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Distributed Resource Allocation over Time-varying
Balanced Digraphs with Discrete-time

Communication
Lanlan Su, Mengmou Li, Vijay Gupta, and Graziano Chesi

Abstract—This work is concerned with the problem of dis-
tributed resource allocation in continuous-time setting but with
discrete-time communication over infinitely jointly connected and
balanced digraphs. We provide a passivity-based perspective for
the continuous-time algorithm, based on which an intermittent
communication scheme is developed. Particularly, a periodic
communication scheme is first derived through analyzing the
passivity degradation over output sampling of the distributed
dynamics at each node. Then, an asynchronous distributed event-
triggered scheme is further developed. The sampled-based event-
triggered communication scheme is exempt from Zeno behavior
as the minimum inter-event time is lower bounded by the
sampling period. The parameters in the proposed algorithm rely
only on local information of each individual node, which can be
designed in a truly distributed fashion.

Index Terms—Resource Allocation, Input Feed-forward Pas-
sive, Time-varying Balanced Graphs, Sampling, Event Triggering

I. INTRODUCTION

An important distributed optimization problem is one in
which each node has access to a convex local cost function,
and all the nodes collectively seek to minimize the sum of all
the local cost functions [1]–[4]. Most optimization algorithms
reported in the literature are implemented in discrete time.
However, as pointed out by [5], [6], discrete-time algorithms
might be insufficient for applications where the optimization
algorithm is not run digitally, but rather via the dynamics of
a physical system, such as collectively optimizing social, bio-
logical and natural systems, robotic systems [7]. The resource
allocation, as an important class of distributed optimization
problems, has been studied in continuous-time setting [8]–
[13] and discrete-time setting [14]–[16]. The existing works
concerned with the distributed resource allocation problem
assume topology graphs to be fixed over time and/or do not
take the communication cost into account. In this work, we aim
at providing a passivity-based perspective for a continuous-
time algorithm of distributed resource allocation over time-
varying digraphs, based on which an intermittent communica-
tion scheme is developed.
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Passivity serves as a useful tool to analyze multi-agent
systems (MASs). This has been well illustrated by [17] which
shows that a MAS of possibly heterogeneous agents can reach
consensus over a time-varying balanced strongly connected
graph as long as all individual agents are input-output passive.
In [18], we generalize the results of [17] to MASs with all
agents that can be characterized by a passivity index. The
current work is rooted in the same idea, but we would like
to note that it is not trivial to apply the idea of consensus
for MASs to distributed optimization problems. One of the
main challenges is to verify that the individual algorithmic
dynamics of a particular distributed algorithm can be char-
acterized by an input feed-forward passivity (IFP) index.
On the other hand, the passivity and dissipativity (including
IFP as a special case) have been recently exploited in net-
worked control systems coping with different communication
imperfections. For instance, [19] addresses the problem of
output synchronization of passive systems with event-triggered
communication wherein network delay and quantization are
considered as well; in [20], passivity index has been used to
control two-dimensional systems over digital communication
network wherein output sampling and event-triggered scheme
are designed; [21] uses a passivity framework to model and
mitigate attacks on networked control system; [22] considers
the packet drops of the communication channel. See [23] for
more recent works on cyber-physical systems using passiv-
ity indices. These motivate us to provide a passivity-based
perspective for the algorithm as the IFP framework opens
up the new possibilities of implementing the algorithm over
an imperfect digital communication network and reducing the
channel usage.

Whereas there exist considerable works on designing al-
gorithms for distributed optimization problems, there are
relatively fewer works taking the communication cost into
account. In this work, we are interested in intermittent com-
munication including periodic (also called sampled-based)
and event-triggered communication schemes. The existing
distributed algorithms proposed in this direction is either
discrete-time [14], [15], [24]–[27] (see Tables 1 and 2 in
[6] for a comprehensive list) or continuous-time [12], [28]–
[35] (see Table 3 in [6] for a comprehensive list). Among the
works focusing on continuous-time algorithms with discrete-
time communication scheme, the results in [12], [28], [30],
[31], [33], [35] are limited to undirected and fixed topological
graphs while [29], [32], [36] assume the graph to be strongly
connected and fixed over time. [34] studies the problem
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of event-triggered distributed optimization over a uniformly
jointly connected graph but restricts it to be undirected. To
the best of our knowledge, distributed optimization problem
over time-varying jointly connected digraphs has never been
addressed in the continuous-time setting due to the difficulties
of stability analysis for time-varying systems and lack of
connectedness of topology. The passivity-based method has
been shown to be powerful in handling communication im-
perfections and in distributed control, thus being a promising
approach to treat both the time-varying graph topology and
communication.

In this work, we consider the problem of distributed re-
source allocation over a time-varying digraph under inter-
mittent communication. Specifically, each node has access to
its own local cost function and local network resource, and
the goal is to minimize the sum of the local cost functions
subject to a global network resource constraint. The com-
munication topology is described by a weight-balanced and
infinitely jointly strongly connected digraph. Closest papers
which have also exploited the notion of passivity to address
the distributed optimization problem are [37], [38]. The results
in these mentioned works are limited to fixed and undirected
graphs. Our work features a novel passivity-based perspective
for continuous-time algorithms, which enables us to design
an intermittent communication scheme over infinitely jointly
strongly connected digraphs. Starting from a continuous-time
algorithm, a periodic communication scheme is first derived
through analyzing the passivity degradation over output sam-
pling of the distributed dynamics at each node. Then, an
asynchronous distributed event-triggered scheme is further
developed. The sampled-based event-triggered communication
scheme is exempt from Zeno behavior as the minimum inter-
event time is lower bounded by the sampling period. The
parameters in the proposed algorithm rely only on local
information of each individual node, which can be designed
in a truly distributed fashion.

The rest of this paper is organized as follows. Section II
introduces some preliminaries and states the problem formula-
tion. Section III presents the main results. Specifically, Section
III-A reformulates the problem into its dual distributed convex
optimization problem. Section III-B proposes a continuous-
time algorithm, and by providing a novel passivity-based per-
spective of the proposed algorithm, a distributed condition is
provided for convergence over time-varying digraphs. In III-C,
a periodic communication scheme based on the passivity-based
notion is presented, and an event-triggered communication
scheme is developed in Section III-D. The main results are
illustrated by an example in Section IV. Some final remarks
and future works are described in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce our notation, some con-
cepts of convex functions and graph theory followed by a
passivity-related definition. Then, the problem to be addressed
in this work is formulated.

Notation Let R, R+ and N denote the sets of of real
numbers, nonnegative real numbers, and nonnegative integers,

respectively. The m×m identity matrix is denoted by Im. For
symmetric matrices A and B, the notation A ≥ B (A > B)
denotes A − B is positive semidefinite (positive definite).
diag(ai) is the diagonal matrix with ai being the i-th diagonal
entry. 0m and 1m denote all zero and one vectors with size
m × 1. For column vectors v1, . . . , vm, col(v1, . . . , vm) =
(vT1 , . . . , v

T
m)T . ‖λ‖ denotes the Euclidean norm of vector λ.

Given a positive semidefinite matrix A ∈ RN×N , σ+
min(A)

and σN (A) denote the smallest positive and the largest eigen-
value of A, respectively. For a twice differentiable function
f(x), its gradient and Hessian are denoted by ∇f(x) and
∇2f(x), respectively. range(∇f(x)) denotes the range of the
function ∇f(x). Given a linear mapping L, null(L) denotes
the null space of L. The Kronecker product is denoted by ⊗.

Convex function A differentiable function f : Rm → R
over a convex set X ⊂ Rm is strictly convex if and only
if (∇f(x) − ∇f(y))T (x − y) > 0,∀x 6= y ∈ X , and it
is µ-strongly convex if and only if (∇f(x) − ∇f(y))T (x −
y) ≥ µ‖x − y‖2,∀x, y ∈ X , if and only if f(y) ≥
f(x) +∇f(x)T (y − x) + µ

2 ‖y − x‖
2,∀x, y ∈ X . A function

g : Rm → Rm over a set X is l-Lipschitz if and only if
‖g(x)− g(y)‖ ≤ l‖x− y‖,∀x, y ∈ X .

Algebraic graph theory A digraph is a pair G = (I, E)
where I = {1, . . . , N} is the node set and E ⊆ I × I
is the edge set. An edge (i, j) ∈ E means that node j
can send information to node i, and i is called the out-
neighbor of j while j is called the in-neighbor of i. A
digraph is strongly connected if for every pair of nodes
there exists a directed path connecting them. A time-varying
graph G(t) is uniformly jointly strongly connected if there
exists a constant T ∈ R+ such that for any tk ∈ R+, the
union ∪t∈[tk,tk+T ]G(t) is strongly connected. A time-varying
graph G(t) is infinitely jointly strongly connected if the union
∪t∈[τ,∞)G(t) is strongly connected for all τ ∈ R+. Evi-
dently, infinitely jointly connected graphs are less restrictive
than uniformly jointly strongly connected graphs. A weighted
digraph is a triple G = (I, E , A) where A ∈ RN×N is a
weighted adjacency matrix defined as A = [aij ] with aii = 0,
aij > 0 if (i, j) ∈ E and aij = 0 otherwise. The weighted
in-degree and out-degree of node i are diin =

∑N
j=1 aij and

diout =
∑N
j=1 aji, respectively. A digraph is said to be weight-

balanced if diin = diout,∀i ∈ I. The Laplacian matrix of G is
defined as L = Din −A where Din = diag(diin).

Input Feed-forward passive Consider the following non-
linear system:

H :

{
ṡ = F (s, u)
y = Y (s, u),

where s ∈ S ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Rm are the state,
input and output variables, respectively, and S,U are the state
and input spaces, respectively. F and Y are state function and
output function.

Definition 1: ([39]) System H is Input Feed-forward Passive
(IFP) if there exists a nonnegative real function V (s) : S →
R+, called the storage function, such that for all t1 ≥ t0 ≥ 0,
initial condition s0 ∈ S and u ∈ U ,

V (s(t1))− V (s(t0)) ≤
∫ t1

t0

uT y − νuTudt (1)
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for some ν ∈ R, denoted as IFP(ν).
If the storage function V (s) is differentiable, the inequality

(1) is equivalent to

V̇ (s) ≤ uT y − νuTu. (2)

As it can be seen from the above definition, a positive value
of ν means that the system has an excess of passivity while
a negative value of ν means the system lacks passivity. The
index ν can be taken as a measurement to quantify how passive
a dynamic system is. This concept will play a crucial role in
the subsequent results.

Problem formulation Each node i has a local cost function
fi(xi) : Rm → R where xi ∈ Rm is the local decision
variable. The sum of fi(xi) is considered as the global cost
function. We make the following assumptions.

Assumption 1: Each fi, i ∈ I is twice differentiable with
∇2fi(xi) > 0 and its gradient ∇fi(xi) is li-Lipschitz.

Under Assumption 1, fi is strictly convex and

‖∇fi(xi)−∇fi(yi)‖ ≤ li‖xi − yi‖. (3)

Thus, its Hessian satisfies

0 < ∇2fi(xi) ≤ liIm,∀i ∈ I. (4)

Assumption 2: The time-varying communication graph G(t)
is weight-balanced and infinitely jointly strongly connected.

The objective is to design a continuous-time distributed
algorithm such that the following problem

min
x1,...,xN

N∑
i=1

fi(xi)

s.t.
N∑
i=1

xi =

N∑
i=1

di

(5)

is solved by each node using its own information only and
information received from its neighbors under discrete-time
communication. In fact, this problem can be used to formulate
many practical applications such as network utility maximiza-
tion and economic dispatch in power systems.

Let us denote x = col(x1, . . . , xN ). It can be observed that
problem (5) is feasible and has a unique optimal point x∗.

III. MAIN RESULTS

A. The Lagrange dual problem

In this subsection, we show that the resource allocation
problem (5) can be equivalently converted into a general
distributed convex optimization problem.

Let us define a set of new variables λi ∈ Rm, i ∈ I, and
denote the set of range(∇fi) as Λi. It can be derived from
[40] that Λi is convex. Under Assumption 1, we have that the
inverse function of ∇fi(·) exists and is differentiable, denoted
as hi(·) 1, and further define

gi(λi) , fi(hi(λi)) + λTi (di − hi(λi)) (6)

1If the analytic form of the inverse function hi(·) can not be obtained, one
can replace hi(·) by argminxi{fi(xi)−λ

T
i xi} in the algorithm that will be

proposed later.

when λi ∈ Λi.
Lemma 1: Problem (5) can be equivalently solved by the

following convex optimization

min
λi∈Λi,∀i∈I

N∑
i=1

Ji(λi)

s.t. λi = λj ,∀i, j ∈ I
(7)

with Ji(λi) = −gi(λi) and ∇Ji(λi) = hi(λi)−di. Moreover,
Ji(λi) is twice differentiable and 1

li
-strongly convex in the

domain Λi, i.e., 1
li
≤ ∇2Ji(λi),∀λi ∈ Λi.

Proof. This result can be obtained via the duality [41].
�

Due to the strong duality, the primal optimal solution x∗ is
a minimizer of L(x, λ∗) which is defined as

L(x, λ∗) =

N∑
i=1

fi(xi) + λ∗T
(

N∑
i=1

di −
N∑
i=1

xi

)
. (8)

This fact enables us to recover the primal solution x∗ from
the dual optimal solution λ∗. Specifically, since fi is strictly
convex, the function L(x, λ∗) is strictly convex in x, and
therefore has a unique minimizer which is identical to x∗.
Moreover, since L(x, λ∗) is separable according to (8), we
can recover x∗i from x∗i = hi(λ

∗).
Based on Lemma 1, we then aim to design a continuous-

time algorithm with discrete-time communication for problem
(7). For simplicity, we will abuse the notation by using λ =
col(λ1, . . . , λN ) hereafter.

B. IFP-based Distributed Algorithm Design

For i ∈ I and with constant scalars α, β > 0, let us consider
the following continuous-time algorithm

λ̇i = −α(hi(λi)− di)− γi
γ̇i = −ui
ui = β

∑N
j=1 aij(t)(λj − λi)

(9)

where λi, γi ∈ Rm are the local states variables and ui ∈ Rm
is the local input. α > 0 is a predefined constant and β > 0 is
the coupling gain to be designed. A(t) = [aij(t)]N×N is the
adjacency matrix of the graph G(t).

Let γ = col(γ1, . . . γN ), d = col(d1, . . . , dN ) and h(λ) =
col(h1(λ1), . . . , hN (λN )). The algorithm in (9) can be rewrit-
ten in a compact form as

λ̇ = −α (h(λ)− d)− γ
γ̇ = βL(t)λ

(10)

where L(t) = L(t)⊗Im with L(t) being the Laplacian matrix
of the graph G(t).

The above continuous-time algorithm is a simplification
of the one proposed in [28] which is motivated by the
feedback control consideration. Specifically, each node evolves
in the direction of gradient descent while trying to reach an
agreement with its neighbors. To correct the error between
the local gradient and the consensus with neighbors, the
integral feedback of ui representing the node disagreements
is exploited.



4

In the rest of this work, we assume that λi(0) ∈ Λi for
all i ∈ I. This can be trivially satisfied by letting λi(0) =
∇fi(xi(0)).

In the following, we will first show in Lemma 2 that the
optimal solution of (7) coincides with the equilibrium point of
algorithm (9). Then we provide a passivity-based perspective
for the error dynamics of each individual node in Theorem 1,
based on which the convergence of algorithm (9) is shown in
Theorem 2.

Lemma 2: Under Assumptions 1 and 2, the equilibrium
point (λ∗, γ∗) of the system in (9) with the initial condition∑N
i=1 γi(0) = 0 is unique and λ∗ is the optimal solution of

problem (7).
Proof. Suppose (λ∗, γ∗) is the equilibrium of system (9)

and
∑N
i=1 γi(0) = 0. It follows that

λ̇∗ = −α (h(λ∗)− d)− γ∗ = 0
γ̇∗ = βL(t)λ∗ = 0.

(11)

Since (1N ⊗ Im)
T
L(t) = 0TNm, we have (1N ⊗ Im)

T
γ̇ =

β (1N ⊗ Im)
T
L(t)λ = 0, which gives

∑N
i=1 γ̇i = 0. Hence,

it can be observed that
∑N
i=1 γi(t) =

∑N
i=1 γi(0) = 0m for

all t ≥ 0. Next, let us multiply (1N ⊗ Im)
T from the left of

λ̇∗, and obtain that

(1N ⊗ Im)
T
λ̇∗

= −α (1N ⊗ Im)
T

(h(λ∗)− d)−
∑N
i=1 γ

∗
i = 0,

which indicates that

∇J(λ∗) =

N∑
i=1

∇Ji(λ∗i ) =

N∑
i=1

(hi(λ
∗
i )− di) = 0.

Moreover, since the graph G(t) is infinitely jointly strongly
connected, γ̇∗ = βL(t)λ∗ ≡ 0 implies that λ∗1 = . . . = λ∗N .
Under Assumption 1, problem (7) has a unique solution,
which coincides with λ∗ based on the optimality condition
[42]. �

Before proceeding to show in Theorem 2 that the algorithm
converges, let us investigate the IFP property of the error
dynamics of each individual node. Denote ∆λi = λi−λ∗i and
∆γi = γi − γ∗i . Comparing (9) and (11) yields the individual
error system shown as

Ψi :


∆λ̇i = −α (hi(λi)− hi(λ∗i ))−∆γi
∆γ̇i = −ui
ui = β

∑N
j=1 aij(t)(∆λj −∆λi).

(12)

By taking ui and ∆λi as the input and output of the error
system Ψi, the following theorem shows that each error system
Ψi is IFP with its proof provided in Appendix.

Theorem 1: Suppose Assumption 1 holds. Then, the system
Ψi is IFP(νi) from ui to ∆λi with νi ≥ − l2i

α2 .
Remark 1: It is shown in the above theorem that for the

nonlinear system (12) resulting from general strongly convex
objective function Ji(λi) is IFP from ui to ∆λi. Moreover,
the IFP index is lower bounded by − l2i

α2 , which means that the
system (12) can have the IFP index arbitrarily close to 0 (i.e,
passivity) if the coefficient α can be chosen to be arbitrarily
large. However, it might be impractical to choose a large α due

to the potential numerical error or higher computing cost when
solving the ordinary differential equation (10) numerically.
In view of this, in order to achieve larger IFP index, we
can choose α as the largest positive number allowed by the
error tolerance level of the available computing platform. It
is worth mentioning that a similar algorithm has been shown
in [28]. The contribution of Theorem 1 is to provide a novel
passivity-based perspective of the proposed algorithm, and this
perspective will lead to fruitful results in the remainder of this
section.

The next theorem provides a condition on the coupling gain
β for the convergence of algorithm (9).

Theorem 2: Under Assumptions 1 and 2, suppose the
coupling gain β satisfies

0 < β <
α2σ+

min

(
L(t) + L(t)T

)
2σN (L(t)T diag (l2i )L(t))

, (13)

where σ+
min and σN are the smallest positive and the largest

eigenvalue respectively. Then under algorithm (9), for all i ∈
I, Λi is a positively invariant set of λi, and algorithm (9) with
any initial condition with

∑N
i=1 γi(0) = 0 will converge to the

optimal solution of (7).
Proof. The proof is given in Appendix. �

Remark 2: Lemma 2 states that the equilibrium point of
the continuous-time algorithm (9) under the initial constraint∑N
i=1 γ(0) = 0 is identical to the optimal solution of the

distributed optimization problem (7) while Theorem 2 states
that algorithm (9) will converge to such an equilibrium point
if the coefficients α and β are chosen to satisfy (13). As
discussed in Section III-A, the optimal solution x∗i of the
original resource allocation problem (5) can be recovered from
x∗i = hi(λ

∗). In this view, the distributed algorithm in (9)
involves only local interaction by exchanging λi instead of
the real decision variable xi to achieve the optimal collective
goal.

It should be mentioned that the condition proposed in
Theorem 2 might be difficult to be examined in a time-varying
graph. Nevertheless, the following distributed condition can be
obtained based on Theorem 2.

Corollary 1: Under Assumptions 1 and 2, algorithm (9) with
any initial condition with

∑N
i=1 γi(0) = 0 will converge to the

optimal solution of (7) if the coupling gain β > 0 satisfies

β
l2i
α2
diin(t) <

1

2
,∀i ∈ I,∀t > 0 (14)

where diin(t) denotes the in-degree of the i-th node.
Proof. The proof is given in Appendix. �

Remark 3: (Design of parameter β) In order to implement
algorithm (9), the parameter β needs to be designed. The con-
dition proposed in the above corollary provides a distributed
strategy to design β. A heuristic solution is to let each node
compute the maximum β according to (14) and search the
minimum of β among them by communicating among its
neighboring nodes. Repeat this procedure when a smaller β
is updated (a larger diin(t) is detected) at any node due to the
graph variation. However, this has to be done in an off-line
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manner. An easier way when aij ∈ {0, 1}, ∀i, j is to simply
let the upper bound of β be α2

2maxi{l2i}(N−1)
.

C. Periodic Discrete-time Communication

Continuous-time communication among the nodes is re-
quired in the distributed algorithm proposed in Section III-B
whereas a digital network with limited channel capacity gener-
ally allows communication only at discrete instants. Moreover,
the communication cost is far larger than the computation cost
in real applications such as sensor networks [43]. To separate
the communication and the computation, we will investigate in
this subsection the distributed algorithm design under periodic
discrete-time communication by exploiting the IFP property
stated in Theorem 1.

By considering a sampled-based scheme, we proceed to
investigate the convergence of algorithm (9) with periodic
communication.

Fig. 1. Sampled continuous-time distributed algorithm.

As depicted in Figure 1, let us consider the algorithm with
sampling at each output of individual node,

λ̇i = −α(hi(λi)− di)− γi
γ̇i = −ui

ūi(k) = β
∑N
j=1 aij(k)(λ̄j(k)− λ̄i(k))

(15)

where aij(k) denotes aij(t) at the k-th sampling instant, the
output λ̄i is obtained by sampling the continuous-time output
λi, while the input ui depending on the sampled λ̄i,∀i ∈ Ii
is applied to the continuous-time system through a zero order
holder. In particular, let the sampling period be denoted as Ts,
and then for all k ∈ N,

λ̄i(k) = λi(kTs),
ui(t) = ūi(k),∀t ∈ [kTs, (k + 1)Ts).

(16)

Denote the time sequence k = {0, Ts, 2Ts, . . .}. Since the
communication is carried out in periodic discrete-time instants,
we need to make the following additional assumption for the
graph.

Assumption 3: The time-varying graph G(k) is balanced and
infinitely jointly strongly connected, i.e., G(k) ∪ G(k + 1) ∪
G(k + 2) ∪ · · · is strongly connected for any k ∈ N.

With ∆λ̄i = λ̄i − λ∗i where λ∗i is defined in (11), the error
dynamics of subsystem i is

Ψ̄i :


∆λ̇i = −α (hi(λi)− hi(λ∗))−∆γi
∆γ̇i = −ui
ūi = β

∑N
j=1 aij(∆λ̄j −∆λ̄i).

(17)

In the following, we first analyze and approximate the bound
of the sampling error ∆λi − ∆λ̄i with respect to the input
ūi in Lemmas 3 and 4. Based on these results, Theorem 3
characterizes the passivity degradation over sampling of the
error dynamics at each node, and the convergence of algorithm
(15) is stated in Corollary 2.

For notational simplicity, let us denote zi = ∆λ̇i.
Lemma 3: Suppose Assumption 1 holds. Then, under the

dynamics Ψ̄i, it holds that for all ui ∈ Rm,

li
α
· d‖zi‖

2

dt
≤ l2i
α2
‖ui‖2 − ‖zi‖2. (18)

Proof. The derivative of zi yields that

żi = −α∂hi(λi)
∂λi

zi −∆γ̇i = −α∂hi(λi)
∂λi

zi + ui

and it leads to

li
α
· d‖zi‖

2

dt
= 2

li
α
zTi

(
−α∂hi(λi)

∂λi
zi + ui

)
.

Observe that (
2α
li
li
α − 1 − liα
− liα

l2i
α2

)
≥ 0,

which follows that for all zi, ui ∈ Rm(
zi
ui

)T (( 2α
li
li
α − 1 − liα
− liα

l2i
α2

)
⊗ Im

)(
zi
ui

)
≥ 0.

Since 1
li
Im ≤ ∂hi(λi)

∂λi
under Assumption 1, we further obtain

that for all zi, ui ∈ Rm(
zi
ui

)T (2 liα

(
α∂hi(λi)∂λi

)
− Im − liα Im

− liα Im
l2i
α2 Im

)(
zi
ui

)
≥ 0,

which is equivalent to li
α
d‖zi‖2
dt ≤ l2i

α2 ‖ui‖2 − ‖zi‖2. �

From the above lemma, it can be seen by the integration of
(18) over t ∈ [kTs, (k + 1)Ts] that

li
α‖zi((k + 1)Ts)‖2 − li

α‖zi(kTs)‖
2

≤ l2i
α2

∫ (k+1)Ts
kTs

‖ui(t)‖2dt−
∫ (k+1)Ts
kTs

‖zi(t)‖2dt.
(19)

Note that (18) or (19) implies that l2i
α2 provides an upper bound

of the L2 gain for the mapping ui → zi considering the
specific storage function li

α‖zi‖
2.

Lemma 4: Under Assumption 1, for all k ∈ N, the following
inequality holds∫ (k+1)Ts

kTs
‖∆λi(t)−∆λ̄i(k)‖2dt ≤ T 2

s ·(
Ts

l2i
α2 ‖ūi(k)‖2 + li

α

(
‖zi(kTs)‖2 − ‖zi((k + 1)Ts)‖2

))
.

(20)
Proof. First, let us observe that for all t ∈ [kTs, (k +

1)Ts),∀k ∈ N,∣∣∣∣∣∣∣∣∫ t

kTs

∆λ̇i(s)ds

∣∣∣∣∣∣∣∣2 ≤

∣∣∣∣∣
∣∣∣∣∣
∫ (k+1)Ts

kTs

∣∣∣∣∣∣∆λ̇i(s)∣∣∣∣∣∣ ds
∣∣∣∣∣
∣∣∣∣∣
2

≤ Ts

∫ (k+1)Ts

kTs

∣∣∣∣∣∣∆λ̇i(s)∣∣∣∣∣∣2 ds (21)
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where the second inequality holds by Cauchy-Schwarz in-
equality.

Next, it follows from (19) and (21) that∫ (k+1)Ts
kTs

‖∆λi(t)−∆λ̄i(k)‖2dt
=

∫ (k+1)Ts
kTs

‖
∫ t
kTs

∆λ̇i(s)ds‖2dt

≤
∫ (k+1)Ts
kTs

(
Ts
∫ (k+1)Ts
kTs

∣∣∣∣∣∣∆λ̇i(s)∣∣∣∣∣∣2 ds) dt
= T 2

s

∫ (k+1)Ts
kTs

∣∣∣∣∣∣∆λ̇i(s)∣∣∣∣∣∣2 ds
≤ T 2

s
l2i
α2

∫ (k+1)Ts
kTs

‖ui(s)‖2ds+ T 2
s
li
α ·(

‖zi(kTs)‖2 − ‖zi((k + 1)Ts)‖2
)
.

Based on the relationship between ui(t) and ūi(k) shown in
(16), the inequality (20) can be therefore obtained. �

Theorem 3: Under Assumption 1, the sampled system Ψ̄i is
IFP(ν̄i) from ūi to ∆λ̄i with ν̄i ≥ −

(
l2i
α2 + Ts

li
α

)
where Ts

is the sampling period.
Proof. The proof is stated in Appendix. �

Theorem 3 shows that the lower bound of the IFP index, ν,
decreases from − l2i

α2 to − l2i
α2 − Ts liα over the sampling. This

passivity “degradation” is caused by sampling error, which
depends on the sampling period Ts. Based on this new IFP
index bound, a revised distributed condition for convergence
of algorithm (15) is provided as follows.

Corollary 2: Under Assumptions 1 and 3, algorithm (15)
under periodic communication with any initial condition with∑N
i=1 γi(0) = 0 will converge to the optimal solution of (7)

if the following condition is satisfied for all t ≥ 0:

β

(
l2i
α2

+ Ts
li
α

)
diin(t) <

1

2
,∀i ∈ I. (22)

Proof. This condition can be derived based on similar
argument in the proofs of Theorem 2 and Corollary 1, and
the discrete-time LaSalle’s invariance principle [44]. �

As shown in the above corollary, when α and β are fixed
and satisfy the condition in (14), there always exists a constant
Ts > 0 satisfying (22). Indeed, with fixed α and β, the
sampling period Ts can also be determined in a distributed
way by a similar heuristic solution described in Remark 3.

D. Distributed Event-triggered Communication
Based on the sampled-based framework in the preceding

subsection, we further consider an event-triggered communi-
cation strategy. Reconsider the algorithm as shown in (15) by
incorporating an event-triggered communication mechanism
depicted by Figure 2, i.e.,

λ̇i = −α(hi(λi)− di)− γi
γ̇i = −ui

ûi(k) = β
∑N
j=1 aij(k)(λ̂j(k)− λ̂i(k))

(23)

where λ̂i(k), i ∈ I denotes the last known state of node i that
has been transmitted to its neighbors at the time kTs. Similar
to (16), we set

λ̄i(k) = λi(kTs),
ui(t) = ûi(k),∀t ∈ [kTs, (k + 1)Ts).

(24)

Fig. 2. Continuous-time distributed algorithm with sampled-based event-
triggered communication.

The following theorem presents a triggering condition for
each node to update its output while the convergence to the
global optimal solution is ensured.

Theorem 4: Under Assumptions 1 and 3, consider algorithm
(23). If α, β are designed such that (22) is satisfied, and the
triggering instant for node i,∀i ∈ I to transmit its current
information of λi is chosen whenever the following condition
is satisfied

‖ei(k)‖2 ≥ ci
diin(k)

(
1

2
− βdiin(k)

(
l2i
α2

+ Ts
li
α

))2

·

N∑
j=1

aij(k)‖λ̂j(k)− λ̂i(k)‖2
(25)

where ei(k) = λ̄i(k) − λ̂i(k) and ci ∈ (0, 1), then algorithm
(23) with any initial condition with

∑N
i=1 γi(0) = 0 will

converge to the optimal solution of (7).
Proof. The proof is stated in Appendix. �

Under the event triggering condition in (25), each node
broadcasts its current state (after sampling) λ̄i(k) to its out-
neighbors when a local “error” signal exceeds a threshold
depending on its own cost function and the last received state
of λ̂j(k) from its in-neighbors. Such a triggering condition
requires each node being aware of the existence of its in-
neighbors. Whenever an edge between two nodes is estab-
lished, the sender sends its last triggered state to the receiver,
which is not considered as a “triggering”. Whenever an edge
is canceled or established, the receiver updates its input ûi(k)
by removing or adding the corresponding entry of λ̂.

Remark 4: Given fixed α, β and Ts, condition (25) is a
simple and distributed one to be verified by each node over a
balanced graph with very weak connectivity (Assumption 2).
It is worth mentioning that this sampled-based event-triggered
communication scheme is exempt from Zeno behavior as the
minimum inter-event time is lower bounded by the sampling
period Ts.

IV. SIMULATION

In this section, a numerical example is provided to illustrate
the previous results.
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Consider the resource allocation problem (5) with N =
10,m = 2,

f1(x1) = x2
11 + 1

2x11x12 + 1
2x

2
12 + 1; f2(·) = f1(·);

f3(x3) = 1
4 (x31 + 2)2 + x2

32; f4(·) = f3(·);
f5(x5) = 1

2x
2
51 − 1

2x51x52 + x2
52; f6(·) = f5(·);

f7(x7) = ln(e2x71 + 1) + x2
72; f8(·) = f7(·);

f9(x9) = ln(e2x91 + e−0.2x91) + ln(ex92 + 1); f10(·) = f9(·),

and d1 = d2 = d3 = d4 = d5 = [1 1]T , d6 = d7 = d8 = d9 =
d10 = [2 2]T . Suppose the communication graph G(t) is time
varying, which alternates every 1s between G1 and G2 shown
in Fig. 3. It can be observed that the switching graph G(t) is
weight-balanced and infinitely jointly strongly connected, and
Assumption 1 holds with l1 = l2 = l5 = l6 = 2.21, l3 = l4 =
17 = l8 = 2, l9 = l10 = 1.21.

Fig. 3. The switching communication graph G(t).

We solve the centralized convex problem (5) using Yalmip,
and obtain the optimal solution x∗i , i = 1, . . . , 10. According to
Lemma 1, λ∗1 = . . . = λ∗10 = ∇fi(x∗i ) = [1.87 0.992]T . The
goal is to design a continuous-time distributed algorithm to
equivalently solve the optimization problem (5) under discrete-
time communication.

To start with, we recast the above problem into (7) based on
Section III-A. It can be obtained that ∆Ji(λi) = hi(λi)− di
with

h1(λ1) =

(
4
7λ11 − 2

7λ12
8
7λ12 − 2

7λ11

)
; h2(·) = h1(·);

h3(λ3) =

(
2λ31 − 2
1
2λ32

)
; h4(·) = h3(·);

h5(λ5) =

(
8
7λ51 + 2

7λ52
2
7λ51 + 4

7λ52

)
; h6(·) = h5(·);

h7(λ7) =

(
1
2 ln λ71

2−λ71
1
2λ72

)
; h8(·) = h7(·);

h9(λ9) =

(
5
11 ln 5λ91+1

10−5λ91

ln λ91

1−λ91

)
; h10(·) = h9(·).

In the following simulations, we fix α = 1, and fix γi(0) =
0,∀i ∈ I to satisfy the initial condition

∑N
i=1 γi(0) = 0.

To examine the effectiveness of the distributed algorithms
amounts to checking whether the trajectories of λi(t), i ∈ I
converge to the value λ∗ = [1.87 0.992]T .

Let us first implement the distributed algorithm (9) un-
der continuous-time communication. By condition (14) in
Corollary 1, one has that algorithm (10) will converge with
0 < β < 0.103. Under randomly generated initial value of

xi(0), the trajectories of λi(t), i ∈ I are shown in Figure
4 with different value of β. Although condition (14) is only
sufficient, it is shown in Figure 4 that the convergence is no
longer ensured when β takes some larger value.

0 50 100 150 200

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

0 50 100 150 200
Time(s)

-2

-1

0

1

2

3

4

(b)

Fig. 4. Trajectories of λi(t) under continuous-time communication.

Next, we explore the distributed algorithm (15) under pe-
riodic communication. By exploiting condition (22), we have
that algorithm (15) will converge with 0 < β < 1

9.74+4.41Ts
.

If we let β = 0.05, then the condition yields that Ts < 2.3.
In this example, we let Ts = 0.5, 1.5 and it is obvious
that Assumption 3 holds. The trajectories of λi(t) are shown
in Figure 5. Note that Ts here is relatively large such that
communication is greatly reduced.

(a) (b)

Fig. 5. Trajectories of λi(t) under periodic communication.

In the end, let us illustrate algorithm (23) with sample-based
event-triggered communication. We select β = 0.09, Ts = 0.1
and ci = 0.5 in (25). The trajectories and the triggering
instants of λi(t) are shown in Figure 6. In Figure 6(b), the
largest number of triggering times is 337 for node 5 while the
smallest one is only 13 for node 9 and node 10, both of which
are a lot smaller than the number of periodic sampling number
300/Ts = 3000. These show that the sample-based event-
triggered control effectively reduces communication costs.
Moreover, a better convergence performance is observed in
Figure 6(a) than the one in Figure 5(a) with less triggering
times, due to the larger coupling gain β.

V. CONCLUSION

We have introduced the passivity-based perspective for the
continuous-time algorithm addressing the distributed resource
allocation problem over weight-balanced and infinitely jointly
connected digraphs. By showing that the individual algorith-
mic dynamics is IFP, it is shown how to redesign the algorithm
with intermittent communication protocol.
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(a)
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(b)

Fig. 6. Trajectories and triggering instants of λi(t) under sample-based event-
triggered communication.

The passivity-based analysis in this work is based on an
existing algorithm that considers the distributed optimization
without set constraints and with strong assumptions on cost
functions. An interesting future direction is to explore the
passivity property for more advanced algorithms and investi-
gate the performance of the algorithms affected by uncertainty.
Another promising direction is to explore the compatibility
of the passivity-based approach with other network-induced
imperfections such as time delay and packet drops.

APPENDIX

PROOF OF THEOREM 1

Since the Jacobian of hi(λi) satisfies 1
li
I ≤ ∂hi(λi)

∂λi
, it

follows from Mean Value Theorem that hi(λi) − hi(λ
∗
i ) =

Bλi (λi − λ∗i ) where Bλi is a symmetric λi-dependent matrix
defined as Bλi =

∫ 1

0
∂hi
∂λi

(λi+ t(λi−λ∗i ))dt and 1
li
I ≤ B(λi).

Therefore, system (12) can be rewritten as
∆λ̇i = −αBλi∆λi −∆γi
∆γ̇i = −ui
ui = β

∑N
j=1 aij(t)(∆λj −∆λi).

Consider the storage function

Vi = ηi
2 ‖∆λ̇i‖

2 −∆λTi ∆γi + α(Ji(λ
∗
i )− Ji(λi)

+ (hi(λ
∗)− di)T ∆λi)

(26)
where ηi is chosen to satisfy ηi > li

α .
First, let us verify the positive definiteness of Vi.
It can be observed that ηi2 ‖∆λ̇i‖

2 = ηi
2 ‖αBλi∆λi+∆γi‖2,

and the strong convexity of Ji(λi) provides that

Ji(λ
∗
i )− Ji(λi) ≥ − (hi(λi)− di)T ∆λi +

1

2li
‖∆λi‖2,

which follows that the last term in the storage function Vi
satisfies

α
(
Ji(λ

∗
i )− Ji(λi) + (hi(λ

∗
i )− di)

T
∆λi

)
≥ α

(
− (hi(λi)− hi(λ∗i ))

T
∆λi + 1

2li
‖∆λi‖2

)
= ∆λTi

(
−αBλi + α

2li
I
)

∆λi.

It can be derived that

Vi ≥ ηi
2 ‖αBλi∆λi + ∆γi‖2 −∆λTi ∆γi

+( α
2li
I − αBλi)‖∆λi‖2

=

(
∆λi
∆γi

)T (α2ηi
2 B2

λi
− αBλi + α

2li
I ∗

αηi
2 Bλi − 1

2I
ηi
2 I

)
︸ ︷︷ ︸

W

(
∆λi
∆γi

)
.

(27)
Since ηi

2 I > 0, ηi > li
α and α2ηi

2 B2
λi
− αBλi + α

2li
I −(

αηi
2 Bλi − 1

2I
) (

ηi
2 I
)−1 (αηi

2 Bλi − 1
2I
)

= − 1
2ηi
I+ α

2li
I > 0,

it can be concluded based on Schur Complement Lemma that
W > 0. Therefore, it can be claimed that Vi ≥ 0 and Vi = 0
if and only if (λi, γi) = (λ∗i , γ

∗
i ).

The next step is to show that with the defined storage
function Vi, the system Ψi is IFP(νi) from ui to ∆λi.

Let us observe that

ηi
2 ·

d‖∆λ̇i‖2
dt = ηi∆λ̇

T
i

(
−αdhi(λi)dt −∆γ̇i

)
= ηi∆λ̇

T
i

(
−α∂hi(λi)∂λi

∆λ̇i + ui

)
≤ −ηiαli ‖∆λ̇i‖

2 + ηi∆λ̇
T
i ui,

d(−∆λTi ∆γi)
dt = −∆λ̇Ti ∆γi + ∆λTi ui.

Recall that ∇Ji(λi) = hi(λi)− di, and it follows that

α ·
d
(
Ji(λ

∗
i )− Ji(λi) + (hi(λ

∗
i )− di)

T
∆λi

)
dt

= α (−∇Ji(λi) + (hi(λ
∗
i )− di))

T
∆λ̇i

= − (αBλi∆λi)
T

∆λ̇i.

By combining the above equations, one has that

V̇i =
ηi
2
· d‖∆λ̇i‖

2

dt
+
d(−∆λTi ∆γi)

dt
+

α ·
d
(
Ji(λ

∗
i )− Ji(λi) + (hi(λ

∗
i )− di)

T
∆λi

)
dt

≤ −ηiα
li
‖∆λ̇i‖2 + ηi∆λ̇

T
i ui + ∆λTi ui

− (αB(λi)∆λi + ∆γi)
T

∆λ̇i

=

(
−ηiα

li
+ 1

)
‖∆λ̇i‖2 + ηi∆λ̇

T
i ui + ∆λTi ui (28)

with −ηiαli + 1 < 0. Since(
−ηiα

li
+ 1

)
‖∆λ̇i‖2 + ηi∆λ̇

T
i ui ≤

η2
i

4
(
ηiα
li
− 1
)uTi ui,

it follows that

V̇i ≤ ∆λTi ui +
η2
i

4
(
ηiα
li
− 1
)uTi ui.

Finally, let us prove νi ≥ − l2i
α2 . To this end, consider the

following optimization problem

min
ηi>

li
α

η2
i

4
(
ηiα
li
− 1
) ,
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and it can be verified that the optimal solution is given by
η∗i = 2li

α and the corresponding minimum value of the above
objective function is l2i

α2 .
Thus, it can be summarized that V̇i ≤ ∆λTi ui +

l2i
α2u

T
i ui,

which completes the proof.

PROOF OF THEOREM 2

Recall the storage function defined in (26) for individual
system, and consider the Lyapunov function V =

∑N
i=1 Vi for

the overall distributed algorithm. Denote u = col(u1, . . . , uN ),
∆λ = col(∆λ1, . . . ,∆λN ), and it follows from (12) that u =
−β (L(t)⊗ Im) ∆λ. Based on the result in Theorem 1, one
has

V̇ ≤
∑N
i=1 ∆λTi ui +

l2i
α2u

T
i ui

= −β∆λT (L(t)⊗ Im) ∆λ+ β2∆λT
(
L(t)T ⊗ Im

)
×(

diag
(
l2i
α2

)
⊗ Im

)
(L(t)⊗ Im) ∆λ

= ∆λT (M ⊗ Im) ∆λ

with

M = −β
2

(
L(t) + L(t)T

)
+ β2

(
L(t)T diag

(
l2i
α2

)
L(t)

)
.

Since a weight-balanced digraph G is strongly connected
if and only if it is weakly connected (Lemma 1 in [17]),
any weight-balanced digraph can be decomposed into a set
of strongly connected balanced digraphs. For a strongly con-
nected balanced digraph, it is apparent that its Laplacian
L has the same null space with LT , which is span{1N}.
Then, for a weight-balanced digraph, its Laplacian L and
LT have the same null space. Therefore, for a time-varying
weight-balanced digraph, Null(L(t)+L(t)T ) is the same with
Null(L(t)T diag

(
l2i
)
L(t)) at any time t. Besides, since G(t)

is weight-balanced for all t, it can be easily verified that
L(t) + L(t)T ≥ 0 and L(t)T diag

(
l2i
)
L(t) ≥ 0. Since the

above two matrices are both positive semi-definite and have the
same null space, it can be implied from the min-max theorem
that if the condition in (13) holds, then

α2
(
L(t) + L(t)T

)
≥ 2βL(t)T diag

(
l2i
)
L(t). (29)

Thus, it can be concluded that M ≤ 0, which leads to V̇ ≤ 0.
Note that at any time t, M has the same null space with L(t)’s,
so V̇ (t) = 0 only if the nodes belonging to the same strongly
connected subgraph reach output consensus. According to
LaSalle’s invariance principle, the trajectory ∆λ tends to the
largest invariant set of {∆λ|V̇ (t) = 0}. Moreover, since the
graph G(t) is infinitely jointly strongly connected, one has that
∆λ will converge to the set {∆λ|∆λ1 = . . . = ∆λN}.

According to (27), V ≥ 0 and V is radially unbounded, i.e.,
V → ∞ as ‖(∆λT ,∆γT )T ‖ → ∞. Since V̇ ≤ 0, then V is
non-increasing, and the state is bounded, i.e., λ, γ are bounded.
Let us recall that Λi , range(∇fi(xi)) with xi ∈ Rm, and
hi(∇fi(xi)) = xi. Let Λ̄i be the boundary of the set Λi. Since
xi ∈ Rm is unbounded in our Problem (5) and fi is strictly
convex, then ‖hi(λi)‖ → ∞ when λi → Λ̄i. From the first
line of (9), this yields that ‖λ̇i‖ → ∞ when λi → Λ̄i since
γi is bounded. Consequently, based on (26), V → ∞, which

contradicts the fact that V is non-increasing. Therefore, for all
i ∈ I, the set Λi is a positively invariant set of λi.

Next, let us show that V̇ = 0 ⇒ ∆λ̇1 = . . . = ∆λ̇N = 0.
Since the inequality in (13) is strict, it follows that there exists
a small enough scalar ε > 0 such that

0 < β <
α2σ+

min(L(t) + L(t)T )

2σN (L(t)T diag (l2i + ε)L(t))
. (30)

By substituting ηi with η∗i = 2li
α in (28), we have

V̇i ≤ −‖∆λ̇i‖2 +
2li
α

∆λ̇Ti ui + ∆λTi ui.

By completing the square, we further have −‖∆λ̇i‖2 +
2li
α ∆λ̇Ti ui ≤ − ε

(l2i /α2+ε)
‖∆λ̇i‖2 +

(
l2i
α2 + ε

)
uTi ui. Hence,

V̇i ≤ −
ε(

l2i
α2 + ε

)‖∆λ̇i‖2 +

(
l2i
α2

+ ε

)
uTi ui+ ∆λTi ui. (31)

Hence, by similar argument before, it follows that V̇ ≤
∆λT

(
M̂ ⊗ Im

)
∆λ −

∑N
i=1

ε

(l2i /α2+ε)
‖∆λ̇i‖2 where M̂ =

−β2
(
L(t) + L(t)T

)
+ β2L(t)T diag

(
l2i
α2 + ε

)
L(t) and M̂ ≤

0. As a consequence, it can be concluded that V̇ ≤ 0 and
V̇ = 0 only if ∆λ̇1 = . . . = ∆λ̇N = 0.

Because of the LaSalle’s invariance principle, we have that
∆λ̇ → 0 and ∆λ → 1N ⊗ s for some s ∈ Rm as t → ∞.
Furthermore, by (12), one has ∆γ̇ → 0 as t→∞. Thus, the
states λ, γ under algorithm (9) will converge to an equilibrium
point. With the initial condition

∑N
i=1 γi(0) = 0, it follows

from Lemma 2 that algorithm (9) will converge to the optimal
solution of the problem (7).

PROOF OF COROLLARY 1

Define a vector variable x = col(x1, . . . , xN )T ∈ RmN
and it can be observed that xT (L(t) + L(t)T )x(t) =
2
∑N
i=1 xi

∑N
j=1 aij(t)(xi − xj) =

∑N
i=1

∑N
j=1 aij(t)(xi −

xj)
2 where the second equality follows from the balance of

the graph G(t). Suppose condition (14) holds, i.e., α2 >
2β2l2i d

i
in(t) for all i ∈ I. Then, one has

α2xT (L(t) + L(t)T )x(t) = α2

N∑
i=1

N∑
j=1

aij(t)(xi − xj)2

≥ 2β

N∑
i=1

l2i d
i
in(t)

N∑
j=1

aij(t)(xi − xj)2.

Since diin(t) =
∑N
j=1 aij(t), it follows from Cauchy-

Schwartz inequality that diin(t)
∑N
j=1 aij(t)(xi − xj)

2 ≥(∑N
j=1 aij(t)(xi − xj)

)2

. This yields that

N∑
i=1

l2i d
i
in(t)

N∑
j=1

aij(t)(xi − xj)2

≥
N∑
i=1

l2i

 N∑
j=1

aij(t)(xi − xj)

2

= xTL(t)T diag(l2i )L(t)x(t).
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Hence, we have for all x ∈ RmN , α2xT (L(t)+L(t)T )x(t) ≥
2βxTL(t)T diag(l2i )L(t)x(t), which is equivalent to (29). Fol-
lowing the same reasoning after (29) will complete the proof.

PROOF OF THEOREM 3

Let us consider a revised storage function V̄i =
1
Ts

(
Vi + κ‖zi‖2

)
with Vi defined in (26) and the coefficient

κ > 0 will be designed later. The positive definiteness of V̄i
can be easily verified since Vi is positive definite according to
the proof of Theorem 1 and κ‖zi‖2 ≥ 0.

Consider the difference of V̄i between two consecutive
sampling instants, kTs and (k + 1)Ts for any k ∈ N, we
have∫ (k+1)Ts

kTs
˙̄Vidt = V̄i((k + 1)Ts)− V̄i(kTs) =

1
Ts

(∫ (k+1)Ts
kTs

V̇idt+ κ‖zi((k + 1)Ts)‖2 − κ‖zi(kTs)‖2
)
.

It is proved by Theorem 1 that V̇i ≤ ∆λTi ui +
l2i
α2u

T
i ui. By

expressing ∆λi(t) as ∆λ̄i(k) +
(
∆λi(t)−∆λ̄i(k)

)
, one has∫ (k+1)Ts

kTs
V̇idt

≤
∫ (k+1)Ts
kTs

∆λ̄i(k)Tuidt+
∫ (k+1)Ts
kTs(

∆λi(t)−∆λ̄i(k)
)T
uidt+

l2i
α2

∫ (k+1)Ts
kTs

uTi uidt

≤ Ts∆λ̄i(k)T ūi(k) + Ts
l2i
α2 ‖ūi(k)‖2

+
∫ (k+1)Ts
kTs

(
1
2θ‖∆λi(t)−∆λ̄i(k)‖2 + θ

2‖ūi(k)‖2
)
dt

where θ can be any positive scalar, and the second inequality
holds since ui(t) is set to be a piecewise signal due to the
zero order holder (16). Lemma 4 provides∫ (k+1)Ts

kTs
‖∆λi(t)−∆λ̄i(k)‖2dt

≤ T 3
s
l2i
α2 ‖ūi‖2 + T 2

s
li
α

(
‖zi(kTs)‖2 − ‖zi((k + 1)Ts)‖2

)
which follows that∫ (k+1)Ts

kTs
V̇idt

≤ Ts∆λ̄i(k)T ūi(k) +
Tsl

2
i

α2 ‖ūi(k)‖2 +
(
Tsθ
2 +

T 3
s l

2
i

2θα2

)
·

‖ūi(k)‖2 +
T 2
s li

2θα

(
‖zi(kTs)‖2 − ‖zi((k + 1)Ts)‖2

)
.

By selecting θ to minimize the value of
(
Tsθ
2 +

T 3
s l

2
i

2θα2

)
, it can

be easily obtained that

θ∗ = Ts
li
α

and min

(
Tsθ

2
+
T 3
s

2θ

l2i
α2

)
= T 2

s

li
α

Now, let us choose θ = Ts
li
α and κ = Ts

2 . It follows that

V̄i((k + 1)Ts)− V̄i(kTs)
= 1

Ts

(∫ (k+1)Ts
kTs

V̇idt+ κ‖zi((k + 1)Ts)‖2 − κ‖zi(kTs)‖2
)

≤ ∆λ̄i(k)T ūi(k) +
(
l2i
α2 + Ts

li
α

)
‖ūi(k)‖2.

Thus, it can be observed that the sampled system Ψ̄i is
IFP(ν̄i) from ūi to ∆λ̄i with IFP index ν̄i ≥ −

(
l2i
α2 + Ts

li
α

)
.

PROOF OF THEOREM 4

First, let us consider the equilibrium point of (23) with
initial condition satisfying

∑N
i=1 γi(0) = 0 whose compact

form is represented as

λ̇∗ = −α(h(λ∗)− d)− γ∗ = 0

γ̇∗ = βL(k)λ̂∗ = 0.
(32)

By similar reasoning in Lemma 2, we can obtain that∑N
i=1 γi(t) = 0 for any t > 0 and ∇J(λ∗) = 0. Besides,

γ̇∗ = βL(t)λ̂∗ = 0 leads to λ̂∗i = λ̂∗j ,∀i, j ∈ I. Due to the
triggering condition (25), we have ‖λ∗i − λ̂∗i ‖ = 0, indicating
λ∗ = λ̂∗ and λ∗i = λ∗j ,∀i, j ∈ I. Under Assumption 1,
the equilibrium (λ∗, γ∗) is unique with λ∗ being the optimal
solution of (7).

Next, the error dynamics in each individual subsystem is
obtained by comparing (23) and (32) as

Ψ̂i :


∆λ̇i = −α (hi(λi)− hi(λ∗))−∆γi
∆γ̇i = −ui
ûi(k) = β

∑N
j=1 aij(k)(∆λ̂j(k)−∆λ̂i(k))

with ∆λ̂i = λ̂i−λ∗i . Since the dynamic from input ui to output
∆λ̄i is the same with that in (17) and ui(t) = ûi(k),∀t ∈
[kTs, (k + 1)Ts), it follows from Theorem 3 that

V̄i((k + 1)Ts)− V̄i(kTs)
≤ ∆λ̄i(k)T ûi(k) +

(
l2i
α2 + Ts

li
α

)
‖ûi(k)‖2,∀i ∈ I

with V̄i defined in the proof of Theorem 3. Consider the
Lyapunov function V̄ =

∑N
i=1 V̄i, and it yields that

V̄ (k + 1)− V̄ (k)

≤
N∑
i=1

∆λ̄i(k)T ûi(k) +

(
l2i
α2

+ Ts
li
α

)
‖ûi(k)‖2

=

N∑
i=1

β∆λ̄Ti (k)

N∑
j=1

aij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)

+

N∑
i=1

β2

(
l2i
α2

+ Ts
li
α

)∥∥∥∥∥∥
N∑
j=1

aij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)∥∥∥∥∥∥

2

=

N∑
i=1

β
(

∆λ̂i(k) + ei(k)
)T N∑

j=1

aij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)

+

N∑
i=1

β2

(
l2i
α2

+ Ts
li
α

)∥∥∥∥∥∥
N∑
j=1

aij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)∥∥∥∥∥∥

2

=β

N∑
i=1

N∑
j=1

ei(k)Taij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)

+ β

N∑
i=1

N∑
j=1

aij(k)∆λ̂i(k)T∆λ̂j(k)− β
N∑
i=1

N∑
j=1

aij(k)∆λ̂i(k)T∆λ̂i(k)

+

N∑
i=1

β2

(
l2i
α2

+ Ts
li
α

)∥∥∥∥∥∥
N∑
j=1

aij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)∥∥∥∥∥∥

2
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where the second equality holds since ei(k) = λ̄i(k)−λ̂i(k) =
∆λ̄i(k)−∆λ̂i(k). It can be derived from G(t) being balanced
that∑N

i=1

∑N
j=1aij(k)

(
∆λ̂i(k)T∆λ̂j(k)−∆λ̂i(k)T∆λ̂i(k)

)
= − 1

2

∑N
i=1

∑N
j=1aij(k)‖∆λ̂j(k)−∆λ̂i(k)‖2.

Let us observe that for all τi > 0

ei(k)Taij(k)
(

∆λ̂j(k)−∆λ̂i(k)
)

≤ aij(k)
(

1
2τi
‖ei(k)‖2 + τi

2 ‖λ̂j(k)−∆λ̂i(k)‖2
)

and by Cauchy-Schwartz inequality we have that∥∥∥∑N
j=1 aij(k)

(
∆λ̂j(k)−∆λ̂i(k)

)∥∥∥2

≤ diin(k)
∑N
j=1 aij(k)‖∆λ̂j(k)−∆λ̂i(k)‖2.

With the above equations, we can now have for any τi > 0

V̄ (k + 1)− V̄ (k)

≤ −β
2

N∑
i=1

N∑
j=1

aij(k)

((
1− τi − 2βdiin(k)

(
l2i
α2

+ Ts
li
α

))
·

‖∆λ̂j(k)−∆λ̂i(k)‖2 − ‖ei(k)‖2

τi

)
= −β

2

N∑
i=1

((
1− τi − 2βdiin(k)

(
l2i
α2

+ Ts
li
α

)) N∑
j=1

aij(k)‖∆λ̂j(k)−∆λ̂i(k)‖2 − diin(k)
‖ei(k)‖2

τi

)
.

By letting τi = 1
2 − βd

i
in(k)

(
l2i
α2 + Ts

li
α

)
, it can be verified

by (22) that τi > 0, and the above inequality becomes

V̄ (k + 1)− V̄ (k)

≤ −β2
N∑
i=1

((
1

2
− βdiin(k)

(
l2i
α2

+ Ts
li
α

)) N∑
j=1

aij(k)·

‖∆λ̂j(k)−∆λ̂i(k)‖2 − diin(k)‖ei(k)‖2(
1
2 − βd

i
in(k)

(
l2i
α2 + Ts

li
α

))


Suppose condition (25) holds. Then it follows that

V̄ (k + 1)− V̄ (k)

≤ −β2 (1− ci)
∑N
i=1

(
1
2 − βd

i
in(k)

(
l2i
α2 + Ts

li
α

))
∑N
j=1 aij(k)‖∆λ̂j(k)−∆λ̂i(k)‖2.

Since 0 < ci < 1, it leads to V̄ (k + 1) − V̄ (k) ≤ 0. Under
Assumption 3, the largest invariant set of {∆λ̂|V̄ (k + 1) −
V̄ (k) = 0} is {∆λ̂|∆λ̂1 = . . . = ∆λ̂N}. Therefore, according
to the discrete-time LaSalle’s invariance principle [44], we
have that ∆λ̂i(k)−∆λ̂j(k)→ 0,∀i, j ∈ I as k →∞. Then,
it can be indicated from (25) that limk→∞ ei(k) = 0, and
hence, limk→∞∆λ̄i(k) = limt→∞∆λ̂i(k),∀i ∈ I. It follows
from (23) that limt→∞ γ̇ = 0.

Next, since the inequalities of (22) and ci < 1 are strict, by
following (31) with similar argument after (31) in the proof
of Theorem 2, it can be proved that V̄ (k+ 1)− V̄ (k) = 0⇒
∆λ̇1 = . . . = ∆λ̇N = 0.

Based on the result that limt→∞∆λ̇ = 0, limt→∞ γ̇ = 0,
and limt→∞∆λ = 1N ⊗ s for some s ∈ Rm, it can be

concluded that the states λ and γ under algorithm (23) with
the triggering condition (25) will converge to an equilibrium
point (λ∗, γ∗), and λ∗ is identical to the optimal solution of
(7) if the initial condition satisfies

∑N
i=1 γi(0) = 0.
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