Binomial distributions with the corresponding true probabilities of events p1Ai, p2Ai,

p1Bi and p2Bi:

r1Ai ∼ Bin(p1Ai, NAi), r2Ai ∼ Bin(p2Ai, NAi),

r1Bi ∼ Bin(p1Bi, NBi), r2Bi ∼ Bin(p2Bi, NBi) (5.6)

At the between-studies model (5.7), the true probabilities of events are transformed

using a link function g(·) (such as logit).
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g(p1Ai) = µ1i, g(p1Bi) = µ1i + δ1i

g(p2Ai) = µ2i, g(p2Bi) = µ2i + δ2iδ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

 (5.7)

Where µji are study specific baseline effects (i.e. the log-odds for the control group

A and outcome j = 1, 2 in study i) while, δji are the study specific true treatment

effects on the log OR scale for outcome j = 1, 2 in study i and (d1, d2) are the

pooled treatment effects on the surrogate endpoint and on the second outcome, τ1

and τ2 are the between-studies heterogeneity parameters and ρb the between-studies

correlation.

To implement the model in the Bayesian framework, prior distributions need to

be placed on unknown parameters which are, the baseline treatment effects µ1i,2i ∼

N(0, 102), the mean effects d1,2 ∼ N(0, 102), the between-studies standard deviations

τ1,2 ∼ U(0, 5), to implement the natural constrain of the between-studies correlation

−1 ≤ ρb ≤ 1, we used the Fisher’s z transformation as, ρb = tanh(z) , z ∼ N(0, 1).

The Stan code of the model can be found in the Appendix in section C.2.

The key difference between this method and the BRMA method is the within-study

model (eq. 5.6). Here, the within-study variability is modeled using the exact

likelihood approach based on the binomial distribution avoiding to make the

assumption of normality. Another advantage of this approach is that it does not to

require continuity corrections. However, the model ignores the within-study

association, which is restrictive as within each study the treatment effects on the

two outcomes are measured on the same individuals and are therefore correlated.

At the between-studies level, the between-studies variability on both outcomes

generate the correlation at the between-studies level [137]. Therefore, when

modeling aggregate data obtained from correlated binary outcomes, two sources of

association exist and bivariate random-effects meta-analysis with independent

binomial likelihoods (BRMA-IB) model accounts only for the second one.

In section 5.2.4 we propose a extension of the BRMA-IB model using a copula
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representation to model the within-study variability - in such a way to allow for

the association between the numbers of events in each arm on the first and the

second outcome to be taken into account. Copulas are flexible tools for modeling

multivariate data as they account for the dependencies between multiple outcomes

and allow for different dependence structures. Firstly, in section 5.2.3 we introduce

some background on copula theory and then in section 5.2.4 we present the model

based on copulas.

5.2.3 Overview of copula theory

This sections presents the main concepts of copulas for the bivariate case.

A copula is a bivariate cumulative density function (cdf) restricted to the unit square

with standard uniform marginal distributions [144–146], which satisfies the following

properties:

• C(u1, 1) = u1 or C(1, u2) = u2

• if ui = 0, ∀i ≤ 2 then C(u1, u2) = 0

• C is always monotonic to ensure that the joint probability is not be negative.

• C has to satisfy the Frechet-Hoeffding inequality. This means that copulas are

bounded by:

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2), (5.8)

where the upper and lower Frechet-Hoeffding bounds describes perfect positive and

negative dependence respectively.

IfH is a bivariate cdf with univariate cdf margins F1, F2 then according to the Sklar’s

theorem [147] for every bivariate distribution, a copula representation C exists, such

that:

H(x1, x2, θ) = C(F1(x1), F2(x2), θ). (5.9)

The copula C is unique if F1, F2 are continuous random variables. However if

some of the margins have discrete components , there are many possible copulas

as emphasized by Genest and Neslehova [148], but all coincide on the closure of
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Ran(F1)×Ran(F2) where Ran(F ) denotes the range of F . If H is continuous and

(X1, X2) ∼ H then the unique copula is the distribution of (U1, U2) ∼ (F1(x1), F2(x2))

leads to

C(u1, u2, θ) = H(F−1
1 (u1), F−1

2 (u2), θ), 0 ≤ uj ≤ 1, j = 1, 2. (5.10)

The joint probability density function (pdf) of the specified distribution H can be

obtained using partial derivatives:

h(x1, x2, θ) =
∂H(x1, x2, θ)

∂x1∂x2

= c(F1(x1), F2(x1), θ)f1(x1)f2(x2), (5.11)

where c(·, ·) is the copula density distribution and f1, f2 are the univariate marginal

density distributions. While the derivation of the joint density is easy for the

continuous case through partial derivatives, it is not that simple in the discrete

case. For the discrete variables, the joint probability mass function (pmf) is obtained

using finite differences

h(x1, x2, θ) = C(F1(x1), F2(x2), θ)− C(F1(x1 − 1), F2(x2), θ) (5.12)

− C(F1(x1), F2(x2 − 1), θ) + C(F1(x1 − 1), F2(x2 − 1), θ).

The key benefit of this theory is that avoids the assumption of normality when

modeling non-normal data, allows for different dependence structures and provides a

natural way to study and measure the dependence among variables. The correlation

between two random variables x1 and x2 is captured by the dependence parameter

θ.

5.2.3.1 Families of copulas

Having a variety of copulas can be extremely useful for building models having

different properties such as heavy tails or asymmetries. More specifically, a bivariate

copula C is symmetric if its density satisfies c(u1, u2) = c(1 − u1, 1 − u2) for all

0≤ u1, u2 ≤1. Otherwise, the joint density is asymmetric with more probability

in the upper tail or the lower tail. Tail dependence is another useful copula-based

measure indicating stronger dependence in extreme values.
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In this section, we present three copulas which were used in this thesis. The first

one belongs to the family of elliptical copulas, whereas the other two to the family

of Archimedean copulas.

Elliptical copulas

The Elliptical copulas are simply the copulas of elliptically contoured distributions.

The main advantage of elliptical copulas is that they allow for modeling the full

range of correlation between the marginal distributions, however, they cannot be

expressed in a close form.

The bivariate Gaussian copula is the most commonly used copula of the Elliptical

family. It is a symmetric copula with weak tail dependence (see Figure 5.1c) and is

given by:

CG
Σ (u1, u2, ρ) = Φ2(Φ−1(u1),Φ−1(u2)| Σ), (5.13)

where Φ2(·|Σ) is the cdf of a bivariate standard normal distribution N(0,Σ) with

covariance matrix Σ and Φ−1 is the inverse cdf of the standard univariate normal

distribution. The Gaussian copula interpolates from the Frechet lower bound ρ→ −1

(perfect negative dependence) to the Frechet upper bound ρ → 1 (perfect positive

dependence). Song et al.[149] showed that ρ is equal to Pearson correlation.

Archimedean copulas

A bivariate copula, constructed with a generator function φ, and specified as:

C(u1, u2, θ) = φ(φ−1(u1, θ) + φ−1(u2, θ), θ) (5.14)

is called Archimedian copula [144]. The generator function φ(u, θ) is the Laplace

transform of a univariate family of distributions of positive random variables and its

inverse has a closed form. Archimedean copulas are very attractive as most of them

allow for modeling wide range of dependencies, tail-dependencies, asymmetries and

in contrast to elliptical copulas they can be expressed in a closed form.

Frank copula [150] is a symmetric copula without tail dependence (see Figure 5.1a),

and it is given by:

CF (u1, u2, θ) = θ−1log
{

1 +
(e−u1θ − 1)(e−u2θ − 1)

(e−θ − 1)

}
, θ ∈ (−∞,∞) \ {0}. (5.15)
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Frank copula interpolates from the Frechet lower bound θ → −∞ (perfect negative

dependence) to the Frechet upper bound θ →∞ (perfect positive dependence) and

hence, it is appropriate to model both kind of dependencies (negative and positive)

between a surrogate endpoint and a final outcome.

Gumbel copula is an asymmetric copula with upper tail dependence (see Figure

5.1b). The bivariate Gumbel copula is given by:

CG(u1, u2, θ) = exp
{
− ((−log(u1))θ + (−log(u2))θ)θ

−1
}
, θ ∈ [1,+∞) (5.16)

Gumbel copula interpolates from independence θ → 1 to the Frechet upper bound

θ →∞ (perfect positive dependence). Negative dependence in Gumbel copula can

be introduced by rotating the copula function by 90◦ or 270◦. For instance, the 90◦

rotated Gumbel copula is given by :

C90◦G(u1, u2, θ) = u2 − C(1− u1, u2, θ) (5.17)

Figure 5.1 illustrates the dependence structure of each bivariate copula used in this

thesis by simulating binomial data .
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Figure 5.1: 2000 simulated samples of, a) Frank b) Gumbel and c) Gaussian copulas
with Binomial marginal distributions (x1,2 ∼ Bin(p = 0.5, N = 500)) and Spearman’s
correlation ρs = 0.95

5.2.4 Bivariate random effects meta-analysis with bivariate

copulas (BRMA-BC)

BRMA-IB model assumes independence of the numbers of events across arms and

outcomes and accounts only for correlation in the between-studies model. However,

when modeling correlated binary outcomes (surrogate endpoint and final outcome)

this assumption is too strong. As highlighted previously, at the within-study level,

the numbers of events in each arm on the first and the second outcome are obtained

from the same patients and are therefore correlated. Additionally, as discussed by

Riley et al. [137], the heterogeneity of the treatment effects on both outcomes across

studies generates the between-studies correlation. Hence, two sources of association
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exist in the data: at the within-study level and at between-studies level.

To account for the within-study association on the original binomial scale (without

transforming the data to log odds ratios), the numbers of events on both

outcomes should be modeled jointly, assuming association between them. This

can be achieved by using a bivariate density function with binomial marginal

distributions constructed with a bivariate copula representation, as copulas

account for the dependence between marginal distributions and allow for modeling

various dependence structures, providing a flexible representation of the bivariate

distribution. Therefore, a joint density function constructed with copulas can be

much more flexible compared to the bivariate normal distribution which only allows

for normal marginals and a linear dependence structure.

r1Ai

r2Ai

 ∼ h(p1Ai, p2Ai, NAi, θAi)

r1Bi

r2Bi

 ∼ h(p1Bi, p2Bi, NBi, θBi) (5.18)

g(p1Ai) = µ1i, g(p1Bi) = µ1i + δ1i g(p2Ai) = µ2i, g(p2Bi) = µ2i + δ2iδ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

 (5.19)

where

h(r1·, r2·|p1·, p2·, N·, θ·) = C(F1(r1·), F2(r2·), θ·)− C(F1(r1· − 1), F2(r2·), θ·) (5.20)

− C(F1(r1·), F2(r2· − 1), θ·) + C(F1(r1· − 1), F2(r2· − 1), θ·),

At the within-study level (eq. 5.18), we assume that the numbers of events in

each arm on both outcomes follow bivariate distributions h(p1i, p2i, Ni, θi) with

binomial marginal distributions. The parameters p1Ai, p2Ai, p1Bi, p2Bi denote the true

probabilities of the numbers of events in each arm on the first and the second outcome,

NAi and NBi are the number of patients in the control arm A and experimental arm

B in trial i. Additionally, θAi, θBi are the dependence parameters in each arm

respectively and they can be estimated when IPD are available. We assume that

within-study dependencies are different across studies and hence, each study has a
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different dependence parameter. However, when IPD are not available across all

studies, we assume the same dependence across them. In the absence of IPD, we can

construct informative prior distributions, for example by combining evidence from

external sources such as observational studies.

F1(r1·) and F2(r2·) are the cdfs of the binomial marginal distributions on the surrogate

and the final outcome and C(·, ·) is the bivariate copula.

The between-studies model (eq. 5.19) is exactly the same as in BRMA-IB. The true

probabilities of events p1Ai, p2Ai, p1Bi, p2Bi are transformed using a link function g(·)

and the true treatment effects on both outcomes are normally distributed. This model

was implemented in the Bayesian framework assuming the same prior distributions

as for BRMA-IB. The Stan code of the model can be found in the Appendix in

Section C.3.

Overall, bivariate random-effects meta-analysis with bivariate copulas (BRMA-BC) is

less restrictive compared to BRMA and BRMA-IB, as it accounts for the within-study

association and models the data on the original binomial scale, avoiding the a

potentially inappropriate normal approximation.

5.3 Simulation study

We carried out a simulation study to assess the performance of BRMA model and the

two proposed methods and in particular to investigate the impact of the assumptions

made at the within-study level on estimates of the parameters at the between-studies

level. Subsection 5.3.1 presents the data generation process and the simulation

scenarios. The main estimands of the simulation study are reported in subsection

5.3.2. The section concludes reporting detailed results across the scenarios and

discussing the key finding of the simulation study.

5.3.1 Simulation scenarios and generation process

We simulated data under 12 scenarios generating 1000 replications for each of them

and varying the within-study association, the proportions of events and the numbers

of participants. The proposed models were developed to model binomial aggregate
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data which can be a number of events out of a number of patients in each study

i, in both arms. As within-study correlations ρwi and within-study dependence

parameters θAi and θBi for the association between two outcomes in each study i are

needed to populate the BRMA and BRMA-BC models respectively, we simulated

data at the individual level (zeros and ones), as these parameters cannot be estimated

from the aggregate data. All the models were fitted to the binomial aggregate data

obtained from the IPD.

When investigating the impact of different modeling assumptions about the

within-study variability on the model performance (in terms of estimating the

between-studies parameters), we anticipated that such impact may depend on the

strength of the within-study association. To explore this, we varied the strength of

association by assuming weak, moderate and strong within-study associations

(see details in step 6 of the generation process below). To test the effect of the

magnitude of the proportions of events on the performance of the models, we

considered two sets of scenarios - one with medium proportions and one with high

proportions of events. This was implemented by varying the mean baseline

treatment effects. In particular, baseline effects µ1i,2i were drawn from the bivariate

normal distribution (see details in step 3 of the data generation below). As the

baseline effects were simulated on the logit scale, setting the mean baseline effects

η1,2 = 0 corresponds to proportion of events equal to 0.5 (as logit−1(0) = 0.5), and

similarly, η1,2 = 3 corresponds to proportion of events equal to 0.95. Lastly, we

considered two settings for study sizes. The number of patients in both arms of

each study were drawn from the following normal distribution: nAi,Bi ∼ N(m, 5)

where i = 1, ..., N and rounded off to the nearest integer. Setting m = 300 (large

study size) and m = 80 (small study size) covers the typical sizes of phase 3 and

phase 2 trials in CML.

As mentioned in the previous paragraph, we generated IPD (zeros and ones) for

each study and used bootstrapping to estimate the within-study correlations and

association parameters for the copulas. However, in the scenarios with high

proportions of events (95%) and small study size (nAi,Bi ∼ N(80, 5)), it is likely to

that some studies are generated without any non-events (zeros) both on the first

and the second outcome. In such cases, the bootstrap method was unable to
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estimate the within-study association as the variability in the IPD is zero. To

address this, we simulated studies with at least one ’zero value’ either on the first or

the second outcome.

The generation process is the following:

1. Set the number of studies to thirty (N = 30).

2. Simulate the heterogeneous arm sizes ni of each study i from the following

normal distribution (ni ∼ N(m, 5)) and then round them to the nearest integer.

3. Simulate the baseline treatment effects µ1i, µ2i from the following bivariate

normal distribution (µ1i, µ2i)
T ∼ BV N

η1

η2

,
 s2

1 s1s2ρ

s1s2iρ s2
2

, with

s1 = s2 = 0.1, ρ = 0.8 and η1,2 = 0 (proportions of events equal to 0.5)

or η1,2 = 3 (proportions of events equal to 0.95).

4. Simulate the true relative treatment effects from:

(δ1i, δ2i)
T ∼ BV N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2iρb τ 2
2

, with d1 = 0.4, d2 = 0.2,

τ1 = 0.5, τ2 = 0.5, ρb = 0.8.

5. Calculate the proportions of events from p1Ai = logit−1(µ1i),

p2Ai = logit−1(µ2i), p1Bi = logit−1(µ1i + δ1i), p2Bi = logit−1(µ2i + δ2i) in each

arm across outcomes.

6. To simulate (weakly, moderately and highly) correlated binary IPD, we used

a joint density with Bernoulli marginal distributions constructed with Frank

copula in both arms. For each set of proportions of events (0.5, 0.95) we varied

the dependence parameters to reflect low, moderate and high within-study

association. The true values of dependence parameters θA and θB along with

the approximate value of corresponding Spearman’s correlation were presented

across all the simulated scenarios in the Appendix C.4.

7. Summarise the numbers of events in each arm and outcome by taking the sum

of the binary responses and record the number of individuals in each study

arm.

This process gives us a data-set with correlated numbers of events on the first and

the second outcome in each arm.
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To investigate the performance of the methods, we fitted BRMA, BRMA-IB and

two versions of BMRA-BC to the simulated scenarios. Specifically, to assess effect

of misspecifying the copula distribution on the estimates of the between-studies

parameters, two versions of BRMA-BC model were applied. The first version

(BRMA-BC(Frank)) modeled the within-study variability using Frank copula - the

same copula was used in the generation process (see step 6). The second version of

the model, (BRMA-BC(Gauss)) misspecified the dependence structure, modeling

the within-study variability with Gaussian copula.

5.3.2 Estimands and performance measures

The primary estimand of the simulation study was the parameter of the

between-studies correlation ρb. The second group of estimands of the simulation

study were the heterogeneity parameters τ1, τ2, the pooled effects d1, d2 and the

true treatment effects. These parameters could indirectly affect a trial-level

surrogacy pattern, as the intercept λ0 which is the second rule of the surrogacy

criteria (see 5.2.1.1), was expressed in terms of the heterogeneity parameters and

the pooled effects (eq. 5.5).

To evaluate the performance of the aforementioned models, in each simulation

replication, we estimated the posterior median of the between-studies correlation ρb;

95% credible interval (CrI) of ρb; coverage probability of 95% CrIs of ρb and then we

obtained values of bias of ρb averaged over 1000 simulation replications; RMSE of

ρb across 1000 simulation replications. We also measured coverage, average bias and

RMSE of the heterogeneity parameters τ1 and τ2, and the pooled treatment effects

d1 and d2.

5.3.3 Results

This section presents the results of data analysis of the simulation study. Firstly,

the estimated values of ρwi, θAi(Frank), θBi(Frank) and θAi(Gauss), θBi(Gauss) obtained

by bootstrapping are presented across the scenarios. The second part of the section

reports detailed results for the between-studies correlation ρb, the heterogeneity

parameter for the final outcome τ2, the pooled effect on the final outcome d2. The
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section concludes discussing the key finding of the simulation study.

5.3.3.1 Within-study correlations ρwi and within-study dependence

parameters θAi and θBi

As discussed, within-study correlations ρwi and within-study dependence parameters

θAi and θBi for each study i were needed to populate the BRMA and BRMA-BC

models respectively. Therefore, we simulated data at the individual level in order

to estimate them. Table 5.1 displays the empirical distributions of ρwi, θAi(Frank),

θBi(Frank) and θAi(Gauss), θBi(Gauss) of 30000 samples, obtained by bootstrapping the

simulated IPD for each study across 1000 replications (30 studies× 1000 replications).

The code and a short description of the bootstrap methods can be found in the

Appendix C.5 and C.6.
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Table 5.1: Medians, 2.5% and 97.5% quantiles of ρwi, θBi(Frank), θBi(Frank), θAi(Gauss) and θAi(Gauss) estimated by bootstrapping simulated
IPD from all the studies (30 studies) and across 1000 simulation iterations

Large study size Small study size
Average

Proportion
of events = 0.5

Average
Proportion

of events = 0.95

Average
Proportion

of events = 0.5

Average
Proportion

of events = 0.95
Strength of
association Parameter Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%) Median (2.5%, 97.5%)

ρwi 0.14 (0.02, 0.26) 0.16 (-0.00, 0.41) 0.14 (-0.08, 0.36) 0.16 (-0.14, 0.56)
Low θAi(Frank) 0.87 (0.20, 1.55) 1.18 (-0.03, 2.66) 0.92 (-0.35, 2.30) 1.45 (-0.03, 5.29)
within-study θBi(Frank) 0.82 (0.12, 1.52) 1.02 (-0.02, 2.67) 0.86 (-0.42, 2.25) 1.27 ( 0.03, 5.37)
association θAi(Gauss) 0.15 (0.04, 0.27) 0.19 (-0.00, 0.41) 0.16 (-0.07, 0.36) 0.18 (-0.00, 0.55)

θBi(Gauss) 0.14 (0.03, 0.26) 0.16 (-0.00, 0.40) 0.14 (-0.08, 0.36) 0.16 ( 0.01, 0.55)
ρwi 0.44 (0.32, 0.54) 0.46 (0.11, 0.67) 0.44 (0.22, 0.62) 0.45 (-0.01, 0.82)

Moderate θAi(Frank) 2.88 (2.10, 3.76) 3.62 (1.61, 6.32) 2.93 (1.48, 7.55) 3.73 ( 0.37, 29.66)
within-study θBi(Frank) 2.70 (1.78, 3.64) 3.06 (0.35, 6.28) 2.73 (1.22, 7.52) 3.14 ( 0.35, 30.97)
association θAi(Gauss) 0.45 (0.34, 0.55) 0.52 (0.26, 0.73) 0.45 (0.25, 0.64) 0.45 ( 0.05, 0.98)

θBi(Gauss) 0.43 (0.29, 0.54) 0.45 (0.08, 0.73) 0.43 (0.20, 0.63) 0.38 ( 0.04, 0.98)
ρwi 0.78 (0.68, 0.84) 0.78 (0.45, 0.92) 0.78 (0.63, 0.88) 0.76 (0.27, 1.00)

Strong θAi(Frank) 7.61 (6.03, 9.81) 9.20 (4.99, 22.26) 7.72 (5.00, 13.77) 9.26 (1.90, 31.00)
within-study θBi(Frank) 6.61 (4.40, 9.01) 6.81 (2.34, 17.89) 6.61 (3.91, 11.73) 6.64 (0.93, 31.00)
association θAi(Gauss) 0.80 (0.73, 0.87) 0.85 (0.65, 0.97) 0.80 (0.66, 0.92) 0.86 (0.33, 0.99)

θBi(Gauss) 0.75 (0.61, 0.84) 0.74 (0.24, 0.95) 0.75 (0.56, 0.89) 0.68 (0.11, 0.99)
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5.3.3.2 Between-studies correlation ρb

The between-studies correlation was the main parameter of interest as it quantifies

the trial-level association between the treatment effects on the surrogate endpoint

and the final outcome.

Figure 5.2 displays posterior medians and 95% CrIs of ρb averaged over the 1000

replications along with the true value of ρb = 0.8 (dotted line). The plot on the

left hand side (LHS), presents the results of the scenarios with large study size

(the numbers of patients in both arms were simulated from nAi,Bi ∼ N(300, 5)),

whereas the plot on the right hand side (RHS) illustrates the results of the scenarios

with small study size (the numbers of patients in both arms were simulated from

nAi,Bi ∼ N(80, 5)).

Starting from the scenarios where the proportions of events were on average 0.5

and the study size was large (LHS plot, first column), BRMA, BRMA-BC(Frank)

and BRMA-BC(Gauss) models performed very similarly in terms of precision and

accuracy regardless of the strength of the within-study association. They resulted

in precise 95% CrIs and posterior medians very close to the true value (0.8). On the

other hand, when the within-study association was moderate or strong, BRMA-IB

model was the least accurate method overestimating between-studies correlation ρb.

The next set of scenarios (LHS plot, second column) include 0.95 average

proportions of events and large study size. The BRMA-IB, BRMA-BC(Frank) and

BMRA-BC(Gauss) models outperformed BRMA model in terms of precision. In

particular when the within-study association was moderate and strong BRMA

failed to estimate ρb with good precision (its 95% CrIs contained positive and

negative values). However, BRMA-IB model was very sensitive to the effect

of within-study association. The higher was the strength of the within-study

association the more precise and less accurate the method was, resulting in

accurate posterior medians only in the scenario with weak within-study association.

To investigate the effect of study size we repeated the same analysis reducing the

number of patients in each study. The second plot in Figure 5.2 presents the results

of the scenarios with small study size. Starting from the scenarios with 0.5 average

proportions of events and the study size was small (RHS plot, first column), BRMA,
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BRMA-BC(Frank) and BRMA-BC(Gauss) were less precise but equally accurate

compared to the scenarios with large study size (LHS plot, first column) resulting in

very similar posterior medians, but wider 95% CrI. On the other hand, BRMA-IB

was more susceptible to the effect of study size in terms of accuracy compared to

the other two methods. Specifically, when the within-study association was either

moderate or strong in scenarios presented on the RHS plot, the method overestimated

ρb resulting in larger posterior medians compared to the corresponding scenarios of

the LHS plot and the true value.

The last set of scenarios (RHS plot, second column) corresponds to the proportions

of events of 0.95 and small studies in terms of their size. In this extreme set of

scenarios, all methods performed poorly in terms of estimating ρb. This was mainly

due to the small study size combined with the high proportions of events. BRMA

resulted in the least accurate posterior medians and the widest 95% CrIs. On the

other hand, BRMA-IB was the most accurate and precise method.
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Figure 5.2: Posterior medians (black dot) and 95% CrIs (solid bars) of ρb averaged over the 1000 replications along with the true value of
ρb = 0.8 (dotted line) across the 12 scenarios

(0.54,0.92) (0.56,0.93) (0.54,0.92) (0.54,0.92)

(0.55,0.91) (0.61,0.94) (0.56,0.91) (0.55,0.91)

(0.56,0.90)
(0.68,0.96)

(0.58,0.91) (0.57,0.90)

(0.03,0.98)

(0.29,0.98)
(0.17,0.97) (0.16,0.97)

(−0.04,0.97)

(0.51,0.99)

(0.22,0.97) (0.19,0.96)

(−0.26,0.94)

(0.66,0.99)

(0.30,0.97) (0.26,0.96)

Average proportions = 0.5 Average proportions = 0.95

W
eak 

 w
ithin−study 

 association

M
oderate 

 w
ithin−study 

 association

S
trong 

 w
ithin−study 

 association

BRMA BRMA−IB BRMA−BC 
 (Frank)

BRMA−BC 
 (Gauss)

BRMA BRMA−IB BRMA−BC 
 (Frank)

BRMA−BC 
 (Gauss)

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

95
%

 C
rI

s 
of

 ρ
b

Large study size

(0.34,0.96)
(0.42,0.97) (0.36,0.96) (0.34,0.95)

(0.36,0.95)

(0.57,0.99)
(0.42,0.95) (0.39,0.94)

(0.37,0.92)

(0.72,0.99)

(0.50,0.95) (0.44,0.93)

(−0.92,0.97)

(−0.52,0.98)

(−0.74,0.96) (−0.74,0.97)

(−0.93,0.96)

(−0.22,0.99)

(−0.70,0.97) (−0.70,0.98)

(−0.93,0.96)

(0.00,0.99)

(−0.68,0.99) (−0.69,0.99)

Average proportions = 0.5 Average proportions = 0.95

W
eak 

 w
ithin−study 

 association

M
oderate 

 w
ithin−study 

 association

S
trong 

 w
ithin−study 

 association

BRMA BRMA−IB BRMA−BC 
 (Frank)

BRMA−BC 
 (Gauss)

BRMA BRMA−IB BRMA−BC 
 (Frank)

BRMA−BC 
 (Gauss)

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0
95

%
 C

rI
s 

of
 ρ

b

Small study size

116



Chapter 5. Improving the validation of surrogate endpoints on binary outcomes
when the proportions of events occur rarely or very frequently

Figure 5.3 presents the bias of ρ̂b averaged over the 1000 replications along with the

coverage probabilities of the 95% CrIs of ρb and RMSE across the 12 scenarios. In

the scenarios with average proportions of events equal to 0.5 (first column of the LHS

and RHS plots), BRMA, BRMA-IB, BRMA-BC(Frank) and BRMA-BC(Gauss)

models performed very similarly in terms of bias, coverage and RMSEs regardless

of the sample size. Specifically, there was no difference in their performance across

the different strengths of within-study associations. On the other hand, when

within-study association was moderate or strong, BRMA-IB resulted in upwardly

biased estimates, slightly higher RMSEs and under-coverage. Concerning the effect

of study size, the smaller was the study size the higher were the biases and RMSEs

were across all methods.

When the average proportions of events were 0.95 (second column of the LHS

and RHS plots), BRMA-BC(Frank), BRMA-BC(Gauss) and BRMA-IB methods

outperformed BRMA model across all scenarios regardless of the size of the studies.

BRMA model underestimated substantially ρb in particular when the study size was

small.

In the set of scenarios where the study size was large and the within-study

association was moderate or strong (second column of the LHS), BRMA-BC(Frank)

and BRMA-BC(Gauss) were less biased compared to BRMA-IB model resulting

also in coverage probabilities closer to 95%. On the other hand the RMSEs of

BRMA-BC(Frank) and BRMA-BC(Gauss) were slightly higher than RMSEs of

BRMA-IB. This implies that the standard error of the estimates of BRMA-BC was

larger compared to BRMA-IB despite being on average less biased across the 1000

replications (i.e. posterior medians were more dispersed around the true value).

The posterior median of the between-studies correlation of BRMA-IB was upwardly

biased when the study size was large and some under-coverage was also observed

when the within-study association was strong. The second column of RHS plot

presents the results of the scenarios with 0.95 average proportions of events and

small study size. In this last set of scenarios, BRMA-IB was the best method in

terms of bias and RMSE. The other three methods substantially underestimated

the between-studies association, resulting in downwardly biased estimates of ρb and

very conservative 95% CrIs as the coverage probabilities were higher than 95%.
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However, BRMA-BC(Frank) and BRMA-BC(Gauss) models were always less

biased compared to BRMA. BRMA model failed to estimate ρb as the assumption

of normality was unreasonable in these scenarios.

The effect of misspecifying the copula density was minimal for the between-studies

correlation ρb, since BRMA-BC(Gauss) achieved similar performance as

BRMA-BC(Frank) across all the scenarios.
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Figure 5.3: Bias of ρ̂b averaged over the 1000 replications along with the coverage probabilities and RMSE across the 12 scenarios
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5.3.3.3 Between-studies standard deviation τ2

In this section, we estimated the between-studies heterogeneity parameters τ1, τ2.

We report only the results of τ̂2 as τ̂1 performed in a very similar way. Figure 5.4

presents the bias of τ̂2 averaged over the 1000 replications along with the coverage

probabilities of the 95% CrIs of τ2 and RMSE, across the 12 scenarios.

When the proportions of events were close to 0.5 (first column of the LHS and the

RHS plots) all the methods were on average unbiased, with coverage probabilities

equal to 0.95 and small RMSEs regardless of the study size. Only when within-study

association was high, BRMA-IB slightly overestimated τ2 resulting in higher on

average biased estimates compared to BRMA-BC(Frank), BRMA-BC(Gauss) and

BRMA models.

When the proportions of events were approximately 0.95 (second column of the

LHS and the RHS plots), BRMA model substantially underestimated τ2 across all

strengths of within-study association regardless of the study size. Furthermore,

substantial under-coverage was observed from BRMA model when the within-study

association was moderate or strong regardless the sample size. Note that under- or

overestimation of the heterogeneity parameters will affect the estimates of the

between-studies correlation and vise-versa, which explains why ρb estimated from

BRMA was downwardly biased. BRMA-IB overestimated the heterogeneity

parameter τ2 mainly when the within-study association was moderate or strong.

This explains the upwardly biased estimates and the increased precision of the

estimates of ρb from this method in these scenarios. The two versions of BRMA-BC

were the most accurate methods across these scenarios, resulting in biases closer

to zero, smaller RMSEs and acceptable coverage probabilities. Specifically, in

the scenarios with moderate or strong within-study association, the estimates

of τ2 obtained from these two models, were slightly more biased compared to

the scenario with weak within-study association. This effect was stronger for

BRMA-BC(Gauss) model, as this version of the model misspecified the copula

function at the within-study level - it used the Gaussian instead of Frank which was

used for data simulation.
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Figure 5.4: Bias of τ̂2 averaged over the 1000 replications along with the coverage probabilities and RMSE across the 12 scenarios
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5.3.3.4 Pooled treatment effects d2

The last set of results, illustrates the performance of the methods in terms of the

estimate of the pooled treatment effect on the final outcome d2. Figure 5.5 presents

the bias of d̂2 averaged over the 1000 replications along with the coverage probabilities

and RMSE across the 12 scenarios. Similarly as in the previous section, we decided

to present only results of d̂2, as the estimates of the treatment effect on the first

outcome performed in a very similar way.

When the average proportions of events were 0.5 (first column of the plots on the

LHS and the RHS) all the methods performed very well and in a very similar way

achieving zero bias, 95% coverage probabilities and low RMSE regardless of the

strength of the within-study association and the number of patients in each study.

When then the proportions of events were approximately 0.95 (second column of the

plots on the LHS and the RHS), BRMA model gave downward biased estimates of

d2 and reduced coverage probabilities and marginally higher RMSEs compared to

the proposed methods. Another interesting finding was the effect of within-study

association on the estimates of d2 of BRMA model. In the scenarios with small study

size, the stronger was the within-study association the more downward biased were

the estimates from BRMA. On the other hand, BRMA-IB and the two versions of

BRMA-BC performed equally well across all the scenarios resulting in quite accurate

estimates and acceptable coverage probabilities.

Overall, the effect of misspecifying the copula density was minimal for the pooled

treatment effects on the final outcome d2, since BRMA-BC(Gauss) achieved similar

performance as BRMA-BC(Frank) across all the scenarios.
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Figure 5.5: Bias of d̂2 averaged over the 1000 replications along with the coverage probabilities and RMSE across the 12 scenarios
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5.3.4 Key findings

A short summary of the key findings from the simulation study is given below:

• The simulation study showed that the normal approximation failed for binary

outcomes when the proportions of events were simulated close to one. This

confirmed findings by Hamza et al. [17] for univariate single-arm data and

extends their finding to the bivariate setting for Binomial RCT data on two

outcomes and two treatment arms. In our simulation study we focused on the

performance of the parameters describing the between-studies variability: the

between-studies correlation ρb and heterogeneity parameters τ1, τ2 and pooled

treatment effects d1 and d2. When the average proportions of events were

close to 0.5, there was no clear difference between BRMA model and the two

version of BRMA-BC as they performed very similarly and sufficiently well

in terms of the precision of ρb resulting also in very similar results across the

performance measures (bias, coverage probability and RMSE). However, when

the average proportions of events were increased to 0.95, BRMA model was not

appropriate to investigate trial-level surrogate relationships for binary outcomes.

This was reflected to the performance of the between-studies estimates of

BRMA. Overall, the model resulted in inflated 95% CrIs of ρb, poor coverage

probabilities, large RMSEs and downward biased estimates of ρb, τ1,2 and d1,2.

• The main aim of the simulation study was to explore the impact of the

within-study association on the estimation of the between-studies correlation

ρb, as this parameter establishes a trial-level association pattern. As discussed

above, BRMA model accounts for within-study association between the

treatment effects on two outcomes. However, it is a suitable method for

investigating a trial-level association pattern between treatment effects on

binary outcomes, only when the proportions of events are close to 0.5, but will

fail when the proportions are close to 0 or 1. On the other hand, BRMA-IB

model was the most sensitive method to the effect of within-study association

by far. This model assumes that the binomially distributed numbers of events

are independent across outcomes. As a result, within-study associations are

not taken into account and the ”excess” of the association manifests itself in
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the upwardly biased estimate of the between-studies correlation. In the

simulation study, higher within-study associations led to more upwardly

biased estimates of ρb. Although, BRMA-IB resulted in substantial reduction

in the uncertainty around the estimates of ρb, this improvement affected the

coverage probabilities of the 95% CrIs of ρb causing major under-coverage in

the scenarios with moderate or strong within-study association. In the

extreme scenario with high proportions of events and small study size,

BRMA-IB estimated ρb with better precision and accuracy compared to

BRMA-BC due to the fact that overestimated the heterogeneity parameters.

Overall, BRMA-IB model is quite robust when modeling data with no/small

within-study association, but inappropriate to estimate a trial-level

association pattern when the within-study association is moderate or strong.

• The simulation study also investigated the effect of the study size by having

two sets of scenarios (one with small study size and one with large). Overall,

in the scenarios with small study size, all the methods resulted in lower

precision around the posterior medians of ρb, higher biases and larger RMSEs

of the posterior medians of ρb compared to the scenarios with large study size.

Furthermore, it highlighted the importance of study size in the scenarios

with high proportions of events. Specifically, in the scenarios with average

proportions of events equal to 0.95 and small study sizes, both versions of

BRMA-BC failed to estimate the trial-level association with reasonable

precision despite modeling the within-study variability on the original

binomial scale and accounting for within-study associations. This indicates

that, the study size is rather important and can substantially affect the

precision and the accuracy of the estimates of the between-studies correlation,

when investigating binary outcomes with very high/low proportions of events.

• Overall, BRMA-BC models were the most appropriate method to investigate

the trial-level association patterns between treatment effects on two binary

outcomes, in particular when the within-study association was strong. Both

versions of the method achieved similar performance in most of the scenarios

without substantially over/underestimating ρb, τ1,2 and d1,2. This suggests

that, the impact of misspecifying the copula density on the estimates of the
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between-studies parameters was minimal. Additionally, there were scenarios

where both versions of BRMA-BC failed to estimate ρb as accurately and

precisely as BRMA-IB. As explained in the previous paragraph, this was due

to the small size of the studies combined with the high proportions of events. In

practice, investigating between-studies association between treatment effects

on correlated binary outcomes with proportions of events close to one or zero

requires studies with sufficiently large number of patients.

5.4 Data example

In this Section, we investigate whether the developed methods (BRMA-IB,

BRMA-BC) improve the trial-level validation of surrogate endpoints compared to

the standard method (BRMA) in a data example. Specifically, we applied BRMA,

BRMA-IB and BRMA-BC, investigating the trial-level association pattern between

the treatment effects on a surrogate endpoint and on a final outcome in CML.

Another area of investigation was whether the dependence structure of the marginal

distributions had an impact on the parameters describing the surrogate relationship

(between-studies correlation and intercept). To investigate this, we applied three

versions of BRMA-BC model. In the first version of BRMA-BC, the within-study

variability was modeled with bivariate joint densities constructed with bivariate

Frank copula which is symmetric and assumes no tail dependence. In the second

one, the bivariate joint densities were constructed with Gaussian copula which is

also symmetric and assumes weak tail dependence. In the last version, we used

Gumbel copula which is asymmetric and assumes upper tail-dependence. We also

investigated the predictions of the true treatment effects on the final outcome by

carrying out a cross-validation procedure for each of the three models (BRMA,

BRMA-IB and BRMA-BC).

5.4.1 Chronic myeloid leukemia and surrogate endpoints

CML is a myeloproliferative neoplasm of hematopoietic stem cells associated with

the presence of a BCR-ABL fusion gene called the Philadelphia chromosome, which

is the result of reciprocal translocation between chromosomes 9 and 22 [151]. The
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main characteristic is of the disease is that CML is regarded as a slow progressive

disease [18]. Before the molecular pathogenesis of the disease was well understood,

Philadelphia-positive CML was mainly treated with hydroxyurea, interferon alfa

(INF-α) and allogeneic hematopoietic stem-cell transplantation. The median OS was

6 years, with a predicted 5-year OS of 47.2% [141]. The last 2 decades researchers

established that BCR-ABL gene is the causal to the pathogenesis of CML and that

tyrosine kinase activity is central to transform hematopoietic cells. TKIs treatments

specifically target this activity [152], thus the introduction of first generation TKIs

(imatinib) has led to dramatically improved long-term survival rates since 2001,

resulting in high response rates of CCyR or major molecular response (MMR) at 1

year and very few events such as loss of response (e.g CCyR, MMR etc.), progression

to accelerated phase or blast crisis and death from any cause. More recently, other

drugs, most of them classifiable as second generation TKIs were developed [18, 19,

153]. When these agents are used as a first line treatment, they are capable of

achieving faster and more durable CCyR and MMR [18, 19, 153, 154].

Most of the studies use biomarkers such as CCyR and MMR at 1 year as primary

endpoints since, they are considered valid surrogate endpoints[4, 6, 18, 19, 19, 153,

155–157]. OS and EFS at 2 or 3 years are considered as secondary endpoints and are

used as final outcomes in most of the RCTs. A systematic review and meta-analysis

by Ciani et al. [154] confirmed the adoption of CCyR at 1 year as a surrogate

endpoint of OS. On the other hand, they inferred that MMR did not fully qualify as

a surrogate endpoint for OS as it provides a measure of success rather than a measure

of failure, e.g. patients who do not achieve a deep molecular response (DMR) do

not necessarily have a poor outcome. However, the surrogate relationship between

treatment effects on CCyR at 1 year and on OS at 2 years was investigated by using

a small number of RCTs which only compared first generation TKIs (imatinib) with

standard treatments before the introduction of TKIs (e.g. INF-α). Lately, a variety

of RCTs have compared first generation TKIs with second generation TKIs reporting

high rates of CCyR at 1 year and very few events at 2 year OS or EFS in both arms.
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5.4.2 Data extraction

To illustrate the proposed methods and compare them with BRMA model we

identified 10 studies comparing first generation TKI therapies (e.g 400mg imatinib)

with second generation TKIs (e.g. dasatinib, nilotinib,busotinib) or different doses of

first generation TKIs (600mg or 800mg imatinib). We investigated whether CCyR at

1 year could be considered as a valid surrogate endpoint for EFS at 2 years or OS at

2 years. We chose CCyR at 1 year as candidate endpoint, as it has been extensively

used in the literature as a gold standard for a good measure of response. EFS at 2

years as it is very significant in view of the dismal prognosis of the patients proceeding

to advanced stages or losing response and OS at 2 years, since it is considered as

the main long-term clinical outcome. Table 5.2 presents the summarised responses

in the experimental and the control arm on both outcomes along with the sample

size per arm and outcome. To apply BRMA, we transformed the treatment effects

and their corresponding variances on the log odds ratio scale (using eq. 5.1-5.4). To

work with positive correlations we also recorded the numbers of patients who were

event-free on EFS and OS.
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Table 5.2: Aggregate data in CML

CCyR at 1 year EFS at 2 years OS at 2 years
Arm A Arm B Arm A Arm B Arm A Arm B

Study name N1Ai r1Ai N1Bi r1Bi N2Ai r2Ai N2Bi r2Bi N2Ai r2Ai N2Bi r2Bi

Cortes 2012 [158] 252 171 250 175 252 222 250 230 252 239 250 243
Kantarjian 2010 [19] 260 189 259 216 260 239 259 243 260 248 259 247
Radich 2012 [159] 61 42 70 59 123 117 123 118 123 121 123 119
Saglio 2010 [153] 243 184 236 219 283 267 281 276 283 272 281 275
Baccarani 2009 [160] 108 63 108 69 108 74 108 77 108 106 108 104
Preudhomme 2010[157] 158 92 160 104 159 149 160 149
Hehlmann 2011 [161] 303 150 311 206 324 308 338 317 324 315 338 327
Cortes 2010 [162] 157 103 319 223 157 149 319 311 157 155 319 313
Deininger 2013 [156] 49 33 41 35 72 60 73 68 72 64 73 69
Wang 2015 [163] 133 107 134 104 133 125 134 124 133 131 134 132129
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5.4.3 Data Synthesis

Although BRMA and BRMA-BC models make different assumptions about the

within-study variability, both of them account for the within-study association. As

discussed above, within-study association between treatment effect on two outcomes

on the log OR scale can be estimated using a bootstrap method from IPD. However,

in this data-set IPD were not available for any of these studies, hence we were unable

to estimate the dependence parameters θA and θB of each version of BRMA-BC

and Pearson’s within-study correlations ρw of BRMA. Instead, we constructed

informative prior distributions for each of the parameters using external evidence

obtained from three observational cohort studies [6, 155, 164] (these observational

studies list three cohorts reporting data of treatments in the control arm and a

cohort reporting data of a treatment in the experimental arm). The aim of these

studies was to measure the impact of achieving a CCyR at 1 year on EFS or OS.

They reported rates of CCyR at 1 year and the rates of EFS/OS at 2 years for the

patients who either did or did not achieve CCyR at 1 year. Having this information,

pseudo IPD could be generated for each of the studies, and hence the within-study

associations could be estimated in each arm. To construct a unique informative prior

distributions for each of the parameters (ρw, θA and θB) we performed the following

steps:

1 we extracted the rates from each of the cohort studies and calculated an average

rate in the control arm as there were three cohort studies reporting 3 different

rates in this arm.

2 binary pseudo IPD were generated in each arm on the CCyR at 1 year and on

EFS/OS at 2 years (vectors of "ones" and "zeros") using the extracted rates.

3 a double bootstrap method were applied to the binary pseudo IPD, to obtain

an empirical distribution of the within-study association parameters (ρw, θA

and θB)

4 unique informative prior U(a, b) were constructed for each parameter, using

the 2.5% and the 97.5% quantiles of the empirical distributions as boundaries.

Table 5.3 displays the median, the 2.5% and the 97.5% quantiles of the empirical
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distributions derived from the external evidence using the double bootstrap method

(columns 3-5) and the constructed informative prior distribution placed on the

parameters (column 6).

Table 5.3: Medians, 2.5% and 97.5% quantiles of the densities of ρw, θA and θB,
estimated by a double bootstrap method on CCyR-EFS and CCyR-OS

Empirical
distributions

Pairs of outcomes Parameter 2.5% Median 97.5%
Informative prior
distributions

ρw 0.20 0.33 0.45 U(0.20, 0.45)
θA(Frank) 0.99 1.71 2.38 U(0.99, 2.38)
θB(Frank) 1.11 1.92 2.78 U(1.11, 2.78)

CCyR-EFS θA(Gauss) 0.18 0.29 0.38 U(0.18, 0.38)
θB(Gauss) 0.19 0.32 0.42 U(0.19, 0.42)
θA(Gumbel) 1.09 1.17 1.27 U(1.09, 1.27)
θB(Gumbel) 1.09 1.19 1.31 U(1.09, 1.31)
ρw 0.00 0.12 0.23 U( 0.00, 0.23)
θA(Frank) -0.15 0.61 1.27 U(−0.15, 1.27)
θB(Frank) -0.10 0.74 1.50 U(−0.10, 1.50)

CCyR-OS θA(Gauss) -0.03 0.10 0.22 U(−0.03, 0.22)
θB(Gauss) 0.00 0.13 0.25 U( 0.00, 0.25)
θA(Gumbel) 1.00 1.03 1.11 U( 1.00, 1.10)
θB(Gumbel) 1.00 1.04 1.14 U( 1.00, 1.14)

5.4.4 Data analysis

We applied BRMA, BRMA-IB and three versions of BRMA-BC to investigate the

trial-level association patterns between treatment effects on CCyR at 1 year and

EFS at 2 years and between treatment effects on CCyR at 1 year and OS at 2 years

in the CML data-set. To assess the performance of each method, we monitored

the between-studies parameters and the intercept across models by estimating 95%

CrIs, posterior medians and posterior mean for each parameter across the 5 modeling

options. There primary parameters of interest were the between-studies correlation

ρb and the λ0 as they formed the surrogacy criteria in this chapter (see section

5.2.1.1). Additionally, we performed model comparison using the Watanabe-Akaike

or widely applicable information criterion (WAIC) [165]. WAIC can be considered

as an improvement on the deviance information criterion (DIC) [166] for Bayesian

models and it was calculated across models using an R function developed by Vehtari
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et al. [167].

Table 5.4 displays estimates (posterior median/mean and 95% CrIs) of the

between-studies parameters across models for CCyR-EFS pairs of outcomes. It

can be seen that BRMA model resulted in a posterior distribution of ρb with

significantly smaller posterior median (0.37) and marginally lower precision,

compared to the estimates of BRMA-IB, BRMA-BC(Frank), BRMA-BC(Gauss)

and BRMA-BC(Gumbel) models. In the simulation study, BRMA underestimated

ρb resulting also in larger uncertainty around the estimate of ρb, compared to

BRMA-IB and BRMA-BC when the proportions were close to 1. This is likely to

occur in this data example, as the proportions of events on EFS where close to

1. On the other hand, BRMA-IB resulted in the highest posterior median of

ρb. This can potentially mean that BRMA-IB slightly overestimated ρb as the

model did not account for the two sources of association existed in the data

(within and between-studies associations). Similar behaviour was also observed

in the simulation study where the posterior medians of ρb of BRMA-IB were

upwardly biased in the scenarios with moderate and high within study association.

Moreover, BRMA model resulted in the smallest posterior means/medians of the

heterogeneity parameters τ1, τ2 and of the pooled effects d1, d2, whereas BRMA-IB

gave estimates with the largest values for these parameters. The three versions

of BRMA-BC produced very similar posterior means/medians and 95% CrIs

indicating that the dependence structure had negligible impact on the estimates

of the parameters. Overall, we drew the same inferences about the trial-level

association pattern between the treatment effects on CCyR at 1 year and EFS at 2

years regardless of the model we used. The between-studies correlation ρb was not

very high and the parameter was estimated with considerable uncertainty across all

methods (the 95% CrI spanned almost from -1 to 1). The intercept was also

obtained with poor precision across all methods despite the 95% contained zero.

Therefore, CCyR at 1 year could not be validated as surrogate endpoint of EFS at

2 years at the trial level.
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Table 5.4: Between-studies estimates across models for CCyR-EFS pair of outcomes

Models BRMA BRMA-IB
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.23(0.37) (-0.94, 0.98) 0.45(0.61) (-0.79, 0.98)
λ0 0.11(0.14) (-0.40, 0.74) 0.10(0.13) (-0.63, 0.63)
τ1 0.40(0.38) ( 0.11, 0.83) 0.46(0.43) ( 0.15, 0.94)
τ2 0.24(0.21) ( 0.01, 0.74) 0.33(0.29) ( 0.01, 0.85)
d1 0.47(0.45) ( 0.15, 0.83) 0.49(0.48) ( 0.13, 0.86)
d2 0.27(0.27) (-0.05, 0.61) 0.30(0.30) (-0.05, 0.69)

Models BRMA-BC(Frank) BRMA-BC(Gauss) BRMA-BC(Gumbel)
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.35(0.51) (-0.87, 0.98) 0.31(0.49) (-0.91, 0.97) 0.31(0.48) (-0.91, 0.98)
λ0 0.17(0.18) (-0.43, 0.70) 0.20(0.18) (-0.43, 0.71) 0.14(0.18) (-0.46, 0.71)
τ1 0.43(0.41) ( 0.14, 0.86) 0.43(0.42) ( 0.12, 0.86) 0.43(0.40) ( 0.11, 0.89)
τ2 0.28(0.25) ( 0.01, 0.78) 0.28(0.24) ( 0.01, 0.80) 0.27(0.23) ( 0.01, 0.80)
d1 0.48(0.48) ( 0.14, 0.83) 0.48(0.48) ( 0.15, 0.85) 0.48(0.47) ( 0.15, 0.83)
d2 0.30(0.29) (-0.04, 0.63) 0.30(0.29) (-0.03, 0.65) 0.29(0.29) (-0.03, 0.64)
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Table 5.5 presents the same format of results as Table 5.4, obtained for CCyR-OS

pair of outcomes. It can be seen that the same pattern also repeats in this analysis.

BRMA resulted in the lowest posterior means/medians of the between-studies

correlation ρb and the heterogeneity parameters τ1 and τ2. and BRMA-IB gave the

highest estimates of these parameters, however, the differences between the

estimates were less pronounced. The three versions of BRMA-BC produced

very similar results to each other, indicating that modeling the within-study

variability with different dependence structures did not affected the estimates of the

between-studies parameters on CCyR-OS pair of outcomes. The estimates of the

pooled treatment effects (d2) on the second outcome were obtained with large

uncertainty and their 95% CrIs included positive and negative values across all

the methods. This is potentially due to the data being not sufficiently mature

[19, 153, 158]. Overall, the trial-level association was very weak as the posterior

means/medians were close to 0 implying poor trial-level surrogacy for this pair of

outcomes in this data-set.

Table 5.6 list the values of the WAIC across models for both pairs of outcomes. The

WAIC values of BRMA model is not included in the table as the model was fitted

to the transformed data (numbers of events were transformed on the log odds ratio

scale) and therefore, it could not be compared with the methods which were fitted

to the binomial aggregate data directly.

Starting from CCyS-EFS pair of outcomes, the differences in the performance of

the models were not that pronounced as the values of WAIC were not substantially

different. BRMA-BC(Frank) was the best fit to the data (smallest WAIC),

whereas BRMA-IB was relatively poorer resulted in slightly higher value of WAIC.

This suggest that BRMA-BC(Frank) model performed better in this data-set as it

accounted for both sources of association which existed in the data. This was also

reflected to the estimates of the between-studies parameters which were very similar

across models. Focusing on the values of WAIC across the three versions of

BRMA-BC model, we could infer that symmetric dependence structures with no

tail or weak tail dependence were slightly more appropriate modeling choices.

When Gumbel copula (asymmetric copula with upper tail dependence) was used

(BRMA-BC(Gumbel)), it resulted in higher WAIC compared to the other two
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versions of BRMA-BC (BRMA-BC(Frank) and BRMA-BC(Gauss)).

The results on CCyR-OS pair of outcomes suggested that all the models achieved

similar performance and as the differences in the WAIC values were minimal. This

suggest that BRMA-IB and the three versions of BRMA-BC were equally appropriate

to model this pair of outcomes as the within-study association was very weak.
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Table 5.5: Between-studies estimates across models for CCyR-OS pair of outcomes

Models BRMA BRMA-IB
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.09(0.15) (-0.95, 0.96) 0.18(0.28) (-0.92, 0.97)
λ0 0.08(0.09) (-0.69, 0.92) 0.03(0.06) (-0.98, 0.80)
τ1 0.49(0.45) ( 0.16, 1.03) 0.52(0.48) ( 0.17, 1.05)
τ2 0.30(0.23) ( 0.01, 1.05) 0.35(0.27) ( 0.01, 1.12)
d1 0.49(0.48) ( 0.09, 0.92) 0.51(0.51) ( 0.10, 0.96)
d2 0.11(0.11) (-0.38, 0.61) 0.13(0.13) (-0.43, 0.60)

Models BRMA-BC(Frank) BRMA-BC(Gauss) BRMA-CB(Gumbel)
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.15(0.24) (-0.93, 0.96) 0.13(0.22) (-0.94, 0.97) 0.14(0.22) (-0.94, 0.97)
λ0 0.06(0.08) (-0.79, 0.82) 0.06(0.09) (-0.82, 0.87) 0.05(0.09) (-0.83, 0.82)
τ1 0.50(0.46) ( 0.19, 1.04) 0.51(0.47) ( 0.17, 1.05) 0.52(0.47) ( 0.17, 1.11)
τ2 0.32(0.26) ( 0.01, 1.03) 0.33(0.26) ( 0.01, 1.05) 0.33(0.27) ( 0.01, 1.03)
d1 0.52(0.51) ( 0.11, 0.95) 0.52(0.51) ( 0.10, 0.96) 0.51(0.51) ( 0.12, 0.94)
d2 0.12(0.13) (-0.34, 0.61) 0.13(0.14) (-0.37, 0.59) 0.12(0.13) (-0.39, 0.60)
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Table 5.6: values of WAIC across models for each pair of outcomes

Pairs of outcomes Model WAIC
BRMA -
BRMA-IB 255.9

CCyR-EFS BRMA-BC(Frank) 252.4
BRMA-BC(Gauss) 253.9
BRMA-BC(Gumbel) 255.1
BRMA -
BRMA-IB 213.3

CCyR-OS BRMA-BC(Frank) 212.9
BRMA-BC(Gauss) 212.4
BRMA-BC(Gumbel) 213.8

5.4.4.1 Cross-validation procedure

Once a strong trial-level association between treatment effects on the surrogate

endpoint and treatment effects on the final outcome is confirmed, the surrogate

endpoint has to be assessed for its predictive value. To achieve this, a leave-one-out

cross-validation procedure can be carried out (for details see section 4.2.4). In the

CML data-set, the validation of CCyR at 1 year as a surrogate endpoint of OS at 2

years or EFS at 2 years was unsuccessful, as the trial-level association was weak and

obtained with considerable uncertainty. However, we performed a cross-validation

procedure to compare the performance of the models in terms of their predictions.

Table 5.7 presents the performance of the predictions of the true treatment effect on

the final outcome (EFS/OS) across models by reporting the following measures: the

mean absolute error, which is defined as the absolute value of the difference between

the observed mean treatment effect (measured on the log odds ratio scale) and the

predicted treatment effect (estimated on the log odds ratio scale) averaged over

the studies of the data-set, the performance of the predictive intervals, by checking

whether the observed treatment effect of each study was contained in its corresponding

predictive interval, and the mean ratio of the width of the 95% predictive intervals of

BRMA-IB or BRMA-BCs models and the 95% predictive intervals of BRMA model

averaged over the studies of the data-set.

The results of the cross-validation procedure on CCyR-EFS pair of outcomes showed

that all methods performed equally well in terms of the performance of the 95%

predictive intervals achieving perfect performance, as all the predictive intervals
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Table 5.7: Performance of predictions across models

Pairs of
outcomes Models

Performance of
95% predictive

intervals

Mean
absolute
error

Width
ratio

BRMA 1.00 0.43 1.00
BRMA-IB 1.00 0.45 1.05

CCyR-EFS BRMA-BC(Frank) 1.00 0.43 1.02
BRMA-BC(Gauss) 1.00 0.42 1.03
BRMA-BC(Gumbel) 1.00 0.43 1.03
BRMA 1.00 0.48 1.00
BRMA-IB 1.00 0.50 1.08

CCyR-OS BRMA-BC(Frank) 1.00 0.50 1.08
BRMA-BC(Gauss) 1.00 0.49 1.08
BRMA-BC(Gumbel) 1.00 0.50 1.08

contained the observed treatment effect on the final outcome across methods. The

three versions of BRMA-BC were slightly superior compared to BRMA in terms

of mean absolute error, however they resulted in on average marginally wider 95%

predictive intervals of the true effects on the final outcome compared to BRMA

model.

Similarly, minor differences were observed in the performance of the models on

CCyR-OS pair of outcome. However, modeling the within-study variability on the

binomial scale (BRMA-IB and the three versions of BRMA-BC) resulted in on

average 8% more uncertainty around the predictions of the true treatment effects on

the final outcome compared to BRMA.

5.5 Discussion

We have introduced a new bivariate meta-analytic method (BRMA-BC) and modified

an existing method (BRMA-IB) to investigate trial-level validation of surrogate

endpoints when such validation is based on binomial aggregate data with high

proportions of events. The proposed models improve the trial-level surrogate endpoint

evaluation of binary outcomes. This can be particularly useful in diseases where the

increased effectiveness of targeted treatments often leads to high numbers of responses

and reduced numbers of events. The proposed models estimate trial-level association

patterns with improved precision compared to the standard methodology (BRMA),

as they allow for modeling the within-study variability on the original binomial
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scale, avoiding the use of an unreliable approximation of normality for log odds

ratios. However, each method makes different assumptions about the within-study

variability. BRMA-IB ignores potential within-study associations assuming that

the aggregate data in both arms, on the surrogate endpoint and the final outcome

follow independent binomial distributions. On the other hand, BRMA-BC accounts

for within-study associations on the original binomial scale, modeling the aggregate

data on each outcome jointly. This can be done by using bivariate distribution with

binomial marginal distributions constructed with a bivariate copula. This model

is very flexible as it can account for different dependence structures between the

marginal distributions using different copulas.

BRMA-IB model performs well only when the within-study association is weak

regardless of the size of the studies. In such scenarios, it can offer substantial gains

in precision of the estimates of the parameters describing the surrogate relationship

(in particular when the proportions of events are close to one or zero), resulting

also in less biased estimates and smaller RMSEs compared to BRMA model.

For instance, in the scenarios of the simulation study with weak within-study

association, BRMA-IB was superior compared to BRMA in terms of precision of ρb.

However, as the strength of the within-study association increases, the performance

of the model becomes problematic. BRMA-IB ignores the within-study association

and the ”excess” of the association manifests itself in the upwardly biased estimate

of the between-studies correlation. For example, in the scenarios where the

within-study association was moderate or strong the model failed to estimate well

the between-studies variability, giving upwardly biased estimates and low coverage

probabilities of the between-studies correlation ρb and standard deviations τ1,2.

BRMA-BC is the most robust model to quantify the trial-level association regardless

of the strength of within-study associations. In particular in the scenarios with

0.95 proportions of events, the model resulted in reduced uncertainty around the

estimates of ρb compared to BRMA model. Furthermore, the fact that in the majority

of the scenarios it did not over/underestimate the heterogeneity parameters τ1,2 led

to more reasonable estimates of the between-studies correlation ρb compared to

BRMA-IB. Although BRMA-IB estimated the between-studies correlation better

in terms of precision, it resulted in poor coverage probabilities of the 95% CrIs
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of ρb and upwardly biased estimates of τ1,2 (in particular in the scenarios where

the within-study association was strong). Additionally, in some scenarios, the

performance of BRMA-BC highlighted the importance of the study size. Investigating

trial-level association patterns in a data-set with small (in terms of the number of

patients) studies and very high/low proportions of events, makes the estimation of

the association pattern (surrogate relationship) extremely difficult. Therefore, when

the proportions of events are very close to one or zero, large studies (in terms of

size) are required to estimate trial-level association patterns accurately and precisely.

An important aspect of the BRMA-BC is the choice of the copula function. In the

simulation study, we investigated the effect of misspecifying the copula density on the

parameter of between-studies correlation (correlated IPD were generated using Frank

copula). Overall, the effect was minimal for the between-studies correlation ρb, as

BRMA-BC(Gauss) (where the within-study variability is modeled with the Gaussian

copula) and BRMA-BC(Frank) (where the within-study variability is modeled with

Frank copula) achieved very similar performance across all the scenarios. This was

potentially due to the sparsity of the data. In general, when data are sparse (as

is often the case in meta-analysis of aggregate data) it is challenging to capture

the exact dependence structure, and therefore different copula functions may have

little impact on the performance of the between-studies parameters. However, it can

always be useful to plot or perform diagnostics to the data in order to detect tail

dependencies or asymmetries.

In the data example, all the methods found suboptimal trial-level association between

the treatment effects on CCyR at 1 year and EFS at 2 years as the posterior median

of between-studies correlation was not very high and the 95% CrI of ρb was extremely

wide, spanning almost from -1 to 1. This suggests that CCyR cannot be considered

as a valid surrogate endpoint of EFS at 2 years, at the trial level. However, this

example can still illustrate the benefits of modeling the within-study variability on

the original binomial scale. BRMA-IB and all versions of BRMA-BC model gave

larger estimates of the median between-studies correlation ρb with slightly reduced

uncertainty. Additionally, the median between-studies standard deviations τ1, τ2

were also higher compared to BRMA model. This behaviour is in agreement with the

findings of the simulation study, where BRMA resulted in higher uncertainty around
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the estimates of the between-studies correlation and downwardly biased estimates

of the heterogeneity parameters when the proportions of events were close to 1.

Furthermore, by comparing the values of WAIC across models, we can infer that

BRMA-BC with Frank copula was the most appropriate modeling techniques for

this data-set. The three versions of BRMA-BC model resulted also in slightly more

uncertainty around predictions of the true treatment effect on the final outcome

compared to BRMA model. This was potentially due to the different assumptions at

the within-study level, and the different scale of data (BRMAmodels the within-study

level on the log odds ratio scale, whereas BRMA-BC at the original binomial scale).

A very weak trial-level association pattern between the treatment effects on CCyR at

1 year and the treatment effects on OS at 2 year was found regardless of the method

we applied. The between-studies correlation and the intercept were estimated with

very large uncertainty. Therefore, CCyR cannot be considered as a valid surrogate

endpoint of OS at 2 years, at the trial level. However, this pair of outcomes was a

good example to illustrate the performance of BRMA-IB and BRMA-BC models

when the within-study association is very weak (this was reflected in the values of

the informative priors placed on the within-study association parameters). In this

case, BRMA-IB and BRMA-BC models resulted in very similar estimates of the

between-studies parameters and almost identical values of WAIC. This suggest that,

BRMA-BC model was able to perform equally well as BRMA-IB in a data-set with

very weak association, as BRMA-BC was able to account for it.

Although BRMA-BC model provide robust results in a variety of scenarios, potential

limitations should always be kept in mind. First, in order to perform Bayesian

inference, we run HMC with RStan [168]. The model was very sensitive to initial

values, making the initiation of the HMC process difficult. We solved this problem

by fitting BRMA-IB or BRMA models first and then we used their estimates as

initial values for BRMA-BC model.

A limitation of the data example was the lack of IPD. We informed the prior

distributions of within-study association parameters using 3 cohort studies. We

constructed binary pseudo IPD from external evidence and calculated the

within-study association between the numbers responses on the surrogate endpoint

and the numbers of events on the final outcome by using a double bootstrap
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method to account for uncertainty. Another limitation of the data example is the

slightly inconsistent definition of EFS across these studies. For instance, some

studies presented it as PFS, some others included more types of events in their

definition than others.

BRMA-BC can be extended in a number of ways. For instance, it can be extended

by using also a copula at the between-studies level in a similar way as Chu and

Nikolopoulos have proposed [169, 170]. This will allow to model the trial-level

association on the true scale (proportions of events) with beta marginal distributions

avoiding the logit transformation. Furthermore, taking advantage of the setting

proposed by Bujkiewicz et al. [87], BRMA-BC can be extended to allow for modeling

multiple surrogate endpoints (or the same surrogate endpoint but reported at multiple

time points) via a vine-copula.

In summary, we developed a new Bayesian hierarchical meta-analytic method and

modified an existing method to perform bivariate meta-analysis of binary outcomes

and particularly, to quantify the trial-level surrogate relationships between the

treatment effect on binary outcomes. In our view, BRMA-BC is a preferred model

for modeling binary outcomes in the context of surrogate endpoints. The model can

improve the process of the validation of surrogate endpoints based on data from

modern trials of personalised therapies where the increased effectiveness of targeted

treatments such as TKIs often leads to high numbers of responses and reduced

numbers of events.
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Chapter 6

Improving the validation of surrogate

endpoints by incorporating data

from cohort studies

6.1 Introduction

This Chapter discusses about the methodological challenges in the trial-level

validation of surrogate endpoints, when external evidence, such as non-comparative

observational cohort studies, (OBs) need to be incorporated in the analysis for such

validation.

Traditionally, when meta-analysing data from multiple studies, whether for purpose

of obtaining pooled effects or for trial-level surrogate endpoint evaluation, the

analysis has been based on data from RCTs. When treatment efficacy is of interest,

RCTs are used as a gold standard as they achieve high internal validity due to

randomisation and blinding [171–173] . However, very often RCTs exclude groups

of population such as children, patients with comorbidities, making an assessment

of clinical practice difficult [174–178]. On the other hand, observational cohort

studies often have less restrictive inclusion criteria focusing mainly on the external

validity, while their limited internal validity results in unreliable effectiveness

estimates due to confounding factors and various biases, such as selection bias.

Traditionally, researchers have been very sceptical about synthesis of evidence from
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different study designs, such as OBs, arguing that there may be strong dependence

on assumptions and there is concern that including studies of "poor" designs will

make the analysis weaker. Many authors commended caution when observational

evidence is included in a meta-analysis, suggesting that a careful sensitivity analysis

is always necessary regarding the plausibility of introducing observational evidence

into the analysis [36].

However, more recently there has been an increasing interest in methods for inclusion

of data from observational studies in evidence synthesis. Researchers are motivated

by a number of factors when combining RCTs with OBs. For instance, inclusion

of OBs can help to increase the power to detect a treatment effect when data from

RCTs are too limited. This can be particularly important when policy decisions need

to be made and further experimentation may be unfeasible due to time or budget

constrains. A very detailed review of the most of popular methods for combing

evidence from multiple sources was carried out by Verde et al. [179].

The confidence profile method (CMP) was the first statistical framework to combine

evidence from different sources proposed by Eddy [180] and was used to in a series

of clinical guidelines and clinical applications [180–184]. Cross-design synthesis was

introduced in 1992 by the General Accounting office and described by Droitcour

et al. [185] and Chelimsky [186]. However, the reliability of the methods was

criticised by Begg [187], who pointed out that the authors have underestimated the

problem of harmonizing results from medical registries and RCTs [179]. Begg and

Pilote proposed a method to perform meta-analysis combining data from RCTs with

historical controls [188]. It assumes that the baseline effect of each study (RCTs

and observational cohorts) is random and the treatment effect is assumed to be

constant. Verde et al. [189] presented a unified modeling framework (hierarchical

meta-regression) to combine aggregated data from RCTs with IPD from observational

studies. This framework allows for exploring treatment effects in specific patient

populations reflected by the IPD and can potentially gain new insights from RCTs’

results, which cannot be seen using only a meta-analysis of RCTs. Additionally,

Verde et al. [190] evaluated the hierarchical meta-regression approach further using

simulated data examples. They also presented a new R package called jarbes (just

a rather Bayesian evidence synthesis), which implements their proposed framework
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in R. More recently, Verde et al. [191] presented a new Bayesian hierarchical model,

called bias corrected meta-analysis model which combines different study types in

a single meta-analysis but also accounts for the multiple biases that exist in such

meta-analysis.

In this Chapter a new method for combining evidence from different sources is

proposed, to improve the trial-level validation of surrogate endpoints in circumstances

where RCT data offer limited evidence. Meta-analysing sparse RCT data may affect

the validation of candidate endpoints as the estimates of the parameters describing

the trial-level association between the surrogate endpoint and the final outcome

are obtained with considerable uncertainty and poor accuracy. Furthermore, RCTs

usually report observed treatment effects up to 2 years and very few provide long-term

follow-up such as OS at 4 years or 5 years. Reporting short-term observed treatment

effects can potentially affect the trial-level validation of surrogate endpoints as the

estimates of the treatment effects on the final outcome are obtained with large

uncertainty due to the data being not sufficiently mature. Immature data on the

treatment effects can also affect the shape of the trial-level surrogate relationship

between the treatment effects on the surrogate endpoint and the final outcome

leading to poor inferences about the parameters describing the association. In this

chapter, we extended the model proposed by Begg and Pilote [188], discussed in

detail in section 6.2, to a bivariate case. This hierarchical method is designed to

investigate trial-level surrogate relationships between the treatment effects on binary

outcomes, whilst combining RCT data and observational evidence in a single model.

The method models the observed treatment effects obtained from correlated binary

outcomes with a Bivariate normal distribution and does not allow for adjusting for

systematic biases across different types of designs. To account for such biases, a

generalisation of the method was also developed. Similarly as in the extended model

by Begg and Pilote, the generalised version of the model allows for adjusting for

potential biases, i.e. systematic differences in the effectiveness estimates between

the RCTs and OBs. Finally, an additional version of the method was introduced,

presented in section 6.3.3, modeling the within-study variability on the original

binomial scale as suggested in Chapter 5. In section 6.4, a simulation study was

carried out to assess the performance of the method and in section 6.5 two data
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examples were presented to illustrate the method. The Chapter concludes with a

discussion in section 6.6.

6.2 Begg and Pilote method

One of the first methods to incorporate historical controls into a meta-analysis was

proposed by Begg and Pilote in 1991 [188]. The method was designed to model

continuous and normally distributed outcomes, however, it can be used for binomial

data when they are transformed to the log odds scale (data measured on this scale

are assumed to be approximately normally distributed). Specifically, the observed

treatment effects yAi, yBi, i = 1, . . . , n obtained from RCTs in arm A and B follow

a bivariate normal distribution. In addition, to incorporate data from k single arm

OBs reporting either arm A or B, the authors assumed that the observed treatment

effects yAi, i = n+ 1, . . . , n+ r and yBi, i = n+ r+ 1, . . . , n+ r+k are also normally

distributed. The within-study model is given by:

RCTs:

yAi ∼ N(µi, σ
2
Ai)) i = 1, . . . , n (6.1)

yBi ∼ N(µi + δ, σ2
Bi) i = 1, . . . , n (6.2)

OBsA:

yAi ∼ N(µi, σ
2
Ai) i = n+ 1, . . . , n+ r (6.3)

OBsB:

yBi ∼ N(µi + δ, σ2
Bi) i = n+ r + 1, . . . , n+ r + k (6.4)

Where µi are the baseline effects, δ is a constant treatment effect and σ2
Ai, σ2

Bi are

the corresponding within-study variances of the observed treatment effect of RCTs

and OBs respectively. These variances are known and the can be calculated from

the aggregate data.

The between-studies heterogeneity is reflected in the baseline effect assuming that

146



Chapter 6. Improving the validation of surrogate endpoints by incorporating data
from cohort studies

µi are random, normally distributed (equation 6.5) and account for differences in

the baseline characteristics across RCTs and OBs.

µi ∼ N(µ, s), i = 1, . . . , n, n+ 1, . . . , n+ r, n+ r + 1, . . . , n+ r + k (6.5)

On the other hand, the treatment effect δ is assumed to be constant across studies and

study designs. Although this method was developed under the frequentist framework

it can easily adapted to the Bayesian. Vague prior distributions can placed on the

unknown parameters such as: δ ∼ N(0, a), µ ∼ N(0, a) and s ∼ U(0, b), where the

constants a and b depend on the scale of the parameter and are considered sufficiently

large.

A generalisation of the model was proposed to tackle potential limitations of this

method with respect to the systematic biases in OBs. OBs do not have as strict

inclusion criteria as RCTs and very often are prone to different kind of biases. When

bias is present in OBs, it leads to biased the estimates of the baseline effect µi and the

treatment effect δ, as OBs contribute to both parameters. To account for such these

systematic differences between the RCTs and OBs, Begg and Pilote proposed adding

bias terms at the within-study level of the model to account for them. Consequently,

the within-study level of the model describing OB data becomes:

yAi ∼ N(µi + η, σ2
Ai) i = n+ 1, . . . , n+ r (6.6)

yBi ∼ N(µi + ξ + δ, σ2
Bi) i = n+ r + 1, . . . , n+ r + k (6.7)

The terms η and ξ represent the biases in the OBs in arm A and B respectively. To

implement this generalisation in the Bayesian framework a vague prior distributions

can be placed on the bias parameters: η ∼ N(0, 100) and ξ ∼ N(0, 100).

A second extension of the this model was also briefly discussed. It allowed the

treatment effects to vary across studies, assuming that they were exchangeable and

normally distributed (eq. 6.8). The parameter d corresponded to the pooled effect

and τ to the between-studies heterogeneity.

δi ∼ N(d, τ) (6.8)
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6.3 Methods for trial-level surrogate endpoint

evaluation when combining OBs with RCTs

This section presents the proposed methods to evaluate trial-level surrogacy patterns

of potential surrogate endpoints when external evidence from observational cohort

studies (OBs) need to be incorporated in a meta-analysis. Firstly, it introduces

the extension of the method proposed by Begg and Pilote to the bivariate case.

Secondly, it presents a generalisation of the new method which allows for adjusting for

systematic biases across different types of designs and concludes with an additional

version of the method which models the within-study variability on the original

binomial scale as suggested in Chapter 5.

6.3.1 Extending Begg et al. method to the bivariate case

(M1)

Bivariate meta-analytic methods provide a natural framework for combining evidence

obtained from two outcomes and for modeling the trial-level surrogacy between the

treatment effects on the surrogate endpoint and the final outcome. In this section, we

extend to the bivariate case the method described in section 6.2, to allow for modeling

two binary outcomes (surrogate endpoint and final outcome). This method can be

applied to combine RCTs and OBs on the surrogate endpoint and the final outcome

in order to improve the trial-level surrogacy when evidence from RCTs are limited.

Firstly, y1Ai, y2Ai, y1Bi, y2Bi represent the observed treatment effects obtained from

n RCTs in the control arm A, the experimental arm B, on the surrogate endpoint

(1st outcome) and the final outcome (2nd outcome). These observed treatment effects

in each study i, each arm (A or B) on the surrogate endpoint and the final outcome

follow a bivariate normal distribution and are measured on an absolute scale such as

log odds of an event The same setting and assumptions also apply to the observed

effects obtained from OBs reporting data either in arm A or B on the surrogate

endpoint (1st outcome) and the final outcome (2nd outcome). The within-study

variability of the model is described in the following three parts:
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RCTs: y1Ai

y2Ai

 ∼ N

µ1i

µ2i

,
 σ2

1Ai σ1Aiσ2AiρwAi

σ1Aiσ2AiρwAi σ2
2Ai

 (6.9)

i = 1, . . . , n

y1Bi

y2Bi

 ∼ N

µ1i + δ1i

µ2i + δ2i

,
 σ2

1Bi σ1Biσ2BiρwBi

σ1Biσ2BiρwBi σ2
2Bi

 (6.10)

i = 1, . . . , n

OBsA: y1Ai

y2Ai

 ∼ N

µ1i

µ2i

,
 σ2

1Ai σ1Aiσ2AiρwAi

σ1Aiσ2AiρwAi σ2
2Ai

 (6.11)

i = n+ 1, . . . , n+ r

OBsB:y1Bi

y2Bi

 ∼ N

µ1i + δ1i

µ2i + δ2i

,
 σ2

1Bi σ1Biσ2BiρwBi

σ1Biσ2BiρwBi σ2
2Bi

 (6.12)

i = n+ r + 1, . . . , n+ r + k

where σ2
1Ai, σ2

2Ai, σ2
1Bi, σ2

2Bi, i = 1, . . . , n are the corresponding variances of the

observed treatment effects and ρwAi, ρwBi, i = 1, . . . , n are the within-study

correlations obtained from RCTs on the two outcomes in arm A and B. Similarly,

σ2
1Ai, σ2

2Ai, i = n+ 1, . . . , n+ r and σ2
1Bi, σ2

2Bi, i = n+ r + 1, . . . , n+ r + k, are the

corresponding variances obtained from OBs on the two outcomes either in arm A

or B and ρwAi i = n + 1, . . . , n + r, ρwBi i = n + r + 1, . . . , n + r + k, are the

within-study correlations obtained from OBs.

The parameters µ1i, µ2i, i = 1, . . . , n correspond to the baseline effects estimated

from RCT data, µ1i, µ2i, i = n + 1, . . . , n + r are the baseline effects estimated

from OBs reporting data in arm A and µ1i, µ2i, i = n + r + 1, . . . , n + r + k are
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the baseline effects estimated from OBs reporting data in arm B. Similarly δ1i, δ2i,

i = 1, . . . , n are the true treatment effects estimated from RCT data and δ1i, δ2i,

i = n+r+1, . . . , n+r+k are the true treatment effects estimated from OBs reporting

data in arm B. It is important to highlight that under this modeling approach, OBs

for arm A, directly contribute only to the baseline effects

µ1i

µ2i

.

On the other hand, OBs for arm B, directly contribute both to the baseline effects

and to the true treatment effects.

µ1i

µ2i

,

δ1i

δ2i

.

Here, as Begg and Pilote briefly discussed [188], we let the true treatment effects

across RCTs and OBs to vary randomly from study to study as they assumed to

be exchangeable. The random effects

δ1i

δ2i

, i = 1, . . . , n, n + 1, . . . , n + k, are

modeled jointly following a bivariate normal distribution with the same mean and

the same between-studies variance-covariance matrix. Additionally, the random

baseline effects

µ1i

µ2i

 , i = 1, . . . , n, n + 1, . . . , n + r, n + r + 1, . . . , n + r + k

estimated across RCTs and OBs are also assumed to be exchangeable, normally

distributed and uncorrelated with the true treatment effects. The between-studies

level of the model is given by:µ1i

µ2i

 ∼ N

µ1

µ2

,
 s2

1 s1s2ρ

s1s2ρ s2
2

 (6.13)

δ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

 (6.14)

where ρ is the correlation between the baseline effects on the two outcomes, s2
1, s2

2

are the variances of the baseline effects, ρb is the between-studies correlation

between the true treatment effects on the two outcomes and τ 2
1 , τ 2

2 are the

between-studies variances of the true treatment effect. To implement this model in

the Bayesian framework non-informative prior distributions can be placed on

the unknown parameters:s1,2 ∼ U(0, 5), τ1,2, ∼ U(0, 5), µ1,2 ∼ N(0, 100), d1,2

∼ N(0, 100), ρ = ρb = tanh(z) , z ∼ N(0, 1). The Stan code of the model can be
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found in the Appendix in Section D.1.

Overall, this model can be used to perform bivariate meta-analysis based on RCT and

OB data as it combines different study designs into a single meta-analytic method. It

assumes that the baseline effects and the true treatment effects obtained from RCTs

and OBs are exchangeable and normally distributed. To investigate the trial-level

surrogacy patterns, we applied the surrogacy criteria, discussed in section 5.2.1.1. In

the absence of OBs the method can be used to perform bivariate meta-analysis and

to investigate trial-level surrogate relationship based only on RCTs, by using only

the fist part (eq. 6.9, 6.10) of the within-study variability.

6.3.2 Accounting for bias in OBs (M2)

As discussed in sections 6.1, OBs are prone to various biases and suffer from many

confounding factors, as their internal validity is very often poor. Therefore, it is

crucial that models which combined evidence from different study designs, such

as RCTs and OBs, account for bias. The model described in section 6.3.1 can

account for bias in the OB data in the same way as Begg and Pilote proposed in

their generalisation. Specifically, the part of M1 that describes the within-study

variability of the observed treatment effects obtained from OBs becomes:

OBsA: y1Ai

y2Ai

 ∼ N

µ1i + η1

µ2i + η2

,
 σ2

1Ai σ1Aiσ2AiρwAi

σ1Aiσ2AiρwAi σ2
2Ai

 (6.15)

i = n+ 1, . . . , n+ r

OBsB:y1Bi

y2Bi

 ∼ N

µ1i + δ1i + ξ1

µ2i + δ2i + ξ2

,
 σ2

1Bi σ1Biσ2BiρwBi

σ1Biσ2BiρwBi σ2
2Bi

 (6.16)

i = n+ r1, . . . , n+ r + k

where

η1

η2

 and

ξ1

ξ2

 represent the biases in OBs reporting arm A and B
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respectively, on the surrogate endpoint and the final outcome. These bias terms

are assumed to be constant across studies in each arm and can be assigned

non-informative prior distributions, such as: η1,2 ∼ N(0, 100), ξ1,2 ∼ N(0, 100). The

between-studies level of the method remains exactly the same as presented in

section 6.3.1 (eq. 6.13 and eq. 6.14). The implementation of the model in Stan can

be found in the Appendix in Section D.2.

6.3.3 Modeling correlated binomial data using copulas (M3)

The proposed methodology described in sections 6.3.1, 6.3.2 was developed to model

the observed treatment effects on the first and the second outcome jointly, using

bivariate normal distributions. When M1 is applied binomial data at the aggregate

level, the observed treatment effects can be represented at log of odds scale, assuming

that they are approximately normally distributed. As discussed in chapter 5, the

normal approximation used for binomial data often leads to biased results and

underestimates the between-studies correlation, in particular when the proportions

of events are close to one or zero. Therefore, a more appropriate way is to model the

within-study variability (when the proportions are high/low) is by using the joint

densities with binomial marginals constructed with copulas as described in section

5.2.4. Adapting model M1 to include such bivariate densities give the within-study

model in the following form:

RCTs:r1Ai

r2Ai

 ∼ h(p1Ai, p2Ai, NAi, θAi)

r1Bi

r2Bi

 ∼ h(p1Bi, p2Bi, NBi, θBi) (6.17)

g(p1Ai) = µ1i, g(p2Ai) = µ2i g(p1Bi) = µ1i + δ1i, g(p2Bi) = µ2i + δ2i

i = 1, . . . , n

OBsA: r1Ai

r2Ai

 ∼ h(p1Ai, p2Ai, NAi, θAi) (6.18)

g(p1Ai) = µ1i, g(p2Ai) = µ2i, i = n+ 1, . . . , n+ r
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OBsB: r1Bi

r2Bi

 ∼ h(p1Bi, p2Bi, NBi, θBi) (6.19)

g(p1Bi) = µ1i + δ1i g(p2Bi) = µ2i + δ2i, i = n+ r + 1, . . . , n+ r + k

h(r1·, r2·|p1·, p2·, N·, θ·) = C(F1(r1·), F2(r2·), θ·)− C(F1(r1· − 1), F2(r2·), θ·)

− C(F1(r1·), F2(r2· − 1), θ·) + C(F1(r1· − 1), F2(r2· − 1), θ·).

where, F1(r1·), F2(r2·) are the cdfs of the binomial marginal distributions on the

surrogate endpoint (1st outcome) and the final outcome (2nd outcome), C(·, ·) is

the bivariate copula, r1Ai, r2Ai, r1Bi, r2Bi are the numbers of events in each arm on

the two outcomes, N1Ai, N2Ai, N1Bi, N2Bi are the number of patients for the two

outcomes and each arm and study. g(·) is a link function and it is used to transform

the true probabilities to the normal line scale. The between-studies model remains

the same as in M1 (eq. 6.13, 6.14) and it can be implemented in the Bayesian

framework by using the same prior distributions as in section 6.3.1. M3 can be

generalised in the way as M1, to account for biases in the OBs. This can be achieved

by adding bias terms in the following equations:

g(p1Ai) = µ1i + η1 i = n+ 1, . . . , n+ r (6.20)

g(p2Ai) = µ2i + η2 i = n+ 1, . . . , n+ r (6.21)

g(p1Bi) = µ1i + δ1i + ξ1 i = n+ r + 1, . . . , n+ r + k (6.22)

g(p2Bi) = µ2i + δ2i + ξ2. i = n+ r + 1, . . . , n+ r + k. (6.23)

The Stan code of the model can be found in the Appendix in section D.3.

6.4 Simulation study

A simulation study was carried out to assess the performance of models M1 and M2

and, in particular, the impact of observational data and bias on the estimates of the

parameters describing the trial-level surrogacy patterns. To achieve this, throughout
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the simulation study, we compare results from meta-analyses where RCTs were

combined with OBs with results from meta-analyses based only on RCT data, using

either M1 or M2. Subsection 6.4.1 presents the generation process and the simulation

scenarios. The main estimands of the simulation study are reported in subsection

6.4.2. The section concludes reporting detailed results across the scenarios and

discussing the key finding of the simulation study

6.4.1 Simulation scenarios and generation process

We simulated data under 50 scenarios generating 1000 replications for each one.

Firstly, we measure the effect of the number of studies on the trial-level surrogacy

patterns, considering 4 sets of scenarios varying the number of RCTs and the number

of OBs. In the first two scenarios, the number of RCTs was set to 5 and the number

of OBs was either 4 or 10, whereas in the other two, the number of RCTs was 10

and the number of OBs was either 4 or 10. The first two sets of scenarios illustrate

the situation where OBs supplement RCTs (RCT data are very sparse), aiming to

validate a candidate endpoint as a surrogate endpoints at the trial level. The other

two scenarios cover the case where RCT data offer sufficient information to validate

an endpoint as a surrogate. In this situation, the incorporation of OBs aims to

improve the precision and the accuracy of the estimates.

Secondly, to investigate whether the reporting arm in OBs (whether it is the control

or the experimental arm or both) affects the estimation of the between-studies

parameters, 3 sets of scenarios were constructed. The first scenario, includes RCTs

and OBs reporting data only in arm A . The second one consists of RCTs and OBs

reporting data only in arm B and the final one consists of RCTs and equal number

of OBs reporting data in arm A and arm B. (for example, in the scenario with 5

RCTs and 10 OBs, 5 the OBs reported data in arm A, and the other 5 in arm B).

To measure the effect of the study size, the number of patients in each observational

study was generated from a normal distribution: ni ∼ N(m, 5) and rounded off

to the nearest integer. The scenario with large OBs was generated by setting the

mean of the normal distribution to m = 400 and the scenario with the small ones

by simulating from ni ∼ N(100, 5). Lastly, to test the effect of bias, we generated a
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set of scenarios no bias was present in the OBs and another one where systematic

differences in the magnitude of the effects between RCTs and OBs were present.

In addition to the scenarios of data from mixed study designs, two scenarios were

constructed including only RCT data. These scenarios were used as a reference for

all the scenarios of the simulation study, allowing us to measure the added value of

OBs in the analysis.

In total, 50 scenarios (4× 3× 2× 2 + 2 = 50) were generated.

The generation process of the RCTs was as follows:

1 Set the number of RCTs (NRCTs = 5 or NRCTs = 10).

2 Simulate heterogeneous arm sizes for each study i from: nAi ∼ N(100, 5),

nBi ∼ N(100, 5) and then round them off to the nearest integer

3 Simulate the baseline treatment effects µ1i, µ2i, from a bivariate normal

distribution:

µ1i

µ2i

 ∼ N

µ1

µ2

,
 s2

1 s1s2ρ

s1s2ρ s2
2

, with µ1 = µ2 = 0

(the effects are on the log odds scale, which corresponds to proportions of

events equal to 0.5), s1 = s2 = 0.1, and ρ = 0.8

4 Simulate the true treatment effects δ1i, δ2i, from a bivariate normal distribution:δ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

, with d1 = 0.4, d2 = 0.2, τ1 = τ2 =

0.5 and ρb = 0.8

5 Calculate the proportions of events in each arm on the surrogate endpoint

and the final outcome in study i: p1Ai = logit−1(µ1i), p2Ai = logit−1(µ2i),

p1Bi = logit−1(µ1i + δ1i), p2Bi = logit−1(µ2i + δ2i)

6 Simulate correlated binary IPD on the surrogate endpoint and the final outcome

using a joint density (made with Gaussian copula) with Bernoulli marginals in

both arms with dependence parameters θA = θB = 0.6.

7 Summarise the numbers of events in each arm, outcome and study by taking

the sum the binary responses and then calculate the observed treatment effects

(on the log odds scale) using: y1Ai = log( r1Ai

n1Ai−r1Ai
), y2Ai = log( r2Ai

n2Ai−r2Ai
),

y1Bi = log( r1Bi

n1Bi−r1Bi
), y2Bi = log( r2Bi

n2Bi−r2Bi
)
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The generation process of the OBs is:

1 Set the number of OBs (NOBs = 4 or NOBs = 10).

2 Simulate heterogeneous OBs from ni ∼ N(m, 5) and then round them off to

the nearest integer (m = 100 or m = 400).

3 Simulate the baseline treatment effects µ1i, µ2i, from a bivariate normal

distribution:

µ1i

µ2i

 ∼ N

µ1

µ2

,
 s2

1 s1s2ρ

s1s2ρ s2
2

, with µ1 = µ2 = 0,

s1 = s2 = 0.1 (corresponding to proportions of events equal to 0.5), and ρ = 0.8

(this step was used across all OBs regardless of which arm they reported)

4 Simulate the true treatment effects δ1i, δ2i, from a bivariate normal distribution:δ1i

δ2i

 ∼ N

d1

d2

,
 τ 2

1 τ1τ2ρb

τ1τ2ρb τ 2
2

, with d = 0.4, d2 = 0.2, τ1 = τ2 =

0.5 and ρb = 0.8 (this step was used only for OBs reporting arm B)

5 Calculate the proportions of events of OBs reporting arm A:

p1Ai = logit−1(µ1i + η), p2Ai = logit−1(µ2i + η), calculate the proportions

of events of OBs reporting arm B: p1Bi = logit−1(µ1i + δ1i + η),

p2Bi = logit−1(µ2i + δ2i + η), with η = 0 for scenarios with unbiased OBs and

with η = 1 for scenarios with biased OBs.

6 Simulate correlated binary IPD on the surrogate endpoint and the final outcome

using a joint density (made with Gaussian copula) with Bernoulli marginals

for OBs reporting either arm A or arm B with dependence parameters θA =

θB = 0.6.

7 Summarise the numbers of events in each cohort study by taking the sum

the binary responses and then calculate the observed treatment effects. The

observed treatment effects from OBs reporting A are: y1Ai = log( r1Ai

n1Ai−r1Ai
),

y2Ai = log( r2Ai

n2Ai−r2Ai
), the observed treatment effects from OBs reporting A are:

y1Bi = log( r1Bi

n1Bi−r1Bi
), y2Bi = log( r2Bi

n2Bi−r2Bi
)

As within-study associations for each study were needed to populate the models, we

simulated data at the individual level (zeros and ones) for each RCT and OB. The

parameters ρwAi and ρwBi were estimated by using a bootstrap method.(see details

in the Appendix in section C.7).
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As described in section 6.2, two parameterisations of the within-study level of the

method were presented (M1, M3). M1 method, models the within-study variability

on log odds scale assuming that the observed treatment effects are approximately

normally distributed, whereas M3 method models the within-study variability on the

exact binomial scale using joint densities with binomial marginals constructed with

copulas. A generalisation of M1 and M3 were also presented (M2) which accounts

for bias in OB data.

In the simulation study we assessed the performance of M1 and M2 and in particular,

the impact of OBs and bias on the estimates of the parameters describing the

surrogacy patterns. M1 model was applied to the data from scenarios where there

was no bias present and M2 to the data from the scenarios assuming bias in OBs.

In the reference scenarios, we fitted M1, using only the RCT part of the method (eq.

6.9, eq. 6.10, eq. 6.13).

Although M3 was not fitted to any of the data scenarios, if it had been used it would

have achieved very similar performance as M1. This is because in the simulation

study the proportions of events were generated close to 0.5 (see step 3), therefore, as

discussed in chapter 5, both methods (M1, M3) could perform equally well in such

scenarios. In practice, M1 was preferred over M3 for computational reasons - M1

runs approximately 10 times faster in Stan compared to M3.

6.4.2 Estimands and performance measures

The primary estimand of the simulation study was the parameter of the

between-studies correlation ρb as it quantifies the trial-level association between the

treatment effects on the surrogate endpoint and the final outcome. The second

group of estimands of the simulations study were the pooled effects on the first and

the second outcome. These parameters were rather important as they affect a

trial-level surrogacy pattern since the intercept λ0, which is the second rule of the

surrogacy criteria (see 5.2.1.1), was expressed in terms of them and influenced the

predictions of the true treatment effect on the final outcome.

To evaluate the performance of the aforementioned models, we calculated and

monitored the following measures across all the simulated scenarios: posterior median
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of the between-studies correlation ρb in each simulation replication; 95% CrI of ρb

in each simulation replication; and the absolute bias (i.e. |d̂2-d|) was calculated in

each replication.

6.4.3 Results

This section presents the results of the data analysis of the simulation study. It lists

detailed results of the between-studies correlation ρb discussing two sets of scenarios

- one without systematic bias across study designs and another one with OBs biased

against the RCTs. Similar set of analyses are carried out for the performance of the

methods on the relative treatment effect, which are discussed in section 6.4.3.2.

6.4.3.1 Between-studies correlation ρb

The between-studies correlation was the main parameter of interest as it quantified

the trial-level surrogate relationship between the treatment effects on the surrogate

endpoint and the final outcome.

Data scenarios without bias in the OBs

Figure 6.1 shows the posterior medians and 95% CrIs of ρb averaged over the 1000

replications along with the true value of ρb = 0.8 (dotted line) in the scenarios where

OBs were unbiased. On the LHS, the plot presents the same measures of ρb based

on RCT data alone (5 RCTs) which were used as reference scenario.

Starting with the reference scenario, the estimate of between-studies correlation ρb

was obtained with considerable uncertainty and poor accuracy as the RCT data

were very sparse (only 5 RCTs were available). The average 95% CrI of ρb spanned

from -0.64 to 0.98 and the average posterior median was ρ̂b = 0.56, substantially

underestimating the true value (ρb = 0.8).

The scenarios on the RHS plot in Figure 6.1, included sparse RCT data and

unbiased OBs. It can be seen that when OBs only report data in arm A, there

was no improvement in the precision of the 95% CrIs of ρb and the accuracy of

the posterior medians of ρb regardless of the size of OBs and the number of OBs

included in the analysis. On the other hand, incorporating OBs reporting data only

in arm B, resulted in reduced uncertainty and higher accuracy for the estimate of
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ρb. Furthermore, the number of OBs included in the analysis had a considerable

impact on precision and accuracy. When 10 OBs were available the average 95%

CrI of ρb was considerably narrower compared to the scenarios where only four OBs

were available. The size of the OBs was the least important factor in terms of

improving the precision and the accuracy of the estimates. However, larger OBs

resulted in, on average, slightly narrower 95% CrIs of ρb. For example, when 4 OBs

where available and the mean size of the OBs was n = 100 the average 95% CrI was

(-0.27,0.97), whilst when the mean size of the OBs was n = 400 the average 95% CrI

was (-0.20,0.97).

The third column of the plot on the RHS of Figure 6.1, includes results of combining

data from RCTs and OBs reporting data in both arms A and B. Specifically, in

the scenario with 4 OBs, two of them reported data on arm A and two on arm B.

Similarly, in the scenario with 10 OBs, five of them reported data in arm A and five

in arm B. In this situation M1 yielded estimates of ρb with slightly larger uncertainty

compared to the scenarios with OBs reporting data only in arm B, but substantially

improved the precision of estimates of ρb compared to the reference scenario. The

improvement was substantially higher compared to the scenario where OB data were

available only for in A. Similarly as in the previous scenarios, the total number of

OBs included in the analysis and the size of the OBs had an impact on the precision

and the accuracy of the estimates of ρb. In general, when more and larger (in terms

of the number of patients) OBs were generated, they resulted in narrower 95% CrIs

of ρb and more accurate average posterior medians.

Figure 6.2 presents the same format of results including 10 RCTs and unbiased

OBs. Therefore, the reference scenario in Figure 6.2, consisted of 10 RCTs alone.

In this case the RCT data offered enough information, allowing M1 to estimate the

between-studies correlation with relatively good precision and accuracy. The average

95% CrI of ρb spanned from -0.01 to 0.97, being much narrower compared to the

95% CrIs obtained from the previous reference scenario with 5 RCTs. The average

median ρ̂b = 0.73 was also more accurate compared to the case with 5 RCTs only.

A very similar pattern was seen when 10 RCTs were included in the analysis (Figure

6.2, RHS plot). Incorporating OBs reporting data only in arm A in the analysis

did not improve the inferences about between-studies correlation ρb regardless of
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the number and the size of OBs. Specifically, in the first column of the RHS plot

in Figure 6.2, the 95% CrIs of ρb were identical to the 95% CrIs obtained from

the reference scenario where only RCT data were available (Figure 6.2, LHS plot).

When OBs reported data either only in arm B or in both arms, it resulted in reduced

uncertainty around the estimates. In both sets of scenarios the 95% CrIs of ρb were

narrower compared to those in the scenario where OBs reported only arm A or the

reference scenario. However, the 95% CrI of ρb obtained for the scenario where OBs

consisted of only arm B, were the most precise.

The key difference between the set of scenarios presented in Figure 6.1 and the set

of scenarios presented in Figure 6.2 was the number of available RCTs (5 RCTs

available in Figure 6.1, 10 RCT in Figure 6.2). It can be seen that when RCT data

were sparse the inclusion of OBs in the analysis had larger impact on the precision

and the accuracy of the estimate of ρb compared to the case where sufficient number

of RCTs was available.
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Figure 6.1: Posterior medians (black dot) and 95% CrIs of ρb (solid bars) averaged over the 1000 replications along with the true value of
ρb = 0.8 (dotted line) in the scenarios with 5 RCTs and unbiased OBs
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Figure 6.2: Posterior medians (black dot) and 95% CrIs of ρb (solid bars) averaged over the 1000 replications along with the true value of
ρb = 0.8 (dotted line) in the scenarios with 10 RCTs and unbiased OBs
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Data scenarios with bias in the OBs

The same scenarios were regenerated, but this time introducing bias to the OBs, as

described in step 5 of the generation process of OBs. To analyse these scenarios,

we used M2 which accounts for such biases. Figures 6.3 and 6.4 present posterior

medians and 95% CrIs of ρb averaged over the 1000 replications along with the true

value of ρb = 0.8 (dotted line) in the scenarios with 5 or 10 RCTs and biased OBs.

Similarly as in Figures 6.1 and 6.2, the plots on the LHS illustrate the scenarios

where the meta-analyses were based on RCTs alone and used as reference scenarios.

Moving to the RHS, it can be seen that incorporating OBs reporting data only in arm

A, did not improve inferences about the between-studies correlation ρb. It resulted

in exactly the same precision and accuracy of estimates of the between-studies

correlation as in the reference scenarios. A minimal benefit was observed in the

scenario where the size of OBs were large and RCT data were sparse (Figure 6.3,

first column of the plot on RHS). Incorporating OBs reporting data either in arm B

or in both arms, resulted in reduced uncertainty around the estimates of ρb. However,

the benefit was smaller compared to the scenarios with unbiased OBs (for instance,

in the scenario with 4 biased OBs reporting data in arm B and consisting of on

average 100 patients, the average 95% CrI of ρb was (-0.37,0.97), while in the same

scenario with unbiased OBs the average 95% CrI of ρb was (-0.27,0.97)). Furthermore,

including e.g. 4 OBs reporting data only in arm B in the analysis, resulted in higher

precision and slightly better accuracy of the estimates of ρb compared to the scenarios

where two OBs reported data in arm A and two in arm B. The number of OBs

played an important role on the performance of the estimates of ρb; the more OBs

were incorporated in analysis the more precise were the average 95% CrIs of ρb and

the average posterior medians of ρb were closer to the true value. The number of

patients in OBs affects the estimates of ρb to a lesser extent compared to the number

of OBs included in the analysis, resulting in very similar 95% CrIs of ρb. Typically,

fitting M2 to data with large OBs (in terms of the number of their patients), yielded

slightly narrower 95% CrIs of ρb compared to the scenarios where the size of OBs

was small.

163



Figure 6.3: Posterior medians (black dot) and 95% CrIs of ρb (solid bars) averaged over the 1000 replications along with the true value of
ρb = 0.8 (dotted line) in the scenarios with 5 RCTs and biased OBs
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Figure 6.4: Posterior medians (black dot) and 95% CrIs of ρb (solid bars) averaged over the 1000 replications along with the true value of
ρb = 0.8 (dotted line) in the scenarios with 10 RCTs and biased OBs
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6.4.3.2 Pooled effect d2

This section presents the results from the estimates of pooled effects. we focused on

presenting the results of the pooled effect on the final outcome d2. The pooled effect

on the surrogate endpoint d1 gave very similar results. To measure the performance

of the estimates of d2, the absolute bias was calculated in each replication.

Data scenarios without bias in the OBs

Figures 6.5 and 6.6 show the average absolute bias of d̂2 across the 1000 replications

in the reference scenarios and the scenarios with unbiased OBs. Here, as the OBs

were unbiased, we fitted model M1.

On the LHS, the two plots in Figures 6.5 and 6.6 present the average absolute biases

of d̂2 based on RCT data alone (5 RCTs in Figure 6.5 and 10 RCTs in Figure 6.6

and are used as the reference scenarios in this section. The average absolute bias of

d̂2 was 0.21 when 5 RCTs where available and 0.14 when 10 RCT were included in

the analysis.

The scenarios described in the plot on the RHS of Figure 6.5, consisted of 5 RCTs and

4 unbiased OBs (1st row) or 5 RCTs and 10 unbiased OBs (second row). It can be

seen that when OBs reporting data only in arm A were included in the analysis, the

average absolute bias was marginally improved (0.2 in both scenarios) compared to

the reference scenarios. On the other hand, incorporating OBs reporting data either

only in arm B (2nd column) or in both arms evenly (3rd column), resulted in lower

absolute biases of d̂2 compare to the reference scenarios. Additionally, including OBs

reporting data only in arm B had the greatest impact on the estimates leading to

estimates with the lowest average absolute biases across scenarios. The number of

OBs included in the analysis substantially affected the values of the average absolute

biases across scenarios. In practice, the more OBs were included in the analysis the

lower the average absolute bias was. Similarly to the performance of 95% CrIs of

ρb, the number of patients in OBs was least important of the factors, marginally

influencing the performance of d̂2. For example in the scenario with 10 RCTs and

10 OBs with arm B (2nd row, 2nd column), when the mean number of patients in

OBs was 100, the average absolute bias was 0.14, whilst when the mean number of

patients was 400, the average absolute bias was 0.13.
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The scenarios described in the plot on the RHS of Figure 6.6, consisted of 10 RCTs

and unbiased 4 OBs (1st row) or 10 RCTs and unbiased 10 OBs (second row). It can

be seen that when sufficient number of RCTs were included in the analysis (10 RCTs),

it resulted in sufficiently low average absolute biases (i.e. the average absolute bias

was 0.14 in the reference scenario). Incorporating 4 OBs in the analysis did not

have substantial impact across on the performance of d̂2 regardless of the type of

the arm (1st row) or the number of patients in OBs. Increasing the number of OBs

to 10 resulted in lower average absolutes biases when OBs reported either arm B or

both arms evenly. The lowest average bias was measured when the mean number of

patients in OBs was 400 and 10 OBs reported only arm B (2nd row, 2nd column).

Data scenarios with bias in the OBs

As presented in the first part of this section, the same analysis was applied to the

scenarios with biased OBs. Figures 6.7 and 6.8 present the average absolute bias of

d̂2 across the 1000 replications in the reference scenarios (LHS) and the scenarios

where RCT data and biased OBs were combined in a single analysis (RHS). To

obtain results across these scenarios, model M2 was used, which accounts for bias in

OBs via bias terms. It is clear that when bias existed in OBs and it was also formally

incorporated in the model via bias terms η1, η2, ξ1, ξ2 the estimation of the pooled

effects d1, d2 is based mainly on evidence provided from the RCTs ignoring the OBs.

The average absolute bias remained the same as in the reference scenarios (0.21 and

0.14 when 5 and 10 RCTs were included in the analysis respectively) across all the

scenarios regardless of the number of OBs, the number of patients in OBs and the

arm that OBs reported.
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Figure 6.5: Absolute bias of d̂2 averaged over 1000 replications in the scenarios with 5 RCTs and unbiased OBs
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Figure 6.6: Absolute bias of d̂2 averaged over 1000 replications in the scenarios with 10 RCTs and unbiased OBs
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Figure 6.7: Average absolute bias of d̂2 across replications in the scenarios with 5 RCTs and biased OBs
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Figure 6.8: Average absolute bias of d̂2 across replications in the scenarios with 10 RCTs and biased OBs

0.14

RCTs only

10 R
C

T
s

Average RCTs 
 size = 200

0.10

0.15

0.20

0.25

A
bs

ol
ut

e 
B

ia
s

0.14 0.14

0.14 0.14

0.14 0.14

0.14 0.14

0.14 0.14

0.14 0.14

RCTs + OBs in arm A RCTs + OBs in arm B RCTs + OBs in arm A and B

5 R
C

T
s − 4 O

B
s

5 R
C

T
s − 10 O

B
s

Average OBs 
 size = 100

Average OBs 
 size = 400

Average OBs 
 size = 100

Average OBs 
 size = 400

Average OBs 
 size = 100

Average OBs 
 size = 400

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

A
bs

ol
ut

e 
B

ia
s

OBs with Bias

171



Chapter 6. Improving the validation of surrogate endpoints by incorporating data
from cohort studies

6.4.4 Key findings

This section presents a short summary of the key findings from the simulation study:

• Overall, the simulation study showed that including OBs in meta-analysis,

improved the precision and the accuracy of the estimates of between study

correlation. This indicates that when evidence obtained from RCTs are

combined with evidence obtained from OBs in a single meta-analysis, it leads

to improved inferences about the trial-level surrogacy patterns.

• The simulation study also investigated the effect of the number of OBs included

in the analysis, simulating two set of scenarios (one with 4 OBs and a second one

with 10 OBs). Overall, the more OBs were included in the analysis, the better

was the precision and the accuracy of the estimates of the between-studies

correlation. In contrast to this, the number of patients in OBs had the smallest

impact on the estimates of the model. Two sets of scenarios were generated one

with fewer patients in the studies (ni ∼ N(100, 5)) and one with a larger number

(ni ∼ N(400, 5)). Typically, combining RCTs and OBs with large sample sizes,

resulted in slightly more precise and accurate estimates of ρb compared to the

reference scenarios and the scenarios where OBs were generated with small

sample sizes.

• Another aim of the simulation study, was to investigate the performance of the

pooled effects d1 and d2 when bias was present in the OBs. In a set of scenarios

bias was introduced to the data (using step 5 if the generation process of OBs)

and accounted for in the model (M2 was used) via the bias terms (η1, η2, ξ1,

ξ2). In these scenarios, the performance of the model as exactly the same as

in the reference scenarios, resulting in on average the same absolute biases of

the pooled effect across all the scenarios. This means that the estimation of

the posterior mean/median of the pooled effects d1 and d2 was based on the

RCTs across all these scenarios regardless of the inclusion of biased OBs in the

analysis. Therefore, accounting for systematic biases in the model via the bias

terms (η1, η2, ξ1, ξ2), prevents the estimates of d1, d2 from being susceptible to

bias. This is rather important in the context of surrogate endpoints, as biased

estimates of the pooled effects (d1, d2) would also imply biased estimates of the
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true treatment effects. This means that the predictions of the true treatment

effect on the final outcome in a given study would also be biased.

In summary, it is clear that a preliminary analysis using M2 is always necessary

to evaluate whether or not bias is present in the data, and whether it is small

enough to be ignored.

• The simulation study highlighted the importance of which treatment arm the

data in OBs represented. The findings confirm that when the RCT data were

combined with OBs reporting data only in arm A, there was only marginal

improvement in the estimates of between-studies correlation ρb in terms of

precision and accuracy, compared to the reference scenarios where only RCTs

where included in the analysis. Similar performance was also observed for the

estimates of d2. On the other hand, combining RCTs and OBs reporting data in

arm B, led to the most precise and accurate estimates of ρb and on average the

least biased estimates of d2. Improvement (in terms of precision and accuracy)

was also observed when RCTs were combined with OBs reporting data in both

arms evenly, however, the impact was smaller compared to the scenarios with

OBs reporting data only in arm B.

This behaviour is due to lack of symmetry at the within-study level of the

hierarchical model (described by eq. 6.11, eq. 6.12). As the observed treatment

effects obtained from OBs for arm A, directly contribute only to the estimation

of the baseline effects, whilst the observed treatment effects obtained from

OBs for arm B, directly contribute both to the baseline effects and the true

treatment effects. This lack of symmetry was reflected to the performance of

the estimates across scenarios.

6.5 Data examples

We illustrate the proposed methodology with two data examples in disease areas

where OBs were widely available. The first one focuses on the class of the

anti-angiogenic treatments in aCRC and the second one in CML. We presented

point estimates (posterior means and medians) and 95% CrIs of the between

studies correlation ρb and the intercept λ0 to evaluate whether combing evidence
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obtained from RCTs and OBs improve the trial-level validation of surrogate

endpoints. For completeness, we also presented the results from the between-studies

parameters τ1, τ2, d1, d2. To investigate the susceptibility of the estimates to

different assumptions at the within-study level, we modelled the first data example

using M2 (section 6.3.2, eq. 6.15 and eq. 6.16) and the generalisation of M3

(section 6.3.3, eq. 6.17-6.23). Additionally, two sets of sensitivity analysis were

carried out to asses the impact of prior distributions of ρwA and ρwB on the results.

6.5.1 Anti-angiogenic treatments in aCRC

The surrogacy patterns in this particular treatment class of aCRC were also

investigated in Chapter 4. Here, we aim to illustrate the benefits of including

evidence obtained from OBs in a disease area with plethora of published OBs.

The data-set consist of 12 RCTs and 16 OBs evaluating interventions from

anti-angiogenic treatment class in aCRC. The RCT data compare anti-angiogenic

treatments such as Bevacizumab, Valatinib and Cediranib combined with various

types of chemotherapy against cytotoxic agents such as, FOLFOX (folinicacid,

fluorouracil, oxaliplatin), FOLFIRI (folinic acid, fluorouracil, irinotecan) or XELOX

(capecetabine and oxaliplatin). Ten RCTs were obtained from the literature review

conducted by Ciani et al. [11] (for details see chapter 4) and additional two RCTs

were added after a short review of PubMed database. As discussed in section 6.4.4,

the proposed methodology is expected to improve the validation of trial-level

surrogate relationships by combining RCT data and OBs, when OBs data are

available mainly in arm B. Therefore in this example, we focused on identifying

OBs which investigate the experimental arm. We extracted 16 OBs evaluating

anti-angiogenic treatments.

Typically in comparative studies PFS and OS are reported and analysed on the

hazard ratio scale, however, this is not possible for single-arm OBs. Therefore, to

combine RCTs and OBs, we extracted data on specific time points using the binomial

scale. The extracted binary outcomes were PFS at one year (candidate surrogate

endpoint) and OS at two years (final outcome). The data on these two outcomes

were either reported directly by the studies or were obtained from their Kaplan-Meier

curves. Upper part of Table 6.1 shows the summarised data from RCTs presenting
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the number of events in each arm and on both outcomes (PFS at one year, OS at

two years) and the lower part of Table 6.1 presents the data obtained from the 16

OBs on both outcomes.

Table 6.1: Summarised data

PFS at 1 year OS at 2 years
Arm A Arm B Arm A Arm B

Study name N1Ai r1Ai N1Bi r1Bi N2Ai r2Ai N2Bi r2Bi

RCTs
Diaz 2012 [192] 238 74 238 93 238 93 238 114
Guan 2011 [193] 72 8 142 33 72 22 142 50
Hecht 2011 [194] 410 185 413 145 410 230 413 116
Hecht 2009 [195] 583 99 585 99 583 251 585 234
Hoff 2012 [196] 358 61 502 30 358 143 502 216
Hurwitz 2004 [124] 411 58 402 28 411 127 402 171
Kabinnavar 2005[197] 105 22 104 25 105 25 104 29
Schmoll 2012 [198] 713 257 709 227 713 309 709 330
Souglakos 2012 [199] 166 60 167 60 166 102 167 107
Tebbutt 2010 [200] 156 23 157 38 156 53 157 55
Van Cutsem 2012 [201] 614 86 612 101 614 108 612 173
Van Cutsem 2011 [202] 429 19 426 34 429 88 426 77
OBs
Bendell 2012 (1) [203] 968 397 968 481
Bendell 2012 (2) [203] 243 100 243 188
Hurwitz 2014 [204] 482 116 482 188
Van Cutsem 2009 (1) [205] 300 93 300 104
Van Cutsem 2009 (2) [205] 503 236 503 247
Van Cutsem 2009 (3) [205] 552 248 552 293
Van Cutsem 2009 (4) [205] 346 145 346 159
Bennouna 2017 (1) [206] 521 224 521 271
Bennouna 2017 (2) [206] 154 42 154 61
Buchler 2014 (1) [207] 1218 585 1218 658
Buchler 2014 (2) [207] 973 467 973 589
Ocvirk 2011 (1) [208] 45 23 45 26
Ocvirk 2011 (2) [208] 94 43 94 57
Moriwaki 2012 (1) [209] 115 41 115 48
Moriwaki 2012 (2) [209] 45 12 45 15
Kotaka 2016 [210] 40 12 40 26

6.5.1.1 Data Synthesis

We conducted two meta-analyses to assess whether the inclusion of evidence obtained

from OBs improved the validation of PFS at 1 year as a surrogate endpoint of OS at 2

years. The first meta-analysis consisted only of RCT data, whilst the second analysis
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incorporated also the 16 OBs. Within-study correlations between the observed

treatment effects on the surrogate endpoint and the final outcome were available for

the anti-angiogenic treatment class on the log hazard ratio scale in chapter 4 (see

4.4.3). Here, we assumed that the within-study association was approximately the

same in each arm as in 4.4.3 despite modeling the treatment effects on a different

scale (log of odds). To allow for some uncertainty, we placed informative prior

distributions on, ρwA ∼ U(0.45, 60), ρwB ∼ U(0.45, 60) which were the same across

all studies (RCTs and OBs).

6.5.1.2 Data analysis

Analyses of aCRC data using model M2

This section presents the results of both meta-analyses giving estimates of all the

between-studies parameters. To investigate the presence of bias in the OBs, we fitted

M2 which accounts for bias in the OBs via bias terms and models the within-study

variability on the log odds scale using a normal approximation. Table 6.2 contains

the results from both meta-analyses (of RCT data alone and combination and RCT

and OB data) presenting the estimates of the between-studies parameters and the

bias terms.

Table 6.2: Between-studies estimates across data-sets using M2

Models RCTs alone RCTs combined with OBs

Measures Mean(Median) 95% CrI Mean(Median) 95% CrI

Parameters

ρb 0.50(0.55) (-0.15, 0.87) 0.59(0.63) ( 0.18, 0.85)

λ0 -0.12(-0.13) (-0.44, 0.22) -0.13(-0.13) (-0.36, 0.10)

τ1 0.54(0.51) ( 0.31, 0.91) 0.40(0.39) ( 0.26, 0.60)

τ2 0.51(0.49) ( 0.30, 0.86) 0.39(0.38) ( 0.26, 0.57)

d1 0.33(0.32) ( 0.01, 0.67) 0.31(0.31) ( 0.04, 0.57)

d2 0.04(0.05) (-0.29, 0.35) 0.05(0.05) (-0.20, 0.31)

η1 0.60(0.60) ( 0.03, 1.14)

η2 0.48(0.47) (-0.07, 0.93)

When only RCT data were included in the analysis, the method estimated the

between-studies association with relatively large uncertainty. Although, the 95% CrI

of the intercept contained zero and obtained with relatively small uncertainty, the

median of ρb was 0.55 and the 95% CrI spanned from -0.15 to 0.87. This suggest
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that PFS at 1 year can be considered as a relatively weak surrogate endpoint of OS

at 2 years.

On the other hand, when the RCT data were combined with OBs, there was a

substantial improvement in the precision of the estimates of ρb and λ0. In this case,

the 95% CrI of ρb was considerably narrower compared to the analysis with only

RCT data, spanning from 0.18 to 0.85. Similar effect was observed for the 95% CrI

of the intercept. These findings allow us to draw more precise inferences about the

surrogate relationship between PFS at 1 year and OS at 2 years indicating also a

stronger surrogacy pattern between the treatment effects on this pair of outcomes.

Similar gain in precision were also observed across all the between-studies estimates.

Furthermore, the method identified substantial bias in the OBs both on the surrogate

(η1) and the final outcome (η2) making the choice of including the bias terms in the

model justifiable. The point estimates of the pooled effects on the surrogate endpoint

and the final outcome were very similar compared to the analysis with only RCT

data. This is due to the inclusion of bias terms in the model as explained in Section

6.4.4.

Evaluating the assumption of normality at the within-study level

To evaluate the impact of the assumption of normality at the within-study level

on the results,the same analysis was repeated fitting the M3 (see details in Section

6.3.3), which models the within-study variability on the exact binomial scale and

does account for biases in OBs via bias terms. This version of the method avoids the

assumption of normality when modeling the within-study variability by using instead

joint densities with binomial marginal distributions constructed with copulas. To

maintain the within-study correlations on the same scale as in the previous analysis,

we used the Gaussian copula (see details in section 5.2.3). Table 6.3 illustrates the

results from both meta-analyses (of RCT data alone and combination and RCT and

OB data) presenting the estimates of the between-studies parameters and the bias

terms.

Modeling the within-study variability on the original binomial scale gave relatively

similar results about the between-studies correlation in both meta-analyses.

Specifically, M3 resulted in slightly higher posterior medians of between-studies
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Table 6.3: Between-studies estimates across data-sets using M3

Models RCTs alone RCTs combined with OBs

Measures Mean(Median) 95% CrI Median(Mean) 95% CrI

Parameters

ρb 0.55(0.60) (-0.08, 0.89) 0.64(0.68) ( 0.23, 0.90)

λ0 -0.12(-0.11) (-0.44, 0.20) -0.11(-0.11) ( -0.35, 0.08)

τ1 0.54(0.51) ( 0.31, 0.92) 0.40(0.39) ( 0.26, 0.59)

τ2 0.52(0.49) ( 0.31, 0.89) 0.39(0.37) ( 0.26, 0.55)

d1 0.33(0.33) ( 0.01, 0.68) 0.32(0.32) ( 0.05, 0.58)

d2 0.07(0.06) (-0.23, 0.38) 0.06(0.06) (-0.19, 0.33)

η1 0.61(0.61) ( 0.04, 1.15)

η2 0.47(0.48) (-0.05, 0.95)

correlation ρb and narrower 95% CrI of ρb compared to M2 in both analyses (one

with RCT data only and one with RCTs and OBs). Overall, modeling with M3, led

to slightly more precise inferences about the trial-level surrogate relationship

between PFS at 1 year and OS at 2 years compared to M2.

Minor differences were observed between the results obtained from models M2 and

M3 for the remaining parameters. The point-estimates (posterior means/medians)

and their corresponding 95% CrIs were very similar across the two versions of the

method.

Sensitivity to the choice of the prior distributions for ρwA and ρwB

To evaluate how susceptible were the results of the between-studies parameters

to choice of prior distributions for the within-study correlations ρwA and

ρwB, we performed a sensitivity analysis placing non-informative prior

distributions (ρwA, ρwB ∼ U(−1, 1)) and weakly informative prior distributions

(ρwA, ρwB ∼ U(0, 1)) on these parameters respectively. Two sets of sensitivity

analysis were conducted, one for each meta-analysis. In the first set of sensitivity

analysis, we included only RCT data, whereas in second one, both RCTs and OBs

were incorporated into the analysis. The results from both sets of the sensitivity

analysis were also compared with the results from the analyses using the

informative prior distributions for ρwA amd ρwB (ρwA, ρwB ∼ U(0.45, 0.60)) as

presented previously in this section. Throughout this sensitivity analysis we used

M2. Table 6.4a displays the results from the first set of sensitivity analysis of
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between-study parameters, where RCT data alone were included in the analysis.

Table 6.4b contains the results from the second set of sensitivity analysis, where 12

RCTs and 16 OBs were included in the analysis.

The results from the first set of sensitivity analysis (Table 6.4a) show that placing

non-informative prior distributions on the within-study correlations resulted in the

slightly higher point-estimates of between-studies correlation ρb and slightly narrower

95% CrI. Similarly, marginal differences were observed in the estimates and the 95%

CrIs of between-studies standard deviations and the pooled effects on the surrogate

endpoint and the final outcome across the different prior distributions. Overall,

the estimates of between-studies parameters were not susceptible to the choice of

prior distributions for ρwA and ρwB. Particularly, being less informative about the

within-study correlations did not substantially affect the inferences of ρb and λ0 and,

consequently, the trial-level validation of PFS at 1 year as surrogate endpoint of OS

at 2 years, when only RCT data were included in the analysis.

The results from the second set of sensitivity analysis (Table 6.4b) suggest that the

impact of different prior distributions of ρwA on the estimates of between-studies

parameters was relatively small when OBs were incorporated into the analysis.

Specifically, being completely ignorant about ρwA and ρwB resulted in the highest

point-estimates of between-studies correlation ρb compared to the scenarios with

weakly informative and informative prior distributions. However, the choice of prior

distribution about ρwA and ρwB did not substantially affected the inferences about

ρb and consequently the trial-level validation of PFS at 1 year as surrogate endpoint

of OS at 2 years.
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Table 6.4: Estimates of between-studies parameters across different degrees of prior information of ρwA and ρwB

(a) RCTs alone

ρwA, ρwB

non-informative
prior distributions

U(-1,1)

weakly informative
prior distributions

U(0,1)

informative
prior distributions

U(0.45,0.60)
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.54(0.59) (-0.08, 0.89) 0.51(0.56) (-0.14, 0.87) 0.50(0.55) (-0.15, 0.87)
λ0 -0.12(-0.12) (-0.43, 0.21) -0.12(-0.12) (-0.43, 0.21) -0.12(-0.13) (-0.44, 0.22)
τ1 0.53(0.50) ( 0.31, 0.89) 0.54(0.51) ( 0.31, 0.91) 0.54(0.51) ( 0.31, 0.90)
τ2 0.51(0.49) ( 0.31, 0.85) 0.51(0.49) ( 0.30, 0.85) 0.51(0.49) ( 0.30, 0.86)
d1 0.33(0.33) (-0.01, 0.69) 0.34(0.33) ( 0.00, 0.68) 0.33(0.32) ( 0.01, 0.67)
d2 0.07(0.07) (-0.26, 0.40) 0.06(0.06) (-0.26, 0.38) 0.04(0.05) (-0.29, 0.35)

(b) RCTs combined with OBs

ρwA, ρwB

non-informative
prior distributions

U(-1,1)

weakly informative
prior distributions

U(0,1)

informative
prior distributions

U(0.45,0.60)
Measures Mean(Median) 95% CrI Mean(Median) 95% CrI Mean(Median) 95% CrI
Parameters
ρb 0.69(0.72) ( 0.23, 0.94) 0.59(0.65) ( 0.18, 0.88) 0.59(0.63) ( 0.18, 0.85)
λ0 -0.13(-0.13) (-0.36, 0.10) -0.12(-0.12) (-0.36, 0.09) -0.11(-0.11) (-0.35, 0.08)
τ1 0.40(0.39) ( 0.26, 0.59) 0.40(0.39) ( 0.26, 0.59) 0.40(0.39) ( 0.26, 0.59)
τ2 0.39(0.38) ( 0.26, 0.57) 0.39(0.38) ( 0.26, 0.57) 0.39(0.37) ( 0.26, 0.55)
d1 0.31(0.30) ( 0.05, 0.58) 0.31(0.30) ( 0.06, 0.60) 0.31(0.31) ( 0.04, 0.57)
d2 0.07(0.07) (-0.18, 0.32) 0.06(0.06) (-0.20, 0.31) 0.05(0.05) (-0.20, 0.31)
η1 0.61(0.61) ( 0.04, 1.16) 0.60(0.60) ( 0.06, 1.17) 0.61(0.61) ( 0.04, 1.15)
η2 0.46(0.46) (-0.04, 0.94) 0.48(0.47) ( 0.01, 0.97) 0.46(0.48) (-0.05, 0.95)
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6.5.1.3 Cross-validation procedure

PFS at 1 year was deemed a relatively weak surrogate endpoint of OS at 2 years

based on RCT data alone, whilst the inclusion of OBs strengthen its validation

resulting in more precise inferences about the parameters describing the surrogate

relationships. In this section two cross-validation procedures with M2 model were

carried out to assess the effect of including OBs in the analysis of the predictions

of the true treatment effect on the final outcome. In the first cross-validation, the

true treatment effect on the final outcome of each RCT was predicted based on the

treatment effects on the surrogate endpoint and the final outcome of the remaining

RCTs and the treatment effect on the surrogate endpoint of the particular study,

whilst in the second one the true treatment effect on the final outcome of each

RCT was predicted based on the treatment effects on the surrogate endpoint and

final outcome of the remaining RCTs and the OBs and the treatment effect on the

surrogate endpoint of the particular study.

Table 6.5 presents the performance of the predictions of the true treatment effect on

the final outcome (OS at 2 years) by reporting the following measures: The mean

error, mean absolute error, the performance of the predictive intervals, the ratio of

the width of the 95% predictive intervals obtained from the cross-validation in the

data-set consisting of RCTs and OBs and the predictive intervals obtained from the

cross-validation based on RCTs alone, averaged over the RCTs. The definitions of

the measures can also be found in Section 5.4.4.1.

Table 6.5: Performance of predictions in the two data-sets

Measures RCTs alone RCTs combined with OBs
Performance of
95% predictive intervals 0.92 0.92
Mean error 0.03 0.01
Mean absolute error 0.31 0.30
Mean width ratio 1.00 0.68

The results of the cross-validation procedure on PFS-OS pair of outcomes showed

that the inclusion of OBs in the data-set resulted in better predictions compared to

the one with RCTs alone, resulting in lower mean error, mean absolute error and,

on average, 32% narrower 95% predictive intervals of the true effects on the final
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outcome. The performance of the 95% predictive intervals was exactly the same, as

the 11 out of the 12 predictive intervals contained the observed treatment effect on

the final outcome in both data-sets.

6.5.2 CML

As described in Chapter 5 of this thesis, CML is a slow progressive disease. The

introduction of TKI has revolutionized the management of CML and patients’

prognosis [164]. In Section 5.4.4, we investigated the trial-level surrogacy patterns

between CCyR at 1 year and EFS/OS at 2 years using 3 different modeling options.

Overall, a sub-optimal surrogate relationship between CCyR at 1 year and EFS or OS

at 2 years was found regardless of the modeling assumptions. This can potentially be

due to the immature data on the treatment effects on the final outcome. The lack of

maturity of the data on the treatment effects may affect the shape of the relationship

as it typically results in treatment effects clustered around the mean effect, and hence

very small between-studies heterogeneity. This leads to unsuccessful validation of

surrogate endpoints. In this data example we use a longer term-outcome as final

outcome (OS at 4 years). Unfortunately only five RCTs of the data example in

Chapter 5 reported treatment effects on this final outcome.

To enrich our data-set with OBs, we carried out a literature review screening titles

of relevant papers and abstracts. We identified 8 OBs, two of them reported data in

arm A (standard dose of imatinib) and six reported data in arm B (second generation

TKI, or high dose of imatinib). We also used the experimental arm of IRIS trial [211]

(this trial compared imatinib against standard chemotherapy and it was excluded

from the RCT data) as an additional OBs. Table 6.6 displays the number of survivors

at 4 years (OS at 4 years) and the number of patients who achieved a CCyR at 1

year (potential surrogate endpoint).
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Table 6.6: Summarised data

CCyR at 1 year OS at 4 years
Arm A Arm B Arm A Arm B

Study name N1Ai r1Ai N1Bi r1Bi N2Ai r2Ai N2Bi r2Bi

RCTs
Cortes 2013 [212] 260 189 259 216 260 216 259 246
Hochhaus 2016 [213] 278 181 278 217 283 261 282 272
Baccarani 2009 [160] 108 63 108 69 108 91 108 98
Hehlmann 2011 [161] 303 150 311 206 324 295 338 314
Deininger 2014 [156] 49 33 41 35 72 65 73 69
OBs
Lavadalle 2008 [6] 198 113 204 190
Hochhaus 2017 [211] 553 421 553 503
Kizaki 2019 (1) [214] 139 97 139 128
Kizaki 2019 (2) [214] 169 136 169 166
Kizaki 2019 (3) [214] 144 119 144 137
Hoffmann 2017 (1) [215] 192 96 294 273
Hoffmann 2017 (2) [215] 52 39 78 72
Jabbour 2011(1) [164] 187 169 208 199
Jabbour 2011(2) [164] 118 116 154 154

6.5.2.1 Data Synthesis

Two meta-analyses were conducted, one using the RCTs alone and one including

the OBs in the analysis. We applied the version of the method which models the

within-study variability on the original binomial scale. This method was preferred

due to the high number of events on the final outcome (OS at 4 years). To construct

the joint density with binomial marginal distributions we used the Gaussian copula

as dependence structure, placing the same prior distributions on the within-study

associations as in Chapter 5 (θ1 ∼ U(−0.03, 0.22) and θ2 ∼ U(0, 0.25))).

6.5.2.2 Results

Table 6.7 displays the results from both meta-analyses presenting the estimates of

between-studies parameters and the bias terms. Including only the RCTs in the

meta-analysis resulted in relatively low between-studies association (the median

ρ̂b = 0.41) and substantial uncertainty around the estimate. Specifically, the 95%

CrI of the parameter was (-0.87,0.96) implying that CCyR at 1 year is not a valid

a surrogate endpoint of OS at 4 years based on the RCT data. In the second
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Table 6.7: Estimates of between-studies parameters across the two meta-analyses

Models RCTs alone RCTs combined with OBs

Measures Mean(Median) 95% CrI Mean(Median) 95% CrI

Parameters

ρb 0.25(0.41) (-0.87, 0.96) 0.61(0.82) (-0.53, 0.98)

λ0 0.04(0.21) (-1.87, 1.76) 0.21(0.38) (-1.61, 1.40)

τ1 0.30(0.20) ( 0.02, 0.84) 0.64(0.59) ( 0.05, 1.49)

τ2 0.58(0.46) ( 0.08, 1.45) 0.72(0.65) ( 0.14, 1.51)

d1 0.61(0.60) ( 0.32, 0.94) 0.62(0.60) ( 0.04, 1.25)

d2 0.78(0.77) ( 0.21, 1.35) 0.78(0.78) ( 0.14, 1.44)

η1 0.24(0.24) (-0.67, 1.13)

η2 0.39(0.40) (-0.23, 1.03)

ξ1 0.54(0.54) (-0.57, 1.67)

ξ2 0.58(0.55) (-0.41, 1.64)

meta-analysis the RCTs were combined with the OBs. This had a direct impact on

the estimate of between-studies correlation ρb, increasing its point estimate from 0.41

to 0.82. The precision of the 95% CrI was also increased, however, it still contained

negative values. Additionally, the 95% CrI of the intercept contained zero and was

narrower compared to the 95% CrI of the intercept obtained from the meta-analysis

with RCT data alone. However, it still yielded with substantial uncertainty. All the

above indicate that the inclusion of OBs in the meta-analysis allowed us to draw

more precise inferences about the trial-level surrogacy pattern between CCyR at 1

year and OS at 4 years.

6.5.2.3 Cross-validation procedure

Similarly as in 5.4.4, the validation of CCyR at 1 year as a surrogate endpoint of

OS at 4 years was unsuccessful, as the trial-level association was weak and obtained

with considerable uncertainty however the use of a longer term final outcome (OS at

4 years instead of OS at 2 years) and the inclusion of OBs in the analysis resulted

in higher trial-level association between the treatment effects on the first and the

second outcome. Despite the unsuccessful validation of the candidate endpoint, two

cross-validation procedures were carried out, one for each data-set, to assess the

effect of including OBs in the analysis on the predictions of the true treatment effect

on the final outcome. Specifically, in the first cross-validation, the true treatment

effect on the final outcome of each RCT was predicted based on the treatment effect
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on the surrogate endpoint of the particular study and the true treatment effects on

the surrogate endpoint and the final outcome of the remaining RCTs, whilst in the

second one the true treatment effect on the final outcome of each RCT was predicted

based on the true treatment effects on the surrogate endpoint and final outcome of

the remaining RCTs and the OBs and the treatment effect on the surrogate endpoint

of the particular study.

Table 6.5 presents the performance of the predictions of the true treatment effect on

the final outcome (OS at 4 years) across models by reporting the same measures as

Table 6.5.

Table 6.8: Performance of predictions in the two data-sets

Measures RCTs alone RCTs combined with OBs
Performance of
95% predictive intervals 1.00 1.00
Mean error 0.09 0.12
Mean absolute error 0.37 0.41
Mean width ratio 1.00 0.92

The results of the cross-validation procedure on CCyR at 1 year - OS at 4 years pair

of outcomes showed that both procedures gave similar predictions. In the data-set

consisting of RCTs combined with OBS, the predictions of the true treatment effect

on the final outcome had on average, 8% narrower predictive intervals compared

to the predicted intervals obtained from the data-set consisting of RCTs alone. In

contrast to this, the predictions of the data-set consisting of RCTs alone had slightly

lower mean error and mean absolute error. The performance of the 95% predictive

intervals was exactly the same in both data-sets as all the predictive intervals (5 out

of 5) contained the observed treatment effect on the final outcome.

6.6 Discussion

In this chapter we proposed Bayesian bivariate meta-analytic methods for combining

evidence from different data sources such as RCTs and single arm OBs. The proposed

methodology offers a flexible framework for combining data from RCTs and OBs in

a single bivariate meta-analysis with the aim of improving the trial-level validation

of surrogate endpoints by drawing more accurate and precise inferences about the
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study-level association (ρb) between the treatment effects on the surrogate endpoint

and the final outcome.

Our method extends and the model proposed by Begg and Pilote for combining RCT

data with evidence from single arm studies [188] to a bivariate hierarchical method

for combining such data sources for treatment effects on two outcomes. Similarly as

Begg and Pilote briefly discussed in their second model generalisation, the proposed

method (M1) assumes that the baseline effects and the true treatment effects obtained

from RCTs and OBs are exchangeable. We further generalised model M1, in a similar

way as Begg and Pilote, to account for bias in the OBs by introducing bias terms.

This generalisation (M2) is important as OBs have very different inclusion criteria

compared to OBs and they are prone to bias due to lack of randomisation. M2

should always be used as preliminary analysis in order to assess the presence of such

biases (systematic differences between treatment effect across the study designs)

and whether or not they could be ignored. Additionally, an alternative version of

the method (M3) was proposed which models the within-study variability on its

original binomial scale avoiding the inappropriate assumption of normality when the

proportions of events in the binomial data are either very high or low as discussed

in Chapter 5.

According to the findings of the simulation study, the inclusion of OBs in the analysis

can result in estimates of the between-studies correlation obtained with improved

precision and accuracy compared to the analysis based only on RCTs. This is

desirable, as it leads to improved trial-level validation of surrogate endpoints. The

improvement in the precision of the estimate of the between-studies correlation is

more likely to be observed when there are more OBs included in the meta-analysis

and when these OBs are available for the experimental treatment rather than the

control. On the other hand, the number of patients in OBs has a very small impact

on the precision and the accuracy of the estimate of the between-studies correlation.

Typically, larger OBs can result in slightly more accurate and precise estimates of

between-studies correlation. Furthermore, the inclusion of OBs in the analysis has

larger impact on the precision and the accuracy of the estimates of between-studies

correlation (when RCT data are sparse).

In data scenarios with noticeable systematic differences in the magnitude of the

186



Chapter 6. Improving the validation of surrogate endpoints by incorporating data
from cohort studies

treatment effects between the RCT and OB data, the generalisation of the model

which accounts for such systematic biases via bias terms, estimated the bias very

accurately. Such, potential biases in the data should always be assessed. Therefore

we recommend that model M2 should always be the first modeling option when

meta-analysing data from different study designs. The method is capable of

identifying potential biases in the OBs and without affecting the estimates of the

pooled treatment effects, e.g in the scenarios of the simulation study with biased

OBs, the model estimated the bias very accurately. Furthermore, the model did not

introduce any additional bias to the pooled effect when comparing with the

results of the RCT data alone. This is key when obtaining predictions of the true

treatment effect of a study on the final outcome in a cross-validation procedure, as

biased estimates of the pooled effects would imply biased estimates of the true

treatment effects.

Overall, the proposed framework can be particularly useful when a new treatment

needs to be approved quickly and such decision is based on the treatment effects

measured on a surrogate endpoint obtained from only a few RCTs.

The results from the two data examples illustrate the benefits of combing RCTs

and OBs in a single meta-analysis. In both examples, the inclusion of OBs resulted

in substantial higher point-estimates of the between-studies correlation and

narrower 95% CrIs, leading to improved inferences about the trial-level surrogacy

patterns. Specifically in the first data example in aCRC, we found strong trial-level

association between the treatment effect on PFS at 1 year and OS at 2 years when

RCTs and OBs were included in a single meta-analysis; the 95% CrI of the

between-studies correlation contained only positive values and the point-estimate

was higher compared to the meta-analysis based on RCTs alone. Substantial

improvement in the validation of CCyR at 1 year as a surrogate endpoint of

OS at 4 years was observed in the second data example in CML. Specifically,

the point-estimate (posterior median) of between-studies correlation was more

than twice as high and the 95% CrI was considerably narrower when OBs were

incorporated into the meta-analysis.

Benefits in the precision of the predicted true effects on the final outcome were

also observed. When a cross-validation was carried out on the data-sets consisting
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of RCTs and OBs, the model resulted in narrower predictive intervals compared

to the cross-validation based on RCTs alone. This confirms the improvement in

the trial-level validation of the candidate endpoints in both data examples, as the

strength (or weakness) of the surrogate relationship manifests itself in the width of

the predicted interval of the true treatment effects.

Although the proposed methodology offers a flexible framework for combining

evidence from different study designs into a single meta-analysis, the plausibility of

the assumptions of the method should be investigated in depth and potential

limitations should be identified. The proposed methods were implemented by

assuming that the treatment effects and the baseline effects on the surrogate

endpoint and the final outcome, obtained from RCTs and OBs, are exchangeable

(random effects). As discussed by White et al. [216], models with random baseline

effects have appealing properties and are extremely useful in solving otherwise

impossible problems, but their main weakness is susceptibility to bias when there

are systematic differences between data from studies of different designs. In these

situations, the assumption of exchangeability of the baseline effects may be too

strong, as the estimated baseline effects are shrunk toward the overall mean;

therefore, the estimation of the treatment effect within-a study is influenced by

information outside the study. This conflicts with the principle that treated

individuals should only be compared with randomized controls [217] and as such

may compromise the randomisation [216, 218]. However, many authors stated that,

’in practice little harm is likely to be done by this’ [217, 219]. In an analysis based

on hypothetical data, White et al.[216] found that compromising randomisation

through random baseline effects can introduce important bias to the analysis,

however, they concluded that more research was required to identify any situations

where this could be of practical importance.

Another limitation of the method was highlighted in the simulation study. According

to the results, the inclusion of OBs for the baseline arm, only marginally improve

the precision and the accuracy of the estimates of the between-studies correlation.

As explained above, this is due to lack of symmetry at the within-study level of

the hierarchical model. The part of the method which models arm A does not

contribute directly to the relative treatment effects and hence inclusion of OBs for the
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baseline arm does not substantially improve the inferences about the between-studies

correlation. On the other hand, OBs for the experimental treatment arm offer

significant gains in precision and accuracy of the estimates of the between-studies

correlation. This problem can be resolved by introducing a symmetry in the model

parameterisation to account for treatment effects in both arms. This will allow OBs

reporting data in the baseline arm to contribute directly to the estimation of the

treatment effects.

As discussed above, the proposed methods combine evidence from different study

designs by using random baseline effects. An alternative way to incorporate

single-arm OBs in a single meta-analysis, is via a matching technique. Complex

methods such as propensity scores or matching adjusted indirect comparisons make

the use of IPD to match single-arm OBs, whilst adjusting for covariates to reduce

the impact of selection bias [220–224]. However in practice, IPD are rarely available.

Matching techniques based solely on aggregate data have been also discussed by

many authors [225–227], however, their results need to be interpreted with caution

as they tend to underestimate the uncertainty and consequently are prone to bias

[227].

In summary, we extended the method proposed by Begg and Pilote for combining

data from RCTs and single-arm studies into a bivariate method in the Bayesian

framework. The method allows for inclusion of evidence from different study designs

enhancing the inferences about the parameters describing the trial-level surrogacy

patterns. The method allow us to efficiently identify biases in the OBs and predict

the true treatment effects with reduced uncertainty. Overall, the proposed method

can improve the trial-level validation of surrogate endpoints, and in particular in

the era of precision medicine where the quick approval of new promising therapies

warrants the inclusion of all available evidence in the analysis.
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Chapter 7

Discussion

In this concluding chapter, we give brief overview of the thesis, summarising the

main findings of the undertaken work, discussing the strengths and the limitations.

The Chapter concludes by highlighting opportunities for further work.

7.1 Summary of the thesis

This thesis considers a range of methodological challenges related to the trial-level

validation of surrogate endpoints in disease areas where targeted treatments have

been used. It discusses novel methodology developed to address these challenges.

The methodological solutions were proposed to achieve the following three aims:

• To improve the trial-level validation of surrogate endpoints within a specific

class of treatment in disease areas where trial-level surrogacy patterns vary

across treatment classes.

• To improve the trial-level validation of surrogate endpoints, when such

validation is based on correlated binomial aggregate data within high or low

proportions of events.

• To strengthen the trial-level validation of surrogate endpoints when

Randomised controlled trials (RCTs) offer limited information and external

evidence from different study designs are needed for such validation.

Chapter 1 outlined the aims and the structure of thesis. It also provided a brief
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introduction to the background of the thesis and discussed the concepts of surrogate

endpoints. Chapter 2 focused on making a brief review of the Bayesian statistics and

the meta-analytic methods. In addition to this, it discussed about the Markov chain

Monte Carlo methods and the statistical software used in Chapters 4,5 and 6. The

third Chapter reviewed existing methodology developed for evaluation of surrogacy

patterns.

Chapters 4, 5, and 6 consisted of the main body of the thesis and proposed novel

methodology, addressing a number of methodological challenges to achieve the

above three aims. Each Chapter started with an introduction section reviewing

the background of each methodological challenge and presented a motivating case

study to illustrate and the proposed methods. Then a methods section followed

where the existing and the proposed modeling methods were described in detail.

Each Chapter contained a simulation study, to evaluate the performance of the

proposed modeling approaches and compare them against standard methodology.

The same structure was used across the three simulation studies, defining the aims

of each simulation study, the generation process of the data, the estimands and the

performance measures, and using, similar graphical presentations of the results. Each

simulation study concluded with a discussion of the key findings. Furthermore, data

examples were presenting across all the Chapters illustrating the performance of the

methods in real data. The Chapters concluded with a discussion section, which was

framed in the form of conclusions, recommendations, limitations of the proposed

methods and suggestions for further work.

7.2 Strengths of the thesis

This sections reviews the strengths of the methodology for trial-level surrogate

endpoint evaluation, developed in this thesis.

In Chapter 4, we aimed to improve the trial-level validation of surrogate endpoints

within a specific class of treatment in disease areas where trial-level surrogacy

patterns vary across treatment classes. Two extensions (F-EX, P-EX models)

of a model proposed by Daniels and Hughes [13] were developed accounting for

differences in surrogate relationships between treatment classes and assuming some
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level of similarity between them. The first extension (F-EX model) allowed for

full borrowing of information for surrogate relationships across treatment classes

assuming exchangeability for the parameters describing the surrogate relationships

whilst, the second method (P-EX) relaxed this assumption, allowing for partial

borrowing of information. The proposed methods showed a lot of potential in terms

of improving the trial-level validation of surrogate endpoints within classes, as they

resulted in substantial reduction in the uncertainty of the parameters describing a

surrogate relationship within a treatment class compared to subgroup analysis in

the simulated data scenarios. P-EX model was the best method in data scenarios

where there was a treatment class with distinctly different surrogacy pattern (slope),

as it was able to estimate the correct degree of borrowing of information for this

parameter. The proposed methods outperformed subgroup analysis also in a data

example in aCRC (consisting of three classes of treatment), where the trial-level

surrogacy patterns differ across treatment classes.

Chapter 5, introduced novel methodology to enhance the trial-level validation of

surrogate endpoints, when such validation was based on correlated binomial aggregate

data with high or low proportions of events. As discussed, such data typically include

two sources of association - one at the individual-level and one at the study-level.

The proposed method (BRMA-BC) accounted for within-study associations and

modeled the within-study variability on the original binomial scale avoiding the

controversial normal approximation (which was used by the standard methodology

(model BRMA)). This was implemented by modeling the aggregate data on each

outcome jointly, using a bivariate distribution with binomial marginal distributions

constructed with copula. To highlight the importance of accounting for within-study

associations we also presented another approach (BRMA-IB), which modeled the

within-study variability on the original binomial scale, but ignored within-study

associations. Overall, the proposed method (BRMA-BC) was able to improve the

inferences about the trial-level validation of surrogate endpoints in terms of precision

and bias compared to the standard methodology (BRMA), as it resulted in more

precise and less biased estimates of the parameters describing a surrogate relationship

in a series of simulated data scenarios with high proportions of events. The proposed

method (BRMA-BC) resulted also in higher and slightly more precise estimates of the
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parameters describing a surrogate relationship compared to BRMA in a data example

in CML, where the high effectiveness of targeted therapies led to large proportions

of treatment responders and very small proportions of disease progressions or deaths.

However, the difference was not that pronounced as in the simulation study. This

may have occurred due to the fact that the data on the final outcome were not

mature, resulting in the treatment effects on the final outcome obtained with large

uncertainty.

In chapter 6, we aimed to strengthen the trial-level validation of surrogate endpoints,

in situations where RCTs offer limited evidence and external evidence from different

study designs were required for such validation. The proposed methodology offered

a flexible framework for incorporating OBs in bivariate meta-analysis. It extended

the model proposed by Begg and Pilote into a bivariate hierarchical method (model

M1) combining RCT data and evidence from single arm observational studies in

a single analysis. Two alternative versions of the method were also introduced.

The first one accounted for bias in the OBs by introducing bias terms (model M2),

whilst the second version modeled the within-study variability on the binomial scale

using bivariate densities with binomial marginals constructed with copulas. This

allowed as to avoid the controversial normal approximation, when modeling binomial

data with high proportions of events (model M3). Based on the results from the

simulation study, we inferred that the inclusion OBs in the analysis could lead to

improved trial-level validation of surrogate endpoints, as it resulted in estimates

of the between-studies correlation obtained with improved precision and accuracy

compared to the analysis based on RCTs alone in the most of the scenarios of the

simulation study. Similar behaviour was also observed in the two data examples

(aCRC and CML), used to illustrate the method. Furthermore, the results of the

cross-validation procedure, performed in the two data examples, suggested similar

benefits in terms of the improved precision of the predictions of the treatment effect

on the final outcome.

7.3 Discussion of the limitations

This sections discusses the key limitations of the proposed methodology in this thesis.
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In Chapter 4, the proposed methodology illustrated the benefits of borrowing of

information across classes of treatment for the parameters describing the surrogate

relationship. Particularly, the more classes we have in the data the easier it is for the

models to borrow information across them. However in practice, it can be challenging

to find data sets with sufficient number of treatment classes. A small number of

treatment classes in the data can affect the performance of the proposed methods

substantially reducing the impact of borrowing of information [133]. Additionally,

applying P-EX model to data sets with only three treatment classes may lead to

a situation where only one class is deemed exchangeable by the model during the

estimation process (in some of the MCMC iterations). However, this is not possible

as there is no other class to exchange information with. Therefore, this should

always be investigated when P-EX is applied to data sets with only three treatment

classes. In the data example of Chapter 4, this issue did not affect the performance of

P-EX model as it occurred only in the 0.5% of the MCMC iterations. Furthermore,

the evaluation framework proposed by Daniels and Hughes assesses the strength

of trial-level surrogate relationships by examining whether zero is contained in the

CrIs of the parameters describing the surrogate relationships (λ1 and λ0). This is

very restrictive, as the width of the CrIs depends on the number of studies included

in the analysis, hence they may lead to increased uncertainty around the intercept

and slope, invalidating one or some the surrogacy criteria. Therefore, alternative

evaluation frameworks should always be taken into account. For instance, other

authors have been more flexible emphasising on the balance between the actual

need for a surrogate endpoint and the strength of the trial-level surrogacy pattern

[21]. In addition to this, an alternative evaluation framework could focus largely on

the predictions of the true treatment effect of the final outcome, as the strength or

weakness of a surrogate relationship will be evident in the uncertainty around the

predicted treatment effect on the final outcome [136].

In Chapter 5, we implemented the proposed methodology (BRMA-BC model) using

RStan [56]. A limitation of the method was the fact that BRMA-BC model was very

sensitive to initial values. Therefore, the initiation of the estimation process (HMC)

was very difficult without setting "sensible" initial values. This was tackled by fitting

BRMA-IB prior to BRMA-BC and then converting the estimates of BRMA-IB to
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initial values for BRMA-BC. However, this issue makes the use of BRMA-BC model

quite restrictive, as it requires either another method to be fitted prior to BRMA-BC

model or a detailed understanding of the data set in order to provide the model with

"sensible" initial values. The data example in CML consisted of RCTs reporting data

on CCyR at 1 year (surrogate endpoint) and OS or EFS at two years. Unfortunately,

the definition of EFS was the relatively inconsistent across studies. For example,

in some RCTs, the definition of EFS overlapped with the definition of PFS and in

some of others the definition was more vague including various events. Additionally,

another limitation of the CML data example was the lack of IPD across all the RCTs.

As a result, the accurate estimation of the within-study associations (within-study

correlations for BRMA and dependence parameters for BRMA-BC) was not possible.

To address this, we used evidence from three observational cohort studies to inform

prior distributions of the within-study association parameters.

In Chapter 6, we proposed a hierarchical method to combine evidence from

different study designs into a single meta-analysis. The model combined RCTs and

OBs assuming that the baseline effects were exchangeable across all studies. This

meant that the baseline effect estimated within a particular study was influenced by

information outside that study. Many authors have criticised this assumption,

arguing that it compromises the randomisation [216, 218]. However, it is not clear

to what extent this is a problem in practice. Senn et al. [217] stated that "in

practice little harm is likely to be done" and other authors such as Achana et

al. [219] found little bias in their analysis when this assumption was used. A

simulation study conducted by White et al. [216], showed that compromising

randomisation through random baseline effects can introduce bias to the analysis,

however, the authors concluded that more research was required to identify any

situations where this could be of practical importance. Another limitation of the

proposed hierarchical method was highlighted in our simulation study. The

inclusion of OBs for the control arm, had only a marginal effect on the inferences of

the trial-level surrogacy patterns. On the other hand, including OBs reporting data

in the experimental arm resulted in substantial improvement of the inferences of the

trial-level surrogacy patterns. This was due to lack of symmetry at the within-study

level of the hierarchical model and data reported in arm A did not contribute

195



Chapter 7. Discussion

directly to the estimation of relative treatment effects, whilst data reported in arm

B contributed both to the estimation of the baseline effects and the estimation of

relative effects thus improving evidence base for surrogate endpoint evaluation.

7.4 Future work

This section outlines potential methodological extensions of the work presented in

this thesis highlighting the opportunities for further work in the area of the trial-level

validation of surrogate endpoints.

In Chapter 4, the proposed methodology improved the trial-level validation

of surrogate endpoints within a specific class of treatment in a disease area,

borrowing information for the parameters describing the surrogate relationship

from other treatment classes in that disease area. Further methodological work can

be undertaken by extending the methods to account for differences in lines of

treatments or to account for different treatments within a treatment class. This can

be done by adding more layers of hierarchy in the model. However, a relatively

large number of studies for each line of treatment (or each treatment) will be

required to fit such model and obtain estimates of the parameters describing the

surrogate relationships without considerable uncertainty.

P-EX model was the most flexible approach achieving superior performances in data

scenarios where there was a treatment class with distinctly different slope. This

was due to the assumption of partial exchangeability which allowed the model to

regulate the degree of borrowing of information for the parameter of the slopes. This

assumption can easily be applied to the intercepts and the conditional variances (the

other two parameters describing a surrogate relationship in the evaluation framework

proposed by Daniels & Hughes).

In Chapter 5, we developed methodology which improved the trial-level validation of

surrogate endpoints, when such validation is based on correlated binomial aggregate

data within high or low proportions of events. BRMA-BC method modeled the

within-study variability on the original binomial scale accounting for within-study

associations using bivariate joint densities constructed with copula functions. This

model can be extended in various ways. Under the current parameterisation, the

196



Chapter 7. Discussion

model implies a linear relationship between the true probabilities of events on the

first and the second outcome on a transformed scale using logit link function. Hence

under this parameterisation, the correlation between true probabilities of events is

expressed on the logit scale which is less intuitive. A more intuitive approach would

allow for modeling the correlation on the original scale. This can be implemented by

using copulas in a similar way as Chu et al. and Nikolopoulos have proposed [169, 170].

Furthermore, as discussed by Bujkiewicz et al. [89], BRMA (standard method for

trial-level surrogate endpoint evaluation) can be extended to the multivariate case

to account for multiple surrogate endpoints. Similarly, BRMA-BC can be extended

to allow for modeling multiple surrogate endpoints (or the same surrogate endpoint

but reported at multiple time points) with the use of vine-copulas.

In chapter 6, the proposed hierarchical method enhanced the trial-level validation

of surrogate endpoints by combining RCTs and OBs in a single analysis. Further

research can be undertaken by investigating other approaches. For instance, an

alternative way to incorporate single-arm OBs in a single meta-analysis, is via a

matching technique. Propensity scoring or matching adjusted indirect comparisons

can be applied to match single-arm observational data, however, they require use of

IPD [220–224]. Practically, very often this is not feasible, as IPD is rarely available.

Matching techniques based only on aggregate data have been discussed by some

authors [225–227], but their results need to be interpreted with caution as they may

underestimate the uncertainty and consequently, are prone to bias [227]. Schmitz

et al. [227] proposed a matching strategy which incorporates single-arm OBs in the

analysis accounting for all the relevant uncertainty to connect disconnected networks.

This strategy identifies the most important baseline characteristics (covariates) in a

disease area, assigning weights to them. These characteristics are used to calculate a

distance metric which is used to measure the of similarity between any two of single

arm OBs included in the data set. Based on the values of the distance metric, the

single-arm OBs can be matched to act as active treatment and control arms in a

pseudo comparative study. Schmitz et al. highlighted the importance of exploring

the space of possible matches and assessing the impact different matches have on

the results. This approach can easily be applied to different settings and, therefore,

can potentially be used to strengthen the inferences of the parameters describing
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surrogate relationships.

7.5 Conclusion

In conclusion, this thesis has proposed methodological tools to improve the trial-level

validation of surrogate endpoints. The models were developed under the Bayesian

framework and can be easily generalised to other research areas facing similar

methodological challenges. The work presented in Chapter 4, can assist trial-level

validation of surrogate endpoints in newer classes of treatment where the validation

is problematic due to the sparsity of the data. This will accelerate the evaluation

process of drugs which normally can last several years. The proposed methods

in Chapter 5 are able to improve the trial-level validation of binary outcomes as

surrogate endpoints in disease areas with high/low proportions of events. This is

rather important when such validation is based on data from modern clinical trials

assessing personalised treatments, as the increased effectiveness of those treatments

often leads to high numbers of responses and reduces the numbers of events. The

work presented in Chapter 6 can facilitate the approval of new targeted therapies,

when RCTs offer limited evidence and the evaluation process is based on long term

outcomes, as it allows for the inclusion of all available evidence.
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Appendix A

Appendix

A.1 Centred and non-centred parameterisations

This sections includes the codes of the two "normal" models used to illustrate the

difference between centred and non-centred parameterisations in Figure 2.3.

Normal model with centred parameterisation

data {

int<lower=0> N;

vector[N] y;

vector[N] s;}

parameters {

real tau;

real m;

vector[N] mu;}

model {

m ~normal(0,5);

tau~normal(0,2.5);

mu ~ normal(m,exp(tau)/2);//centred parameterisation

y ~ normal(mu, s);}
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Normal model with non-centred parameterisation

data {

int<lower=0> N;

vector[N] y;

vector[N] s;}

parameters {

real tau;

real m;

vector[N] z;}

transformed parameters {

vector[N] mu;

for (i in 1:N){

mu[i] = (exp(tau)/2)*z[i]+m;}}//non-centred parameterisation

model {

z~std_normal();

m ~normal(0,5);

tau~normal(0,2.5);

y ~ normal(mu, s);}
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Appendix

B.1 Results for the estimates of the slopes in each

treatment class separately

1st scenario

Table B.1: Performance measures of λ̂1j averaged over 1000 replications in the first
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 0.95 0.07 0.08 0.80

2nd treatment class 0.95 0.07 0.10 0.79

3rd treatment class 0.96 0.07 0.10 0.81

4th treatment class 0.97 0.08 0.10 0.81

5th treatment class 0.94 0.08 0.10 0.81

F-EX model

1st treatment class 0.94 0.06 0.07 0.77 0.85

2nd treatment class 0.97 0.05 0.06 0.71 0.84

3rd treatment class 0.98 0.05 0.06 0.70 0.85

4th treatment class 0.97 0.05 0.07 0.69 0.84
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5th treatment class 0.90 0.07 0.09 0.72 0.83

P-EX

1st treatment class 0.94 0.06 0.07 0.78 0.85

2st treatment class 0.97 0.05 0.06 0.72 0.85

3st treatment class 0.98 0.05 0.06 0.70 0.84

4st treatment class 0.97 0.05 0.07 0.70 0.84

5st treatment class 0.91 0.07 0.09 0.72 0.84

229



Appendix B. Appendix

2nd scenario

Table B.2: Performance measures of λ̂1j averaged over 1000 replications in the second
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 0.98 0.10 0.13 0.68

2nd treatment class 0.98 0.11 0.14 0.66

3rd treatment class 0.98 0.11 0.15 0.70

4th treatment class 0.98 0.11 0.15 0.75

5th treatment class 0.98 0.11 0.16 0.78

F-EX model

1st treatment class 0.97 0.07 0.09 0.64 0.90

2nd treatment class 0.98 0.06 0.08 0.60 0.90

3rd treatment class 0.98 0.06 0.08 0.59 0.90

4th treatment class 0.98 0.07 0.08 0.59 0.90

5th treatment class 0.94 0.09 0.10 0.59 0.90

P-EX

1st treatment class 0.98 0.07 0.09 0.65 0.90

2st treatment class 0.98 0.06 0.08 0.61 0.90

3st treatment class 0.99 0.06 0.08 0.60 0.90

4st treatment class 0.98 0.07 0.08 0.59 0.90

5st treatment class 0.94 0.09 0.11 0.60 0.90
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3rd scenario

Table B.3: Performance measures of λ̂1j averaged over 1000 replications in the third
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 1.00 0.19 0.27 0.03

2nd treatment class 0.99 0.10 0.14 0.71

3rd treatment class 0.99 0.14 0.18 0.52

4th treatment class 0.98 0.10 0.13 0.81

5th treatment class 0.97 0.13 0.19 0.72

F-EX model

1st treatment class 0.99 0.08 0.10 0.26 0.84

2nd treatment class 0.99 0.06 0.08 0.63 0.90

3rd treatment class 0.99 0.07 0.08 0.48 0.90

4th treatment class 0.98 0.08 0.08 0.69 0.88

5th treatment class 0.97 0.08 0.10 0.55 0.91

P-EX

1st treatment class 0.99 0.08 0.10 0.27 0.83

2st treatment class 0.99 0.06 0.08 0.64 0.90

3st treatment class 0.99 0.06 0.08 0.49 0.90

4st treatment class 0.98 0.07 0.09 0.69 0.88

5st treatment class 0.97 0.08 0.10 0.56 0.92
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4th scenario

Table B.4: Performance measures of λ̂1j averaged over 1000 replications in the forth
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 0.96 0.08 0.10 0.85

2nd treatment class 0.93 0.09 0.11 0.90

3rd treatment class 0.94 0.09 0.11 0.91

4th treatment class 0.95 0.09 0.11 0.90

5th treatment class 0.93 0.10 0.12 0.90

F-EX model

1st treatment class 0.96 0.07 0.09 0.93 0.88

2nd treatment class 0.94 0.08 0.10 0.89 0.91

3rd treatment class 0.93 0.08 0.10 0.89 0.93

4th treatment class 0.94 0.08 0.10 0.90 0.92

5th treatment class 0.93 0.09 0.11 0.90 0.91

P-EX

1st treatment class 0.96 0.07 0.09 0.92 0.89

2st treatment class 0.96 0.07 0.09 0.84 0.92

3st treatment class 0.95 0.07 0.09 0.83 0.93

4st treatment class 0.94 0.07 0.09 0.83 0.92

5st treatment class 0.93 0.09 0.10 0.84 0.91
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5th scenario

Table B.5: Performance measures of λ̂1j averaged over 1000 replications in the fifth
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 0.98 0.13 0.16 0.85

2nd treatment class 0.96 0.13 0.17 0.90

3rd treatment class 0.96 0.13 0.17 0.91

4th treatment class 0.98 0.14 0.16 0.90

5th treatment class 0.97 0.14 0.17 0.90

F-EX model

1st treatment class 0.96 0.14 0.19 1.06 0.90

2nd treatment class 0.96 0.11 0.14 0.80 0.94

3rd treatment class 0.96 0.11 0.14 0.80 0.92

4th treatment class 0.98 0.11 0.14 0.81 0.92

5th treatment class 0.96 0.12 0.15 0.80 0.91

P-EX

1st treatment class 0.98 0.10 0.14 0.90 0.88

2st treatment class 0.98 0.09 0.11 0.76 0.94

3st treatment class 0.97 0.09 0.11 0.74 0.93

4st treatment class 0.97 0.10 0.12 0.75 0.92

5st treatment class 0.95 0.11 0.13 0.74 0.92
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6th scenario

Table B.6: Performance measures of λ̂1j averaged over 1000 replications in the sixth
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Probability
of strong

associationj

subgroup analysis

1st treatment class 1.00 0.22 0.31 0.07

2nd treatment class 0.97 0.12 0.15 0.90

3rd treatment class 0.98 0.15 0.20 0.86

4th treatment class 0.97 0.11 0.14 0.90

5th treatment class 0.98 0.14 0.20 0.90

F-EX model

1st treatment class 0.91 0.46 0.51 0.58 0.71

2nd treatment class 0.98 0.08 0.11 0.76 0.93

3rd treatment class 0.98 0.10 0.13 0.64 0.92

4th treatment class 0.95 0.10 0.12 0.82 0.93

5th treatment class 0.96 0.12 0.15 0.70 0.92

P-EX

1st treatment class 0.96 0.34 0.40 0.62 0.68

2st treatment class 0.98 0.08 0.10 0.75 0.93

3st treatment class 0.99 0.09 0.13 0.62 0.92

4st treatment class 0.95 0.09 0.12 0.81 0.92

5st treatment class 0.96 0.12 0.14 0.70 0.92

234



Appendix B. Appendix

7th scenario

Table B.7: Performance measures of λ̂1j averaged over 1000 replications in the seventh
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

subgroup analysis

1st treatment class 0.96 0.07 0.09

2nd treatment class 0.96 0.14 0.18

3rd treatment class 0.96 0.08 0.11

4th treatment class 0.95 0.16 0.20

5th treatment class 0.94 0.09 0.12

F-EX model

1st treatment class 0.95 0.07 0.08 0.91

2nd treatment class 0.98 0.08 0.11 0.71

3rd treatment class 0.97 0.06 0.08 0.80

4th treatment class 0.97 0.10 0.13 0.68

5th treatment class 0.89 0.10 0.13 0.86

P-EX

1st treatment class 0.95 0.07 0.08 0.91

2st treatment class 0.98 0.08 0.11 0.71

3st treatment class 0.97 0.06 0.08 0.81

4st treatment class 0.97 0.10 0.13 0.69

5st treatment class 0.88 0.10 0.12 0.86
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8th scenario

Table B.8: Performance measures of λ̂1j averaged over 1000 replications in the eighth
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

subgroup analysis

1st treatment class 0.98 0.11 0.14

2nd treatment class 0.96 0.21 0.27

3rd treatment class 0.97 0.13 0.17

4th treatment class 0.96 0.24 0.31

5th treatment class 0.97 0.13 0.18

F-EX model

1st treatment class 0.97 0.09 0.11 0.78

2nd treatment class 0.98 0.11 0.14 0.59

3rd treatment class 0.98 0.08 0.11 0.68

4th treatment class 0.98 0.13 0.16 0.56

5th treatment class 0.90 0.13 0.11 0.71

P-EX

1st treatment class 0.97 0.09 0.11 0.78

2st treatment class 0.98 0.11 0.14 0.60

3st treatment class 0.98 0.08 0.11 0.68

4st treatment class 0.98 0.13 0.16 0.57

5st treatment class 0.90 0.13 0.11 0.72
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9th scenario

Table B.9: Performance measures of λ̂1j averaged over 1000 replications in the ninth
scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

subgroup analysis

1st treatment class 1.00 0.20 0.14

2nd treatment class 0.96 0.21 0.27

3rd treatment class 0.99 0.16 0.17

4th treatment class 0.96 0.21 0.31

5th treatment class 0.98 0.15 0.18

F-EX model

1st treatment class 0.98 0.13 0.15 0.34

2nd treatment class 0.98 0.12 0.15 0.61

3rd treatment class 0.99 0.09 0.11 0.56

4th treatment class 0.98 0.12 0.16 0.63

5th treatment class 0.93 0.13 0.15 0.56

P-EX

1st treatment class 0.99 0.13 0.15 0.35

2st treatment class 0.98 0.12 0.15 0.62

3st treatment class 0.99 0.09 0.11 0.57

4st treatment class 0.97 0.13 0.16 0.64

5st treatment class 0.94 0.13 0.15 0.67
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B.2 Results for the predictions of the true

treatment effects in each treatment class

separately

1st scenario

Table B.10: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the first scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.95 0.09 0.10

2nd treatment class 0.95 0.09 0.10

3rd treatment class 0.95 0.09 0.11

4th treatment class 0.95 0.09 0.11

5th treatment class 0.95 0.09 0.11

F-EX model

1st treatment class 0.95 0.08 0.10 0.96

2nd treatment class 0.95 0.08 0.10 0.93

3rd treatment class 0.95 0.08 0.10 0.92

4th treatment class 0.95 0.08 0.10 0.92

5th treatment class 0.95 0.08 0.10 0.93

P-EX model

1st treatment class 0.95 0.08 0.10 0.95

2nd treatment class 0.95 0.08 0.10 0.93

3rd treatment class 0.95 0.08 0.10 0.93

4th treatment class 0.95 0.08 0.10 0.92

5th treatment class 0.95 0.08 0.10 0.93
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2nd scenario

Table B.11: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the second scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.98 0.10 0.12

2nd treatment class 0.98 0.11 0.12

3rd treatment class 0.98 0.11 0.13

4th treatment class 0.98 0.11 0.13

5th treatment class 0.98 0.11 0.13

F-EX model

1st treatment class 0.98 0.08 0.10 0.81

2nd treatment class 0.98 0.08 0.10 0.79

3rd treatment class 0.98 0.08 0.10 0.79

4th treatment class 0.98 0.08 0.10 0.79

5th treatment class 0.98 0.09 0.11 0.80

P-EX model

1st treatment class 0.98 0.08 0.10 0.82

2nd treatment class 0.98 0.08 0.10 0.80

3rd treatment class 0.98 0.08 0.10 0.79

4th treatment class 0.98 0.08 0.10 0.79

5th treatment class 0.98 0.09 0.11 0.80
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3rd scenario

Table B.12: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the third scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 1.00 0.18 0.38

2nd treatment class 0.99 0.10 0.12

3rd treatment class 0.99 0.11 0.14

4th treatment class 0.98 0.09 0.12

5th treatment class 1.00 0.10 0.13

F-EX model

1st treatment class 1.00 0.08 0.11 0.32

2nd treatment class 0.99 0.09 0.10 0.81

3rd treatment class 0.99 0.08 0.11 0.62

4th treatment class 0.97 0.08 0.10 0.88

5th treatment class 0.99 0.09 0.11 0.74

P-EX model

1st treatment class 1.00 0.08 0.11 0.34

2nd treatment class 0.99 0.09 0.11 0.81

3rd treatment class 0.99 0.09 0.11 0.62

4th treatment class 0.97 0.09 0.11 0.88

5th treatment class 0.99 0.09 0.11 0.74
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4th scenario

Table B.13: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the forth scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.95 0.09 0.11

2nd treatment class 0.95 0.15 0.19

3rd treatment class 0.95 0.15 0.19

4th treatment class 0.95 0.15 0.19

5th treatment class 0.95 0.16 0.20

F-EX model

1st treatment class 0.95 0.08 0.11 0.98

2nd treatment class 0.95 0.14 0.18 0.97

3rd treatment class 0.95 0.14 0.18 0.97

4th treatment class 0.95 0.15 0.19 0.97

5th treatment class 0.95 0.15 0.19 0.97

P-EX model

1st treatment class 0.95 0.08 0.10 0.96

2nd treatment class 0.96 0.14 0.18 0.96

3rd treatment class 0.96 0.14 0.18 0.96

4th treatment class 0.96 0.15 0.18 0.95

5th treatment class 0.95 0.15 0.19 0.95

241



Appendix B. Appendix

5th scenario

Table B.14: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the fifth scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.99 0.10 0.13

2nd treatment class 0.99 0.16 0.20

3rd treatment class 0.99 0.17 0.21

4th treatment class 0.99 0.17 0.21

5th treatment class 0.99 0.17 0.22

F-EX model

1st treatment class 0.98 0.11 0.15 1.08

2nd treatment class 0.99 0.15 0.19 0.88

3rd treatment class 0.98 0.15 0.19 0.88

4th treatment class 0.99 0.16 0.20 0.88

5th treatment class 0.98 0.16 0.20 0.88

P-EX model

1st treatment class 0.98 0.10 0.10 0.93

2nd treatment class 0.99 0.14 0.18 0.86

3rd treatment class 0.98 0.14 0.18 0.85

4th treatment class 0.99 0.15 0.18 0.85

5th treatment class 0.98 0.16 0.19 0.85
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6th scenario

Table B.15: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the sixth scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 1.00 0.18 0.30

2nd treatment class 0.99 0.17 0.20

3rd treatment class 0.99 0.18 0.23

4th treatment class 0.98 0.17 0.20

5th treatment class 0.99 0.18 0.23

F-EX model

1st treatment class 0.99 0.25 0.31 0.62

2nd treatment class 0.99 0.15 0.19 0.88

3rd treatment class 0.99 0.16 0.20 0.73

4th treatment class 0.98 0.15 0.19 0.93

5th treatment class 0.99 0.16 0.20 0.82

P-EX model

1st treatment class 1.00 0.15 0.20 0.56

2nd treatment class 0.98 0.15 0.18 0.87

3rd treatment class 0.99 0.15 0.19 0.71

4th treatment class 0.98 0.15 0.19 0.91

5th treatment class 0.99 0.16 0.19 0.80
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7th scenario

Table B.16: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the seventh scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.95 0.08 0.11

2nd treatment class 0.95 0.26 0.33

3rd treatment class 0.95 0.09 0.12

4th treatment class 0.95 0.27 0.34

5th treatment class 0.96 0.11 0.13

F-EX model

1st treatment class 0.95 0.08 0.11 0.99

2nd treatment class 0.95 0.25 0.32 0.94

3rd treatment class 0.95 0.09 0.11 0.95

4th treatment class 0.96 0.25 0.32 0.94

5th treatment class 0.96 0.10 0.13 0.96

P-EX model

1st treatment class 0.95 0.08 0.11 0.98

2nd treatment class 0.95 0.25 0.32 0.95

3rd treatment class 0.95 0.09 0.11 0.95

4th treatment class 0.96 0.25 0.32 0.94

5th treatment class 0.96 0.10 0.13 0.96
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8th scenario

Table B.17: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the eighth scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.98 0.10 0.12

2nd treatment class 0.97 0.29 0.37

3rd treatment class 0.98 0.10 0.13

4th treatment class 0.96 0.30 0.38

5th treatment class 0.98 0.12 0.15

F-EX model

1st treatment class 0.98 0.09 0.12 0.89

2nd treatment class 0.96 0.25 0.32 0.84

3rd treatment class 0.98 0.09 0.12 0.84

4th treatment class 0.96 0.26 0.32 0.83

5th treatment class 0.98 0.10 0.13 0.86

P-EX model

1st treatment class 0.98 0.09 0.12 0.89

2nd treatment class 0.96 0.25 0.32 0.84

3rd treatment class 0.98 0.09 0.12 0.84

4th treatment class 0.96 0.26 0.32 0.83

5th treatment class 0.98 0.10 0.13 0.86
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9th scenario

Table B.18: Performance measures of δ̂2ij averaged over 1000 replications and the
number of studies in the second scenario

Methods
Coverage

probabilityj
Absolute
Bias RMSEj

Width
Ratioj

Subgroup analysis

1st treatment class 0.98 0.19 0.34

2nd treatment class 0.97 0.29 0.36

3rd treatment class 0.98 0.12 0.15

4th treatment class 0.96 0.28 0.35

5th treatment class 0.98 0.12 0.16

F-EX model

1st treatment class 1.00 0.11 0.13 0.37

2nd treatment class 0.96 0.25 0.32 0.85

3rd treatment class 0.99 0.10 0.12 0.67

4th treatment class 0.96 0.26 0.32 0.89

5th treatment class 0.99 0.11 0.14 0.80

P-EX model

1st treatment class 1.00 0.11 0.13 0.40

2nd treatment class 0.96 0.25 0.32 0.85

3rd treatment class 0.99 0.10 0.12 0.67

4th treatment class 0.96 0.26 0.32 0.89

5th treatment class 0.99 0.11 0.14 0.80
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B.3 Bootstrap method

The following function provided by Prof. Sylwia Bujkiewicz was used to calculate

the within-study correlations in section 4.4.

function(data,Nb){

s<-nrow(data) #number of observation in the data

y1<-y2<-y3<-array(0,Nb)

for (i in 1:Nb){

sam<-sample(s, replace=T)

boot.RND<-data$RND[sam]

boot.TTPFS<-data$TTPFS[sam]

boot.CSPFS<-data$CSPFS[sam]

boot.TTDIED<-data$TTDIED[sam]

boot.CSDIED<-data$CSDIED[sam]

boot.response<-data$response[sam]

lmodres<-glm(boot.response~boot.RND, family="binomial")

y1[i]<-coef(lmodres)[2]

smodPFS<-coxph(Surv(boot.TTPFS,boot.CSPFS)~boot.RND)

y2[i]<-coef(smodPFS)[1]

smodOS<-coxph(Surv(boot.TTDIED,boot.CSDIED)~boot.RND)

y3[i]<-coef(smodOS)[1]}

rho<-cor(data.frame(y1,y2,y3),use = "pairwise",method= "pearson")

colnames(rho) <- rownames(rho) <- c("ORR","PFS","OS")

#the correlations between logHR_PFS and logHR_OS logOR_response)

return(list(rho=rho))}

247



Appendix B. Appendix

B.4 Implementation of F-EX model in BUGS

model{

#within study precision matrix

for (i in 1:ns) {

Prec_w[i,1:2,1:2] <- inverse(Sigma[i,1:2,1:2])

#covariance matrix for the i-th study

Sigma[i,1,1]<-pow(se[i,1],2)

Sigma[i,2,2]<-pow(se[i,2],2)

Sigma[i,1,2]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]

Sigma[i,2,1]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:ns) {

y[i,1:2]~dmnorm(mu[i,1:2], Prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

mu[i,1]~dnorm(0,1.0E-3)

mu[i,2]~dnorm(eta[i,class[i]],prec_fin[class[i]])

for (j in 1:nclass) {

eta[i,j]<-lambda0[j]+lambda1[j]*mu[i,1]

}

}

for (j in 1:nclass) {

lambda0[j]~dnorm(beta1,pr1)

lambda1[j]~dnorm(beta2,pr2)

gam_fin[j]~dnorm(0,2)I(0,)

gam_fin.sq[j]<-gam_fin[j]*gam_fin[j]

prec_fin[j]<-1/gam_fin.sq[j]

}

gamma1~dnorm(0,0.01)I(0,)

gamma.sq1<-pow(gamma1,2)
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pr1<-1/gamma.sq1

gamma2~dnorm(0,0.01)I(0,)

gamma.sq2<-pow(gamma2,2)

pr2<-1/gamma.sq2

beta1~dnorm(0,1.0E-3)

beta2~dnorm(0,1.0E-3)

}
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B.5 Implementation of P-EX model in BUGS

model{

#within study precision matrix

for (i in 1:ns) {

Prec_w[i,1:2,1:2] <- inverse(Sigma[i,1:2,1:2])

Sigma[i,1,1]<-pow(se[i,1],2)

Sigma[i,2,2]<-pow(se[i,2],2)

Sigma[i,1,2]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]

Sigma[i,2,1]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:ns) {

y[i,1:2]~dmnorm(mu[i,1:2], Prec_w[i,1:2,1:2])

mu[i,1]~dnorm(0,1.0E-3)

mu[i,2]~dnorm(eta[i,class[i]],prec_fin[class[i]])

for (j in 1:nclass) {

eta[i,j]<-lambda0[j]+lambda1[j]*mu[i,1]

}}

for (j in 1:nclass) {

lambda0[j]~dnorm(beta1,pr1)

sd[j]~dnorm(0,2)I(0,)

gam_fin.sq[j]<-pow(sd[j],2)

prec_fin[j]<-1/gam_fin.sq[j]

c[j]~dbern(p[j])

#exchangeability branch

l1.branch[j,1]~dnorm(beta2,pr2)

#Non-exchangeability branch

l1.branch[j,2]~dnorm(0,0.001)

#construct partial exchangeability

#1 for the exchangeable #2 for the non-exchangeable
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if_branch[j]<-1+step(-(c[j] - 0.5))

lambda1[j]<-l1.branch[j,if_branch[j]]

}

gamma1~dnorm(0,0.01)I(0,)

gamma.sq1<-pow(gamma1,2)

pr1<-1/gamma.sq1

gamma2~dnorm(0,0.01)I(0,)

gamma.sq2<-pow(gamma2,2)

pr2<-1/gamma.sq2

beta1~dnorm(0,1.0E-3)

beta2~dnorm(0,1.0E-3)}
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B.6 Bayes factor calculation with Savage Dickey

ratio

The following R code calculates Bayes factors for the conditional variance ψ2 using

Savage Dickey density ratio.

#calculation of height of the prior distribution of psi#

fit1 = bugs(data = 'nodata.txt',inits = 'nodata.txt',

para='gam', model.file = 'prior.txt',

n.chains = 1, n.burnin = n.burnin,

n.iter =n.iter, n.thin = 1,

DIC=F, debug = F,

save.history = F, OpenBUGS.pgm=obugspath,

working.directory = wd)

res.coda1 = as.mcmc.list(fit1)

a = res.coda1[,1]

b = a[[1]]

b2 = density(b)

b2fun = splinefun(b2$x,b2$y)

#this is the height of the prior distribution at 0

prior.height = b2fun(0)

#calculation of height of the posterior distribution given data#

fit2 = bugs(data = data, inits = ints,

para=para, model.file = 'model.txt',

n.chains = 1, n.burnin = n.burnin,

n.iter =n.iter, n.thin = 1,

DIC=F, debug = F,

save.history = F, OpenBUGS.pgm=obugspath,

working.directory = wd)
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res.coda = as.mcmc.list(fit2)

c = res.coda[,1]

d = c[[1]]

d2 = density(d)

d2fun = splinefun(d2$x,d2$y)

#this is the height of the posterior distribution at 0

post.height = d2fun(0)

#Bayes factor is the ratio of the heights

BF = post.height/prior.height

The next two BUGS models were used for the calculation of Bayes factors :

# Prior distribution placed on psi

model{

psi~dnorm(0,2)I(0,)

psi.sq<-pow(gamma,2)

}

# Hierarchical model using the same prior distribution placed on psi

model{

#within study precision matrix

for (i in 1:ns) {

prec_w[i,1:2,1:2] <- inverse(delta[i,1:2,1:2])

#covariance matrix for the j-th study

delta[i,1,1]<-pow(se[i,1],2)

delta[i,2,2]<-pow(se[i,2],2)

delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]}

# Random effects model

for (i in 1:ns) {

y[i,1:2]~dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

mu[i,1]~dnorm(0,1.0E-3)
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mu[i,2]~dnorm(eta[i],prec_fin)

eta[i]<-lambda0+lambda1*mu[i,1]

}

psi~dnorm(0,2)I(0,)

psi.sq<-psi*psi

prec_fin<-1/psi.sq

lambda0~dnorm(0,0.001)

lambda1~dnorm(0,0.001)

}
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B.7 Convergence plots of F-EX and P-EX models

B.7.1 Convergence plots of F-EX model

The following figures display trace and density plots of the parameters describing

the surrogate relationships on PFS-OS pair of outcomes in the aCRC data set in

chapter 4. These two types of figures are used as tools to illustrate the convergence

of the key parameters of the model.

Figure B.1: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period
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Figure B.2: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period
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Figure B.3: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period

B.7.2 Convergence plots of P-EX model

The following figures display trace and density plots of the parameters describing

the surrogate relationships on PFS-OS pair of outcomes in the aCRC data set in

chapter 4.
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Figure B.4: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period
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Figure B.5: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period
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Figure B.6: Trace - density plots of 3 chains consisting of 50000 iterations each after
20000 iterations burn-in period
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Appendix

C.1 Implementation of BRMA model in Stan

data{

int<lower = 0> Ns;

int<lower = 0> nA[Ns,2];

int<lower = 0> nB[Ns,2];

int<lower = 0> rA[Ns,2];

int<lower = 0> rB[Ns,2];

real rho_w[Ns];}

transformed data{

//Calculate log odds ratios

vector[2] Y[Ns];

vector[2] S[Ns];

for (i in 1:Ns){

Y[i,1]=log(((rB[i,1]+0.5)*(nA[i,1]-rA[i,1]+0.5))/

((nB[i,1]-rB[i,1]+0.5)*(rA[i,1]+0.5)));

Y[i,2]=log(((rB[i,2]+0.5)*(nA[i,2]-rA[i,2]+0.5))/

((nB[i,2]-rB[i,2]+0.5)*(rA[i,2]+0.5)));

S[i,1]=sqrt((1/(rB[i,1]+0.5))+(1/(nB[i,1]-rB[i,1]+0.5))+

(1/(rA[i,1]+0.5))+(1/(nA[i,1]-rA[i,1]+0.5)));
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S[i,2]=sqrt((1/(rB[i,2]+0.5))+(1/(nB[i,2]-rB[i,2]+0.5))+

(1/(rA[i,2]+0.5))+(1/(nA[i,2]-rA[i,2]+0.5)));}}

parameters{

real rr;

vector[2] b;

vector[2] z[Ns];

vector<lower=0, upper=5>[2] tau;}

transformed parameters{

matrix[2,2] Tau;

matrix[2,2] L;

matrix[2,2] Sigma1[Ns];

vector[2] delta[Ns];

real<lower= -1, upper=1> rho1;

rho1 = tanh(rr);

for (i in 1:Ns){

Sigma1[i,1, 1] = S[i,1]^2;

Sigma1[i,1, 2] = S[i,1]*S[i,2]*rho_w[Ns];

Sigma1[i,2, 1] = S[i,1]*S[i,2]*rho_w[Ns];

Sigma1[i,2, 2] = S[i,2]^2;}

Tau[1,1] = tau[1]^2;

Tau[2,2] = tau[2]^2;

Tau[1,2] = tau[1]*tau[2]*rho1;

Tau[2,1] = tau[1]*tau[2]*rho1;

L = cholesky_decompose(Tau);

//non-centred parameterisation for delta~multi_normal(b,Tau)

for (i in 1:Ns){

delta[i] = b + (L*z[i]);}

model{

//priors
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rr ~ std_normal();

b ~ normal(0, 10);

for (i in 1:Ns){

z[i] ~ std_normal();

//likelihood

Y[i] ~ multi_normal(delta[i],Sigma1[i]);}}
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C.2 Implementation of BRMA-IB model in Stan

data{

int<lower = 0> Ns;

int<lower = 0> nA[Ns,2];

int<lower = 0> nB[Ns,2];

int<lower = 0> rA[Ns,2];

int<lower = 0> rB[Ns,2];}

parameters {

real rr;

vector[2] b;

vector<lower = 0, upper = 5>[2] tau;

vector[2] z[Ns];

vector[2] mu[Ns];}

transformed parameters{

matrix[2,2] Tau;

matrix[2,2] L;

vector[2] delta[Ns];

real<lower= -1, upper=1> rho1;

rho1 = tanh(rr);

Tau[1, 1] = tau[1]^2;

Tau[1, 2] = tau[1]*tau[2]*rho1;

Tau[2, 1] = tau[1]*tau[2]*rho1;

Tau[2, 2] = tau[2]^2;

L = cholesky_decompose(Tau);

//non-centred parameterisation for delta~multi_normal(b,Tau)

for (i in 1:Ns){

delta[i] = b+ L*z[i];}}

model {
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//priors

b ~ normal(0, 10);

rr ~ std_normal();

for (i in 1:Ns){

z[i] ~ std_normal();

mu[i] ~ normal(0, 10);

//likelihoods

rA[i,1] ~ binomial_logit(nA[i,1], mu[i,1]);

rA[i,2] ~ binomial_logit(nA[i,2], mu[i,2]);

rB[i,1] ~ binomial_logit(nB[i,1], mu[i,1]+delta[i,1]);

rB[i,2] ~ binomial_logit(nB[i,2], mu[i,2]+delta[i,2]); }}
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C.3 Implementation of BRMA-BC model in Stan

functions {

// frank Copula CDF

real fcop(real theta, real u, real v) {

real a = -1 / theta * log1p((expm1((-theta * u)) *

(expm1(-theta * v)) / (expm1(-theta))));

return a;

}

//Gumbel Copula CDF

real fcop2( real theta, real u,real v) {

real a;

real t1 = u;

real t2 = v;

real neg_log_u;

real neg_log_v;

if (t1>.999999) {t1=.999999;}//boundary condition

if (t2>.999999) {t2=.999999;}//boundary condition

neg_log_u = -log(t1);

neg_log_v = -log(t2);

a = exp(-(neg_log_u^theta+neg_log_v^theta)^(1/theta));

return a;

}

//Gaussian Copula CDF

real fcop3(real theta, real u1, real u2){

real t1 = u1;real z1;

real t2 = u2;real z2;

if (t1 > .9999999) t1 = .9999999;//boundary condition

if (t2 > .9999999) t2 = .9999999;//boundary condition

z1 = inv_Phi(t1);

z2 = inv_Phi(t2);

if (z1 != 0 || z2 != 0) {
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real denom = fabs(theta) < 1.0 ? sqrt((1 + theta) *

(1 - theta)) : not_a_number();

real a1 = (z2 / z1 - theta) / denom;

real a2 = (z1 / z2 - theta) / denom;

real product = z1 * z2;

real delta = product < 0 || (product == 0 && (z1 + z2) < 0);

real a = log(0.5 * (Phi(z1) + Phi(z2) - delta) -

owens_t(z1, a1) - owens_t(z2, a2));

return exp(a);

}

if (theta == 1){

vector[2] z;

z[1]=z1;z[2]=z2;

return min(Phi(z));

}

return 0.25 + asin(theta) / (2 * pi());

}

//Bivariate pmf to model binomial aggregate data jointly

real Bivfcop_lpmf(int[] r,int n1, int n2, real theta, vector mu){

real p1 = inv_logit(mu[1]);

real p2 = inv_logit(mu[2]);

real f11 = binomial_cdf(r[1]-1, n1, p1);

real f12 = binomial_cdf(r[2]-1, n2, p2);

real f1 = f11 + exp(binomial_logit_lpmf(r[1] |n1, mu[1]));

real f2 = f12 + exp(binomial_logit_lpmf(r[2] |n2, mu[2]));

real prob= fcop(theta,f1,f2)-fcop(theta,f1,f12)-

fcop(theta,f11,f2)+fcop(theta,f11,f12);

return log(prob);}}

data{
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int<lower = 0> Ns;

int<lower = 0> nA[Ns,2];

int<lower = 0> nB[Ns,2];

int<lower = 0> rA[Ns,2];

int<lower = 0> rB[Ns,2];

real theta1[Ns];real theta2[Ns];}

parameters{

real rr;

vector[2] b;

vector<lower = 0, upper = 5>[2] tau;

vector[2] z[Ns];

vector[2] mu[Ns];}

transformed parameters{

matrix[2,2] L;

matrix[2,2] Tau;

vector[2] delta[Ns];

real<lower= -1, upper=1> rho1;

rho1 = tanh(rr);

Tau[1,1] = tau[1]^2;

Tau[2,2] = tau[2]^2;

Tau[1,2] = tau[1]*tau[2]*rho1;

Tau[2,1] = tau[1]*tau[2]*rho1;

L = cholesky_decompose(Tau);

//non-centred parameterisation for delta~multi_normal(b,Tau)

for (i in 1:Ns){

delta[i] = b + (L*z[i]);}}

model{

//priors
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rr ~ std_normal();

b ~ normal(0, 10);

for (i in 1:Ns){

z[i] ~ std_normal();

mu[i] ~ normal(0, 10);

//likelihoods

rA[i] ~ Bivfcop(nA[i,1],nA[i,2], theta1[i], mu[i]);

rB[i] ~ Bivfcop(nB[i,1],nB[i,2], theta2[i], mu[i]+delta[i]);}}

C.4 True values of the dependence parameters of

the generation process in Section 5.3.1

To simulate IPD with low, moderate and strong association, we used a joint density

made with Bernoulli marginal distributions constructed with Frank copula. The

following table presents the values of the dependence parameters across the scenarios

and the approximate values of the corresponding Spearman’s correlation.

Table C.1: Values of dependence parameters and their corresponding Spearman’s
correlation

Strength of
association Parameter

Average proportion
of events = 0.5

Average proportion
of events =0.95

Low within- study θA = θB 1.2 6.4

association ρS 0.15 0.16

Moderate within- study θA = θB 4.2 25

association ρS 0.45 0.48

High within- study θA = θB 14 100

association ρS 0.75 0.76
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C.5 Bootstrap method used to estimate the

within-study correlations of BRMA

This section presents the bootstrap method used to estimate the within-study

correlations of BRMA in each study. Specifically, the treatment effects (on the

log odds ratio scale) on each outcome and were calculated for each bootstrap sample

by using the standard formulas and the Pearson’s correlation coefficient between the

treatment effects were obtained.

bootstrap1 = function(df,Nb){

#Nb=number of bootstrap samples, df= dataframe containing IPD

names(df) = paste(c('Y1A','Y2A','Y1B','Y2B'))

s = length(df$Y1A)#number of observations in the data

y1=y2=array(0,Nb) #Nb=2000 was used

for (d in 1:Nb){

sam = sample(s, replace=T)

boot.1 = df$Y1A[sam]

boot.2 = df$Y1B[sam]

boot.3 = df$Y2A[sam]

boot.4 = df$Y2B[sam]

r1A = sum(boot.1)

r1B = sum(boot.2)

r2A = sum(boot.3)

r2B = sum(boot.4)

#Log odds ratio on the first outcome

LOR1 = log(((r1B+0.5)*(s-r1A+0.5))/((s-r1B+0.5)*(r1A+0.5)))

#Log odds ratio on the second outcome

LOR2 = log(((r2B+0.5)*(s-r2A+0.5))/((s-r2B+0.5)*(r2A+0.5)))

y1[d] = LOR1

y2[d] = LOR2}

#the correlations between log odds ratios across bootstrap samples

rho = cor(y1,y2,method= "pearson")
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return(list(rho=rho)) }

C.6 Bootstrap method used to estimate the

within-study association parameters of

BRMA-BC

In this section we present the implementation of a second bootstrap method. This

method was used to estimate the dependence parameters θAi, θBi of the joint density

made with copula study between the first and the second outcome in each arm.

Specifically, summary data were calculated for each bootstrap sample and then

dependence parameters of the Frank and the Gaussian copulas were estimated by

using a optimiser such as nlm or optimize in R. We also present the Frank and the

Gaussian bivariate pdfs used to estimate the dependence parameters.

bootstrap2 = function (df,Nb){

#Nb=number of bootstrap samples, df= dataframe containing IPD

names(df) = paste(c('Y1A','Y2A','Y1B','Y2B'))

s = length(df$Y1A)#number of observations in the data

y1A=y1B=y2A=y2B<-array(0,Nb)

#Generate bootstrap samples and calculate the summary data for each one

for (k in 1:Nb){

sam = sample(s, replace=T)

y1A[k] = sum(df$Y1A[sam])

y1B[k] = sum(df$Y1B[sam])

y2A[k] = sum(df$Y2A[sam])

y2B[k] = sum(df$Y2B[sam])}

#Binomial likelihoods for each arm and outcome

llik1 = function(p)-sum(dbinom(y1A,prob=p,size=s,log=TRUE))

llik2 = function(p)-sum(dbinom(y1B,prob=p,size=s,log=TRUE))

llik3 = function(p)-sum(dbinom(y2A,prob=p,size=s,log=TRUE))

llik4 = function(p)-sum(dbinom(y2B,prob=p,size=s,log=TRUE))

p1A.hat = nlm(llik1, p=0.5)
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p1B.hat = nlm(llik2, p=0.5)

p2A.hat = nlm(llik3, p=0.5)

p2B.hat = nlm(llik4, p=0.5)

uA = pbinom(y1A,s,p1A.hat$estimate)

vA = pbinom(y2A,s,p2A.hat$estimate)

uB = pbinom(y1B,s,p1B.hat$estimate)

vB = pbinom(y2B,s,p2B.hat$estimate)

fA = function(theta1) {-sum(log(dfrk(uA,vA,theta1)))}

fB = function(theta2) {-sum(log(dfrk(uB,vB,theta2)))}

gA = function(theta1) {-sum(log(dbvncop(uA,vA,theta1)))}

gB = function(theta2) {-sum(log(dbvncop(uB,vB,theta2)))}

#dependence parameters in each arms

thetafA = optimize(fA, c(-30,31))$min

thetagA = optimize(gA, c(-.99,.99))$min

thetafB = optimize(fB, c(-30,31))$min

thetagB = optimize(gB, c(-.99,.99))$min

return(list(thetafA=thetafA, thetafB=thetafB,

thetagA=thetagA, thetagB=thetagB))}

#####################

#PDF of Frank copula#

#####################

dfrk = function(u,v,cpar) {

t1=1.-exp(-cpar);

tem1=exp(-cpar*u); tem2=exp(-cpar*v);

pdf=cpar*tem1*tem2*t1;

tem=t1-(1.-tem1)*(1.-tem2);

pdf=pdf/(tem*tem);

return(pdf)}
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############################

#PDF of the Gaussian copula#

############################

dbvncop=function(u,v,cpar){

#boundary conditions to avoid errors

#when the proportions are close to 1 or 0

u[u>=.999999]=1-.000001; v[v>=.999999]=1-0.000001

u[u<0.000001]=0.000001; v[v<0.000001]=0.000001

x1=qnorm(u); x2=qnorm(v)

qf=x1^2+x2^2-2*cpar*x1*x2

qf=qf/(1-cpar^2)

con=sqrt(1-cpar^2)*(2*pi)

pdf=exp(-.5*qf)/con

pdf=pdf/(dnorm(x1)*dnorm(x2))

return(pdf)}
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C.7 Bootstrap method used to estimate the

within-study association parameters in section

6.4.1

In this section we present the bootstrap method which was used to estimate the

within-study associations in section 6.4.1. The method estimated the within-study

correlations between the log odds on the first and the second outcome in arm A and

B

bootstrap3 = function(df,Nb){

names(df) = paste(c('Y1A','Y2A','Y1B','Y2B'))

s<-length(df$Y1A)#number of observation in the data

y1A<-y2A<-y1B<-y2B<-array(0,Nb)

for (i in 1:Nb){

sam<-sample(s, replace=T)

boot.1 <-df$Y1A[sam]

boot.2 <-df$Y1B[sam]

boot.3 <-df$Y2A[sam]

boot.4 <-df$Y2B[sam]

r1A <- sum(boot.1)

r1B <- sum(boot.2)

r2A <- sum(boot.3)

r2B <- sum(boot.4)

#Log odds on the first and the second outcome

LOA1 <- log((r1A+0.5)/(s-r1A+0.5))

LOA2 <- log((r2A+0.5)/(s-r2A+0.5))

LOB1 <- log((r1B+0.5)/(s-r1B+0.5))

LOB2 <- log((r2B+0.5)/(s-r2B+0.5))

y1A[i] <-LOA1

y2A[i] <-LOA2

y1B[i] <-LOB1

y2B[i] <-LOB2
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}

rhoA<-cor(y1A,y2A,method= "pearson")

rhoB<-cor(y1B,y2B,method= "pearson")

return(list(rhoA=rhoA,rhoB=rhoB)) #the correlations )

}

C.8 Convergence plots of BRMA, BRMA-IB and

the three versions of BRMA-BC models

The following figures display trace and density plots of the parameters between

studies parameters including the parameter of the intercept (λ0) on CCyR-EFS pair

of outcomes in the CML data-set in Chapter 5, illustrating the performance of the

models in terms of convergence

275



Appendix C. Appendix

C.8.1 Convergence plots of BRMA model

Figure C.1: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Figure C.2: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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C.8.2 Convergence plots of BRMA-IB model

Figure C.3: Trace - density plots of 3 chains consisting of 2000 iterations each after
1000 iterations burn-in period
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Figure C.4: Trace - density plots of 3 chains consisting of 2000 iterations each after
1000 iterations burn-in period
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C.8.3 Convergence plots of BRMA-BC with frank copula

model

Figure C.5: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period

280



Appendix C. Appendix

Figure C.6: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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C.8.4 Convergence plots of BRMA-BC with Gaussian copula

model

Figure C.7: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Figure C.8: Trace - density plots of 3 chains consisting of 5000 iterations each after
1000 iterations burn-in period
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C.8.5 Convergence plots of BRMA-BC with Gumbel copula

model

Figure C.9: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Figure C.10: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Appendix

D.1 Implementation of M1 model in Stan

data{

int<lower = 0> Ns;//number of RCTs

int<lower = 0> Ns2;//number of OBs for arm A

int<lower = 0> Ns3;//number of OBs for arm B

int<lower = 0> nA[Ns,2];//RCT data

int<lower = 0> nB[Ns,2];//RCT data

int<lower = 0> rA[Ns,2];//RCT data

int<lower = 0> rB[Ns,2];//RCT data

int<lower = 0> nAC[Ns2,2];// OB data for arm A

int<lower = 0> rAC[Ns2,2];// OB data for arm A

int<lower = 0> nBC[Ns3,2];// OB data for arm B

int<lower = 0> rBC[Ns3,2];// OB data for arm B

real rho_wA[Ns+Ns2];/within-study correlations

real rho_wB[Ns+Ns3];/within-study correlations

}

transformed data{

//Calculate log odds and the corresponding variances

//for the RCT and OB data
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vector[2] Ya[Ns];

vector[2] Yac[Ns2];

vector[2] Ybc[Ns3];

vector[2] Yb[Ns];

vector[2] Sa[Ns];

vector[2] Sac[Ns2];

vector[2] Sbc[Ns3];

vector[2] Sb[Ns];

for (i in 1:Ns){

Ya[i,1]=log((rA[i,1]+0.5)/((nA[i,1]-rA[i,1]+0.5)));

Ya[i,2]=log((rA[i,2]+0.5)/((nA[i,2]-rA[i,2]+0.5)));

Yb[i,1]=log((rB[i,1]+0.5)/((nB[i,1]-rB[i,1]+0.5)));

Yb[i,2]=log((rB[i,2]+0.5)/((nB[i,2]-rB[i,2]+0.5)));

Sa[i,1]=sqrt((1/(rA[i,1]+0.5))+(1/(nA[i,1]-rA[i,1]+0.5)));

Sa[i,2]=sqrt((1/(rA[i,2]+0.5))+(1/(nA[i,2]-rA[i,2]+0.5)));

Sb[i,1]=sqrt((1/(rB[i,1]+0.5))+(1/(nB[i,1]-rB[i,1]+0.5)));

Sb[i,2]=sqrt((1/(rB[i,2]+0.5))+(1/(nB[i,2]-rB[i,2]+0.5)));

}

for (i in 1:Ns2){

Yac[i,1]=log((rAC[i,1]+0.5)/((nAC[i,1]-rAC[i,1]+0.5)));

Yac[i,2]=log((rAC[i,2]+0.5)/((nAC[i,2]-rAC[i,2]+0.5)));

Sac[i,1]=sqrt((1/(rAC[i,1]+0.5))+(1/(nAC[i,1]-rAC[i,1]+0.5)));

Sac[i,2]=sqrt((1/(rAC[i,2]+0.5))+(1/(nAC[i,2]-rAC[i,2]+0.5)));

}

for (i in 1:Ns3){

Ybc[i,1]=log((rBC[i,1]+0.5)/((nBC[i,1]-rBC[i,1]+0.5)));

Ybc[i,2]=log((rBC[i,2]+0.5)/((nBC[i,2]-rBC[i,2]+0.5)));

Sbc[i,1]=sqrt((1/(rBC[i,1]+0.5))+(1/(nBC[i,1]-rBC[i,1]+0.5)));

Sbc[i,2]=sqrt((1/(rBC[i,2]+0.5))+(1/(nBC[i,2]-rBC[i,2]+0.5)));

}

}
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parameters{

real rr;

real rr2;

vector[2] b;

vector[2] z[Ns+Ns2+Ns3];

vector[2] k;

vector<lower = 0, upper = 5>[2] s;

vector[2] q[Ns+Ns2+Ns3];

vector<lower = 0, upper = 5>[2] tau;

}

transformed parameters{

matrix[2,2] Tau;

matrix[2,2] L;

matrix[2,2] Sig;

matrix[2,2] H;

matrix[2,2] SigmaA[Ns+Ns2];

matrix[2,2] SigmaB[Ns+Ns3];

vector[2] delta[Ns+Ns2+Ns3];

vector[2] mu[Ns+Ns2+Ns3];

real<lower= -1, upper=1> rho1;

real<lower= -1, upper=1> rho2;

rho1 = tanh(rr);

rho2 = tanh(rr2);

for (i in 1:(Ns)){

SigmaA[i,1,1] = Sa[i,1]^2;

SigmaA[i,1,2] = Sa[i,1]*Sa[i,2]*rho_wA[i];

SigmaA[i,2,1] = Sa[i,1]*Sa[i,2]*rho_wA[i];

SigmaA[i,2,2] = Sa[i,2]^2;

SigmaB[i,1,1] = Sb[i,1]^2;

SigmaB[i,1,2] = Sb[i,1]*Sb[i,2]*rho_wB[i];

SigmaB[i,2,1] = Sb[i,1]*Sb[i,2]*rho_wB[i];
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SigmaB[i,2,2] = Sb[i,2]^2;

}

for (i in 1:(Ns2)){

SigmaA[i+Ns,1,1] = Sac[i,1]^2;

SigmaA[i+Ns,1,2] = Sac[i,1]*Sac[i,2]*rho_wA[i+Ns];

SigmaA[i+Ns,2,1] = Sac[i,1]*Sac[i,2]*rho_wA[i+Ns];

SigmaA[i+Ns,2,2] = Sac[i,2]^2;

}

for (i in 1:(Ns3)){

SigmaB[i+Ns,1,1] = Sbc[i,1]^2;

SigmaB[i+Ns,1,2] = Sbc[i,1]*Sbc[i,2]*rho_wB[i+Ns];

SigmaB[i+Ns,2,1] = Sbc[i,1]*Sbc[i,2]*rho_wB[i+Ns];

SigmaB[i+Ns,2,2] = Sbc[i,2]^2;

}

Sig[1, 1] = s[1]^2;

Sig[1, 2] = s[1]*s[2]*rho2;

Sig[2, 1] = s[1]*s[2]*rho2;

Sig[2, 2] = s[2]^2;

H = cholesky_decompose(Sig);

Tau[1,1] = tau[1]^2;

Tau[2,2] = tau[2]^2;

Tau[1,2] = tau[1]*tau[2]*rho1;

Tau[2,1] = tau[1]*tau[2]*rho1;

L = cholesky_decompose(Tau);

//non-centred parameterisation for mus and deltas

for (i in 1:(Ns)){

mu[i] = k + H*q[i];

delta[i] = b + (L*z[i]);}

for (i in 1:Ns2){

mu[i+Ns] = k + H*q[i+Ns];

delta[i+Ns] = b + L*z[i+Ns];}

for (i in 1:Ns3){
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mu[i+Ns+Ns2] = k + H*q[i+Ns+Ns2];

delta[i+Ns+Ns2] = b + L*z[i+Ns+Ns2];}

}

model{

//priors

rr ~ std_normal();

rr2 ~ std_normal();

k ~ normal(0, 10);

b ~ normal(0, 10);

for (i in 1:Ns){

q[i] ~ std_normal();

z[i] ~ std_normal();

//likelihood of the RCTs

Ya[i] ~ multi_normal(mu[i],SigmaA[i]);

Yb[i] ~ multi_normal(mu[i]+delta[i],SigmaB[i]);}

for (i in 1:Ns2){

q[i+Ns] ~ std_normal();

z[i+Ns] ~ std_normal();

//likelihood of the OBs for arm A

Yac[i] ~ multi_normal(mu[i+Ns],SigmaA[i+Ns]);}

for (i in 1:Ns3){

z[i+Ns+Ns2] ~ std_normal();

q[i+Ns+Ns2] ~ std_normal();

//likelihood of the OBs for arm B

Ybc[i] ~ multi_normal(mu[i+Ns+Ns2]+delta[i+Ns+Ns2],SigmaB[i+Ns]);}

}
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D.2 Implementation of M2 model in Stan

data{

int<lower = 0> Ns;//number of RCTs

int<lower = 0> Ns2;//number of OBs for arm A

int<lower = 0> Ns3;//number of OBs for arm B

int<lower = 0> nA[Ns,2];//RCT data

int<lower = 0> nB[Ns,2];//RCT data

int<lower = 0> rA[Ns,2];//RCT data

int<lower = 0> rB[Ns,2];//RCT data

int<lower = 0> nAC[Ns2,2];// OB data for arm A

int<lower = 0> rAC[Ns2,2];// OB data for arm A

int<lower = 0> nBC[Ns3,2];// OB data for arm B

int<lower = 0> rBC[Ns3,2];// OB data for arm B

real rho_wA[Ns+Ns2];/within-study correlations

real rho_wB[Ns+Ns3];/within-study correlations

}

transformed data{

//Calculate log odds and the corresponding variances

//for the RCT and OB data

vector[2] Ya[Ns];

vector[2] Yac[Ns2];

vector[2] Ybc[Ns3];

vector[2] Yb[Ns];

vector[2] Sa[Ns];

vector[2] Sac[Ns2];

vector[2] Sbc[Ns3];

vector[2] Sb[Ns];

for (i in 1:Ns){

Ya[i,1]=log((rA[i,1]+0.5)/((nA[i,1]-rA[i,1]+0.5)));

Ya[i,2]=log((rA[i,2]+0.5)/((nA[i,2]-rA[i,2]+0.5)));
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Yb[i,1]=log((rB[i,1]+0.5)/((nB[i,1]-rB[i,1]+0.5)));

Yb[i,2]=log((rB[i,2]+0.5)/((nB[i,2]-rB[i,2]+0.5)));

Sa[i,1]=sqrt((1/(rA[i,1]+0.5))+(1/(nA[i,1]-rA[i,1]+0.5)));

Sa[i,2]=sqrt((1/(rA[i,2]+0.5))+(1/(nA[i,2]-rA[i,2]+0.5)));

Sb[i,1]=sqrt((1/(rB[i,1]+0.5))+(1/(nB[i,1]-rB[i,1]+0.5)));

Sb[i,2]=sqrt((1/(rB[i,2]+0.5))+(1/(nB[i,2]-rB[i,2]+0.5)));

}

for (i in 1:Ns2){

Yac[i,1]=log((rAC[i,1]+0.5)/((nAC[i,1]-rAC[i,1]+0.5)));

Yac[i,2]=log((rAC[i,2]+0.5)/((nAC[i,2]-rAC[i,2]+0.5)));

Sac[i,1]=sqrt((1/(rAC[i,1]+0.5))+(1/(nAC[i,1]-rAC[i,1]+0.5)));

Sac[i,2]=sqrt((1/(rAC[i,2]+0.5))+(1/(nAC[i,2]-rAC[i,2]+0.5)));

}

for (i in 1:Ns3){

Ybc[i,1]=log((rBC[i,1]+0.5)/((nBC[i,1]-rBC[i,1]+0.5)));

Ybc[i,2]=log((rBC[i,2]+0.5)/((nBC[i,2]-rBC[i,2]+0.5)));

Sbc[i,1]=sqrt((1/(rBC[i,1]+0.5))+(1/(nBC[i,1]-rBC[i,1]+0.5)));

Sbc[i,2]=sqrt((1/(rBC[i,2]+0.5))+(1/(nBC[i,2]-rBC[i,2]+0.5)));

}

}

parameters{

real rr;

real rr2;

vector[2] b;

vector[2] z[Ns+Ns2+Ns3];

vector[2] k;

vector[2] eta;//Bias term

vector[2] xi;//Bias term

vector<lower = 0, upper = 5>[2] s;

vector[2] q[Ns+Ns2+Ns3];

vector<lower = 0, upper = 5>[2] tau;
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}

transformed parameters{

matrix[2,2] Tau;

matrix[2,2] L;

matrix[2,2] Sig;

matrix[2,2] H;

matrix[2,2] SigmaA[Ns+Ns2];

matrix[2,2] SigmaB[Ns+Ns3];

vector[2] delta[Ns+Ns2+Ns3];

vector[2] mu[Ns+Ns2+Ns3];

real<lower= -1, upper=1> rho1;

real<lower= -1, upper=1> rho2;

rho1 = tanh(rr);

rho2 = tanh(rr2);

for (i in 1:(Ns)){

SigmaA[i,1,1] = Sa[i,1]^2;

SigmaA[i,1,2] = Sa[i,1]*Sa[i,2]*rho_wA[i];

SigmaA[i,2,1] = Sa[i,1]*Sa[i,2]*rho_wA[i];

SigmaA[i,2,2] = Sa[i,2]^2;

SigmaB[i,1,1] = Sb[i,1]^2;

SigmaB[i,1,2] = Sb[i,1]*Sb[i,2]*rho_wB[i];

SigmaB[i,2,1] = Sb[i,1]*Sb[i,2]*rho_wB[i];

SigmaB[i,2,2] = Sb[i,2]^2;

}

for (i in 1:(Ns2)){

SigmaA[i+Ns,1,1] = Sac[i,1]^2;

SigmaA[i+Ns,1,2] = Sac[i,1]*Sac[i,2]*rho_wA[i+Ns];

SigmaA[i+Ns,2,1] = Sac[i,1]*Sac[i,2]*rho_wA[i+Ns];

SigmaA[i+Ns,2,2] = Sac[i,2]^2;

}

for (i in 1:(Ns3)){
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SigmaB[i+Ns,1,1] = Sbc[i,1]^2;

SigmaB[i+Ns,1,2] = Sbc[i,1]*Sbc[i,2]*rho_wB[i+Ns];

SigmaB[i+Ns,2,1] = Sbc[i,1]*Sbc[i,2]*rho_wB[i+Ns];

SigmaB[i+Ns,2,2] = Sbc[i,2]^2;

}

Sig[1, 1] = s[1]^2;

Sig[1, 2] = s[1]*s[2]*rho2;

Sig[2, 1] = s[1]*s[2]*rho2;

Sig[2, 2] = s[2]^2;

H = cholesky_decompose(Sig);

Tau[1,1] = tau[1]^2;

Tau[2,2] = tau[2]^2;

Tau[1,2] = tau[1]*tau[2]*rho1;

Tau[2,1] = tau[1]*tau[2]*rho1;

L = cholesky_decompose(Tau);

//non-centred parameterisation for mus and deltas

for (i in 1:(Ns)){

mu[i] = k + H*q[i];

delta[i] = b + (L*z[i]);}

for (i in 1:Ns2){

mu[i+Ns] = k + H*q[i+Ns];

delta[i+Ns] = b + L*z[i+Ns];}

for (i in 1:Ns3){

mu[i+Ns+Ns2] = k + H*q[i+Ns+Ns2];

delta[i+Ns+Ns2] = b + L*z[i+Ns+Ns2];}

}

model{

//priors

rr ~ std_normal();

rr2 ~ std_normal();

k ~ normal(0, 10);
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b ~ normal(0, 10);

eta ~ normal(0, 10);

xi ~ normal(0, 10);

for (i in 1:Ns){

q[i] ~ std_normal();

z[i] ~ std_normal();

//likelihood of the RCTs

Ya[i] ~ multi_normal(mu[i],SigmaA[i]);

Yb[i] ~ multi_normal(mu[i]+delta[i],SigmaB[i]);}

for (i in 1:Ns2){

q[i+Ns] ~ std_normal();

z[i+Ns] ~ std_normal();

//likelihood of the OBs for arm A with bias term

Yac[i] ~ multi_normal(mu[i+Ns]+eta,SigmaA[i+Ns]);}

for (i in 1:Ns3){

z[i+Ns+Ns2] ~ std_normal();

q[i+Ns+Ns2] ~ std_normal();

//likelihood of the OBs for arm B with bias term

Ybc[i] ~ multi_normal(mu[i+Ns+Ns2]+delta[i+Ns+Ns2]+xi,SigmaB[i+Ns]);}

}
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D.3 Implementation of M3 model in Stan

//Bivariate Binomial density with frank_copula

functions {

//Gaussian copula CDF

real fcop3(real theta, real u1, real u2){

real t1 = u1;real z1;

real t2 = u2;real z2;

if (t1 > 0.9999999) t1 = 0.9999999;

if (t2 > 0.9999999) t2 = 0.9999999;

z1 = inv_Phi(t1);

z2 = inv_Phi(t2);

if (z1 != 0 || z2 != 0) {

real denom = fabs(theta) < 1.0 ? sqrt((1 + theta) *

(1 - theta)) : not_a_number();

real a1 = (z2 / z1 - theta) / denom;

real a2 = (z1 / z2 - theta) / denom;

real product = z1 * z2;

real delta = product < 0 || (product == 0 && (z1 + z2) < 0);

real a = log(0.5 * (Phi(z1) + Phi(z2) - delta) -

owens_t(z1, a1) - owens_t(z2, a2));

return exp(a);

}

if (theta == 1){

vector[2] z;

z[1]=z1;z[2]=z2;

return min(Phi(z));

}

return 0.25 + asin(theta) / (2 * pi());

}

real Bivfcop_lpmf(int[] r,int n1, int n2, real theta, vector mu){
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real f1;

real f2;

real f11;

real f12;

real prob;

f11 = binomial_cdf(r[1]-1, n1, inv_logit(mu[1]));

f12 = binomial_cdf(r[2]-1, n2, inv_logit(mu[2]));

f1 = f11 + exp(binomial_logit_lpmf(r[1] |n1, mu[1]));

f2 = f12 + exp(binomial_logit_lpmf(r[2] |n2, mu[2]));

prob = fcop3(theta,f1,f2)-fcop3(theta,f1,f12)-

fcop3(theta,f11,f2)+fcop3(theta,f11,f12);

return log(prob);}

}

data{

int<lower = 0> Ns;//number of RCTs

int<lower = 0> Ns2;//number of OBs for arm A

int<lower = 0> Ns3;//number of OBs for arm B

int<lower = 0> nA[Ns,2];//RCT data

int<lower = 0> nB[Ns,2];//RCT data

int<lower = 0> rA[Ns,2];//RCT data

int<lower = 0> rB[Ns,2];//RCT data

int<lower = 0> nAC[Ns2,2];// OB data for arm A

int<lower = 0> rAC[Ns2,2];// OB data for arm A

int<lower = 0> nBC[Ns3,2];// OB data for arm B

int<lower = 0> rBC[Ns3,2];// OB data for arm B

real theta1[Ns+Ns2];

real theta2[Ns+Ns3];

}
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parameters{

real rr;

real rr2;

vector[2] b;

vector[2] z[Ns+Ns2+Ns3];

vector[2] k;

vector[2] q[Ns+Ns2+Ns3];

vector[2] eta;//bias terms

vector[2] xi;//bias terms

vector<lower=0, upper=5>[2] tau;

vector<lower = 0, upper=5>[2] s;

}

transformed parameters{

matrix[2,2] Tau;

matrix[2,2] L;

matrix[2,2] Sig;

matrix[2,2] H;

vector[2] delta[Ns+Ns2+Ns3];

vector[2] mu[Ns+Ns2+Ns3];

real<lower = -1, upper=1> rho1;

real<lower = -1, upper=1> rho2;

rho1 = tanh(rr);

rho2 = tanh(rr2);

Sig[1, 1] = s[1]^2;

Sig[1, 2] = s[1]*s[2]*rho2;

Sig[2, 1] = s[1]*s[2]*rho2;

Sig[2, 2] = s[2]^2;

H = cholesky_decompose(Sig);

Tau[1, 1] = tau[1]^2;

Tau[1, 2] = tau[1]*tau[2]*rho1;

Tau[2, 1] = tau[1]*tau[2]*rho1;
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Tau[2, 2] = tau[2]^2;

L = cholesky_decompose(Tau);

for (i in 1:Ns){

mu[i] = k + H*q[i];

delta[i] = b + L*z[i];}

for (i in 1:Ns2){

mu[i+Ns] = k + H*q[i+Ns];

delta[i+Ns] = b + L*z[i+Ns];}

for (i in 1:Ns3){

mu[i+Ns+Ns2] = k + H*q[i+Ns+Ns2];

delta[i+Ns+Ns2]= b + L*z[i+Ns+Ns2];}

}

model{

//priors

rr ~ std_normal();

rr2 ~ std_normal();

b ~ normal(0, 10);

k ~ normal(0, 10);

eta ~ normal(0, 10);

xi ~ normal(0, 10);

for (i in 1:Ns){

z[i] ~ std_normal();

q[i] ~ std_normal();

//likelihood of the RCTs

rA[i] ~ Bivfcop(nA[i,1],nA[i,2], theta1, mu[i]);

rB[i] ~ Bivfcop(nB[i,1],nB[i,2], theta2, mu[i]+delta[i]);}

for (i in 1:Ns2){

q[i+Ns] ~ std_normal();

z[i+Ns] ~ std_normal();

//likelihood of the OBs for arm A with bias term

rAC[i] ~ Bivfcop(nAC[i,1],nAC[i,2],theta1, mu[i+Ns]+eta);}
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for (i in 1:Ns3){

q[i+Ns+Ns2]~ std_normal();

z[i+Ns+Ns2]~ std_normal();

//likelihood of the OBs for arm B with bias term

rBC[i] ~ Bivfcop(nBC[i,1],nBC[i,2],theta2,

mu[i+Ns+Ns2]+xi+delta[i+Ns+Ns2]);}

}
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D.4 Convergence plots of M2 and M3 models

The following figures display trace and density plots of the parameters between

studies parameters including the parameter of the intercept (λ0) in the aCRC data-set

discussed in section 6.5.1.

D.4.1 Convergence plots of M2 model

Figure D.1: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Figure D.2: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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D.4.2 Convergence plots of M3 model

Figure D.3: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Figure D.4: Trace - density plots of 3 chains consisting of 4000 iterations each after
1000 iterations burn-in period
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Surrogate endpoints play an important role in drug development when they
can be used to measure treatment effect early compared to the final clinical
outcome and to predict clinical benefit or harm. Such endpoints are assessed
for their predictive value of clinical benefit by investigating the surrogate rela-
tionship between treatment effects on the surrogate and final outcomes using
meta-analytic methods. When surrogate relationships vary across treatment
classes, such validation may fail due to limited data within each treatment
class. In this paper, two alternative Bayesian meta-analytic methods are intro-
duced which allow for borrowing of information from other treatment classes
when exploring the surrogacy in a particular class. The first approach extends
a standard model for the evaluation of surrogate endpoints to a hierarchical
meta-analysis model assuming full exchangeability of surrogate relationships
across all the treatment classes, thus facilitating borrowing of information across
the classes. The second method is able to relax this assumption by allowing
for partial exchangeability of surrogate relationships across treatment classes to
avoid excessive borrowing of information from distinctly different classes. We
carried out a simulation study to assess the proposed methods in nine data sce-
narios and compared them with subgroup analysis using the standard model
within each treatment class. We also applied the methods to an illustrative
example in colorectal cancer which led to obtaining the parameters describing
the surrogate relationships with higher precision.
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1 INTRODUCTION

New advances in science have led to discovering of promising therapies which often are targeted to specific patient
populations, for example, defined by a genetic biomarker. This leads to clinical trials of smaller size, while the increased
effectiveness of these therapies reduces the number of events or deaths and consequently lead to measurement of treat-
ment effect on overall survival (OS) with large uncertainty. Therefore, surrogate endpoints allowing the measurement
of treatment effect with higher precision have been investigated to accelerate the availability of these treatments to the
patients. These alternative endpoints often can be considered a cost-effective replacement of final clinical outcome, as
they are particularly useful when they can be measured earlier, easier, more frequently compared to the final clinical
endpoint or if they require smaller sample size and shorter follow up times. 1

Potential surrogate endpoints have been investigated as candidate endpoints in clinical trials in a number of disease
areas. However, before these candidate endpoints are used, either as primary endpoints in trial design or in regulatory
decision-making, they need to be validated.2 In practice, the most common approach to validate a candidate outcome is
to examine whether it satisfies three levels of association, proposed by the International Conference on Harmonisation
Guidelines on Statistical Principles for Clinical Trials.3 First, the biological plausibility of the association of the surro-
gate and final outcomes is investigated which involves biological rather than statistical considerations. Furthermore, the
individual-level association is evaluated to establish whether the candidate surrogate endpoint can be used to predict the
course of the disease in an individual patient. Last but not least, the study-level association is investigated to ensure that
the treatment effects on the final outcome can be predicted from the effect on the surrogate endpoint. Study-level associ-
ation requires data from a number of randomized controlled trials (RCTs) and can be investigated carrying out a bivariate
meta-analysis.4-7 In this paper we focus on the third level of association only.

A bivariate meta-analytical method that was developed by Daniels and Hughes4 can be used to validate a candidate
surrogate endpoint, by evaluating the association pattern between the treatment effects on the surrogate and the final
outcomes, and to predict treatment effects on the final clinical outcome from the effects on surrogate endpoint. This
method, implemented in a Bayesian framework, can be used to evaluate a surrogate endpoint in a disease area overall, or
in each treatment class separately through a subgroup analysis.

Traditionally, surrogate relationships between treatment effects on a surrogate endpoint and treatment effects on a
final outcome have been investigated in a disease area using data from all trials regardless of treatment classes or trials
of the same class of treatments. For instance, in advance colorectal cancer (aCRC) progression-free survival (PFS), tumor
response (TR) or time to progression have been investigated as potential surrogate endpoints for OS.8-11 In previous work,
Buyse et al8 found a strong association between treatment effects on PFS and OS in this disease area, by including in
their meta-analysis studies on one treatment class only (modern chemotherapy). More recently, Ciani et al10 investigated
the surrogate relationship in aCRC across all modern treatments, including a range of targeted therapies, which led to
suboptimal surrogate relationship in this disease area. They concluded that in aCRC the association patterns could vary
across treatment classes and a surrogate relationship observed in a specific treatment class may not directly apply across
other treatment classes or lines of treatment. This may be particularly important for targeted treatments used only in a
subset of population. For example anti-EGFR treatments are recommended for patients without a KRAS/panRAS muta-
tion as these mutations are associated with resistance to the anti-EGFR therapies12,13 and the association pattern might
be different for this particular treatment class in this subset of population with this unique characteristic. Furthermore,
Giessen et al9 who investigated the surrogate relationships in aCRC including all available treatments and subgroups
of therapies, inferred that for validation of surrogacy in targeted treatments such as anti-EGFR therapies or anti-VEGF
treatments further research is required once more data become available. Consequently, the assumption that a surro-
gate relationship remains the same across different treatment classes or lines of treatment does not seem reasonable in
aCRC, which may be the case in other disease areas. Therefore, potential differences in surrogate relationships across
classes should be investigated. This can be achieved by performing subgroup analysis using a standard model (eg, Daniels
and Hughes model4) or extending the standard model by adding another level to the hierarchical structure of the model
for a surrogate relationship accounting for differences between treatment classes. In this paper, we propose two new
methods which allow different degrees of borrowing of information for surrogate relationships across treatment classes
aiming to obtain estimates of surrogate relationships with higher precision.14-16 The first approach assumes full exchange-
ability of the parameters describing the surrogate relationships exploiting the similarity of surrogate relationships and
borrowing information across treatment classes. The second method is able to relax this assumption, by allowing for
partial exchangeability17 of surrogate relationships across treatment classes to avoid excessive borrowing of information
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from distinctly different treatment classes. In this model, the parameters describing surrogate relationships can be either
exchangeable or nonexchangeable giving more flexibility when the assumption of exchangeability is not reasonable.

The modeling techniques were demonstrated using an example in advanced colorectal cancer where the surrogate
relationships may vary across treatment classes.10 To assess models' performance and compare them with subgroup anal-
ysis we carried out a simulation study. In the remainder of this paper, we present the standard model in Section 2 , the
two proposed models are introduced in Section 3, the results of the simulation study are demonstrated in Section 5 and
the illustrative example as well as the results from its analysis are presented in Section 6. The paper concludes with a
discussion in Section 7.

2 STANDARD SURROGACY MODEL

To investigate surrogate relationships within treatment classes using aggregate data, we performed subgroup analysis
adopting a standard surrogacy model that was introduced by Daniels and Hughes4 for the study-level evaluation of poten-
tial surrogate markers. Equation (1) corresponds to the within-study model where Y1i, Y2i are the estimates of treatment
effects on surrogate endpoint and on the final outcome (eg, log odds ratios for TR and log hazard ratio for OS). These
effects follow a bivariate normal distribution with 𝜇1i and 𝜇2i corresponding to the true treatment effects on the surrogate
and the final clinical outcome, respectively, while, 𝜎1i, 𝜎2i, and 𝜌wi are the within-study SDs for both outcomes and the
within-study correlations between the treatment effects on the two outcomes for each study i.

(
Y1i
Y2i

)
∼ N

((
𝜇1i
𝜇2i

)
,

(
𝜎2

1i 𝜎1i𝜎2i𝜌wi
𝜎1i𝜎2i𝜌wi 𝜎2

2i

))
. (1)

𝜇2i|𝜇1i ∼ N(𝜆0 + 𝜆1𝜇1i, 𝜓
2). (2)

At the between-studies level (2), the true effects on the surrogate endpoint 𝜇1i are modeled as fixed effects, and the
true effects on the final outcome 𝜇2i have linear relationship with the true effects on the surrogate 𝜇1i. This relationship
plays a very important role as it can be used to predict 𝜇2i from known 𝜇1i in a new study i. The parameters 𝜆0, 𝜆1, and
𝜓2 correspond to the intercept, the slope, and the conditional variance of the linear model and measure the shape of the
relationship and the strength of association between the treatment effects on the surrogate endpoint and the effects on
the final outcome.

In the Bayesian framework, the Daniels and Hughes model was implemented by assuming no prior knowledge about
surrogate relationship by using vague prior distributions. This allows the data to dominate the posterior distribution even
if the dataset is relatively small. The following prior distributions can be used: 𝜇1i ∼ N(0, a), 𝜆0 ∼ N(0, a), 𝜆1 ∼ N(0, a),𝜓 ∼
N(0, b)I(0, ), where N(0, b)I(0, ) denotes a normal distribution truncated18 at the mean𝜇 = 0 with SD s = b. The parameters
a, b are chosen to be sufficiently large and depend on the scale of data.

By adapting this method in our research, we applied this standard model to subsets of data that consist of only one class
of treatment examining the surrogate relationship of each subgroup separately, taking motivation from similar analyses in
clinical trials.19,20 This kind of analysis is very practical when association patterns in a given disease area are different and
the treatment classes consist of many studies. By performing subgroup analysis using the standard model, we explored
potential differences in the association patterns across treatment classes and use them as a reference for results obtained
with the newly developed methods.

2.1 Criteria for surrogacy

As we mentioned previously, the parameters 𝜆0, 𝜆1,𝜓2 play a very important role, as they are used to evaluate surrogacy. A
good surrogate relationship should imply that 𝜆1 ≠ 0 as slope establishes the association between treatment effects on the
surrogate and the final outcome. Subsequently, having 𝜓2 = 0 implies that 𝜇2i could be perfectly predicted given 𝜇1i. The
parameter 𝜆0 corresponds to the intercept and is expected to be zero for a good surrogate relationship. This ensures that
no treatment effect on the surrogate endpoint will imply no effect on the final outcome. These three criteria proposed by
Daniels & Hughes,4 will be referred to as surrogacy criteria in the remainder of this paper. A simple way to examine these
surrogacy criteria is to check whether or not zero is included in the 95% credible intervals (CrIs) of 𝜆0, 𝜆1 and to compute
the Bayes factor for the hypothesis H1: 𝜓2 = 0. The model with 𝜓2 = 0 is a nested model within the standard model,21 so
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in order to compare these models, Bayes factors can be computed using the Savage Dickey density ratio.22 To implement
the Savage Dickey density ratio, proper prior distributions for 𝜓 are needed. In our research a moderately informative
half normal prior distribution N(0, 2)I(0, ) was used for the conditional SD. A strong association pattern requires zero to
be included in the CrI of 𝜆0, zero not to be included in the CrI of 𝜆1 and the Bayes factor of 𝜓2 to be greater than 3.3.23 In
this paper we used the evaluation framework proposed by Daniels and Hughes. However, there are other definitions and
criteria for surrogacy in the literature. Detail review of other evaluation frameworks can be found in Lassere et al.7

2.2 Cross-validation

One of the main aims of this paper was to explore whether the two hierarchical methods, that we propose in the next
section, improve the predictions of treatment effect on the final outcome (by reducing bias and/or uncertainty) compared
to subgroup analysis using the standard model. To evaluate this, a cross-validation procedure was carried out. It is a similar
to the ”leave-one-out” procedure described by Daniels and Hughes4 and it is repeated as many times as the number of
studies in the dataset. In a simulated data scenario, this can be used to draw inferences about predicting the true effect
on the final endpoint 𝜇2i in a ”new” study i; however, in a real-data scenario true effects are unknown and therefore, we
can only compare the observed values Y2i with their predicted intervals. For each study i (i = 1,… ,N), treatment effect
on the final endpoint Y2i is omitted and assumed unknown. This effect is then predicted from the observed effect on the
surrogate endpoint Y1i and by taking into account the treatment effects on both outcomes from the remaining studies.
In a Bayesian framework it can be achieved by performing Markov chain Monte Carlo (MCMC) simulation. The mean
predicted effect is equal to the true effect �̂�2i predicted by MCMC simulation and the variance of the predicted effect is
equal to 𝜎2

2i + var(�̂�2i|Y1i, 𝜎1i,Y1(−i),Y2(−i)) where Y1,2(−i) denote the observed treatment effects from the remaining studies
without the study that is omitted in ith iteration.4 We then checked whether the 95% predictive interval (constructed using
the variance) included the observed value of the treatment difference on the final outcome.

3 METHODS FOR SURROGATE ENDPOINT EVALUATION
INCORPORATING AGGREGATE DATA FROM DIFFERENT TREATMENT
CLASSES

When subgroup analysis is used to investigate the study-level surrogate relationships within treatment classes the val-
idation process may fail due to limited data resulting in estimates of the parameters describing surrogate relationships
obtained with considerable uncertainty.19 We propose two hierarchical models to investigate surrogate relationships
within treatment classes allowing different degrees of borrowing of information about the parameters of interest, as
alternative approaches to subgroup analysis with the standard model. These models were developed to investigate the
study-level association and therefore they can only be applied to aggregate data (eg, logHR or logOR). They allow for the
association patterns to vary across classes taking advantage of the attractive statistical properties of exchangeability. 14-16

3.1 Hierarchical model with full exchangeability

Our first approach extends the standard model accounting for differences in study-level surrogacy across different treat-
ment classes.24-26 Similarly as in the standard model, at the within-study level we assume that correlated and normally
distributed observed treatment effects Y1ij and Y2ij (eg, logHR or logOR) in each study i estimate the true treatment effects
𝜇1ij and 𝜇2ij on the surrogate and final outcomes, respectively. In addition, by introducing index j we account for the
differences between the classes.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇2ij|𝜇1ij ∼ N(𝜆0j + 𝜆1j𝜇1ij, 𝜓

2
j ) (3)

𝜆0j ∼ N(𝛽0, 𝜉
2
0), 𝜆1j ∼ N(𝛽1, 𝜉

2
1 ).
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The parameters 𝜎1ij, 𝜎2ij, and 𝜌wij correspond to the within-study SDs and within-study correlations for each
study i in treatment class j. The observed estimates Y1ij, Y2ij, 𝜎1ij, 𝜎2ij are aggregate data extracted from systematic
review RCTs while, the within-study correlations 𝜌wij can be calculated using a bootstrapping method from individual
patient data (IPD). Similarly as in the standard model, the true effects 𝜇1ij on the surrogate endpoint are modeled as
fixed effects.

In contrast to the standard surrogacy model, this method assumes unique surrogate relationships between true treat-
ment effects on the surrogate endpoint and the final outcome across treatment classes in a single model, allowing for
borrowing of information across them. Each relationship between the true effects on the surrogate endpoint 𝜇1ij and the
final outcome 𝜇2ij is described by a linear model where, 𝜆0j denotes the intercept of the jth treatment class and 𝜆1j estab-
lishes the relationship between treatment effects on surrogate and final outcomes within the treatment class j. To evaluate
whether a candidate endpoint is considered a valid surrogate endpoint in a given treatment class, all three surrogacy
criteria need to be met for this particular class. Implementing this model in the Bayesian framework, we place non-
informative prior distributions on the model parameters such as: 𝛽0, 𝛽1 ∼ N(0, a) and 𝜉0, 𝜉1 ∼ N(0, b)I(0, ), 𝜇1ij ∼ N(0, a)
and 𝜓j ∼ N(0, b)I(0, ). Similarly as in the standard model a, b are chosen to be sufficiently large and depend on the
scale of data.

F-EX model extends the standard model (described in Section 2) by including an additional layer of hierarchy
to the linear relationship between true effects on the surrogate and the final outcome, assuming that slopes and
intercepts are fully exchangeable across treatment classes. This can be implemented by placing common normal dis-
tributions on 𝜆0j and 𝜆1j with means and variances 𝛽0, 𝜉2

0 and 𝛽1, 𝜉2
1 , leading to borrowing of information across

treatment classes. Hierarchical models have desirable statistical properties that allow us to improve our inferences
taking advantage of borrowing of information from other treatment classes. The exchangeable estimates, however,
are shrunk toward the means 𝛽0, 𝛽1 and the amount of shrinkage depends on the number of studies within each
class, the between treatment class heterogeneity17 and the number of treatment classes. Although these statisti-
cal properties are very attractive in terms of potential reduction of uncertainty around the parameters of interest,
they are advantageous only when the assumption of exchangeability is reasonable, otherwise there is a danger of
excessive shrinkage.

3.2 Hierarchical model with partial exchangeability

F-EX method can be extended into a method with partial exchangeability (P-EX) similar to the method pro-
posed by Neuenschwander et al.17 This model is able to relax the assumption of exchangeability allowing the
parameters of interest for each class to be either exchangeable with all or some of the parameters from other
treatment classes or nonexchangeable. The proposed method is more flexible compared to F-EX model, in par-
ticular in data scenarios where the assumption of exchangeability is not reasonable for some of the treatment
classes.

The within study and the between studies levels of this model are exactly the same as in the method with full exchange-
ability (F-EX) where, Y1ij, Y2ij are the treatment effects on the surrogate and final clinical outcomes and they follow
a bivariate normal distribution with mean values corresponding to the true treatment effects 𝜇1ij and 𝜇2ij on the two
outcomes.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇2ij|𝜇1ij ∼ N(𝜆0j + 𝜆1j𝜇1ij, 𝜓

2
j )

𝜆0j ∼ N(𝛽0, 𝜉
2
0 ) (4)

𝜆1j =
{
𝜆1j ∼ N(𝛽1, 𝜉

2
1 ) if pj = 1

𝜆1j ∼ N(0, b) if pj = 0

However, the parameters of slopes are modeled in a different way compared to those of F-EX model. In this approach
two possibilities arise for these parameters for each treatment class j. When pj = 1 the parameter 𝜆1j can be exchangeable
with some or all the parameters of the slopes from the other treatment classes via an exchangeable component. It follows
a common normal distribution with other slopes as in F-EX model. On the other hand, when pj = 0 the slope can be
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nonexchangeable with any slopes from the other treatment classes. In this case a vague prior distribution can be placed on
the parameter, as in the standard model. The method evaluates the degree of borrowing of information of each parameter
𝜆1j by using these two components with respective mixture weights.

The main advantage of this method is that it allows the degree of exchangeability to be inferred from the
data. In each MCMC iteration, the sampler chooses between the two components by using a Bernoulli distribu-
tion pj ∼ Bernoulli(𝜋j). By calculating the posterior mean of this Bernoulli distribution we derive the mixture weights
of each treatment class. The hyper-parameters 𝜋j of the Bernoulli prior distribution can be either fixed or, in a
fully Bayesian framework, they can follow a prior distribution, for example, a Beta distribution 𝜋j ∼ Beta(1, 1). We
have used fixed 𝜋j, since placing a prior distribution required longer chains to converge and provided almost the
same results.

In a special case where pj = 1 for all treatment classes, P-EX model reduces to full exchangeability model as it
uses only the exchangeable component. Having pj = 0 for all treatment classes makes the P-EX model equivalent
to subgroup analysis using the standard model as only the nonexchangeable component is used to estimate 𝜆1j in
this case. In a Bayesian framework vague prior distributions can be placed on the parameters 𝛽0, 𝛽1, 𝜉0, 𝜉1, 𝜇1ij as in
F-EX model.

4 SOFTWARE IMPLEMENTATION AND COMPUTING

All models were implemented in OpenBUGS27 where posterior estimates were obtained using MCMC simula-
tions performing 50 000 iterations (after discarding 20 000 iterations as burn-in period). The OpenBUGS code of
F-EX and P-EX models can be found in Appendix S1 (Sections D3, D4). Convergence was assessed visually
by checking the history, chains and autocorrelation plots using graphical tools in OpenBUGS and R. All esti-
mates are presented as means with corresponding 95% CrIs. The median was used only for the estimates of
the conditional variances as a measure of central tendency since their posterior distributions were very skewed.
The cross-validation procedure was performed in R using R2OpenBUGS27 package to execute OpenBUGS code
multiple times.

5 SIMULATION STUDY

The proposed hierarchical methods allow different levels of borrowing of information for the parameters of inter-
est. F-EX model assumes exchangeability of slopes while, the P-EX model allows for partial exchangeability of
these parameters. We carried out a simulation study to assess the performance of the hierarchical methods and
to compare them with subgroup analysis conducted using the standard model. We evaluated the performance of
the methods in distinct data scenarios generated assuming different strengths of association within classes, dif-
ferent levels of similarity of the association patterns across classes and different number of studies per class. We
evaluated the models' ability to identify treatment classes with strong association patterns and to make predictions
of the treatment effect on the final outcome in a new study from a treatment effect measured on the surrogate
endpoint.

5.1 Data generation process and scenarios

We simulated data under nine different scenarios generating 1000 replications for each scenario. Each replication
included average treatment effects on the surrogate and the final outcome (and corresponding SEs and within-study cor-
relations) from a number of studies of treatments belonging to five treatment classes. We assumed that the data in each
treatment class had a different heterogeneity pattern. Therefore, to have a control over such heterogeneity patterns when
simulating the data we needed to make an assumption about the distribution of the true effects both on the surrogate and
the final endpoints. The standard model by Daniels and Hughes assumes fixed effect for the true effects on the surrogate
endpoint (no common distribution) making difficult to control the heterogeneity patterns when simulating the data. To
avoid this issue, we simulated data using a product normal formulation of bivariate random effect meta-analysis (BRMA)
(Equation (5)), assuming normal random effects on the surrogate endpoint. Apart from this assumption, this method is
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the same as Daniels and Hughes model using a bivariate normal distribution to describe the within-study variability and
a linear relationship to model the association between the surrogate and the final outcome.

(
Y1ij
Y2ij

)
∼ N

((
𝜇1ij
𝜇2ij

)
,

(
𝜎2

1ij 𝜎1ij𝜎2ij𝜌wij

𝜎1ij𝜎2ij𝜌wij 𝜎2
2ij

))
𝜇1ij ∼ N(𝜂1j, 𝜓

2
1j) (5)

𝜇2ij|𝜇1ij ∼ N(𝜂2ij, 𝜓
2
2j)

𝜂2ij = 𝜆0j + 𝜆1j𝜇1ij

𝜓1j =
𝜓2j

|𝜆1j|√(1∕𝜌2
bj) − 1

.

Simulating data from this model, however, can lead to results obtained with increased uncertainty, as the models used
to analyze the data make fewer distributional assumptions.

To generate the data, we pursued the following steps:

1. Set the number of classes N = 5.
2. Simulate the data for each class separately using BRMA model (Equation 5) under three main designs.
3. Create three sets of scenarios: two with fixed number of studies (nj = 16 and nj = 8, j = 1,…,5) per treatment class and

one with unbalanced classes (n1 = 4,n2 = 8,n3 = 6,n4 = 10,n5 = 7). We applied the three sets of scenarios to each
design. In total, we have nine scenarios (3 designs × 3 sets = 9 scenarios).

4. Simulate the true effects using model (Equation 5)

The values of the parameters are listed in Table 1 and a short description of each design can be found below:
Design 1:
In the first design, our aim was to illustrate the properties of exchangeability. We simulated data in five treatment

classes assuming high degree of similarity for their slopes and intercepts. The data in each treatment class were simulated
assuming strong association (see surrogacy criteria in Section 2.1) for each individual class but weak overall.

Design 2:
The second design illustrates the case where there is a treatment class with very different association pattern (slope)

compared to the other classes. This implies that the assumption of exchangeability is in doubt for this parameter in this
particular class. Similarly as in the first scenario, we assumed strong association for each individual class.

Design 3:
The last design focuses on the association patterns of strengths that vary across treatment classes, investigating

whether the proposed methods can estimate a strong association pattern better compared to subgroup analysis with
the standard model and whether they can distinguish between the different association patterns despite borrowing of

T A B L E 1 Simulation designs First Design Second Design Third Design

𝜆11 = 0.40, 𝜌b1 = 0.89 𝜆11 = 0.60, 𝜌b1 = 0.93 𝜆11 = 0.40, 𝜌b1 = 0.90

𝜆12 = 0.45, 𝜌b2 = 0.90 𝜆12 = 1.55, 𝜌b2 = 0.99 𝜆12 = 0.50, 𝜌b2 = 0.70

𝜆13 = 0.50, 𝜌b3 = 0.91 𝜆13 = 1.60, 𝜌b3 = 0.99 𝜆13 = 0.60, 𝜌b3 = 0.93

𝜆14 = 0.55, 𝜌b4 = 0.92 𝜆14 = 1.65, 𝜌b4 = 0.99 𝜆14 = 0.70, 𝜌b4 = 0.75

𝜆15 = 0.60, 𝜌b5 = 0.93 𝜆15 = 1.70, 𝜌b5 = 0.99 𝜆15 = 0.80, 𝜌b5 = 0.95

𝜆0j = 0 𝜆0j = 0 𝜆0j = 0

𝜎1ij,2ij = 0.1 𝜎1ij,2ij = 0.1 𝜎1ij,2ij = 0.1

𝜌wij = 0.4 𝜌wij = 0.4 𝜌wij = 0.4

𝜓2j = 0.08 𝜓2j = 0.08 𝜓21,23,25 = 0.08

𝜓22,24 = 0.30

𝜂1j = 0.3 𝜂1j = 0.3 𝜂1j = 0.3
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information across treatment classes. To achieve this, we generated three out of five treatment classes with strong
association and the remaining two classes with a weak association.

5.2 Performance measures

To evaluate the goodness of fit of the models, we calculated the coverage probability of the 95% CrIs of 𝜆1j and the 95%
predictive intervals of 𝜇2ij. The absolute bias and the root mean square error (RMSE) of �̂�1j and �̂�2ij were also monitored
and reported in the tables. In order to investigate potential decrease in the degree of uncertainty of the estimates as a
result of borrowing of information across treatment classes, we calculated ratios of the width of the 95% CrIs. The width
ratio w

𝜆
FEX ,(PEX)
1j

/w
𝜆

subgr
1j

was defined as the ratio of the widths of the CrIs of 𝜆1j from F-EX or P-EX to the width of the CrIs of
𝜆1j from subgroup analysis using the standard model. Similarly, the width ratio w

𝜇
FEX,(PEX)
2ij

/w
𝜇

subgr
2ij

was the ratio of the 95%
predictive intervals of the true effects 𝜇2ij from F-EX or P-EX to the width of the predictive intervals of 𝜇2ij from subgroup
analysis using the standard model. We also monitored the largest Monte Carlo error (MCE) of the simulations as an index
of accuracy of the Monte Carlo samples.

Furthermore, a cross-validation procedure was applied to each method across the simulated data scenarios. In the
simulation study, the true effect on the final endpoint 𝜇2ij was known, since it had been simulated ,therefore the
cross-validation procedure was applied on the true effects (in real data scenarios we compare the predicted effect with
the observed effect) by checking whether the simulated value of the true effect �̂�2ij was included in the predictive interval
of 𝜇2ij.

5.3 Results

All the tables in the results section list the performance of the posterior means of �̂�1j, the performance of the posterior
means of �̂�2ij as well as the probabilities of estimating a strong association pattern (see definition in Section 2.1) for each
class across methods. The following section presents the results of the analysis by reporting the coverage probabilities of
the CrIs of 𝜆1j and 𝜇2ij for each scenario (by taking the mean of coverage probabilities across classes), the overall absolute
bias and RMSE of �̂�1j and �̂�2ij, the width ratios of 𝜆1j and 𝜇2ij for each scenario (by calculating the mean of the width ratios
of 𝜆1j across classes and the mean of the width ratios of 𝜇2ij across studies and classes), the MCE and the probability to
estimate a strong association pattern by fitting each model. Detailed results for the performance of �̂�1j and �̂�2ij for each
class separately and across methods are listed in Appendix S1 (see Sections B and C).

5.3.1 Performance of the estimates �̂�1j

Table 2 presents the results across the nine scenarios reporting averages of the measures we monitored for �̂�1j over the
five classes of treatment. The performance of the models varied in terms of the coverage probability of the 95% CrIs of 𝜆1j
across scenarios. In the scenarios 1, 4, and 7 where the number of studies per class was relatively high, the models achieved
95% coverage probabilities. However, in the scenarios where the number of studies was smaller the coverage probability
was higher due to increased uncertainty and likely to the fact that the model we used in the generation process was
slightly different from models used to fit the data. MCEs were small across most of the scenarios implying good accuracy
of the Monte Carlo samples and that convergence was achieved in those scenarios across all the methods. However, in
scenarios where the data were limited (scenarios 3, 6, and 9) subgroup analysis with the standard model yielded larger
MCEs. This implies that subgroup analysis requires longer chains to achieve the same level of convergence as the other
two models.

In the first three scenarios (first design), where the treatment classes were very similar in terms of patterns (simi-
lar slopes), F-EX and P-EX were superior compared to subgroup analysis as they gave posterior means of slopes with
lower absolute bias, RMSE and reduced uncertainty (narrower 95% CrIs) due to borrowing of information across classes.
P-EX model achieved almost the same level of borrowing of information as F-EX model, with mixtures weights were
very close to 1 across treatment classes (see details in the Section D1 in Appendix S1 where the mixture weights are
listed). Overall, the proposed hierarchical models performed better compared to subgroup analysis but the difference
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T A B L E 3 Probabilities of estimating a strong association pattern per class in the third design

Scenario
Number of Studies
Across Classes Treatment Classes Subgroup Analysis F-EX Model P-EX Model

Seventh Fixed (nj = 16) First class 0.82 0.84 0.84

Second classa 0.00 0.00 0.00

Third class 0.83 0.85 0.85

Fourth classa 0.00 0.00 0.00

Fifth class 0.80 0.80 0.80

Eighth Fixed (nj = 8) First class 0.78 0.89 0.89

Second classa 0.04 0.05 0.05

Third class 0.80 0.90 0.90

Fourth classa 0.06 0.06 0.06

Fifth class 0.85 0.87 0.86

Ninth Unbalanced First class 0.06 0.82 0.80

(n1 = 4,n2 = 8, Second classa 0.06 0.07 0.07

n3 = 6,n4 = 10, Third class 0.65 0.91 0.91

n5 = 7) Fourth classa 0.03 0.03 0.03

Fifth class 0.82 0.89 0.89

Abbreviations: F-EX, full exchangeability; P-EX, partial exchangeability.
aTreatment classes with weak association pattern.

was more pronounced in the scenarios with small number of studies. In the second design (scenarios 4, 5, and 6), where
the exchangeability assumption was not reasonable for one of the classes, P-EX model yielded the most robust results.
The model resulted in the posterior means with the smallest absolue bias and RMSE, reducing the degree of borrowing
of information for the class with the distinctly different (the mixture weights in this class were p1 = 0.56, p1 = 0.31 and
p1 = 0.80 respectively) while it still borrowed almost the same level of information across the remaining classes as F-EX
model (p2, p3, p4, p5 ≈ 0.97). On the other hand, F-EX performed poorer compared to the other methods in scenario 6
with unbalanced and relatively small number of studies per class, leading to more biased results. This indicates that F-EX
model is not appropriate when the assumption of exchangeability is not reasonable. Subgroup analysis using the standard
model achieved decent performance only in the forth scenario where there were sufficient data. In the third design (sce-
narios 7, 8, and 9) the proposed models achieved superior performance compared to subgroup analysis for the estimates
of 𝜆1j, similarly as in the first three scenarios.

The last column of Table 2 shows the probabilities of estimating a strong association pattern across the data scenarios
and models. F-EX and P-EX methods estimated the surrogacy (based on the three surrogacy criteria) better compared
to subgroup analysis across all scenarios. In the first design (scenarios 1, 2, and 3) where the association was designed
to be strong for all the classes, F-EX and P-EX models predicted a strong association pattern in more than 85% of the
simulations. Subgroup analysis predicted the 81% of them in the first scenario but its performance reduced noticeably
in the second and third scenario where the data were more sparse. In the second design (scenarios 4, 5, and 6) with
strong association patterns across all classes, P-EX and F-EX estimated more than 87% of the association patterns across
these three scenarios. Subgroup analysis performed well only in the fourth scenario predicting the 89% of the association
patterns but its performance gradually reduced as the number of studies was decreased in scenario 5 and 6.

Table 3 presents the results from the last three scenarios (third design), where the surrogate relationships varied across
classes. F-EX and P-EX methods were able to estimate a strong association pattern with higher probability compared
to subgroup analysis in the classes where the association was designed to be strong. At the same time, the methods
successfully identified classes with strong association patterns from a mixture of classes with weak and strong association
patterns, even for the scenarios with relatively few studies per class where subgroup analysis failed almost completely to
identify. The probabilities of estimating a strong association per class in designs 1 and 2 are presented in Appendix S1 (see
sections B1, B2, B3, B4, B5, B6).
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T A B L E 4 Performance of �̂�2ij

Scenario
Number of Studies
Across Classes Methods

Coverage
(Mean)

Absolute Bias
(Mean) RMSE

Width Ratio
(Mean) MCE

First design

First Fixed (nj = 16) Subgroup analysis 0.95 0.09 0.11 0.003

F-EX model 0.95 0.08 0.10 0.93 0.002

P-EX model 0.95 0.08 0.10 0.93 0.002

Second Fixed (nj = 8) Subgroup Analysis 0.98 0.11 0.13 0.010

F-EX model 0.98 0.08 0.10 0.80 0.004

P-EX model 0.98 0.08 0.10 0.80 0.004

Third Unbalanced Subgroup analysis 0.99 0.12 0.18 0.023

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.99 0.08 0.11 0.67 0.005

n4 = 10,n5 = 7) P-EX model 0.99 0.09 0.11 0.68 0.008

Second design

Fourth Fixed (nj = 16) Subgroup analysis 0.95 0.13 0.18 0.009

F-EX model 0.95 0.13 0.18 0.97 0.008

P-EX model 0.96 0.12 0.17 0.96 0.008

Fifth Fixed (nj = 8) Subgroup analysis 0.99 0.16 0.20 0.015

F-EX model 0.98 0.15 0.19 0.92 0.009

P-EX model 0.98 0.14 0.18 0.87 0.008

Sixth Unbalanced Subgroup analysis 0.99 0.18 0.23 0.021

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.99 0.18 0.22 0.80 0.009

n4 = 10,n5 = 7) P-EX model 0.99 0.15 0.19 0.77 0.010

Third Design

Seventh Fixed (nj = 16) Subgroup analysis 0.95 0.16 0.23 0.006

F-EX model 0.95 0.16 0.22 0.96 0.004

P-EX model 0.95 0.16 0.22 0.96 0.004

Eighth Fixed (nj = 8) Subgroup analysis 0.98 0.18 0.26 0.017

F-EX model 0.97 0.16 0.22 0.85 0.006

P-EX model 0.97 0.16 0.22 0.85 0.006

Ninth Unbalanced Subgroup analysis 0.98 0.20 0.28 0.027

(n1 = 4,n2 = 8,n3 = 6, F-EX model 0.97 0.17 0.21 0.72 0.008

n4 = 10,n5 = 7) P-EX model 0.97 0.17 0.21 0.72 0.009

Abbreviations: F-EX, full exchangeability; MCE, Monte Carlo errors; P-EX, partial exchangeability; RMSE, root mean square error.

5.3.2 Performance of predictions �̂�2ij

Table 4 shows the results from cross-validation procedure which resulted in the posterior means (�̂�2ij) and 95% predictive
intervals of the true effects 𝜇2ij. It presents the same measures as Table 2 averaged over the five classes. In scenarios 1, 4,
and 7, the models achieved 95% coverage due to the large amount of data, however, in the remaining scenarios where the
number of studies was smaller the models yielded higher coverages probabilities. F-EX and P-EX had small MCEs across
all scenarios, however, subgroup analysis gave on average significantly larger MCEs compared to the proposed methods
in scenarios 3, 6, and 9 (see details in Sections C3, C6, C9 in Appendix S1). This indicates that subgroup analysis with
the standard model requires longer chains for its posteriors to achieve the same level of convergence as the other two
methods.
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In the first three scenarios, F-EX and P-EX models outperformed subgroup analysis in terms of the absolute bias,
RMSE and the uncertainty of �̂�2ij. However, there was no winner between them as both methods had almost the same
degree of borrowing of information resulting in 7%, 20%, and 33% narrower predictive intervals compared to subgroup
analysis across these three scenarios, respectively. In the scenarios 4 ,5, and 6 (second design), P-EX yielded posterior
means with the smallest absolute bias, RMSE and CrIs with the smallest width ratio across classes. Furthermore, P-EX
method gave the most robust results for the ”extreme” treatment class reducing by 44%, 69%, and 20% the borrowing of
information in this class across the scenarios (see the mixture weights in Section D1 in Appendix S1). In the sixth scenario
F-EX performed poorer compared to P-EX model leading to biased results especially for the treatment class where the
surrogacy was different and the exchangeability assumption unreasonable (first class in the Section C6 of Appendix S1).
Subgroup analysis performed almost equally well as the P-EX model in the 4th scenario where the number of studies
per class was relatively large. The last three scenarios (third design) gave similar results as the first three in terms of the
uncertainty, the absolute bias and the RMSE of �̂�2ij. F-EX P-EX models performed equally well, while subgroup analysis
with the standard model was the worst approach resulting in inflated predictive intervals, larger RMSE and worse MCE
in all cases.

5.4 Discussion of the results

The aim of the simulation study was to illustrate and assess the performance of the methods under different scenarios.
The models gave 95% coverage probabilities in the scenarios 1, 4, and 7 where the number of studies was sufficiently
large (16 for each class). However, in the remaining scenarios the coverage probabilities were higher than 95%, which
means that the methods derived more conservative CrIs of parameters than expected. This is largely due to the sparsity
of the data in these scenarios but may also be partly due to different models being used to simulate and analyze the data
as explained in Section 5.1. In the first design (scenarios 1, 2, and 3) where the assumption of exchangeability was rea-
sonable, F-EX and P-EX models performed better than the subgroup analysis giving on average narrower 95% CrIs of 𝜆1j
and 95% predictive intervals of 𝜇2ij. This indicates that P-EX model successfully identified the correct level of borrowing
of information inferring that the mixture weights should be very close to 1. P-EX model was the best choice in all the
scenarios of the second design (scenarios 4, 5, and 6) where there was a treatment class with distinctly different slope.
It reduced the degree of borrowing of information for the ”extreme” treatment class, giving the most accurate posterior
means of the slopes. Moreover, P-EX model was the best choice in terms of predictions of the true effect on the final end-
point, reducing the width of predictive intervals by 4%, 13%, and 23% compared to subgroup analysis in each scenario,
respectively. Last but not least, the proposed methods estimated the strong association patterns better compared to sub-
group analysis across all data scenarios. In particular, in scenarios 3, 6, and 9, where the data were sparse, the proposed
hierarchical methods were able to estimate surrogacy significantly better compared to the subgroup analysis. This illus-
trates well the benefits of using hierarchical methods when data are limited. Furthermore, as illustrated by scenarios 7,
8, and 9, F-EX and P-EX could easily distinguish between the different association patterns as they identified treatment
classes with strong association patterns and at the same time did not overestimate the strength of the association in the
classes where the association was designed to be weak.

6 APPLICATION: ADVANCED COLORECTAL CANCER

6.1 Data

We illustrate the proposed methodology in an example in aCRC. The data were obtained from a systematic review
conducted by Ciani et al10 which included 101 RCTs published between 2003 and 2013, evaluating multiple interven-
tions in aCRC. The review consist of trials that report treatment effects on OS or/and on alternative endpoints such
as PFS, TR. OS was defined as the time from randomization to time of death, PFS was set as the time from random-
ization to tumor progression or death from any cause. TR was estimated using objective tumor measurements which
are measured using imaging methods and determined according to the Response Evaluation Criteria in Solid Tumors
guidelines28 or the World Health Organization recommendations.29 The RCTs in the systematic review contain five treat-
ment classes: the class of chemotherapies, the anti-epidermal growth factor receptor (Anti-EGFR) monoclonal antibodies
class, angiogenesis inhibitors, other molecular-targeted agents and intrahepatic arterial chemotherapies .
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F I G U R E 1 Scatterplots of treatment
effects on progression-free survival-overall
survival and tumor
response-progression-free survival [Color
figure can be viewed at
wileyonlinelibrary.com]
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Ciani et al10 investigated surrogate relationships between treatment effects on potential surrogate endpoints (TR
and PFS) and on the final clinical outcome (OS). They found that the surrogate relationships between treatment effects
on these endpoints were suboptimal. Furthermore, they stated that PFS was an acceptable surrogate endpoint for OS,
whereas TR should not be used as a surrogate endpoint for this final outcome. They concluded that good surrogacy
observed in previous studies, that included traditional chemotherapy trials in aCRC may not apply directly across other
classes of treatments. More details about the studies and how the systematic review was designed can be found in Ciani
et al.10 We refer these data as ”Ciani data” in the remainder of this paper.

In our example, we focused on a subset of these data examining the surrogacy between treatment effects on TR and
PFS and treatment effects on PFS and OS including data from three treatment classes. We obtained data from 35 studies
reporting treatment effect on PFS and OS where, 15 of them belonged to the chemotherapy treatment class, nine of
them investigated anti-EGFR therapies and 11 anti-angiogenic treatments. To investigate surrogate relationships between
treatment effects on TR and PFS we used data from 35 studies reporting treatment effects on these endpoints; 17 of
them investigated chemotherapies, 8 and 10 studies anti-EGFR and anti-angiogenic treatments respectively. TR can be
evaluated as a surrogate endpoint to treatment effect on PFS, as treatment effects on TR is typically measured earlier
compared to treatment effects on PFS.

Figure 1 provides a graphical representation of the dataset we used. It illustrates the association patterns between the
treatment effects across classes on each pair of outcomes.

IPD were available from four RCTs,30-33 which were used to estimate the within-study correlations. By applying a
bootstrap method (see Section A in Appendix S1) we estimated two sets of within-study correlations: for each of the two
pairs of outcomes one correlation corresponding to each treatment class. We assumed that within treatment classes the
within-study correlations are the same across studies.

6.2 Scale of the outcomes

The treatment effects on OS and PFS were modeled on the log hazard ratio scale logHR(OS), logHR(PFS), whereas
the treatment effects on TR were modeled on log odds ratio logOR(TR) scale. We retrieved the corresponding SEs of
logHR(PFS) and logHR(OS) on PFS and OS from the 95% confidence intervals and by using the standard formulae for the
SEs of logOR(TR) .

6.3 Results of data analysis

The first aim of our analysis was to explore potential differences in association patterns across treatment classes. To inves-
tigate this, we applied the two proposed models and subgroup analysis using standard model to the data and derived
posterior distributions for the parameters of the surrogate relationships for each treatment class. We obtained the poste-
riors mean of the intercepts �̂�0j, the slopes �̂�1j and posterior median of conditional variances �̂�2

j with corresponding 95%
CrIs across treatment classes. By checking the surrogacy criteria (described in Section 2.1) we were able to infer whether or
not a candidate endpoint is a valid surrogate in each treatment class. We carried out a cross-validation procedure (Section
2.2) to investigate how well the models predict the true treatment effect on the final clinical outcome. The measures we
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monitored were the absolute error of the predictions, the ratios of the width of the 95% predictive intervals from P-EX or
F-EX to the width of the 95% predicted interval obtained from subgroup analysis and the largest MCE.

6.3.1 Results across models and treatment classes

Subgroup analysis with the standard model
The results of subgroup analysis presented in the first two columns of Table 5 showed strong association between

the treatment effects on PFS and the effects on OS in the class of chemotherapies and the anti-angiogenic treatment
class with all three criteria for surrogacy satisfied (the 95% CrIs of 𝜆01 and 𝜆03 included zero, the 95% CrIs of 𝜆11 and
𝜆13 did not contain zero and there was substantial evidence using Bayes factors in favor of the hypotheses H1 ∶ 𝜓2

1 = 0,
and H1 ∶ 𝜓2

3 = 0 (see details about Bayes factors Section D2 in Appendix S1)). In contrast, we can infer that the surro-
gate relationship between treatment effects on PFS and the effects on OS in the anti-EGFR treatment class was weak,
as the 95% CrI of the posterior distribution of the slope included zero. Investigating the surrogacy on TR-PFS pair
we found a similar pattern, thus we can infer that there was an acceptable surrogate relationship between treatment
effects on TR and PFS in the chemotherapy and the anti-angiogenic classes. The relationship was negative overall, since
the slopes were negative across classes. On the other hand, the surrogacy criteria indicated poor surrogacy between
the treatment effects on TR and the treatment effects on PFS for anti-EGFR class, since the 95% CrI of the slope 𝜆12
included zero.

F-EX model
The results of F-EX model are presented in columns 3 and 4 of Table 5. For the PFS-OS pair of outcomes, the asso-

ciation patterns were very similar in the anti-angiogenic and chemotherapy treatment classes as both classes satisfied
the surrogacy criteria and the slopes were of similar magnitude. The 95% CrIs of the intercepts 𝜆01 and 𝜆03 included
zero indicating that zero treatment effect on the surrogate implies zero treatment effect on the final outcome for these
two classes. The intervals of the slopes 𝜆11 and 𝜆13 did not contain zero indicating positive association as the two
slopes were positive. The conditional variances in these two classes were small indicating strong association which
was supported by the analysis using Bayes factors (see details about the Bayes factors in Section D2 in Appendix S1).
On the other hand, the association was weak in the anti-EGFR treatment class failing to meet one of the criteria, as
the 95% CrI of the slope 𝜆12 included zero. On the contrary, for TR-PFS pair of outcomes all three surrogacy criteria
were satisfied across all the treatment classes taking advantage of the assumption of exchangeability of the parame-
ters 𝜆0j and 𝜆1j. This implies that TR was an acceptable surrogate endpoint for PFS across treatment classes in this
data set.

P-EX model
P-EX model allows the parameters of slope of each treatment class to be either exchangeable or nonexchangeable with

parameters of slopes from other classes yielding parameters with partial exchangeability. For both pairs of outcomes, fixed
values for the hyper-parameters 𝜋j = (0.5, 0.5, 0.5) were chosen assuming that exchangeability and nonexchangeability
were a priori equally likely.

As in the case of F-EX model, the surrogacy criteria were estimated for each class separately and then a cross-validation
procedure followed, however, for this model we also monitored the mixture weights by calculating the posterior means
of pj in order to measure the degree of borrowing of information across classes (Table 5 columns 5, 6). For the PFS-OS
pair, the weights increased from their prior values (𝜋j = 0.5) to 0.968 in the class of chemotherapy, to 0.965 in the
anti-EGFR class and to 0.966 in the anti-angiogenic treatment class indicating that borrowing of information was reduced
approximately 3.5% for each class compared to F-EX model. Looking at the results from P-EX model we drew the
same inferences as from F-EX model, inferring that the association patterns were strong in the anti-angiogenic and
the chemotherapy classes, but weak in the anti-EGFR treatment class where the 95% CrI of the slope 𝜆12 included
zero. In contrast to this, for TR-PFS pair the mixture weights were smaller than on PFS-OS pair due to the slightly
larger between treatment class heterogeneity. There was 7.1% reduction in borrowing of information in anti-angiogenic
class compared to F-EX models, while the weights for the chemotherapies and anti-EGFR agents were 0.944 and
0.95, respectively. All three surrogacy criteria were fulfilled across treatment classes despite the decrease in levels of
borrowing of information, indicating that TR was an acceptable surrogate for PFS across treatment classes in the
Ciani data.
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T A B L E 6 Predictions of 𝜇2ij across treatments and models

Chemotherapy Anti-EGFR Anti-angiogenic Overall

Models Measures PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS PFS-OS TR-PFS

Standard model Performance of 95%
predictive intervals

1.000 0.941 0.888 1.000 1.000 1.000 0.971 0.971

Absolute error (median) 0.047 0.108 0.140 0.132 0.099 0.145 0.090 0.123

MCE (max) 0.002 0.004 0.006 0.004 0.003 0.004 0.003 0.004

F-EX Performance of 95%
predictive intervals

1.000 0.941 1.000 1.000 1.000 1.000 1.000 0.971

Absolute error (median) 0.041 0.104 0.102 0.112 0.123 0.206 0.089 0.128

Width ratio (median) 0.988 0.985 0.862 0.968 0.930 0.997 0.950 0.987

MCE (max) 0.002 0.004 0.005 0.005 0.003 0.003 0.003 0.004

P-EX Performance of 95%
predictive intervals

1.000 0.941 1.000 1.000 1.000 1.000 1.000 0.971

Absolute error (median) 0.041 0.104 0.126 0.114 0.109 0.206 0.092 0.128

Width ratio (median) 0.989 0.989 0.864 0.975 0.931 0.999 0.957 0.990

MCE (max) 0.002 0.004 0.005 0.005 0.003 0.003 0.003 0.004

Abbreviations: F-EX, full exchangeability; MCE, Monte Carlo error; OS, overall survival; P-EX, partial exchangeability; PFS, progression-free survival; TR,
tumor response.

6.3.2 Results of the cross-validation procedure

After estimating the surrogacy criteria across treatment classes, we carried out cross-validation procedure to predict the
treatment effects 𝜇2i on the final outcome. The results in Table 6 showed that the cross-validation procedure of subgroup
analysis with the standard model gave predictive intervals of the effects on the final outcome containing the correspond-
ing observed estimates Y2i in the 97% of the studies for both pairs of outcomes confirming good fit of the model. The
cross-validation procedure yielded the most accurate posterior means of the true effects on the final endpoint (small abso-
lute error) in the treatment class of chemotherapies, where the number of the available studies was large and performed
poorly in terms of accuracy of predictions in the anti-EGFR class (large absolute error) where the surrogacy was weak and
the number of studies small. Similarly, subgroup analysis with the standard model was less accurate in targeted treatment
classes for the TR-PFS pair of outcomes where the number of studies was smaller.

The results from the cross-validation procedure of F-EX model showed that the method fitted the data well. All of the
predicted intervals of 𝜇2ij contained the observed values of the treatment effects on the final outcome on PFS-OS pair and
all but one on TR-PFS pair. The cross-validation procedure yielded the posterior means of 𝜇2ij with the smallest absolute
error in chemotherapy treatment class on PFS-OS pair and performed equally well in terms of its accuracy in the other two
classes. In contrast to this, higher absolute error were observed in the anti-angiogenic class on TR-PFS pair indicating that
the assumption of exchangeability of the parameters describing the surrogate relationships was fairly strong and it was
likely to cause ”overshrinkage” in this particular class. The results obtained for the width ratios imply that F-EX method
gave intervals of the true effect on the final endpoint with smaller degree of uncertainty compared to subgroup analysis.
There was a small decrease in the uncertainty of the predictions of 𝜇2ij on PFS-OS pair for the chemotherapy treatment
class, as the cross-validation procedure of F-EX model yielded 1.2% narrower intervals compared to subgroup analysis.
Furthermore, significantly reduced uncertainty was observed in the other two treatment classes for PFS-OS pair, 13.8% in
the anti-EGFR treatment class and 7% in the anti-angiogenic, where the number of studies was smaller. On the contrary,
very limited decrease in the degree of uncertainty was observed for the TR-PFS pair of outcomes across all classes. Overall
on this pair, the predictive intervals were only 1.3% narrower compared to subgroup analysis. The benefit was small (3.2%
reduction of the width of the predictive interval) even for the anti-EGFR treatment class where there were only 8 studies
for this pair.

Focusing on the results from the cross-validation procedure using P-EX model, all the intervals of the predicted treat-
ment effects on the final outcome contained the observed treatment effects on PFS-OS pair and all but one on the TR-PFS
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pair. The absolute error was smaller in chemotherapy treatment class for the PFS-OS pair where the number of stud-
ies was large and significantly higher in the other two classes. In contrast to this, the cross-validation procedure with
P-EX gave almost equally accurate estimates in the anti-EGFR and the chemotherapy treatment classes on TR-PFS pair.
However, the absolute error was higher in the anti-angiogenic treatment class where the association was much stronger
compared to the other two classes indicating potential excessive borrowing of information from the other classes. This is
likely due to the assumption of full exchangeability of the intercepts.

The method predicted the effects on the final outcome with reduced uncertainty giving more precise estimates (�̂�2ij)
compared to subgroup analysis in the anti-EGFR class on PFS-OS pair reducing the uncertainty by 13.6%. On the other
hand, the predicted effects �̂�2ij had almost the same degree of uncertainty as those from subgroup analysis for TR-PFS
pair. The intervals were only 1% narrower on average across all classes compared to the subgroup analysis.

6.4 Comparison of the results from F-EX, P-EX, and those from subgroup analysis

Figure 2 presents 95% CrIs of the slopes 𝜆1j and intercepts 𝜆0j across the treatment classes and methods of estimation.
Comparing the aforementioned methods in regards to the surrogacy criteria on the PFS-OS pair, we can conclude that
F-EX model estimated the parameters of the surrogate relationships with reduced uncertainty compared to the subgroup
analysis and P-EX model taking advantage of borrowing of information across classes. P-EX relaxes the assumption of
exchangeability reducing the effect of borrowing of information on average by 3.6%. It gave narrower CrIs of the param-
eters of interest compared to subgroup analysis but slightly larger than those obtained form F-EX model. Furthermore,
both F-EX and P-EX methods can distinguish between the different association patterns avoiding to give over-shrunk esti-
mates of the slopes and the intercepts, although they allow different degrees of borrowing of information for the slopes.
In particular, this pair of outcomes (PFS-OS) illustrates well the impact of number of studies per class on the degree of
borrowing of information. In general, borrowing of information is determined by the number of studies within treatment
classes, between treatment classes heterogeneity, as well as the number of treatment classes. In this case, the fewer stud-
ies we have within a treatment class, the bigger is the impact of borrowing of information resulting in higher reduction
in uncertainty of the estimates of surrogate relationships. This effect was particularly strong for the anti-EGFR treatment
class.

On the other hand, TR-PFS pair is a good example to illustrate the performance of the hierarchical methods when
between treatment class heterogeneity is relatively large. In this case, subgroup analysis performed equally well as the pro-
posed methods in terms of uncertainty of the CrIs of the paramaters describing the surrogate relationships. For instance
by fitting F-EX and P-EX models, we did not observe any decrease in uncertainty around 𝜆1j and 𝜆0j across classes. This is
because the between treatment classes heterogeneity was relatively large for TR-PFS pair and hence there was not much
shrinkage. Furthermore, using subgroup analysis, the surrogacy criteria failed in the anti-EGFR class (zero was included
in the 95% CrI of the slope) where only eight studies available). However, the 95% CrI in the anti-EGFR class just con-
tains zero and overlaps substantially with the 95% CrI of the slope for chemotherapy treatment class. By applying P-EX
and F-EX models, we were able to draw different inferences for the surrogacy in the anti-EGFR class as these methods

F I G U R E 2 95% Credible intervals
of 𝜆1j and 𝜆0j for the progression-free
survival-overall survival pair of outcomes
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allow for borrowing of information for the parameters describing the surrogate relationships from the other classes. As
illustrated in Figure 3, both hierarchical models moved the 95% CrI of the slope in the direction of the CrIs of the other
two classes resulting in the surrogacy criteria being satisfied across all treatment classes.

When carrying out cross-validation procedure, we wish to ensure that not only predictive intervals contain the
observed values but also that they are sufficiently narrow. In general, adding a hierarchical structure to slopes and inter-
cepts reduces the uncertainty and leads to more precise predictions compared to those obtained from subgroup analysis.
For the PFS-OS pair of outcomes, the accuracy of the predictions was very similar across all methods (similar absolute
error) but the uncertainty varied depending on the level of borrowing of information. F-EX model gave on average the
most precise estimates (�̂�2ij) having the narrowest 95% predictive intervals of the effect on the final outcome (smallest
width ratio seen in Tables 3, 5, and 6) reducing the overall uncertainly by 5%. The benefit was smaller in the chemother-
apy class where the number of studies was much larger compared to the anti-EGFR treatment class where we had only
eight studies available. Overall, P-EX performed better than subgroup analysis and equally well with F-EX regarding the
uncertainty of the predictions. This indicates that the assumption of exchangeability seems to be plausible for this pair of
outcomes and P-EX model was able to identify this.

For the TR-PFS pair, subgroup analysis with the standard model was a robust approach in terms of the accuracy of its
predictions. Although the overall absolute error was very similar across models, F-EX and P-EX yielded higher absolute
error compared to subgroup analysis in the anti-angiogenic class. This implies that the posterior means of the true effects
were to some extent ”overshrunk” due to excessive borrowing of information from the other classes. P-EX model was
implemented allowing for partial exchangeability of the slopes only, this decision is likely to affect the performance of the
model in terms of its predictions on TR-PFS pair of outcomes. However, the model can be extended allowing for partial
exchangeability also of the intercepts or the conditional variances and different combinations of these assumptions can be
explored and models compared using deviance information criterion (DIC). Similarly, there was no significant decrease in
the degree of uncertainty of the estimates �̂�2ij of F-EX and P-EX models. The results indicate that the hierarchical methods
performed slightly better compared to subgroup analysis in terms of uncertainty only in the class of chemotherapy and
the anti-EGFR treatment class giving 1.5% and 3% narrower predictive intervals, respectively. This kind of behavior might
be caused by the relatively large between treatment class heterogeneity and the assumption of full exchangeability of
the intercepts.

7 DISCUSSION

We developed two hierarchical models allowing to account for distinct treatment classes when examining the sur-
rogate relationships. The proposed models may be particularly useful in surrogate endpoint evaluation in complex
diseases where different treatment classes of different mechanism of action and potential different association pat-
terns within those classes exist. These models investigate potential differences in study-level surrogacy across treatment
classes in a particular disease area and can help to identify treatment classes with strong association patters, even
when data are relatively sparse. F-EX model is somewhat restrictive, assuming full exchangeability of the parameters
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describing the surrogate relationships across treatment classes. In many situations the assumption of exchangeability
may be too strong given the heterogeneity between treatment classes. In such circumstances, a more flexible model
such as P-EX may be a better choice. P-EX model can infer an appropriate level of borrowing of information from the
data, reducing the degree of borrowing of information through the mixture weights, thus relaxing the assumption of
exchangeability when it is not fully reasonable. It evaluates whether the association pattern between treatment effects
(logHR or logOR) on the surrogate and the final endpoint in a specific treatment class differs from the other patterns in
other classes.

F-EX model is appropriate only when the degree of similarity of surrogate relationships is relatively high. It can offer
substantial gains in precision, reduced RMSE of the posterior means of the parameters describing surrogate relationships
and it can improve the predictions of the true effects on the final endpoint. For example, F-EX model gave posterior means
of the slopes and predicted effects with reduced uncertainty (smaller CrIs) compared to subgroup analysis for the first
simulated data scenario and for the illustrative example on PFS-OS pair where the parameters describing the surrogate
relationship were similar and the assumption of full exchangeability was reasonable. These findings are consistent with
the results from other hierarchical Bayesian methods which assume full exchangeability and were developed in other
research areas.24,25 However, P-EX model achieves the same degree of borrowing of information in such data scenarios
making less assumptions compared to F-EX model. P-EX model regulates the degree of borrowing of information using its
exchangeable and nonexchangeable components with respective mixture weights. For instance, when between treatment
class heterogeneity is relatively large or there is a treatment class with distinctly different pattern, P-EX model has the
advantage of avoiding the excessive borrowing of information, as illustrated in the second design of the simulation study.
All the above illustrate the benefits of partial exchangeability, as described by Neuenschwander et al17 in their work.
Subgroup analysis using the standard model is a simple approach which performs well when there are sufficient data
available for each treatment class, but it produces estimates with higher bias and uncertainty when data within a treatment
class are limited.

Although the proposed methods provide additional robustness to the CrIs and the posterior means of the parameters
describing the surrogate relationships compared to subgroup analysis, potential limitations should always be kept in
mind. First, in real data scenarios it can be challenging to find datasets with sufficient number of treatment classes. The
small number of treatment classes can affect the performance of hierarchical methods substantially34 reducing the impact
of borrowing of information. For instance, fitting P-EX model to the illustrative example (in aCRC with three treatment
classes) led to a situation where in some of the MCMC iterations only one class was deemed exchangeable by the model
which is not possible since there were no other classes to exchange information with. However, in our example it did not
affect the performance of the model as it occurred only in the 0.5% of the MCMC iterations. On the other hand, there is
no upper limit to the number of classes we can have. In general, the more classes the better it is for the models to borrow
information across them.

Another limitation of the illustrative example is that treatment switching was applied in a subset of trials in
this dataset. Patients were allowed to switch from the treatment that was initially assigned to them to the other
treatment arm in the trial. Most commonly patients switched after progression from control to experimental arm
in particular, if there was sufficient evidence during the trial that the experimental treatment was better than
control.35 Treatment switching has diminishing effect on the difference in treatment effects on OS when applying
intention-to-treat analysis, and the effect is often obtained with larger uncertainty. This makes the estimation of sur-
rogacy between treatment effects on the surrogate and treatment effects on the final outcome very challenging. Many
adjustment methods have been proposed, however, their validity is often questionable.35 Additionally, the evaluation
of PFS as a surrogate endpoint is distinctive compared to other surrogate endpoints as PFS can be considered as
nested outcome within OS outcome. These factors may explain the different findings for the two pairs of outcomes
(PFS-OS and TR-OS).

Furthermore, as it was mentioned in Section 6, each treatment class consist of studies with multiple treatment com-
parisons. According to Daniels and Hughes4 and Shanafelt et al36 different treatment comparisons and the use of active or
inactive control interventions may influence the surrogate relationship. This could potentially be resolved by classifying
treatment according the treatment class comparison (eg, anti-angiogenic therapies versus chemotherapy) which poten-
tially would lead to more treatment classes, but with reduced number of studies per class. To continue with the same
issue, in this paper the treatment classes were defined according to the class of the experimental treatment regardless of
the control. Alternatively, we could classify them according to the treatment contrasts taking into account the class of the
control group, however, this could result in fewer studies per class. A network meta-analysis model was developed for
this problem by Bujkiewicz et al.37
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Additionally, the evaluation framework proposed by Daniels and Hughes (see Section 2.1) examine whether zero is
contained in the CrIs of 𝜆1 and 𝜆0. However, the sparsity of data may lead to increased uncertainty around the intercept
and slope. This increased uncertainty is also likely to manifest itself in increased conditional variance, thus invalidating
the third criterion. Unsurprisingly, for sparse data it is unlikely that all the surrogacy criteria hold and this problem is
more likely to occur in subgroup analyses. Our proposed methods alleviate this problem as shown in some of the scenarios
of the simulation study. However, we used the criteria mainly for the purpose of model comparison. In real-life scenarios,
when evaluating a potential surrogate endpoint for use in clinical trials or regulatory decision-making, the decision of
whether the surrogate endpoint may be used to make the prediction of the clinical benefit should be based on the balance
between the strength of the surrogate relationship and the need for the decision to be made about the effectiveness of the
new treatment.38 Moreover, the strength (or weakness) of the surrogate relationship will manifest itself in the width of
the predicted interval of the treatment effect on the final outcome. A larger interval around the intercept and slope will
result in a larger interval around the predicted effect and hence increased uncertainty about the regulatory or clinical
decision made based on such prediction. The implication of this is that perhaps we do not need precise surrogacy criteria
and instead we need only look at the predictions.37 The quality of predictions can be evaluated through a cross-validation
procedure (see Section 2.2).

A possible extension of these methods is to add another layer of hierarchy accounting for the different treat-
ments within a treatment class. However, a relatively large number of studies for each treatment and number of
treatments per class would be required to fit such model. As we mentioned in Section 6.4, P-EX model could also
be extended by making additional partial-exchangeability assumptions about the intercepts and the conditional vari-
ances, however, this may lead to over-parameterizing the model. Furthermore, taking advantage of the setting proposed
by Bujkiewicz et al,39 both hierarchical models can be extended to allow for modeling multiple surrogate endpoints
(or the same surrogate endpoint but reported at multiple time points) as joint predictors of treatment effect on the
final outcome.

Further research is also needed to extend the proposed methodology to binomial data or to time to event data where
the assumption of normality is not plausible. Moreover, to overcome the convergence issues caused by vague prior dis-
tributions on the hyper-parameter of the mixture weights (𝜋j), alternative prior distributions should be developed by
extending the P-EX in a similar way as proposed by Kaizer et al.40

In summary, we developed hierarchical Bayesian methods for evaluating surrogate relationships within treatment
classes while borrowing of information for surrogate relationships across treatment classes. We believe that the proposed
methods have a lot of potential for improving the validation of surrogate endpoints in the era of personalized medicine,
where the surrogacy may depend on the mechanism of action of specific targeted therapies.
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