
1.  Introduction
The ionospheric total electron content (TEC) is an important parameter in the study of ionospheric var-
iabilities (Goodman, 1992). Accurate prediction of TEC is critical for the promotion of Earth- and space-
based systems such as satellite positioning and remote sensing systems (Belehaki et al., 2009; Samardjiev 
et al., 1993). Therefore, understanding the spatiotemporal variations in TEC and developing accurate global 
and regional TEC models are crucial (Kersley et al., 2004).

The International Reference Ionosphere (IRI) model (Bilitza, 2001; Bilitza et al.,  2017), NeQuick model 
(Hochegger et al., 2000; Nava et al., 2008, 2011), Bent model (Bent et al., 1975), and other global empiri-
cal models are currently recommended for ionospheric parameter prediction and provide alternative plat-
forms for TEC estimation, including long-term forecasting. However, the instantaneous estimation of the 
TEC based on “real” measurements is still required. Therefore, estimated TEC values must reflect the real 
features of observable phenomena in the ionosphere. Consequently, many studies have attempted to de-
velop regional TEC forecasting models to explore ionospheric variability (Badeke et  al.,  2018; Elmunim 
et al., 2017; Habarulema et al., 2007; Krankowski et al., 2005; Razin et al., 2015; Tebabal et al., 2019; Wat-
thanasangmechai et al., 2012). In general, methods used to forecast regional TEC can be divided into two 
major categories: empirical methods (Badeke et al., 2018; J. Li et al., 2020; Mukesh et al., 2020; Mukhtarov 
et al., 2014) and statistical methods.

However, existing statistical methods used to forecast regional TEC are based on relatively simple theoretical 
models. Among the existing approaches, Prophet time-series forecasting (Zhai et al., 2019), auto-regressive 
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moving average (ARMA) (Krankowski et al., 2005; Zhang et al., 2013), statistical Holt–Winter (Elmunim 
et al., 2017), manifold trajectories (Moreno et al., 2018), support vector machine (Pei et al., 2019), artificial 
neural network (ANN) (Habarulema et al., 2007), EXtreme Gradient Boosting over Decision Trees (Zhuk-
ov et al., 2020), and hybrid methods (Feizi et al., 2020; Ghaffari & Vosooghi, 2020; Mukhtarov et al., 2014; 
Uwamahoro & Habarulema, 2015) are extensively used. Recently, various neural network (NN)-based mod-
els have been developed for the prediction of regional TEC (Tebabal et al., 2018, 2019) A NN is a collection 
of algorithms modeled after the function of neurons in the brain. In the field of deep computer learning, 
such networks are often referred to as ANNs and used for classification and prediction purposes (Tebabal 
et al., 2018).

The results of previous studies suggest that NN models can reflect TEC variations well. A genetic algo-
rithm-based neural network (GA-NN) TEC-prediction model developed for use over China was proposed 
by Song et al. (2018) and Huang et al. (2015). Its forecasting performance was significantly better than those 
of the back propagation-based NN (BP-NN) and IRI 2012 models. Okoh et al. (2016) integrated IRI's critical 
plasma frequency parameter as an additional neuron in the input layer of a regional global navigation sat-
ellite system (GNSS)-TEC NN model to monitor Nigeria. The potential extrapolation abilities and the limi-
tations of ANNs were investigated by Habarulema and colleagues, who proposed a regional TEC prediction 
model for South Africa by determining the relationship between multiple inputs and TEC (Habarulema 
et al., 2007, 2011). In addition, many hybrid methods involving NN components with high spatiotemporal 
resolution data have been proposed to model and predict the ionospheric TEC; these include the wavelet 
NN model (Ghaffari & Voosoghi, 2016), empirical orthogonal function NN model (Uwamahoro & Haba-
rulema, 2015), adaptive NN model with an in situ learning algorithm (Acharya et al., 2011), and Gaussian 
mixture model-improved NN or radial basis function (RBF) (Huang & Yuan, 2014).

However, the ionospheric TEC is intrinsically complex. Some complex factors that affect forecasting effec-
tiveness such as different geographical locations, seasons, and geomagnetic activities make it difficult to 
achieve accurate TEC prediction, which requires us to build a more powerful and complex model network. 
Finally, the data used in most previous studies did not cover a full solar cycle. However, complete solar cycle 
data coverage is necessary, given the considerable impact of solar activities on the ionospheric dynamics.

Deep learning is considered to be a function of second-generation NNs (Hinton & Salakhutdinov, 2006) and 
may be employed to better model spatiotemporal variations in ionospheric TEC (Orus Perez, 2019). Hoch-
reiter and Schmidhuber (1997) developed a special deep-learning architecture known as a long short-term 
memory NN (LSTM NN). LSTM NNs are capable of long-term series learning and are not affected by a van-
ishing gradient. However, to date, LSTM NNs have been rarely used for ionospheric TEC prediction; their 
application for a few GPS stations (Ruwali et al., 2020; Srivani et al., 2019) has been attempted only a few 
times and only to generate a predicted TEC map (Cherrier et al., 2017; Kaselimi et al., 2020); Chen (2019) 
proposes an improved deep learning algorithm to fill in the TEC map, which shows satisfactory ionospheric 
peak structures at different times and under different geomagnetic conditions. Therefore, this study aimed 
to develop an encoder-decoder LSTM extended (ED-LSTME) model to reflect the spatiotemporal relation-
ships between GPS stations and to predict ionospheric TEC. This model was developed and evaluated based 
on geomagnetic indexes, and measurements were recorded at 15 GPS stations over one solar cycle in China.

2.  Data and Data Preprocessing
2.1.  Vertical TEC Derivation

All GPS stations provide pseudorange and carrier phase measurements at two L-band frequencies. The dif-
ference between the code and carrier phase measurements of the two frequencies was calculated to obtain 
the pseudorange TEC (STECa) and phase TEC (STECr) along the path from a satellite to a receiver (Mannuc-
ci et al., 1998). The formula of the pseudorange TEC is as follows:

               
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where A = 40.3 m3/s2; f1 and f2 are GPS signal frequencies; P1 and P2 indicate the respective recorded pseudo 
ranges; c is the speed of light; and bs,1−bs,2 and br,1−br,2 are the Differential Code Biases for the satellite and 
receiver, respectively. The Differential Code Bias must be estimated by eliminating the differences between 
the ionospheric delays of the corresponding observations (Z. Li et al., 2012; Yuan et al., 2015). The TEC 
phase is expressed as follows:

      
  
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where 1 and 2 are the carrier phases; 1 and 2 indicate the wavelengths; and  1 ,1 2 ,2
s s
r rN N  is the integer 

cycle ambiguity. The Differential Code Bias and integer cycle ambiguity were regarded as constant within 
a period, assuming that the cycle slip does not disrupt the continuity of observation. Based on the STECa, 
a more accurate slant TEC (STECi) could be acquired by smoothing the STECr at a certain time i during 
continuous measurements of N epochs (Hernández-Pajares et al., 2011, 2012).

 


  
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N

i i i i
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� (3)

The slant TEC was converted into the vertical TEC (VTEC) to allow the convenient examination of the 
distribution of TEC in different regions. This conversion was achieved using a mapping function at differ-
ent ionospheric pierce points (IPPs), which are the points of intersection between the line of sight and the 
ionospheric shell. The charged particles of the ionosphere are assumed to be concentrated in a thin shell 
concentric with the earth, and this thin layer is located in the ionosphere. The shell's height above the 
ground varies based on the time of day or night, geographical location, sun zenith angle, and other factors; 
typical values range from 350–480 km and can be rapidly calculated. When the elevation angle exceeds 30°, 
the calculation yields highly accurate results and is suitable for application in most areas of the world. The 
VTEC is obtained via the equation below (Afraimovich et al., 2001; Hernández-Pajares et al., 2011).

 
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R E
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where RE represents the average radius of the Earth; hm represents the F2 layer peak height; E0 indicates the 
elevation angle of the satellite station (Xiong et al., 2014, 2016).

In this study, we used dense GNSS observation station data to fix the satellite Differential Code Biases 
(DCB), assuming that the vertical TEC over the grid point within a certain time and space were equal and 
that the vertical TEC over the grid and the hardware delay of the GNSS system were solved simultaneously 
through the observation equation (Choi et al., 2011; Ma & Maruyama, 2003), The specific equation used is 
as follows:
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Among them, BSi is the hardware delay between different frequency signals of the ith satellite, and Brj is the 
hardware delay between different frequency signals of the jth receiver. The vertical TEC is based on the tech-
nique of Ma and Maruyama (2003) involving mapping and all data obtained from the Crustal Movement 
Observation Network of China were used. In the above approach, we used a zero-mean condition for the 
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separation of the receiver-dependent part of the bias. In practice, the singular value decomposition (SVD) 
method was used to estimate DCB, a more detailed description of the method is given in Choi et al. (2011).

2.2.  Data Collection and Preprocessing

In this study, GPS TEC data were obtained from the Crustal Movement Observation Network of China 
(CMONOC), which consists of 260 GNSS stations covering mainland China. As geographical location af-
fects TEC estimation and data from evenly distributed stations can better reflect the geographic variability 
in the model performance, this study focuses on 15 stations evenly distributed throughout China (Figure 1). 
Table 1 lists the geographic locations of the 15 GPS stations that were used to construct and validate the 
model.

The data include three main parts, including (1) vertical TEC values with a temporal resolution of 15 min 
were obtained from dual-frequency (1575.42 and 1227.6 MHz) observations (Mannucci et al., 1998); (2) The 
geomagnetic index ap was used as an indicator of the overall geomagnetic activity and magnetic storms. The 
magnetic effect of the Kp index was utilized to measure solar particle radiation. Bartels introduced the three-
hour-range Kp index in 1949 (Bartels & Veldkamp, 1949); the data can be downloaded from http://wdc.kugi.
kyoto-u.ac.jp. (3) Finally, the F10.7 index, the solar radio flux at 10.7 cm (2800 MHz), was used owing to its 
excellence and consistency as an indicator of solar activities.
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Figure 1.  Study region and spatial distribution of GPS stations.
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We calculated the mean and standard deviation of the TEC time series for each station and then calcu-
lated appropriate thresholds to identify and exclude outliers, which were considered as values that were 
more than three standard deviations from the mean. To fill in the removed and missing data, we opted for 
an approach drawn from statistics and control theory called Kalman smoothing, which is available in the 
imputeTS package (Moritz, 2016) in R. The Kalman filter takes a forward pass through the data up to the 
current time point and can be applied in real-time. Kalman smoothing adds a backward pass through the 
data, thereby using all the data. After the data preprocessing and integration, a total of 2,632,410 records was 
collected for model development (175,494 records for each station).

This study covered a period of 12.5 years (January 2006 to April 2018). The training sets were used as input 
parameters, and TEC values from January 2006 to December 2016 were used, representing the period of one 
solar cycle. The model performance was verified using data from the same stations from January 2017 to 
April 2018 as validation datasets.

2.3.  Time Series Sample Modeling

Preprocessing was conducted after data acquisition, including sample modeling, which is an essential step 
for time-series data preprocessing. The data can be converted using a machine-learning or deep-learning 
model. For time series problems, the sliding window is a representative modeling technique and was used 
in this study (Zivot & Wang, 2003).

Based on the assumption that samples and data were available for all periods, sliding windows were used for 
back tests to check the prediction ability of several series models. Back testing involves the following steps:

1.	 �Select the size of the sliding window, m (i.e., the number of consecutive observations per sliding win-
dow), which depends on the sample size, T, and periodicity of the data

2.	 �Select the prediction horizon, h, which depends on the application and the periodicity of the data. Fig-
ure 2 shows how the sliding window segregates the time series

3.	 �If the number of increments between consecutive windows is 1 period, the overall data set is segregated 
into N = T−m+1 subsamples. The first window includes the views of period (1, m), the second window 
contains period (2, m+1), and so on (Figure 2)

4.	 �Regarding the subsamples of each window
�a)	� build every model
�b)	� estimate the h−step−ahead predictions
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�c)	� calculate the prediction error for each prediction;     ˆnj m h n j nje y y , where
•	 �enj represents the prediction error of window n for the j−step−ahead prediction
•	 �y is the response, and
•	 �̂ njy  represents the j−step−ahead prediction of window subsample n

5.	 �Calculate the root mean square error (RMSE) values according to the prediction error for each step-
ahead prediction type

6.	 �Compare the RMSEs of these models. The model with the lowest RMSE is considered to yield the best 
prediction performance

3.  Methodology
3.1.  ED-LSTME Model

The LSTM, a type of recurrent NN, was specifically designed to prevent the attenuation or explosion of 
model output when a given input is circulated through a feedback loop (Hochreiter & Schmidhuber, 1997). 
It can effectively model time dependencies and has been utilized in many fields include meteorology (Hu 
& Chen, 2018; Qing & Niu, 2018), network traffic (Zhao et al., 2017), and air-pollution forecasting (Yang 
et al., 2020).

However, the lengths of the input and output sequences in the LSTM model may differ, which could lead 
to vanishing and explosion gradients. The ED-LSTM has been established as an effective means to address 
these prediction problems (Cho et al., 2014). The key advantage of this model is that it can be easily con-
structed with little more than a list of inputs and outputs. The ED-LSTM consists of two models; the first is 
used to read the input sequence and encode it into a fixed-length vector, and the second is used to decode 
the fixed-length vector and output the predicted sequence.

In this study, an encoder-decoder LSTM NN was used to predict the regional TEC. In general, encoder-de-
coder LSTM models are used to map input and output sequences of arbitrary lengths (Sutskever et al., 2014). 
The encoder component can be obtained by applying one or more LSTM layers, and the model output is 
a vector of a fixed size (i.e., the internal representation of the input sequence) defined by the number of 
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Station 
code

Station 
name

Province 
(city)

Geographic 
latitude

Geographic 
longitude

Geomagnetic 
latitude

Geomagnetic 
longitude

High latitude WUSH Ush Xinjiang 41.200°N 79.210°E 32.58°N 155.04°E

HRBN Harbin Heilongjiang 45.700°N 126.620°E 36.56°N 163.24°W

TASH Tashkurgan Xinjiang 37.770°N 75.230°E 29.47°N 151.08°E

SUIY Suiyang Heilongjiang 44.43°N 130.91°E 35.51°N 159.38°W

Middle latitude YANC Yanchi Ningxia 37.780°N 107.440°E 28.18°N 179.89°W

LUZH Luzhou Sichuan 28.870°N 105.410°E 19.30°N 178.22°E

XNIN Xining Qinghai 36.600°N 101.770°E 27.05°N 174.99°E

JIXN Jixian Tianjin 40.080°N 117.530°E 30.61°N 170.91°W

TAIN Tai'an Shandong 36.210°N 117.120°E 26.74°N 171.13°W

XIAA Xi'an Shanxi 34.180°N 108.990°E 24.60°N 178.48°W

LHAS Lhasa Tibet 29.660°N 91.100°E 20.43°N 164.96°E

Low latitude XIAG Xiaguan Yunnan 25.610°N 100.250°E 16.12°N 173.36°E

XIAM Xiamen Fujian 24.450°N 118.080°E 15.05°N 169.85°W

KMIN Kunming Yunnan 25.030°N 102.800°E 15.50°N 175.75°E

QION Qiongzhong Hainan 19.030°N 109.850°E 9.51°N 177.57°W

Table 1 
List of GPS Stations With Geographic Coordinates
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memory cells in the layer. The decoder component can also be implemented using one or more LSTM layers 
and converts the internal representation into the correct output sequence. Thus, the fixed-sized output of 
the encoder model is read using the decoder.

In the ED-LSTME model, we propose (shown in Figure  3), representative features were extracted from 
historical TEC data and auxiliary input data via LSTM layers. The dense layer in a TimeDistributed wrapper 
(Chollet, 2017) was utilized as the network output, and the RepeatVector layer (Chollet, 2017) served as 
an adapter for both the network's encoding and decoding sections (the RepeatVector can be deployed to 
repeat the fixed-length vector once at each time step in the output sequence). We implemented the ED-
LSTME model using the Keras (https://github.com/fchollet/keras available from GitHub) (Chollet, 2015) 
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Figure 3.  Network framework of the ED-LSTME model for TEC prediction. The main inputs (historical ionospheric 
TECs) are in the green dashed boxes, and auxiliary inputs (geomagnetic activity index Kp and ap; solar activity index 
F10.7) are in blue dashed boxes; r represents the time lag, and h is the forecast horizon. ED-LSTME, encoder-decoder 
long short-term memory extended; TEC, total electron content.

https://github.com/fchollet/keras
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open-source deep learning framework with TensorFlow (Abadi et al., 2016) as the backend, open-source 
software for the development of NN models.

Previous studies have shown that solar and geomagnetic activities affect TEC variability (Blagoveshchensky 
et al., 2018; Kumar & Singh, 2010; Purohit et al., 2015; Verkhoglyadova et al., 2013) and that the use of aux-
iliary solar and geomagnetic activity index data potentially improves prediction performance. Specifically, 
time-delayed historical data and current auxiliary data of the solar flux index Kp and geomagnetic activity 
index ap from all selected GPS stations were concatenated and stacked to compose an input sequence for the 
LSTM layers (“Main Inputs” in Figure 3).

The encoder LSTM layers process the input sequence and generate a summary of the past input sequence 
through the unit-state vector. After N recursive updates, the encoder LSTM layers convert the overall input 
sequence into the final unit-state vector. The encoder then passes the vector to the decoder LSTM, which 
uses it as the initial unit state for sequence generation. The decoder LSTM then recursively generates the 
output sequence. Subsequently, further representations of the merged features are obtained by utilizing one 
or more fully joined layers (“FCs” in Figure 3). Finally, the prediction output is produced based on the fully 
joined layer.

3.2.  Parameter Optimization

Better results can be obtained by adjusting the ED-LSTME model parameters (i.e., the number of neurons 
in every LSTM layer LSTM

NN , number of neurons in every FC layer FC
NN , number of training epochs EPOOCHS

NN ,  
and batch size). As this study aimed to discuss TEC prediction at different time granularities, and the opti-
mum sliding window size (including the time lag and forecast horizon) varies for different granularities, the 
parameters Lag

NL  (the length of the time lag for the input) and Horizon
NL  (the length of the forecast horizon for 

the output; that is, 1 per 15 min, 4 per hour, etc.) needed to be optimized.

Based on the empirical results, the parameter candidates were set as follows:    LSTM FC, 100,200,300,400N NN N ,  

batch size = {32, 64, 128},  EPOOCHS 50,100NN ,    Lag
N 96,2 96,3 96L , and  Horizon 8,12,16NL . The mi-

ni-batch gradient descent, dropout neuron, and L2 regularization algorithms were combined to optimize 
the parameters, and the RMSE was used as an optimization criterion.

 


 
2

1

1RMSE
n

i i
i

y y
n

� (6)

where yi represents the observed value of the ith case, and 
iy  is the predicted value. A smaller RMSE indi-

cates better performance.

Hyperparametric optimization trials (Data Set S1 in the Supplementary Materials) were conducted. After 
several rounds of grid searching, an optimal result was yielded with an RMSE value of 12.09 TECU when 

using the following parameters:   LSTM FC, 300N NN N , batch size = 128, EPOOCHS 50NN , Lag 96NL  (1 d), and 

Horizon 12NL  (3 h).

3.3.  Model Comparison

To assess its performance, the performance of the proposed model was compared with those of other 
algorithms such as the classic ED-LSTM, ordinary LSTM (Hochreiter & Schmidhuber, 1997), deep neural 
network (DNN) (Goodfellow et al., 2016; LeCun et al., 2015), autoregressive integrated moving average 
(ARIMA) (Hyndman & Athanasopoulos,  2018; Makridakis & Hibon,  1997), and IRI 2016 models (Bil-
itza, 2018; Rawer et al., 1978). Hyperparametric optimization, which is used in all the methods except for 
IRI 2016, allow for the identification of the optimum parameters. Based on this optimization, relevant 
technology can be selected with high confidence, ensuring the use of a robust method. For the classic 
ED-LSTM, ordinary LSTM, and DNN models, the hyperparameters of the neuron number in every LSTM 

XIONG ET AL.

10.1029/2020SW002706

8 of 20



Space Weather

and FC layer, training epoch number, and batch size were selected for 
model optimization. The optimized ARIMA model was obtained by 
applying the Hyndman-Khandakar algorithm (Hyndman & Khanda-
kar, 2008) for automatic modeling based on the combination of unit root 
tests, the minimization of the Akaike information criterion (AICc), and 
maximum likelihood estimation (MLE). Hyperparametric optimization 
trials conducted for these models are described in Datasets S1 of the Sup-
plementary Material. In addition, the degrees of freedom (the number 
of parameters in the model) for the proposed ED-LSTME model; the 
encoder-decoder LSTM model; the LSTM, DNN, and ARIMA models; 
and the IRI 2016 model were 140116, 138916, 226992, 235292, 8, and 28, 
respectively.

To assess the performance of the various models, four different statistical 
indicators were used in this study: RMSE, the coefficient of determina-
tion (R2), mean absolute error (MAE), and the correlation coefficient (ρ), 
given by Equations  6–9, respectively. MAE refers to the absolute error 
between the true value and the predicted value. RMSE is the square of the 
difference between the true value and the predicted value. When MAE 

and RMSE are used together, the degree of dispersion of the sampling error can be seen. The correlation 
coefficient is used to describe the degree of linear correlation between two variables. The R-square is gen-
erally used in regression models to evaluate the degree of agreement between the predicted value and the 
actual value.
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where n is the number of cases, yi is the observed value of the ith case, 
iy  is the predicted value, and y  and 

y  are the mean values of yi and 
iy , respectively.

4.  Results and Discussion
4.1.  Model Performance

The performance of the various models is detailed in Table 2. The R2 and RMSE values varied from 0.0643 
to 0.8862 and 12.09 to 34.69 TECU, respectively. Based on the use of the international standard empirical 
model for the terrestrial ionosphere, the IRI 2016 (Bilitza, 2018) model delivered the worst performance, 
with an R2 value of 0.0643. The ARIMA model, which is a traditional time-series forecasting method, also 
performed poorly (R2 = 0.068). An improved R2 value (0.0689–0.2784) was obtained for the DNN model, 
indicating that the model's three fully connected layers delivered better performance. As the LSTM model 
could almost seamlessly deal with scenarios including multiple input variables, it delivered significantly im-
proved performance compared with that of the DNN model, with an increase of 0.06 for R2 and a decrease 
of 1.48 TECU for RMSE.
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Models R2 MAE RMSE ρ

ED-LSTME 0.8862 3.6967 12.0954 0.9416

Encoder-decoder LSTM 0.5462 5.1447 24.1536 0.8209

LSTM 0.3469 5.3384 28.9778 0.6984

DNN 0.2784 5.6924 30.4596 0.5411

ARIMA 0.0689 6.1995 34.5988 0.2859

IRI 2016 0.0643 5.8312 34.6854 0.3143

Abbreviations: ARIMA, autoregressive integrated moving average; DNN, 
deep neural network; ED-LSTME, encoder-decoder long short-term 
memory extended; IRI, International Reference Ionosphere; LSTM, long 
short-term memory; MAE, mean absolute error; RMSE, root mean square 
error.

Table 2 
Performance of the Tested Models
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As an intelligent algorithm, the encoder-decoder LSTM model offered better TEC prediction, with R2 and 
RMSE values of 0.5462 and 24.1536 TECU, respectively. The ED-LSTME model was superior to the standard 
ED-LSTM owing to its consideration of space environment information. The ED-LSTME R2 value increased 
by 0.34 over that of the standard ED-LSTM (from 0.5462 to 0.8862) and the RMSE value decreased by 12.06 
TECU (from 24.1536 to 12.0954 TECU). These findings indicate that the proposed ED-LSTME model deliv-
ered the best performance among the considered models, followed by that of the encoder-decoder LSTM, 
LSTM, DNN, ARIMA, and IRI 2016 models.

While conventional models (e.g., ARIMA) have delivered reasonable results under geomagnetically quiet 
conditions (Xiaohong et al., 2014; Zhang et al., 2013), they did not deliver the expected performance on 
a larger scale, with R2 and RMSEs values of 0.0689 and 34.5988 TECU, respectively. However, the R2 and 
RMSEs values ranged from 0.2784 to 0.8862 and from 12.0954 to 30.4596 TECU, respectively. Therefore, the 
more advanced models (ED-LSTME, encoder-decoder LSTM, LSTM, and DNN) demonstrated better TEC 
estimation performance.

As the superiority of the ED-LSTME model was confirmed under the study scenario, the performance of 
the model was further evaluated. The model's efficiency was investigated using Taylor diagrams (Elvidge 
et al., 2014; Taylor, 2001) (Figure 4). The diagram shows that the ED-LSTME model performed significantly 
better than did the other models, as ED-LSTME has a stronger correlation to the expected results and a 
smaller standard deviation than those of the other models. The error standard deviation of IRI 2016 was 
larger than those of the more advanced models (ED-LSTME, encoder-decoder LSTM, LSTM, and DNN) and 
ARIMA (albeit only slightly). The standard deviation values for encoder-decoder LSTM, IRI 2016, and DNN 
were similar and were superior to those of ARIMA and LSTM. Compared with those of the other methods, 
the standard deviation of the TEC values predicted using the ED-LSTME model displayed very little bias. 
Thus, based on a consideration of the collective results, the ED-LSTME model significantly outperformed 
the other models.

In addition, from the International GNSS Service (https://www.igs.org), the global ionospheric TEC levels 
from January 2017 to April 2018 were relatively low, with an average of around 12 TECU. To prove our 
proposed model has better generalization ability during higher ionospheric activity, we select the relatively 
high value in the test set (TEC values greater than 20 TECU) and their corresponding predicted values, and 
conducted a comparative study. From Figure S3, it can be concluded that while the prediction performance 
of other models is worse than before, the ED-LSTME not only performs best in the error standard deviation 
and correlation, but also is the best model in bias. These results show that the ED-LSTME has good gener-
alization ability.

4.2.  Variation of Model Performance With Geographical Location

Geographical location affects TEC estimation. Therefore, models were established for each station to deter-
mine the geographic variability in the model performance. Table 1 provides the geographical coordinates of 
the stations, and Tables S1 and S2 present the overall evaluation results for the ED-LSTME, encoder-decod-
er LSTM, LSTM, DNN, ARIMA, and IRI 2016 models for each station.

For example, at HRBN station, the RMSE of the ED-LSTME model was 1.4547 TECU (i.e., smaller than 
those of the encoder-decoder LSTM (1.5011 TECU), LSTM (1.7932 TECU), DNN (1.8883 TECU), ARIMA 
(2.3696 TECU), and IRI 2016 (2.3837 TECU) models). The ED-LSTME model exhibited an R2 value of 
0.7466, which was higher than those of the encoder-decoder LSTM (0.7301), LSTM (0.6149), DNN (0.5129), 
ARIMA (0.3275), and IRI 2016 (0.3195) models.

Using the ED-LSTME model, the largest R2 values were obtained at YANC station (0.8311; middle latitude) 
and KMIN station (0.8052; low latitude), and the smallest value was obtained at SUIY station (0.4247, high 
latitude). The minimum and maximum correlation coefficients were also obtained at YANC and KMIN 
stations, respectively. The largest correlation coefficient of 0.912 was obtained at YANC station, whereas 
the smallest correlation coefficient of 0.7339 was obtained at SUIY station. The encoder-decoder LSTM, 
LSTM, DNN, ARIMA, and IRI 2016 models yielded R2 values and correlation coefficients of 0.4091–0.7861 
and 0.7299–0.8905, 0.3303–0.7805 and 0.6532–0.8869, 0.207–0.7429 and 0.4951–0.8853, 0.0389–0.7264 and 
0.0869–0.8641, and 0.0302–0.6586 and 0.3545–0.8631, respectively.
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Figure 5 presents the calculated RMSE values for the correlation between the observed and estimated TEC 
values, which can be used to further analyze the spatial performances of the models. As shown in the figure, 
the RMSEs of all six models were lower in the middle and high latitudes. This can possibly be explained by 
the equatorial ionospheric anomaly (EIA) in lower latitudes, which may lead to larger RMSEs as suggested 
by Song et al. (2018).

In addition, the R2 (upper left), MAE (upper right), RMSE (lower left), and ρ (lower right) of the six mod-
els are compared in the bar chart in Figure 6. Notably, the ED-LSTME model had the highest prediction 
efficiency and outperformed the other five models across latitudes.

4.3.  Seasonal Variation in Model Performance

Previous studies indicated TEC prediction model performance varies seasonally (Mukesh et al., 2020; Ru-
wali et al., 2020; Song et al., 2018; Tebabal et al., 2018, 2019). Therefore, all considered models were operated 
in each season to investigate their performance throughout the solar year. The seasons were delineated as 
spring (March–May), summer (June–August), autumn (September–November), and winter (December–
February), for which the number of data records was 138,240, 139,776, 141,312, and 141,312 respectively. 
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Figure 4.  Taylor diagram of model bias and standard deviation of errors. The azimuth indicates the correlation, the 
radial distance represents the standard deviation, and the semicircles centered on the “Expected” label represent the 
error standard deviation. The color scale represents the degree of bias. Each quantity was standardized to draw multiple 
parameters. The appropriate “factors” in the upper right of the chart can be utilized to modify the original values. 
The chart presents the performances of the ED-LSTME, encoder-decoder LSTM, LSTM, DNN, ARIMA, and IRI 2016 
models. ARIMA, autoregressive integrated moving average; DNN, deep neural network; ED-LSTME, encoder-decoder 
long short-term memory extended; IRI, International Reference Ionosphere; LSTM, long short-term memory.



Space Weather

Figure 7 presents the seasonal variations in model performance using the testing data. Tables S3 and S4 list 
the R2, MAE, RMSE, and correlation coefficient (ρ) values for the predicted TEC and seasonal variations in 
these values, respectively.

Tables  S3 and  S4 indicate that the ED-LSTME model delivered the best performance in each season 
(R2 = 0.8209, 0.8425, 0.8769, and 0.9066 for the testing data from spring, summer, autumn, and winter, re-
spectively). It was followed by the encoder-decoder LSTM, LSTM, DNN, and ARIMA models (R2 values of 
0.7332, 0.7963, 0.0659, and 0.0204, respectively); the IRI 2016 model delivered the worst performance. This 
indicates that relatively advanced models achieved significantly better TEC-estimation accuracy than did 
simpler models based on their consideration of more space environment parameters.
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Figure 5.  Spatial differences in the RMSE value between observed and estimated TEC values over GPS stations in 
China. (a) ED-LSTME model; (b) encoder-decoder LSTM model; (c) LSTM model; (d) DNN model; (e) ARIMA model; 
(f) IRI 2016 model. ARIMA, autoregressive integrated moving average; DNN, deep neural network; ED-LSTME, 
encoder-decoder long short-term memory extended; IRI, International Reference Ionosphere; LSTM, long short-term 
memory; RMSE, root mean square error.
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In addition, despite outperforming the conventional methods, the performance of the DNN model was 
slightly inferior to those of the LSTM-based models in each season; this suggests that the LSTM models 
could learn (or “remember”) larger temporal dependence and to perform well in time-series forecasting. 
Overall, prediction error was largest in winter, although the winter TEC is smaller than those in spring and 
summer. This may reflect the effects of solar activities.

The performances of most models on the seasonal scale were considerably better than those on the annual 
scale, thus highlighting the effect of seasons on TEC estimation. The R2 values obtained using conventional 
models (DNN, ARIMA, and IRI 2016) at the seasonal scale (especially in spring and summer) were signifi-
cantly improved over those obtained at the annual scale, thus verifying that conventional models are more 
appropriate for seasonal observations.

4.4.  Variation in Model Performance Owing to Solar and Geomagnetic Activity

To further investigate the prediction abilities of the proposed models under varying ionospheric conditions 
at diverse locations and times, the TEC values obtained on quiet days (Kp < 3.0 or ap < 56) and under dis-
turbed conditions (Kp > 3.0 or ap > 56) were compared. The geomagnetic activity indices Kp and ap were 
utilized to determine the quietest and most disturbed days of every month, as it is known that ionospheric 
variability significantly increases during geomagnetic activity.

XIONG ET AL.

10.1029/2020SW002706

13 of 20

Figure 6.  Bar graph illustrating the R2 (upper left), mean absolute error (MAE; upper right), root mean square error (RMSE; lower left), and correlation 
coefficient (ρ; lower right) between the measured and predicted TEC values estimated using the ED-LSTME, encoder-decoder LSTM, LSTM, DNN, ARIMA, 
and IRI 2016 models. ARIMA, autoregressive integrated moving average; DNN, deep neural network; ED-LSTME, encoder-decoder long short-term memory 
extended; IRI, International Reference Ionosphere; LSTM, long short-term memory; TEC, total electron content.
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Tables S5 and S6 and Figure 8 present the specific errors of the models. The ED-LSTME model yielded the 
best prediction results based on the comparison of errors for quiet days and disturbed conditions. Under dis-
turbed conditions, the RMSE increased by 5.04/1.89 TECU (Kp/ap), and the R2 value decreased by 0.11/0.08 
TECU (Kp/ap). The other five models exhibited diverse changes. Notably, only the ED-LSTME model could 
accurately capture complex trends during storms and other geomagnetic disturbances, likely because this 
model considered solar and geomagnetic activity values as input data. In order to further verify whether 
the performance can be improved by adding auxiliary input, extended LSTM (LSTME) and extended DNN 
(DNNE) models have been developed by adding solar and geomagnetic activity values as auxiliary inputs. 
Taylor diagrams in Figure S2 shows that both the error standard deviation and correlation of LSTME and 
DNNE performed better than that of LSTM and DNN, respectively. The biases are also less in the LSTME 
and DNNE models. Overall, the ED-LSTME is still the best performing model and shows a strong capability 
in TEC forecasting across the solar and geomagnetic activity.

Further, to better verify the effectiveness of the proposed ED-LSTME model, we selected four quiet days 
(days with a Kp index under 3.0) in spring (March 11, 2017), summer (August 16, 2017), autumn (Septem-
ber 10, 2017), and winter (December 10, 2017) as test cases. The TEC results obtained using the proposed 
ED-LSTME model, encoder-decoder LSTM, LSTM, ARIMA, and IRI 2016 models, NeQuick model (Nava 
et al., 2008), and GPS observations at 15 stations are compared in Figure 9. Twelve stations covering differ-
ent geographical locations were selected, including WUSH, HRBN, TASH, and SUIY stations at high lati-
tudes; YANC, LUZH, TAIN, and XNIN at midlatitudes; and KMIN, XIAM, QION, and XIAG at low latitudes. 
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Figure 7.  Seasonal variations in the R2 (upper left), MAE (upper right), RMSE (lower left), and ρ (lower right) values between measured and predicted TEC 
values using the ED-LSTME, encoder–decoder LSTM, LSTM, DNN, ARIMA, and IRI 2016 models. ARIMA, autoregressive integrated moving average; DNN, 
deep neural network; ED-LSTME, encoder-decoder long short-term memory extended; IRI, International Reference Ionosphere; LSTM, long short-term 
memory; MAE, mean absolute error; RMSE, root mean square error; TEC, total electron content.
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Figure 9 demonstrates that the TEC estimated by the ED-LSTME model agrees with the observed TEC, 
implying that the model is notably superior to other methods with respect to capturing diurnal variations 
in TEC, while NeQuick and IRI 2016 models only captured the overall trends of the actual data. At low-lat-
itude stations such as XIAM and XIAG, model performance was weaker due to the EIA.

To study the prediction performance of the models under conditions of geomagnetic disturbance, we select-
ed four intense geomagnetic storms (with Kp > 3.0) in 2017 and analyzed their effects on the predicted TEC. 
These storm events (Kp index above 3.0) occurred on March 2 (spring), August 19 (summer), September 8 
(autumn), and December 5 (winter). Figure S1 shows that the ED-LSTME model could predict the TEC 
disturbances associated with these geomagnetic storms for all stations. The ED-LSTME model's perfor-
mance was particularly strong at WUSH, YANC, and KMIN stations and was typically better in spring than 
in winter.

The uncertainty of the proposed ED-LSTME model is shown in Figure 9 and Figure S1. We calculated the 
standard deviation between the results obtained using the proposed ED-LSTME model and GPS observa-
tions and considered the result to represent the uncertainty of the proposed ED-LSTME model. As param-
eter tuning of the proposed deep-learning model is time-consuming and challenging, we cannot guarantee 
that optimized parameters were obtained for the models trained at each GPS station; however, most cases 
were covered through the grid search method employed in our study. Still, this introduced additional uncer-
tainty to the TEC forecasts of the proposed model.
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Figure 8.  Bar graphs of the R2 (upper left), MAE (upper right), RMSE (lower left), and ρ (lower right) between GPS-measured TEC values and the predicted 
values under varying solar and geomagnetic activity levels in 2017. MAE, mean absolute error; RMSE, root mean square error; TEC, total electron content.
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4.5.  Discussion

The results imply that all the tested deep-learning models had high learning levels and prediction abilities, 
with potential variations owing to their diverse learning methods (Tien et al.,  2020). The deep-learning 
models were more flexible than conventional models with respect to nonlinear learning, particularly of 
large datasets, although their implementation was more complex than that of traditional machine-learn-
ing models. In conventional machine-learning models, most input features require expert classification to 
reduce the complexity of the data and make the patterns more accessible to the learning algorithms. In con-
trast, the deep-learning models incrementally learned to extract high-level features from the data, negating 
the need for expert feature classification.

Although the results of this study confirmed that LSTM-based deep-learning models can be used for short-
term predictions (e.g., using one-day historical input TEC data to forecast 3 h of TEC data), future studies 
should focus on the capability of deep-learning models to estimate TEC in the medium and long terms. 
Preprocessing methods, such as the combination of wavelet decomposition with deep-learning models, 
could also be explored for TEC forecasting. Decomposition methods can be utilized to remove noise from 
the data, improving the model accuracy. Furthermore, the hybrid CNN–LSTM model, deep reinforcement 
learning, generative adversarial network, and other deep-learning models should also be explored. Moreo-
ver, the storm-time ionospheric prediction is usually related to seasonal variation. Tang et al. (2020) found 
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Figure 9.  Comparison of the TECs predicted by the ED-LSTME (black solid line), ED-LSTM (green short dashed dot), LSTM (blue short dashed dot), ARIMA 
(cyan short dashed dot), IRI 2016 (magenta short dashed dot), and NeQuick (yellow short dashed dot) models and that recorded in GPS data (red solid line) 
from 15 different stations during quiet periods on March 11 (spring), August 16 (summer), September 10 (autumn), and December 10 (winter), 2017. ARIMA, 
autoregressive integrated moving average; ED-LSTME, encoder-decoder long short-term memory extended; IRI, International Reference Ionosphere; LSTM, 
long short-term memory; TEC, total electron content.
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that the LSTM-based ionospheric storm-time prediction model shows a significant dependence on seasonal 
variation, which provides a new dimension for our future research.

5.  Conclusions
In this study, an ED-LSTME model was proposed to predict ionospheric TEC based on historical TEC, solar 
flux, and geomagnetic-activity data, and it demonstrated good performance in modeling time series with 
long time dependencies and in identifying optimum time lags and prediction horizons. To evaluate the per-
formance of the proposed model, 15-min TECs from GPS measurements over one solar cycle were collected 
from 15 GPS stations in China. The same datasets were used to compare six different models: ED-LSTME, 
encoder-decoder LSTM, LSTM, DNN, ARIMA, and IRI 2016. The models were trained using optimal hyper-
parameters. Regarding R2, RMSE, MAE, and correlation coefficient, the ED-LSTME outperforms the other 
algorithms, and compared with conventional models, such as ARIMA and IRI 2016, deep learning-based 
models delivered better prediction performance. In comparison with the DNN model, the proposed ED-
LSTME, Encoder-Decoder LSTM, and conventional LSTM identify spatiotemporal correlations more effec-
tively and deliver better prediction performances. The performances were significantly improved with the 
use of auxiliary data on solar flux and geomagnetic activity.

To more accurately assess the prediction performances of the models, geographical location, seasonal var-
iation, and geomagnetic-activity variations were also considered as factors affecting TEC estimation. The 
RMSEs obtained for the six models were larger at low latitudes, which might have been due to the EIA. Data 
sets for each season were established to determine seasonal variations in model performances. The results 
revealed that the proposed model had good predictive power in each season and that seasonal observations 
were more suitable than annual observations. Under both quiet and disturbed conditions, the ED-LSTME 
model effectively predicted short-term changes in TEC during solar flux and geomagnetic events.

Long-term predictions are more difficult than short-term predictions, as they require more pertinent his-
torical input data. Hence, the investigation of the performance of different deep-learning models to make 
medium- and long-term TEC predictions is recommended for future studies, as is the operational imple-
mentation of the proposed model.

Data Availability Statement
The GNSS data of CMONOC can be accessed from the platform of the GNSS data analysis center SHAO 
(SHA: http://www.shao.ac.cn/shao_gnss_ac). The geomagnetic activity index Kp was provided by the GFZ 
German Research Centre for Geosciences (https://www.gfz-potsdam.de/en/kp-index/). The solar activity 
index F10.7 was downloaded from SPDF OMNIWeb database (https://omniweb.gsfc.nasa.gov/form/dx1.
html). The IRI-2016 and NeQuick-2 models are publicly available on http://irimodel.org and https://t-ict4d.
ictp.it/nequick2/nequick-2-web-model, respectively.
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