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Learning Polar Encodings for Arbitrary-Oriented
Ship Detection in SAR Images

Yishan He , Fei Gao , Jun Wang, Amir Hussain, Erfu Yang , and Huiyu Zhou

Abstract—Common horizontal bounding box-based methods are
not capable of accurately locating slender ship targets with arbi-
trary orientations in synthetic aperture radar (SAR) images. There-
fore, in recent years, methods based on oriented bounding box
(OBB) have gradually received attention from researchers. How-
ever, most of the recently proposed deep learning-based methods
for OBB detection encounter the boundary discontinuity problem
in angle or key point regression. In order to alleviate this problem,
researchers propose to introduce some manually set parameters
or extra network branches for distinguishing the boundary cases,
which make training more difficult and lead to performance degra-
dation. In this article, in order to solve the boundary discontinuity
problem in OBB regression, we propose to detect SAR ships by
learning polar encodings. The encoding scheme uses a group of
vectors pointing from the center of the ship target to the boundary
points to represent an OBB. The boundary discontinuity problem
is avoided by training and inference directly according to the
polar encodings. In addition, we propose an intersect over union
(IOU)-weighted regression loss, which further guides the training
of polar encodings through the IOU metric and improves the
detection performance. Comparative experiments on the bench-
mark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate
the effectiveness of our proposed method in terms of enhanced
detection performance over state-of-the-art algorithms and other
OBB encoding schemes.

Index Terms—Arbitrary-orientated, polar encodings, ship
detection, synthetic aperture radar (SAR).
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I. INTRODUCTION

SHIP detection in synthetic aperture radar (SAR) images is
an important branch in SAR image interpretation. It can be

widely applied in many fields, such as harbor monitoring, fishery
monitoring, maritime traffic monitoring, intelligence acquisi-
tion, and so on [1]–[5]. Therefore, it has attracted much atten-
tion in recent years. Traditional SAR ship detection algorithms
usually include multisteps as follows: 1) Sea-land segmentation;
2) image preprocessing; 3) candidate region extraction; and 4)
false alarm rejection. Based on the pipeline, researchers have
proposed a variety of methods, which can be mainly classified
as threshold-based [6], [7], saliency-based [8], [9], hand-crafted
feature-based [10], [11], and statistical modeling-based meth-
ods [12], [13]. With the increase of SAR data amount and res-
olution, these methods face difficulties in meeting the practical
demands in terms of accuracy, robustness, and speed [14]–[18].
It is mainly due to their complex detection flows and high depen-
dence on prior knowledge such as specific statistical distribution
modeling and manually designed features [19]–[23]. Hence, it
is urgent to develop smarter and more automated SAR ship
detection methods.

Recently, with the development of deep learning theories and
the substantial improvement of the hardware, deep convolutional
neural network (DCNN)-based algorithms have achieved great
success in computer vision fields, such as target detection,
recognition, segmentation, tracking, and so on [24]–[31]. In the
field of target detection, Ren et al. [32] extracted candidate target
regions through region proposal network (RPN) in faster-RCNN
and conducted end-to-end training to achieve high detection
accuracy and speed. To achieve higher efficiency, researchers
put forward to use DCNN to directly regress the target loca-
tions without extracting candidate regions, such as single-shot
multibox detector (SSD) [33], RetinaNet [34], YOLO [35],
[36], etc. In addition, methods based on key point detection
have received much concern lately [37]–[40]. For instance, Law
et al. [37] proposed to locate targets by regressing the upper left
and lower right corners of the bounding boxes; CenterNet by
Xing et al. [38] detected targets by locating the center points
and the length and width of the bounding boxes. In the task of
ship detection in SAR images, the DCNN-based algorithms also
achieve great performance. For example, Deng et al. [21] trained
DCNN-based ship detector from scratch on SAR dataset by
introducing dense blocks and new training losses; Liu et al. [41]
combined pyramid features extracted by DCNN into sea-land
segmentation and the ship detection process; Gao et al. [42]
improved CenterNet by attention mechanism and feature reuse
strategy to achieve good performance in SAR ship detection.
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Fig. 1. Comparison between the HBB-based detection and OBB-based detec-
tion. (a) Results of HBB-based detection. (b) Results of OBB-based detection.

The above methods all adopt the horizontal bounding box
(HBB) for target localization. However, HBB-based methods
suffer certain difficulties. In SAR images, ship targets are
slender, arbitrary-oriented, and sometimes densely distributed.
In these cases, HBB-based methods may fail. As shown in
Fig. 1(a), the HBBs of the ship targets are overlapped and hard to
be distinguished from each other. To overcome such difficulty,
researchers turned to oriented bounding box (OBB)-based
methods. As shown in Fig. 1(b), the OBB-based detection
results can clearly indicate the shape and orientation of the
ship targets, which effectively avoid overlapping and give more
accurate results.

OBB-based detection methods can be mainly categorized
as three types: 1) Anchor-based methods; 2) angle prediction-
based methods; and 3) key point regression-based methods.
Anchor-based methods locate targets by predicting the errors
between the preset anchors and the actual bounding boxes of
the targets. For example, Xia et al. [43] proposed FRCNN-OBB
algorithm, which utilized Faster-RCNN-based framework to
regress the errors between the OBBs and horizontal anchors.
Ding et al. [44] trained DCNN to transform horizontal region
of interest (H-ROI) into rotated region of interest (R-ROI), so
as to improve the feature extraction ability of the network for
arbitrary-oriented targets. For angle prediction-based methods,
the OBB of the target is identified by these parameters: The
location of the target, the length, width, and rotation angle
of the bounding box. For instance, Hu et al. [45] put for-
ward to use 2-D periodic vectors to represent the angle of
OBB, and a length-independent intersection over union met-
ric is proposed to guide network training. Yang et al. [46]
predicted the rotation angle of OBB by classification rather
than regression and designed a periodic loss function, so as to
alleviate the boundary discontinuity for OBB regression. Key
point regression-based methods represent OBB as key points.
For example, Yi et al. [47] denoted target OBBs with four vectors
distributed in different quadrants of Cartesian coordinates. Xu
et al. [48] first predicted the horizontal enclosing rectangle of the
target OBB, then regressed the distances between the vertices of
the enclosing rectangle and the vertices of the OBB to position
the OBB. Zhao et al. [49] regressed the polar coordinates of the
four vertices of the target OBB to achieve OBB localization.
Fu et al. [50] detected the OBB of the target by utilizing fully
convolutional networks to locate a group of points distributed
evenly inside the OBB.

In the field of ship detection in SAR images, OBB-based
methods have also been widely studied. For example, Wang

et al. [51] proposed an improved SSD network, where the
angle information was utilized to further encode the orientation
of the ship targets. Chen et al. [52] built a feature alignment
module to extract the features of the ship targets more accurately
based on oriented anchors. Chen et al. [53] designed multilayer
anchors and rotation nonmaximum suppression postprocessing
to improve the detection performance for oriented ship targets.
Pan et al. [54] used rotating region proposal network (RRPN)
to extract candidate target regions, and then multilayer cascade
network was employed to fine tune the OBB detection results.
An et al. [55] proposed multilayer anchor settings and a new
encoding scheme to compute the errors between anchors and
the predicted OBBs, so as to alleviate the boundary discontinuity
problem in OBB prediction.

The forementioned OBB-based methods encounter the
boundary discontinuity problem in varying degrees. The causes
of the problem can be attributed to two sides, the periodicity of
angle (POA) and the exchangeability of edge (EOE) [45], [48],
[56]. The boundary discontinuity problem leads to mismatch-
ing between annotations and predictions during the training
stage, causing performance degradation. To deal with the prob-
lem, researchers propose different approaches. For example, Yi
et al. [47] and Xu et al. [48] first set a fixed threshold manually
for distinguishing HBB from OBB, and added a network branch
to classify the target bounding box as HBB or OBB. Differ-
ent regression rules were adopted for different kinds of target
bounding boxes. However, this kind of solution leads to more
complex network structures, difficulty on tuning the parameters,
and decrease of the network convergence. Hu et al. [45] used
periodic loss function for angle regression of OBB to reduce the
negative influence of the POA on network training. However, this
approach still needs to manually set parameters to define when
the boundary discontinuity problem occurs. Yang et al. [46]
transformed the task of angle regression into angle classification,
so as to avoid the boundary discontinuity problem. However,
angle quantization brings unacceptable computation burden on
the classification task, leading to poor real-time performance.

To provide a direct and effective solution for the boundary
discontinuity problem, in this article, we propose to detect ship
targets in SAR images based on polar encodings. Through the
polar encoding and decoding process, the boundary disconti-
nuity problem can be naturally addressed. To be specific, we
encode the OBB of the ship target by sampling a group of
ordered boundary points on the OBB. In this way, the ground
truth is in one-to-one correspondence with the prediction at each
fixed angle, which prevents ambiguity in training. Furthermore,
the function of the sampling distance to the sampling angle is
periodic, which guarantees the continuity in boundary cases.
In addition, to further guide the training of polar vectors and
improve the detection performance, we propose to use intersect
over union (IOU) metric to weight the regression loss. The
experimental results on the rotating SAR ship detection dataset
(RSSDD) are given to verify the effectiveness of the proposed
polar encoding scheme and the IOU-weighted regression loss
function. The comparison results with other OBB-based detec-
tion methods demonstrate that our method outperforms other
comparison methods, achieving better detection results.

The rest of the article is organized as follows: Section II
describes the boundary discontinuity problem and our proposed



3848 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Overall architecture of our method. The network structure can be divided into three parts: The feature extraction backbone, the feature refinement network
,and the OBB detection branches. They output the center heatmap P, the center offset map O, and the encoding map E, respectively. In the training stage, the output
of the detection branches is combined with the center information and the encoded OBB parameters for calculating the multipart loss function. In the inference
stage, the polar decoding process is proposed to obtain the detection results, and NMS algorithm is used for removing the duplicate targets.

method as solution in detail. The experimental results on RSSDD
dataset are given in Section III. Section IV presents discussions.
Section V concludes this article.

II. PROPOSED METHOD

The overall architecture of our method is illustrated in Fig. 2.
First, the input SAR image is fed as input of the ResNet-
101 feature extraction backbone [57], through which features
of five different scales {F1, F2, F3, F4, F5} are obtained. As
the shallowest feature F1 contains little semantic information,
{F2, F3, F4, F5} are chosen to be combined through feature
fusion module, and the resolution of the final output feature
Ffinal is 1/4 as the input image. Ffinal is then processed by
three network branches, from which we can obtain the center
heatmap P , the center offset map O, and the encoding map E,
respectively. In the training stage, the multipart loss function
is calculated according to the center information of the ship
targets and the polar encodings. The losses are combined to
train the branches jointly. In the inference stage, the output of
the branches is decoded through the polar decoding process.
And the nonmaximum suppression algorithm (NMS) is adopted
to remove the duplicate detections and obtain the final detection
results. In the polar encoding process, for each ship target, we
sequentially sample the distances between the center point of
the ship target and the boundary of the OBB every π/N in the
range of [0, π). The sampled N values are combined to form an
encoding vector. Due to the central symmetry of the OBB, the
encoding vector can represent the shape of the whole OBB. In
the polar decoding process, the center points of the ship targets
are first extracted from P . Then the downsampling quantization
errors are compensated in terms of the predictions from O.
The OBBs of the ship targets are finally restored through the
processes of extracting the polar vectors from E, converting
the polar vectors into the boundary point sets, and finding the
minimum bounding boxes (MBB) of the point sets.

In this section, we will first introduce the boundary discon-
tinuity problem from OBB detection; then we will describe the
network architecture and the specific process of polar encod-
ing and decoding in detail; finally, we will introduce the loss
functions for network training.

A. Boundary Discontinuity Problem

For OBB-based methods, problems occur in the boundary
cases where the predictions of the OBB parameters will change
discontinuously. In particular, the boundary discontinuity prob-
lem can be attributed to two reasons: The periodicity of angle
(POA) and the exchangeability of edge (EOE). Due to the POA,
the angle parameter suffers discontinuity. For instance, the lower
and upper bounds of the angle parameter denote basically the
same orientation but their values differ greatly. The EOE refers
to the problem that the order of the lengths or key points of the
OBB will suddenly change in the boundary cases, leading to
discontinuity. The discontinuity caused by POA and EOE will
lead to a high loss value even if the OBBs from the prediction
and the ground truth share high overlap, which is prone to cause
the convergence problem.

For angle prediction-based methods, there are mainly two
kinds of representations for OBB: 90◦-based representation and
180◦-based representation. In both cases, the OBB is deter-
mined by the center point, length, width, and rotation angle
(ct, w, h, α). For 90◦-based representation, the rotation angle
is defined as the angle from the x-axis counterclockwise to the
first coincident edge of the OBB, the range of which is [0, 90◦).
The length of the first edge that coincides is denoted as w. A
typical boundary case is shown in Fig. 3(a). The predicted edges
and angles are mismatch with the ground truth due to the POA
and EOE. For the 180◦-based representation, the rotation angle
α is determined according to the angle from the x-axis to the long
side of the OBB. The range of α is (−90◦, 90◦]. As shown in
Fig. 3(b), in the boundary case, the edges of the predicted OBB
and the ground truth correctly correspond to each other, but the
angle suffers discontinuity because of the POA. In addition, the
performance of the angle prediction-based methods is sensitive
to angle prediction errors [49], [56]. As shown in Fig. 4, with
large aspect ratios of the OBB, the small angle prediction errors
will cause a rapid drop in IOU. It makes it difficult for the loss
function to guide the training of the network

For key point regression-based methods, similar problems
exist. Yi et al. [47] expressed the target OBB as a group of
midpoints from four edges of the OBB. The four midpoints are
distributed in the four quadrants of the Cartesian coordinates, re-
spectively. In this way, the one-to-one correspondence between
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Fig. 3. Boundary cases for different OBB-based methods, the blue rectan-
gle denotes the ground truth, the red rectangle represents the prediction. (a)
Boundary case for 90◦-based representation. (b) Boundary case for 180◦-based
representation. (c) Boundary case for [47]. (d) Boundary case for [48].

Fig. 4. OU sensitivity of the angle regression. (a) Relationship between the
angle error and the detection IOU for OBBs with different aspect ratios. (b)
Local view of (a).

the prediction and the ground truth is established. The boundary
case of this method is shown in Fig. 3(c). When the prediction
and the ground truth share high overlap, the distance errors
between the actual point set (p1,p2,p3,p4) and the predicted
point set (p′

1,p
′
2,p

′
3,p

′
4) is large due to the EOE problem.

Xu et al. [48] determined the shape and orientation of OBB
by regressing four distances between the four vertices of OBB
and that of the HBB. As shown in Fig. 3(d), in the boundary
case, the errors between the predicted distances (s1, s2, s3, s4)
and the ground truth (s′1, s

′
2, s

′
3, s

′
4) are too large to indicate

the actual overlap degree. In this article, in order to avoid the
forementioned boundary discontinuity problems, we propose an
encoding and decoding scheme for OBB-based ship detection
in SAR images.

B. DCNN Architecture of Our Method

The overall DCNN structure of our method is illustrated in
Fig. 2. It can be divided into three parts: The feature extraction
backbone, the feature refinement network, and three branch

networks for OBB detection. The detailed structure is described
as follows.

1) Feature Extraction Backbone: We adopt ResNet-101 [57]
as the feature extraction backbone. It consists of five convolu-
tional stages. With the stage going deeper, the resolution of the
features gradually decreases, the receptive field and the semantic
information increase. Given the input SAR image I ∈ RH×W×3,
the feature extraction backbone generates five scales of features
{F1, F2, F3, F4, F5}.

2) Feature Refinement Network: The deep features contain
richer semantic information and larger receptive fields, which are
suitable for detecting large ship targets. And the shallow features
are of high resolution, which are helpful for detecting small tar-
gets. Therefore, different scales of features, {F2, F3, F4, F5} are
fused in the upsampling process by the feature fusion module.
As shown in Fig. 2, for two input features of different scales,
the feature fusion module first upsamples the lower resolution
feature and performs a 3×3 convolution. Then the upsampled
features are concatenated channel-wise with the high-resolution
feature. The output feature is obtained by employing a 1×1
convolution for channel dimension reduction. The process of
the feature fusion module can be represented as follows:

Fout = Fl ⊗ Fh

= Conv1×1(Conv3×3(Upsample2×(Fl))� Fh)
(1)

where Fl denotes the low-resolution input feature, Fh is the
high-resolution input feature, ⊗ denotes the feature fusion oper-
ation by the feature fusion module, Upsample2× stands for the
upsampling operation, and � represents the channel concatena-
tion operation. {F2, F3, F4, F5} are fused through feature fusion
module successively as follows:

Ffinal = ((F5 ⊗ F4)⊗ F3)⊗ F2 (2)

where Ffinal is the high-resolution feature output by the feature
refinement network, whose size is 1/4 of the input SAR image.

3) OBB Detection Branches: The feature output by the fea-
ture refinement network is then fed as input of three network
branches, namely, the center prediction branch, the offset re-
gression branch, and the encoding regression branch. The center
prediction branch and the offset regression branch are both
composed of a 3×3 convolution and a 1×1 convolution, which
output the center heatmap P ∈ RH̃×W̃×1 and the offset map
O ∈ RH̃×W̃×2, respectively. The process of the center prediction
branch and the offset regression branch can be expressed as
follows:

P = Conv1×1(Conv3×3(Ffinal))

O = Conv1×1(Conv3×3(Ffinal)). (3)

The encoding regression branch consists of two cascaded 7×7
convolutions and outputs the encoding map E ∈ RH̃×W̃×N ,
where N is the number of encoding points. The process of the
encoding regression branch can be represented by the following
equation:

E = Conv7×7(Conv7×7(Ffinal)). (4)

The detection results can be obtained by these three outputs
through polar decoding process, which will be described in detail
below.
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Fig. 5. Diagram of the polar encoding process. The polar vectors Q are vectors pointing from the center to the boundary of the OBB. The lengths of the vectors
are encoded as the OBB parameters e.

C. Polar Encoding

To avoid the boundary discontinuity problem, we propose
to encode the OBB of ship target into a group of sequential
values by using polar coordinates. The encoding diagram is
shown in Fig. 5. The boundary points of the OBB are sampled
at fixed angles. The distances between the boundary points
and the ship center are collected as the OBB parameters,
which can be predicted using DCNN. The steps of the polar
encoding are listed in Algorithm 1. For common methods,
the OBB of the ship target is annotated by its four corners
P = {pi|pi = (xi, yi), i = 1, 2, 3, 4}. The center point c can
be calculated by c = (xc, yc) =

∑4
i=1 pi/4. Then the corner

vectors pointing from the center to the corners can be obtained
by V = {vi|vi = (xi − xc, yi − yc), i = 1, 2, 3, 4}. For each
vector vi in V , calculate the vector angle αi

αi = (−1)u(yi-yc) · arccos
(
xi − xc

zi

)
(5)

where u(·) denotes the Heaviside function, zi =√
(xi − xc)

2 + (yi − yc)
2, the range of αi is (−π, π].

Next, sort the angles. The sorted angles divide (−π, π] into
four intervals: (α′

1, α
′
2], (α

′
2, α

′
3], (α

′
3, α

′
4], (−π, α′

1] ∪ (α′
4, π].

In this way, the four edges of the OBB are in one-to-one
correspondence with the four angle intervals, which is helpful
for calculating the OBB parameters. According to the preset
parameter N , boundary points are sampled from the OBB every
π/N . The OBB parameters can be obtained by calculating the
distances between the boundary points and the center point.
Given the sampling angle θi, assume that the polar coordinates of
the two endpoints of the corresponding edgeE′

jk are (r′j , α
′
j) and

(r′k, α
′
k), then the distance di from the center point to sampled

boundary point can be calculated by

di =
r′jr′k sin(α′

j − α′
k)

r′k sin(θi − α′
k) + r′j sin(α′

j − θi)
. (6)

Because of the central symmetry of the OBB, the encoded pa-
rameters e = (d1,d2, · · · ,dN ) can actually represent 2N bound-
ary points distributed around the OBB. In addition, due to the

central symmetry, the process of obtaining the OBB parameters
is equivalent to sampling from a periodic function with period π
in the interval [0, π). And the rotation of the OBB is equivalent to
the translation of the periodic function. The periodicity ensures
the natural continuity in the boundary cases, which is helpful for
improving the performance of the network (see Section IV-B).

D. Polar Decoding

The overall diagram of the polar decoding process is shown
in Fig. 6, and the processing steps are given in Algorithm 2. The
polar decoding process decodes the information from the center
heatmap P ∈ RH̃×W̃×1, the center offset map O ∈ RH̃×W̃×2

and the encoding map E ∈ RH̃×W̃×N into the detection results.
To be specific, first, a 3×3 maxpooling layer is employed to
process the center heatmapP and outputP ′. The ship centersC :



HE et al.: LEARNING POLAR ENCODINGS FOR ARBITRARY-ORIENTED SHIP DETECTION IN SAR IMAGES 3851

Fig. 6. Diagram of the polar decoding process, where the outputs of the detection branches are combined to produce the detection results. The center heatmap P
and the center offset map O are used for obtaining the center locations of the ship targets. The detection results can be achieved through boundary point extraction
and finding the MBB from the predicted encoding map E.

{(xj , yj)|j = 1, 2, . . . K} are collected by finding points such
that Maxpool3x3(P ) = P , where K denotes the number of the
detected centers. For each center point (xi, yi), the predicted
downsampling quantization errors (Δxi,Δyi) can be obtained
from the corresponding location of the offset map O. Hence, the
coordinate of the ith refined center point can be represented as
(xi +Δxi, yi +Δyi).

Next, for each detected ship center, the N channels of val-
ues from the corresponding location in E are extracted as the
predicted OBB parameters. Let e = (d1, d2, . . . , dN ) denote
the predicted OBB parameters of the ith ship target. Since the
parameters represent the distances between the boundary points
and the center point of the OBB at fixed angles, the boundary
point set S of the OBB can be restored as

S = {(jα, dj) |j = 0, 1, . . . N − 1}∪
{(π + jα, dj) |j = 0, 1, . . . N − 1} (7)

where α= π/N denotes the sampling interval angle.
The next step is to calculate the MBB of S. First, we cal-

culate the convex hull of S, denoted by H = {(xh
j , y

h
j )|j =

1, 2, . . .M}. Next, for the kth edge
⇀

Ek=(xh
k+1 − xh

k , y
h
k+1 −

yhk ) ofH , we obtain the unit vectors of its parallel and orthogonal
directions by

⇀

ekp = (xh
k+1 − xh

k , y
h
k+1 − yhk )/

∣∣∣⇀Ek

∣∣∣
⇀

e ko = (yhk+1 − yhk , x
h
k − xh

k+1)/
∣∣∣⇀Ek

∣∣∣
(8)

where
⇀

ekp and
⇀

eko denote the unit vectors parallel and orthogo-
nal to the edge, respectively. Then the maximum and minimum
projections of the vertexes of H in the parallel and orthogonal
directions are calculated by

maxp = max
j

(∣∣∣(xh
j , y

h
j ) �

⇀

ekp

∣∣∣)

minp = min
j

(∣∣∣(xh
j , y

h
j ) �

⇀

ekp

∣∣∣)

maxo = max
j

(∣∣∣(xh
j , y

h
j ) �

⇀

eko

∣∣∣)

mino = min
j

(∣∣∣(xh
j , y

h
j ) �

⇀

eko

∣∣∣) (9)

where maxp,minp stand for the maximum and minimum pro-

jection parallel to
⇀

Ek, and maxo,mino denote the maximum

and minimum projection orthogonal to
⇀

Ek. By calculating the
difference between the maximum projection and the minimum
projection in two directions, we can estimate the side lengths of
the bounding box in the kth direction

lp = maxp −minp, lo = maxo −mino (10)

where lp and lo are the lengths of the two sides of the bounding
box, respectively; areak = lp · lo represents the area of the kth
bounding box. For all the edges of H , the above calculations
are carried out to find the smallest bounding box, which is taken
as the estimated MBB of the ith ship target. The process is as
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follows:

MBBi = argmin
BBk

(areak) (11)

where BBk is the calculated bounding box in the kth direction.
We compute MBBs of all ship targets as the detection results.

E. Loss Function

The training loss of our method is composed of three parts,
corresponding to three OBB detection branches.

For the center prediction branch, we adopt the same training
approach as [38]. First, for each ship center in the SAR image, a
2-D Gaussian mask is generated at the corresponding position of
the ground truth map. The standard deviation σ of the Gaussian
distribution is set to 1/3 of the ship width. When two Gaussian
masks overlap, the larger value is taken for every overlapped po-
sition. The loss for the center prediction branch can be calculated
by

Lhm = − 1

K

∑
xy

{
P̄ α
xy log(Pxy) if Yxy = 1

Ȳ β
xyP

α
xy log(P̄xy) otherwise

(12)

where P ∈ [0, 1]H̃×W̃×1 denotes the output center heatmap;

Y ∈ [0, 1]H̃×W̃×1 is the ground truth map; P̄xy = 1− Pxy and
Ȳxy = 1− Yxy; α and β are hyper parameters to control the
attention for difficult samples, which are set empirically to 2
and 4, respectively, as in [38]; K is the number of ship targets
in the SAR image.

Because the resolution of the output is 1/4 of the input SAR
image. The discrete quantization errors are produced in the
downsampling process. The center offset regression branch is
used for predicting the errors. The center offset regression branch
is supervised with the following loss:

Loff =
1

K

N∑
k=1

∣∣∣�Oc̃k − (
ck
R

− c̃k)
∣∣∣ (13)

where R represents the downsampling rate, which is 4 in this
article; ck=(xc

k, y
c
k) ∈ R2 denote the coordinates of the kth

ship center after downsampling quantization; c̃k = �ck/4	 is

the downsampled coordinates of the kth ship target;
�

Oc̃k is the
predicted discrete quantization error from the offset map O at
corresponding kth center location.

For the encoding regression branch, we use smooth-L1 loss for
supervised training. But the encoded boundary points contribute
to the detection IOU differently. In order to further guide the
training of the encoded parameters directly by the IOU metric,
we propose to use the IOU metric to weight the smooth-L1 loss.
The final loss for the encoding regression branch is calculated
as follows:

Lencode =
1

K

N∑
k=1

⎛
⎝1 + γ

− log(IOU)∣∣∣Ls(Êck , ek)
∣∣∣

⎞
⎠Ls(Êck , ek)

Ls(x1, x2) =

{
0.5(x1 − x2)

2 |x| < 1
|x1 − x2| − 0.5 otherwise

(14)

where Êck and ek stand for the predicted and the actual encoded
parameters of the kth ship target; IOU represents the IOU

Fig. 7. Several SAR images in the RSSDD dataset.

calculation operation for the predicted and the actual OBB of
the kth ship target; Ls(�) is the smooth L1 regression loss; γ
is the weight parameter, which is set to 1 in our experiment.
By dividing the magnitude of the smooth-L1 loss, the IOU
metric provides the gradient magnitude and the smooth-L1 loss
determines the direction of the gradient.

Finally, the three parts of the loss are combined to form the
overall loss function

Ltotal = Lhm + Loff + Lencode. (15)

F. Dataset Description and Experimental Settings

III. EXPERIMENTAL RESULTS

In this section, we report the experiments carried out on the
RSSDD dataset in detail to evaluate the effectiveness of our
proposed method. First, the information of the dataset and the
experimental settings used in this article are described. Then, the
evaluation metrics are illustrated. Next, qualitative and quantita-
tive comparison results between the proposed method and other
OBB encoding schemes and other detection methods are given
to verify the effectiveness of the proposed method.

RSSDD is a publicly available OBB-based SAR ship detec-
tion dataset [58], composed of SAR images of multiresolution,
multipolarization, and multiscene. The specific information of
RSSDD is given in Table I. RSSDD contains 1160 SAR images
and 2456 ship targets, all of which are labeled with four corners
of the OBB. The sizes of the SAR images are different from one
another, from the smallest 217 × 214 to the largest 526 × 646.
The average size of the images is 481 × 331. In the experiments,
the dataset is divided into the training set and the test set
with the ratio of 8:2. To be specific, the training set contains
928 SAR images and the test set contains 232 SAR images.
The dataset contains a variety of scenes. As shown in Fig. 7,
Fig. 7(a)–(c) gives the examples of images with inshore scenes,
Fig. 7(d)–(f) shows several offshore scene images. As can be
seen, Fig. 7(a),(d) contains large ship targets, while other images
exhibit small scale ship targets. Compared with the offshore
scenes, the inshore scenes contain more land clutters, which
make the detection more difficult. Besides, the number of inshore
scene images is less. In order to better evaluate the performance
of the detector in different scenes, we further split the test set
into two kinds of scenes: The inshore scenes and the offshore
scenes, which contain 39 and 193 SAR images, respectively.
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TABLE I
DETAILED INFORMATION OF RSSDD DATASET

The input SAR images are resized to 608 × 608 in both the
training and the inference stage, and the output feature Ffinal is
with the resolution of 152 × 152. In the training stage, we use
the ImageNet pretrained weights to initialize the parameters of
the feature extraction backbone. The hyper parameter N in the
polar encoding process is set to 8. Adaptive moment estimation
(Adam) optimizer [59] is adopted as the training optimizer, the
weight decay of which is 0.0005. The initial learning rate is
set to 1.25 × 10-4. The learning rate is then adjusted according
to the exponential decay rule. The mini-batch size used in the
stochastic gradient descent algorithm is 8. The model is trained
in a total of 150 epochs. The algorithm is implemented with
the deep learning framework Pytorch [60]. The comparison
experiments are conducted based on the framework proposed
by [61]. All the experiments are carried out on the platform with
Ubuntu18.04 system, 32 G memory and Tesla P100 GPU.

A. Evaluation Metrics

Three widely adopted metrics, the precision-recall curve (PR
curve), AP, and F1 are used to evaluate the performance of the
models. For the PR curve, the recall rate (Rd) is taken as the
x-axis and the precision rate (Pd) is taken as the y-axis, which
can be calculated as follows:

Pd =
Ntd

Nd

Rd =
Ntd

Nr

(16)

where Ntd is the number of the correctly detected targets,
Nd denotes the total number of the detected targets, and Nr

represents the actual number of the targets. The AP metric quan-
titatively evaluates the comprehensive detection performance
of the detector by calculating the area under the PR curve as
follows:

AP =

∫ 1

0

Pd(Rd)dRd. (17)

AP measures the overall detection performance of the detector
under different thresholds. And the F1 metric indicates the com-
prehensive performance of the detector under the single-point
threshold. As F1 varies with thresholds, we take the maximum
F1 under all thresholds for comparison. The F1 metric is defined
as

F1 = 2 · Pd ·Rd

Pd +Rd
. (18)

B. Comparison With Different OBB Encoding Schemes

In order to evaluate the effectiveness of the polar encoding
scheme, we implement three different OBB encoding schemes

Fig. 8. PR curves of different OBB encoding schemes. (a) PR curves for the
inshore scenes. (b) PR curves for the offshore scenes.

based on the same center-point-based detection framework [38],
including the angle-based, the point-based, and the proposed
polar-based encoding scheme. These encoding schemes all
adopt the center prediction branch and the offset regression
branch to locate the center point of the target. But they represent
the OBB of the ship targets in different ways. Among them, the
angle-based scheme is the 90◦-based representation introduced
in Section II-A. It represents the position and shape of the OBB
by the center point, width, height, and the rotation angle of
the OBB. For the detailed introduction of point-based encoding
scheme see [47]. This method represents OBB by the center
point and four vectors pointing from the center point to the
midpoint of four edges of the OBB. In order to reduce the
boundary discontinuity problem, the method also distinguishes
HBB from OBB by training a classification branch. Different
regression rules are applied in the HBB and OBB prediction
process.

In order to quantitatively measure the detection performance
of the three encoding schemes, the detection metrics of the three
encoding schemes are listed in Table II. It can be seen that the
F1 and AP metric of our method are higher than those of the
other two methods in both scenes. In addition, the PR curves
of the three encoding schemes are shown in Fig. 8. We can
see that the PR curve of our method lies outer than those of
the other two methods, indicating that our method has better
detection performance. Because of the boundary discontinuity
problem and the IOU sensitivity problem in the angle regression,
the detection performance of the angle-based method is worse
than the other two methods in both scenes. To overcome the
boundary discontinuity problem, an extra classification branch
is required for the point-based method to distinguishing HBB
from OBB. It leads to extra training objectives and the decline
of the detection performance. For our method, the boundary
discontinuity problem is addressed by the specially designed
polar encoding and decoding process. The training objectives
are more direct and more concentrated, thus the overall detection
performance is improved.



3854 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE II
DETECTION METRICS OF DIFFERENT OBB ENCODING SCHEMES

Bold items denote the largest values in the columns.

Fig. 9. Detection results of different encoding schemes in the boundary cases,
the green rectangles denote the detected ship targets. (a) Ground truth. (b) Our
method. (c) Point-based method. (d) Angle-based method.

Fig. 9 gives the detection results of different encoding
schemes in the boundary cases. Fig. 9(a) gives the ground truth
and Fig. 9(b)–(d) shows the detection results of our method, the
point-based method and the angle-based method. It can be seen
from Fig. 9(b) that the proposed method can accurately locate
the ship targets in the horizontal direction, which benefits from
the boundary continuity of our polar encoding scheme. As can
be seen from Fig. 9(c) that the point-based encoding scheme
fails to detect the ship target in the first SAR image. While in the
second image, the orientation of the ship target is mispredicted.
For the third row, the ship target and the land clutter are both
located by HBB. It is because that the point-based encoding
scheme has to introduce the extra network branch and loss to
distinguish HBB from OBB, which increases the difficulty in
network training. The results of the angle-based method shown
in Fig. 9(d) indicates missed detections for inshore scenes. And
the result in the offshore scene is inaccurate. This is due to
the boundary discontinuity and the IOU sensitivity in the angle
regression.

C. Comparison With Other OBB-Based Ship
Detection Methods

In this section, we compare our method with several state-
of-the-art OBB-based ship detectors, including box bound-
ary aware vectors (BBAVectors) [47], region of interest
transformer (ROITransformer) [44], OBB-based faster-RCNN

(FRCNN-OBB) [43], and OBB-based RetinaNet (RetinaNet-
OBB). BBAVectors is an anchor-free detection method, which
combines CenterNet [38] with point-based encoding scheme.
ROITransformer is an anchor-based method, which transforms
the horizontal ROI into rotating ROI through training, so as
to improve the feature extraction ability for arbitrary-oriented
targets. FRCNN-OBB is a two-stage detection method based
on faster-RCNN. It first extracts features of the candidate target
regions, which are then used to detect targets by predicting the
errors between anchors and the OBBs. RetinaNet-OBB is a one-
stage method based on RetinaNet, which directly regresses the
errors between anchors and OBBs without extracting candidate
regions.

Table III shows the quantitative comparison between our
proposed method and other methods on the RSSDD dataset.
It can be seen from the table that, without using IOU-weighted
regression loss, the F1 and AP metrics of our method are higher
than other methods in the inshore scenes, but slightly lower
than ROITransformer in the offshore scenes. After using the
IOU-weighted regression loss, the F1 and AP of our method are
better than other methods in both inshore and offshore scenes.
Among other methods, BBAVectors performs relatively better in
the inshore scenes, whose F1 metric reaches 0.7909. But there
still exists a gap of more than 5% from our method, and the AP of
BBAVecotrs is 2.5% lower than that of our method. ROITrans-
former achieves slightly worse performance than BBAVectors in
the inshore scenes. And the detection performance of FRCNN-
OBB and RetinaNet-OBB is poor compared to other methods in
inshore scenes. The above results suggest that our method can
effectively avoid the boundary discontinuity problem and im-
prove the detection performance in the complex inshore scenes.
For offshore scenes, our proposed method achieves substantial
advantages over FRCNN-OBB and RetinaNet-OBB. But the gap
between the F1 and AP of our method and that of BBAVectors
and ROITransformer is modest. The reason why the gap is not
obvious is that the offshore scenes are generally simpler and
contain less clutters. As a result, it is easier for the detectors
to obtain comparable performance in the offshore scenes, which
narrows the gaps between different methods. In summary, we can
see from the results that the proposed method can achieve better
detection results compared with other methods because it avoids
the boundary discontinuity problem and uses IOU-weighted loss
to further guide the network training.

To discuss the detection efficiency of different detection
methods, the average detection time per image on the test set
is also given in Table III. It can be seen from the table that
the detection time of different methods is relatively close. Our
method is slightly slower than RetinaNet-OBB and faster than
the other four methods. This is because 1) our method adopts
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TABLE III
DETECTION RESULTS OF DIFFERENT METHODS

Bold items denote the optimal values in the columns, the underlined items represent the suboptimal values in the columns.

Fig. 10. PR curves of different methods in different scenes. (a) PR curves for
inshore scenes. (b) PR curves for offshore scenes.

an anchor-free framework, which avoids complex calculation
of IOU between anchors and the target bounding boxes; 2) our
method does not need to add extra network branches to deal with
the boundary discontinuity problem; 3) although the calculation
of the minimum bounding box is carried out on CPU, which
cannot take advantage of the parallel computation capacity of
GPU, we can first filter out the low confidence targets before
calculating the minimum bounding box, so it will not become
the calculation bottleneck.

Fig. 10 shows the comparison of PR curves of different
methods in different scenes. It can be observed from Fig. 10(a)
that the PR curve of our method lies outer than other methods
regardless of whether the IOU-weighted loss function is used
or not, which proves the effectiveness of our method for de-
tecting inshore ships. The PR curve shows improvement after
using the IOU-weighted regression loss, which indicates that the
IOU-weighted loss can further guide training and improve the
detection performance. For the offshore scenes, the PR curves of
FRCNN-OBB and RetinaNet-OBB from Fig. 10(b) obviously
lie lower than others, showing their poor detection performance.
Among other methods, our method lies outer than other methods,
demonstrating the effectiveness of our method.

In order to visually compare the proposed method with other
methods, detection results of different methods from differ-
ent scenes are given in Fig. 11. Fig. 11(a) shows the ground
truth, Fig. 11(b)–(f) gives the detection results of our method,
BBAVectors, ROITransformer, FRCNN-OBB, and RetinaNet-
OBB, respectively. From Fig. 11(b), we can see that the proposed
method detects the ship most accurately compared with other
methods in the inshore scenes, with fewer false alarms and
missed detections. To be specific, there is a false alarm in the
fourth row and a missed detection in the fifth row. In the last
SAR image, there are relatively less false alarms and missed

detections, showing more accurate detections. It can be seen
from Fig. 11(c) that BBAVectors has more false alarms from
the second row to the fourth row than our method. In the fifth
image, there exists an inaccurate ship prediction. And in the
offshore scene, there are more missed detections. In Fig. 11(d),
for ROITransformer, there are false alarms in the first and second
images, two missed detections in the fifth image, and some
missed detections in the offshore scene. The detection results
of FRCNN-OBB in Fig. 11(e) shows a lot of false alarms in all
inshore scenes. In the offshore scene, the land clutter is mis-
takenly detected as the ship target, and some missed detections
occur. For the detection results of RetinaNet-OBB in Fig. 11(e),
many false alarms and inaccurate detections occur in the inshore
scenes. In the offshore scene, there appear many false alarms,
showing unsatisfactory detection performance. To summarize,
our method achieves more accurate detection results than other
methods in both inshore and offshore scenes, which verified the
effectiveness of our method.

Fig. 12 shows several detection results of our proposed
method in the inshore and offshore scenes, where the red points
denote the ship centers, the yellow points are decoded boundary
points, and the green boxes represent the detection results by
finding the minimum bounding boxes of the boundary points.
It can be observed from Fig. 12 that: 1) The proposed polar
encoding method is capable of accurately locating different
scales of ship targets in different scenes, indicating the effec-
tiveness of our method; 2) for ship targets with large aspect
ratios, it is important to the accurately regress several key points
to determine the length of the long side of the OBB. We propose
to use the IOU-weighted regression loss to guide the training the
polar encodings. In this way, the contribution of these key points
on the loss function is increased and the detection accuracy is
improved; 3) the number of the boundary points N, which is a
hyper parameter, is set to 8 in our experiments. As can be shown,
eight boundary points can well represent the OBB of the ship
targets in the dataset. But in the future, if our method is applied
for detecting targets with larger aspect ratios from other datasets,
a larger N is needed for accurate OBB representation.

IV. DISCUSSION

A. Influence of the Hyper Parameter N

The hyper parameter N in the polar encoding process de-
termines the angle sampling rate, which is important for OBB
representation. If the sampling rate is too low, the information



3856 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 11. Detection results of different methods. The purple rectangles denote the actual ship targets and the green rectangles are the detection results. (a) Ground
truth. (b) Our method. (c) BBAVectors. (d) ROITransformer. (e) FRCNN-OBB. (f) RetinaNet-OBB.

contained in the sampling points may not adequately represent
the shape of the OBB. If the sampling rate is too high, the cal-
culation efficiency will be reduced and the difficulty of training
will be increased. Therefore, we test the detection performance
of our method under different N values, and the results are
shown in Fig. 13. When N = 4, the detection performance
suffers great drop compared to other N values. It is because
that the sampling rate is too low to fully represent the shape
information of the OBB and guide network training. Among
other N values, the detection performance for different scenes
is generally robust. For the inshore scenes, the best detection
performance is achieved when N = 8. For the offshore scenes,
the AP metric is at the highest when N = 8, and the F1 achieves
the best when N = 12. According to the above results, N = 8
is chosen in our experiments for better detection performance
and computational efficiency.

B. Continuity of Our Method in the Boundary Cases

In order to exhibit the continuity of our method in the bound-
ary cases, we can assume the case as shown in Fig. 14(a). Given

an OBB B0 of the ship target, the height and width of which
are h and w, respectively. B0 rotates clockwise about its center
with angle θ, the resulting rotated rectangle is denoted as Bθ.
In addition, assume that the sampling rate in the polar encoding
process is large enough to make the distanced between the center
to the boundary of the OBB change approximately continuously
with the sampling angle ϕ. The function d(ϕ) is plotted in
Fig. 14(b), where the blue and yellow curves represent d(ϕ)
for B0 and Bθ, respectively. In fact, the polar encoding process
is equivalent to conduct sampling from d(ϕ) in [0, π). We can
find from Fig. 14(b) that: 1) d(ϕ) is a periodic function, whose
period is π. The two extreme points shown in the figure indicate
the height and width information of the OBB; 2) the effect of
the rotation angle θ, i.e., the angle error θ, is to make d(ϕ) shift
θ; 3) the sum of the absolute differences between the sampling
points from the two curves, denoted by S(θ), indicates the value
of the L1-loss. S(θ) can be calculated as follows:

S(θ)=
N∑
i=1

(|d0(ϕi)− dθ(ϕi)|). (19)
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Fig. 12. Detection results of our method using polar decoding. The red points
represent the detected center points of the ship targets; the yellow points denote
the boundary points decoded from the polar encodings; and the green rectangles
are the minimum bounding boxes of the boundary points, i.e., final detection
results.

Fig. 13. Detection performance in different scenes under different N . (a) AP
and F1 in the inshore scenes. (b) AP and F1 in the offshore scenes.

Fig. 14. Diagram of the periodicity of our encoding scheme. (a) Two OBBs
with angle error θ. (b) d(ϕ) of the two OBBs.

Fig. 15. Curves of S(θ). (a) S(θ) for OBB with the aspect ratio of 2. (b) S(θ)
for OBB with the aspect ratio of 1.

Taking the angle error θ as the independent variable and the
sum of the absolute differencesS between the sampling points as
the dependent variable, the curve of the function S(θ) is drawn
in Fig. 15. Since S(θ) indicates the value of the regression loss,
we can observe how the loss changes with different angle errors.
Fig. 15(a) shows the curves of S(θ) when the aspect ratio of the
OBB is 2 and the hyper parameter N is 8, 32. We normalize the
values of S(θ) into [0, 1] for clarity. We can find from Fig. 15(a)
that: 1) Within the range of [0, π), the loss value first increases
from 0 and then decreases to 0. This is ideal because in the actual
situations, the overlap between OBBs is the least when the angle
error is π/2, and the overlap between OBBs becomes the largest
when the angle error is close toπ. 2) When N is small, the curve is
relatively rough. And it becomes smoother when N is in a larger
value. But in general, they indicate the same tendency. Fig. 15(b)
shows the curves of S(θ) for OBB with the aspect ratio of 1. It
can be seen that the loss value reaches 0 when the angle error
is 0, π/2, and π, respectively. And the period of S(θ) is π/2,
which is in accordance with the fact that the square bounding
box coincides with itself every π/2 rotation angle. To sum up,
our method can produce corresponding periodic loss functions
for different aspect ratios of ship OBBs, so as to overcome the
boundary discontinuity problem caused by the periodicity of
angle.

V. CONCLUSION

In this article, we propose an DCNN-based detector using
polar encoding and center point detection for arbitrary-oriented
ship detection in SAR images. In order to overcome the boundary
discontinuity problem caused by the periodicity of angle and the
exchangeability of edges, we design the specific encoding and
decoding process. In the polar encoding process, the OBB of
the ship target is encoded with the help of the polar coordinates
of the boundary points. The encoded parameters are trained
and regressed end to end. And the polar decoding process
is used for restoring the detection results from the encoded
parameters. In order to further improve the training of the
encoded parameters, we propose an IOU-weighted regression
loss, which uses IOU metric to guide network training. Experi-
ments on RSSDD dataset demonstrate that the proposed method
can deal with the boundary discontinuity problem better than
other encoding schemes, and the IOU-weighted loss can further
improve the detection performance. Experimental results also
show our method outperforms other state-of-the-art OBB-based
detectors, demonstrating the effectiveness of our approach as a
new benchmark resource for the research community.
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