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Abstract: The purpose of this paper is to investigate the linear stability analysis for the laminar-
turbulent transition region of the high-Reynolds-number instabilities for the boundary layer flow
on a rotating disk. This investigation considers axial flow along the surface-normal direction, by
studying analytical expressions for the steady solution, laminar, incompressible and inviscid fluid of
the boundary layer flow due to a rotating disk in the presence of a uniform injection and suction.
Essentially, the physical problem represents flow entrainment into the boundary layer from the axial
flow, which is transferred by the spinning disk surface into flow in the azimuthal and radial directions.
In addition, through the formation of spiral vortices, the boundary layer instability is visualised
which develops along the surface in spiral nature. To this end, this study illustrates that combining
axial flow and suction together may act to stabilize the boundary layer flow for inviscid modes.

Keywords: cross-flow instability; co-rotating vortices; inviscid modes; rotating disk; three-dimensional
boundary layers

1. Introduction

The fluid mechanics governing turbulent flow are not fully understood, it will also
take decades to disentangle the myriad routes to turbulence to provide a development of
the next generation of silent, ultra-efficient aircraft engines and turbofans. Hydrodynamic
stability theory in generating precise and cost-effective predictions compared with exper-
imental studies, reveals flow control and drag reduction strategies, including potential
environmental and economic benefits that would result from reduced noise and CO2
emissions due to significant fuel consumption. According to Helmholtz, Kelvin, Rayleigh
and Reynolds, the fundamental basics of hydrodynamic stability were known, formulated
and recognised in the 19th century. For instance, the instabilities of Kelvin-Helmholtz [1,2],
Taylor-Couette [3] and Rayleigh-Bénard [4] have been analysed, evaluated and examined
by linear stability analysis (LSA) with a referral to the Navier–Stokes equations. After
that, many more numerical analysis methods and nonlinear stability approaches were
launched and developed to investigate and evaluate the stability of a complicated fluid
flows [5,6]. However, the main examination and analysis of hydrodynamic stability are
still a challenging problem in the applied mathematics communities and engineering [7–9].

It is known that hydrodynamic instability is linked and related to the critical values of
dimensionless parameters in fluid systems, such as the Rayleigh, Mach and Reynolds num-
bers, etc. [5,9]. Studies that have used linear stability analysis are not completely accurate,
while nonlinear stability analysis is usually complicated to implement after formulation.
However, analysis of the linear stability for laminar flow considers fluid particles following
paths in layers, where every layer is smoothly moving past adjacent layers with little or
no mixing. Laminar to turbulent flow studies have been reviewed considering the effect
of parameters, such as roughness, on the transition process [10]. Tremendous interest
has been drafted towards the mechanisms governing laminar-turbulent transition and
analysing the instability of flow in three-dimensional boundary layers in detail. (see, for
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example, Reed et al. [11], Hall and Malik [12], Lakin and Hussaini [13]). Recently machine
learning (ML) algorithms have started to pave an alternative way to identify and spot the
location where the hydrodynamic instability starts to take place, differentiate the transition
to turbulence process, predict the critical parameters and the influences of these parameters
on hydrodynamic flows. These algorithms are automatic, reliable and accurate and will
always be ready for generating new conditions to be applied on highly chaotic systems
such as turbulent flow. However, it is currently still a challenge to introduce these issues
more clearly and consistently [14].

During the classical series of experiments on the instability of flow in a pipe by
Reynolds [16], he investigated high speed flow in parallel channels. Meanwhile, the
definition of the boundary layer was firstly described by Prandtl [17] as a thin layer along
a solid boundary where the viscosity of the fluid/gas has an impact. His model is used to
show how the airflow around an airfoil wing would behave. Consequently, there was great
attention towards the governing mechanisms of three-dimensional (3D) boundary-layer
flow stability as well as application to the design of aerofoils. Importantly, it is required
to clearly understand the instability mechanisms that govern the breaking down of the
boundary layer (Reed et al. [11], Reshotko [18] and Saric et al. [19]). This understanding is
driven by the rotating disk’s fundamental importance as a model for cross-flow dominated
flows such as those that appear over swept wings and in other applications. Since the 1950s,
there was a great interest by many researchers towards the disk, however, in recent decades,
the study of boundary-layer flows has developed to consider more complex axisymmetric
rotating bodies (Kobayashi [20], Hussain [21] and [22])

Moreover, problems concerning the effect of Magneto-Hydrodynamics (MHD) on
boundary layer flow have recently undergone further investigation in order to understand
a range of geophysical, astrophysical, and engineering phenomena. For instance, the
geophysical flow process that occurs at the core-mantle interface of the earth (see Berker
[23], Coirier [24] and Mohanty [25]).

In addition, several engineering applications include the non-Newtonian behaviour of
fluids, for instance, remediation, hydraulic fracturing and other industrial operations. It is
considered that non-Newtonian fluid motion equations are extremely nonlinear compared
to linear models of the Navier-Stokes equations. These non-Newtonian fluids models
are divided into three groups; integral, rate and differential type fluids. In addition, a
Maxwell fluid is a sub-category of a fluid rate type that forecasts the effects of time of
relaxation. However, other fluid types cannot project these effects [26]. In the study of
Mabood et al. [27], they scrutinized the thermal radiation impact on this Maxwell fluid
flow while convective boundary constraints are considered. Ijaz and Ayub [28] also tried to
explore the activation energy influence on Maxwell fluid flow stratified with the suspended
nanoparticle. Ahmed et al. [29] examined the Maxwell fluid flow driven through gyrating
disks considering a mix between convection and swirling flow. In other studies, Maxwell
fluid flow was investigated over a vertically rotating disk moving with the impact of a
magnetic effect and radiation, Khan et al. [30].

Despite several studies in this field, many gaps are still not filled such as the instability
for a rotating disk within axial flow and varying parameters suction/ injection (see Hussain
et al. [31] and Turkyilmazoglu [32] for the respective separate studies). In particular, this
study addresses the lack of positive and negative strengths of axial flow when Ts > 0.25
and Ts < 0 (18), and analytic high Reynolds number asymptotic solutions of rotating disk
boundary layer flow subject to a varying suction/injection within a fixed axial flow.

This study investigates the laminar-turbulent transition of incompressible boundary
layer flow on a rotating disk. For this purpose, the linear stability regimes will be analysed,
both for positive and negative axial flow strengths and various injections or suction for
a given positive fixed axial flow. In Section 2, the formulation of the rotating disk and
boundary layer approximation of the problem is analysed and discussed by deriving the
governing linear disturbance equations. In Section 3, the inviscid model is obtained based
on the asymptotic expansions of a small parameter. In Section 4, conclusions about the
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stability parameters for a rotating disk in axial flow and corresponding to suction and
injection velocities are analysed.

1.1. The Problem Definition

This study is designed based on the theoretical investigations of Garrett and Peake [33],
and Garrett et al. [34], who considered the absolute instability over a family of cones
rotating within imposed axial flows. More specifically, we follow and extend the analysis
and evaluation of Hussain et al. [31] for a rotating disk, creating and formulating the linear
disturbances equations before reaching the stage of identifying the upper branch inviscid
modes. Thus, the rotating disk is considered to be a special case of a cone with half-angle
90 degrees. However, in those studies, the initiation of absolute instability is affected by
the rate of imposed axial flow, and the initiation location is importantly delayed with axial
flow increase.

1.2. The Importance of the Problem

In order to investigate the fluid flow stability in a complex model of rotating disk flow,
an asymptotic analysis revealing the best parameters for stable flow is conducted. This
includes varying the suction/ injection and axial flow. Since these parameters interact in a
complex way, consequently the aim is uncovering how they affect flow stability and lead
to turbulent flow. Suction and axial flow are observed in natural flows (tornadoes and
typhoons) and have been used on a wide scale, for decades, in applications such as heat
exchange, aeronautics, spray drying, chemical mixing, separation, combustion, etc. More
generally, this problem requires consideration of the link between the engineering input
parameters used in experiments and industry as well as the physical processes involved in
these complicated fluid flows.

2. Formulation of the Problem and Boundary Layer Approximation

We applied a high Reynolds number asymptotic formulation, with numerical solutions
used in certain parts of the analysis, which are outlined at the pertinent points.

Here, the boundary-layer flow governing equations over a rotating disk are the
incompressible Navier–Stokes as well as continuity equation in the cylindrical coordinates
in the rotating frame of reference:

∂u
∂t

+ (u.∇)u = − 1
ρ∗
∇p∗ + ν∗∇2u−Ω× (Ω× r)− 2Ω× u, (1)

∇.u = 0, (2)

Here, the total velocity vector is u = (u∗, v∗, w∗) , time is t∗, the pressure is p∗, also
r = (r∗, θ, z∗) is the position vector in space, the constant angular velocity vector is Ω, ρ is
the dimensional density and ν is the dimensional kinematic viscosity. Due to the rotating
coordinate frame, we have noted the appearance of the Coriolis forcing term, 2Ω× u. In
addition, the frequently used coordinate system is the Cartesian. It is composed of three
constant unit vectors orthogonal to each other in 3D (r, y and z directions). This system
is simple and not complicated to understand that a rotating-disk flow could be suitably
identified. This is because of the axisymmetry of the flow which is making the cylindrical
unit vectors corresponding to the three characterizing directions of the flow, the azimuthal,
radial, and vertical direction (see Appelquist [35]). However, by using the cylindrical
operator, the equations in each r∗, θ and z∗, in orthogonal curvilinear coordinates, will lead
us to the full Navier-Stokes equations (for the case of the rotating cone see also Garrett [33]
considered with a fixed frame of reference) the equations in each r∗, θ and z∗ component are

∂u∗

∂t∗
+ (u.∇)u∗ − v∗2

r
− 2Ω∗v∗ −Ω∗2r = − 1

ρ∗
∂p∗

∂r∗
+ ν∗(∇∗2u∗ − u∗

r2 −
2
r2

∂v∗

∂θ
), (3)
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∂v∗

∂t∗
+ (u.∇)v∗ + u∗v∗

r
+ 2Ω∗u∗ = − 1

ρ∗r
∂p∗

∂θ
+ ν∗(∇∗2v∗ +

2
r2

∂u∗

∂θ
− v∗

r2 ), (4)

and
∂w∗

∂t∗
+ (u.∇)w∗ = − 1

ρ∗
∂p∗

∂z
+ ν∗∇∗2w∗, (5)

along with the equation of continuity

∇.u =
∂u∗

∂r∗
+

u∗

r
+

1
r

∂v∗

∂θ
+

∂w∗

∂z∗
= 0 (6)

where

∇∗2 = ∇.∇ =
1
r

∂

∂r∗
(r

∂

∂r∗
) +

1
r2

∂2

∂θ2 +
∂2

∂z∗2
(7)

Laplacian operator for the coordinate set is the dimensional (r∗, θ, z∗). Moreover, the
boundary conditions considering the rotating reference frame (no-slip conditions) are,

u∗ = 0, v∗ = 0, w∗ = 0, on z∗ = 0, (8)

We put into consideration an infinite extent of a rigid disk rotating about the z∗-
axis that goes through the disk’s centre. The azimuthal and radial coordinates are θ
and r∗, respectively, with the rotating disk surface. However, in an incompressible fluid,
at upstream infinity the disk will be placed with axial flow coming parallel to the z∗-
axis. In addition, the dimensional surface velocity distribution along the disk at the
edge of the boundary layer is provided by the well-recognised potential-flow solution
U∗0 = C∗r∗, (for example see [36,37]). Through the free-stream axial flow C∗ (scale factor)
is determined on the disk. Taking into account here the asterisks indicate dimensional
quantities. Figure 1 illustrates a diagram of the formulation of [33]. According to [38], the
non-dimensionalization of the analysis will lead us to the Reynolds number

R =
Ω∗l∗2

v∗
(9)

The angular speed of the rotation disk is Ω∗, the kinematic viscosity of the fluid is
v∗, and l∗ is a length scale of the disk surface. The distances in the z∗ direction are scaled
based on thickness δ∗ = (v∗/Ω∗)1/2 of the boundary-layer leading to η = z∗/δ∗ which
is a non-dimensional variable (see Hussain [31]). However, we observed O(R−1/2) is the
boundary-layer thickness. Taking into account this scaling is different from the one used
in [39]. In addition, over the disk the basic steady flow has the form in the radial, azimuthal
and normal directions rU(η; Ts), rV(η; Ts) and R−1/2W(η; Ts) respectively.
The basic flow of velocity scales are given by

u = ub = Ω∗l∗(rU(η; Ts), rV(η; Ts), R−1/2W(η; Ts)) (10)
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Figure 1. Rotating disk diagram is showing model setup in axial flow within suction and injection.

While pressure of the basic flow is

p∗ = pb = ρ∗Ω∗l∗2(P0(r) + R−1/2rP(η; Ts)) (11)

with

P0(r) = −
C∗2r2

2Ω∗2
(12)

is representing the inviscid Bernoulli pressure by matching between the pressure inside
the boundary layer and outside coming from the free-stream flow. We observed these basic
flows are determined by the non-dimensional N-S and continuity equations as following:

W ′ + 2U = 0 (13)

WU′ + U2 − (V + 1)2 = T2
s + U′′ (14)

WV′ + 2U(V + 1) = V′′ (15)

with boundary conditions

U = 0, V = 0, W = W∗, on η = 0, (16)

U → Ts, V → −1, as η → ∞. (17)

Here a prime denotes differentiation with respect to η. The ratio of the local slip
velocity is the parameter Ts considered at a radial position in relation to the rotational
speed of the disk surface:

Ts =
C∗

Ω∗
(18)

Here Ts is independent of r∗, simplifying the analysis for the rotating disk, which
differs from the rotating cone in axial flow. Given von Kármán equations [40], Ts = 0
represents the disk rotating in still fluid. Depending on conditions (16) the Equations
(13)–(15) are solved using a Runge-Kutta integration method (fourth-order) via MATLAB
software by extending codes from Hussain et al. [31] in order to obtain large and small Ts,
in coincidence with a two-dimensional Newton-Raphson searching routine to iterate on
the outer boundary conditions for different values of Ts. Since these codes have a stability
function, we tested that stability by changing the location of the edge of the boundary layer
to confirm convergent solutions, which are represented in Figures 2–4.
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Figure 2. Plot showing the mean flow profile U, V and W for ψ = 90, Ts = 0.30 (left) and 0.65 (right).

Figure 3. Plot showing the mean flow profile U, V and W for ψ = 90, Ts = −0.01 (left) and −0.04
(right).

Figure 4. Plot showing the mean flow profile U, V and W, Ts = 0.05 with W∗ = −0.35 (A), 0 (B) and
0.35 (C).

Following Hussain [15] for rotating disk boundary layer flow within an axial flow,
we derive a similarity solution of the laminar, axially symmetric, steady, and viscous
flow induced by an infinite porous of the disk rotating. We take into account the impact
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of applying various suction/injection strengths to the fixed axial direction Ts and the
boundary conditions W∗ with inserted into the N-S equation. Hence, extending the
previous work of Hussain [15] of the rotating disk by using the same mean flow boundary
layer Equations (13)–(15), and the boundary conditions (16) within the changed parameters
of Ts and W∗. Here the parameter Ts in (14) is the axial flow for Ts > 0.25 , Ts < 0 and
Ts = 0.05, the same for the boundary condition parameter W∗ in (16) is suction for W∗ > 0
and injection if W∗ < 0. In the absence of the uniform axial velocity fixed at the disk these
equations reduce to the well-known classical equations for fluid flow above a rotating disk.

2.1. Positive and Negative Strength of Axial Flow (Ts)

Firstly, we consider the equations of mean the flow to extend the results of Hussain
[15] representing when Ts > 0.25. Likewise, when Ts < 0. For these cases, the rotating
disk is placed and located in an oncoming axial flow. Although, with the boundary
conditions (16) , the Equations (13)–(15) are solved by using the integration methods of
Runge-Kutta (fourth-order), through the boundary conditions at infinity, we are applying a
two-dimensional Newton-Raphson search routine to iterate. In addition, the azimuthal,
radial, and normal to the wall components of the steady mean flow velocity of the disk in
the boundary layer for Ts = 0.30− 0.65 as well as for Ts = (−0.01)− (−0.04) are shown in
Figures 2 and 3.

2.2. Various Suction/Injection (W∗) within a Positive Fixed Axial Flow

In this case, we consider the results of Hussain [15] for a rotating disk in axial flow
at Ts = 0.05 while applying various suction/injection parameters (W∗) for the boundary
condition. Once more, the equations (13)–(15) with the boundary conditions W∗ > 0 and
W∗ < 0 are mainly solved using the integration methods of Runge-Kutta (fourth-order),
through the boundary conditions at infinity, we are applying a two-dimensional Newton-
Raphson search routine to iterate. By applying the different values of W∗, the azimuthal,
radial, and normal to the wall components of the steady mean flow velocity of the disk in
the boundary layer for varying suction/injection W∗ at Ts = 0.05 are shown in Figure 4.

2.3. Linear Disturbance Equations

For theses cases of the rotating disk with (Ts > 0.25 and Ts < 0) and applied to varying
suction / injection for the boundary condition, by introducing small basic perturbation
quantities p̃∗ and ũ, we linearise (3)–(6) about the basic pressure (11) and steady mean flow
profile (10) which leads us to governing equations independent of Ts according to

u = ub + ũ, p∗ = p∗b + p̃∗ (19)

where
ũ = Ω∗(ũ, ṽ, w̃), p̃∗ = (ρ∗Ω∗2l∗) p̃. (20)

Upon non-dimensionalising and ignoring the left-hand side of the nonlinear terms to
keep the basic flow with the convective cross-terms only and retaining the right-hand side
of the perturbation terms, will lead us to equations of the linearised perturbation.

∂ũ
∂r

+
ũ
r
+

1
r

∂ṽ
∂θ

+
∂w̃
∂z

= 0 (21)

(rU
∂

∂r
+ V

∂

∂θ
+ R−

1
2 W

∂

∂z
)ũ + Uũ + rw̃

∂U
∂z
− 2(V + 1)ṽ

= −∂ p̃
∂r

+
1
R
(O2ũ− ũ

r2 −
2
r2

∂ṽ
∂θ

),
(22)
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(rU
∂

∂r
+ V

∂

∂θ
+ R−

1
2 W

∂

∂z
)ṽ + Vũ + rw̃

∂V
∂z

+ 2(V + 1)ũ

= −1
r

∂ p̃
∂θ

+
1
R
(O2ṽ +

2
r2

∂ũ
∂θ
− ṽ

r2 ),
(23)

(rU
∂

∂r
+ V

∂

∂θ
+ R−

1
2 W

∂

∂z
)w̃ + R−1/2w̃

∂W
∂z

= −∂ p̃
∂z

+
1
R
(O2w̃),

(24)

Here are the operator of the non-dimensional Laplacian is O∗2 = l∗O∗2 and r = r∗
l∗ .

3. Inviscid Model

To analyse the inviscid type of the rotating disk in axial flow, we have to follow the
same track of the analysis of Hall [12,41] and Hussain [15] who studied the stationary spiral
modes of oscillation on a rotating disk. We extended the analysis for varying rotating disks
with axial flow and suction/injection with fixed axial flow, respectively. Precisely, on the
boundary layer thickness, we scale the inviscid mode wavelengths of order R−1/2, in the θ
and r. Then ε is a small parameter given by

ε = R−
1
6

As a function of the wall-normal coordinate z, we will define the perturbation veloci-
ties in the form

ũ = u(z) exp(
i

ε3

{ ∫ r
α(r, ε)dr + β(ε)θ

}
), (25)

using similar expressions for the perturbation p̃, w̃ and ṽ. We started expanding the
azimuthal and radial wavenumbers β and α as

α = α0 + εα1 + ..... (26)

β = β0 + εβ1 + ..... (27)

Importantly, to see that perturbations with these associated disturbances are neutrally
stable, we explain the conditions β, α ∈ R. Hence, by following the arguments of Hall, that
demonstrated the presence of two layers, firstly a viscous layer with thickness O(ε4) which
incorporates the non-slip condition at the wall. Secondly, an inviscid layer with thickness
O(ε3), by balancing diffusion terms and convection in the disturbance equations.

However, in the inviscid layer of thickness O(ε3) the velocity and pressure perturba-
tions are expanded to

u = u0(η) + εu1(η) + ..... (28)

v = v0(η) + εv1(η) + ..... (29)

w = w0(η) + εw1(η) + ..... (30)

p = p0(η) + εp1(η) + ..... (31)

where the parameter η = zε−3. Also, ∂
∂r and ∂

∂θ are replaced to ∂
∂r +

i
ε3

{
α0 + εα1 + .....,

}
and i

ε3

{
β0 + εβ1 + .....,

}
, respectively.
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3.1. Leading Order Eigenmodes

For the rotating disk in axial flow and suction/injection situations, we equate the
terms O(ε−3) in the expansions of (21)–(24) to lead us to

i
(

α0u0 +
β0v0

r

)
+ w′0 = 0, (32)

i ¯̄Uu0 + rU′w0 = −iα0 p0, (33)

i ¯̄Uv0 + rV′w0 =
iβ0 p0

r
, (34)

i ¯̄Uw0 = −p′P0, (35)

Here ¯̄U = α0rU + β0V. From the above equation we will eliminate u0, v0 and p0 to
lead us to an equation for w0 given by

¯̄U(w′′0 − γ2
0w0)− ¯̄U′′w0 = 0, (36)

So from the cross-stream and radial directions, the γ2
0 = α2

0 +
β2

0
r2 acts as the effective

wavenumber, in a similar form to the rotating disk as discussed by Hall [41], here ¯̄U is
explained as the effective velocity profile. Hence, ¯̄U on a rotating disk is in the direction
of the spiral vortices. Likewise, by using a similar approach and solving the Rayleigh
equation of regarding w0, we obtained γ0 as an eigenvalue of the boundary condition at
infinity and the wall,

w0 = 0, η = 0, ∞. (37)

However, by applying central finite differences and choosing (η = η̄), both ¯̄U and ¯̄U′′

disappeared at this point, the location of the critical layer away from the wall, while the
effective velocity profile has to have a point of inflexion and a root at the same point [15],
as shown in Figure 5–7.

Figure 5. Plot showing the velocity effectiveness ¯̄U (lower curve at η = 20) and its second derivative
¯̄U′′ (upper curve at η = 20) for ψ = 900, Ts = 0.30 (left) and 0.65 (right).

Furthermore, we found that as η → η̄, u0 and v0 behave like 1/(η − η̄), hence the
singularity in their combined profiles, α0u0 +

β0v0
r , is removable. To conclude, investigating

separately each profile’s critical layer structure is not needed. However, it is necessary to
find a solution only for w0.
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Figure 6. Plot showing the velocity effectiveness ¯̄U (below graph at η = 20) and its second derivative
¯̄U′′ (above graph at η = 20) for ψ = 900, Ts = −0.01 (left) and −0.04 (right).

Figure 7. Plot showing the velocity effectiveness ¯̄U (below graph at η = 20) and its second derivative
¯̄U′′ (above graph at η = 20) for ψ = 900, Ts = 0.05 with W∗ = −0.35 (A), 0 (B) and 0.35 (C).

As a result, we obtained w0 by following Hussain [15] for the stationary instability of
rotating disk. The results that we obtained when the Ts > 0.25 that we choose Ts = 0.30
are.

µ =
β0

α0r
= 0.4254 (38)

η̄ = 1.0878 (39)

γ0 = 1.5995 (40)

Additionally, when Ts < 0 such that we choose Ts = −0.01

µ =
β0

α0r
= 0.2329 (41)

η̄ = 1.9695 (42)

γ0 = 1.1516 (43)

The Figures 8–10 show the normalised eigenfunction w0, with gradient w′0 = 1 at
η = 0.
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Figure 8. Plot showing the inviscid motion eigenfunction w0 against η for ψ = 90, Ts = 0.30 (left)
and 0.65 (right).

Figure 9. Plot showing the inviscid motion eigenfunction w0 against η for ψ = 90, Ts = −0.01 (left)
and −0.04 (right).

Figure 10. Plot showing the inviscid motion eigenfunction w0 against η for ψ = 90, Ts = 0.05 with
W∗ = −0.35 (A), 0 (B) and 0.35 (C).
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Now we focus our attention on the solution to lead us to the order of inviscid mode
type I within the wall layer. Thus, the proper normal to the wall coordinate can be taken as

ζ = ε−4z, (44)

that is related to the surface-normal coordinate by η = εζ (see Hussain [15]). However,
from the wall of a disk, the no-slip conditions must be satisfied with the basic flow and its
derivatives being linear in ζ. It is represented by the following form

U = εU′(0)ζ, V = εV′(0)ζ, W = εW ′(0)ζ (45)

which is zero from continuity, also W ≈ O(ε2) and then we expand the pressure and
velocity perturbation inside the wall layer as

u = U0(ζ) + εU1(ζ) + ..... (46)

v = V0(ζ) + εV1(ζ) + ..... (47)

w = W0(ζ) + ε2W1(ζ) + ..... (48)

p = P0(ζ) + ε2P1(ζ) + ..... (49)

noting dependence on the small parameterε, we see the surface-normal and pressure exist
at first order, within the wall layer. Therefor, when substituting these expansions into the
disturbance Equations (21)–(24), and equating terms of O(ε−3), O(ε−2), O(ε−2), O(ε−1),
respectively we find

i
(

α0U0 +
β0V0

r

)
+ W ′0 = 0, (50)

i
(

α0rU′(0) + β0V′(0)
)

ζU0 + rU′(0)W0 = −iα0P0 + U′′0 , (51)

i
(

α0rU′(0) + β0V′(0)
)

ζV0 + rV′(0)W0 =
iβ0P0

r
+ V′′0 , (52)

i
(

α0rU′(0) + β0V′(0)
)

ζW0 = −P′2 + W ′′0 . (53)

Balancing terms of O(ε−3) and O(ε−2) leads to P0, P1 = const in the surface-normal
disturbance equation respectively. However, we have to carry out the manipulation
α0(51)’+ β0

r (52)’, which along with (50), leads to(
α0U0 +

β0V0

r

)′′′
− iζ

(
α0rU′(0) + β0V′(0)

)(
α0U′0 +

β0V′0
r

)
= 0 (54)

We observe the solution of Equation (50) satisfies α0rU(0) + β0V(0) = 0 at ζ = 0.
Now, when we make the substitution

ϕ =
(

α0rU(0) + β0V(0)

)′
, (55)

and if we let τ = γζ, where γ = (i(α0rU′(0) + β0V′(0))1/3, then (54) becomes

ϕττ − τϕ = 0, (56)

indicating the eigenfunction behaviour of the wall layer is characterized by an Airy function
decay for ϕ. Using the condition at ζ = 0 and (50) yields

W ′0 =
w′0
∫ ζ

0 Ai(γs)ds
γ
∫ ∞

0 Ai(γs)ds
(57)
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The required exponentially decaying solution of Airy’s Equation (56) is Ai(τ). To
simplify the resulting integrand, we use integration by parts, substituting the Airy Equation
(56) applying Ai′(∞) = 0. However, the large ζ case of the wall layer at the outer edge,
which matches to the inner edge of the inviscid layer as η → 0 leads to

W0 ≈ w′0(0)ζ +
w′0(0)Ai′(0)
γ
∫ ∞

0 Ai(s)ds
(58)

Consequently, we apply the Prandtl criterion in the form

lim
ζ↑∞

w(ζ) = lim
ζ↓0

w(η) (59)

As a result, at the outer edge of the wall layer, we match the normal perturbation to
the corresponding value at the inner edge of the inviscid layer and use w0(0) = 0 to output
the expression for the order ε inviscid zone normal to the wall velocity component , that is
given by

w1 |γ→0=
w′0(0)Ai′(0)
γ
∫ ∞

0 Ai(s)ds
. (60)

3.2. First Order Eigenmodes

For the next-order problem in the inviscid zone the perturbation Equations (21)–(24)
will expand to O(ε−2) to yield

i
(

α0u1 + α1u0 +
β0v1 + β1v0

r

)
+ w′1 = 0, (61)

i ¯̄Uu1 + i
(

α1Ur + β1V
)

u0 + rU′w1 = −i(α0 p1 + α1 p0), (62)

i ¯̄Uv1 + i
(

α1Ur + β1V
)

v0 + rV′w1 = − (β0 p1 + β1 p0)

r
, (63)

i ¯̄Uw1 + i
(

α1Ur + β1V
)

w0 = −p′1. (64)

In terms of the disturbance quantities (u1, v1, w1, p1) that we found from the pre-
vious Equations (32)–(35), the system of Equations (61)–(64) is comparable to those for
(u0, v0, w0, p0). We noticed inhomogeneous cross-terms. Hence, the disturbance quantities
v1, u1, and p1 are similarly eliminated as the above leading order problem. Additionally,
we used Equation (32) of leading order continuity to eliminate u0 and Equation (61) of next
order continuity to eliminate v0. Consequently, all these helped us to obtain the below
equation that governs w1 of the next order inviscid mode eigenfunction.

¯̄U(w′′1 − γ2
0w1)− ¯̄U′′w1 =

[
2 ¯̄U
(

α0α1 +
β0β1

r2

)
+
(

α1 −
β1α0

β0

)(
U′′ −

¯̄U′′
¯̄U

U
)

r

]
w0. (65)

Notably, at the point η = η̄, the right-hand side of the second part of Equation (65)
results in w1 acquiring a logarithmic singularity. This is removable for type I via including
at this location a critical layer. Moreover, the left-hand side of the Rayleigh differential
operator in Equation (65) is observed to be the same as the operator acting on w0 in Equation
(36) which will lead us to the solution for w1. Therefore, w(1)

1 = w0 is the complementary
function solution. To produce the second solution, we must exert the reduction of order
method.

w(2)
1 = w0(η)

∫ η dζ

w(2)
0 (ζ)

. (66)

Following Hall [41], in order to achieve the solution of the particular integration of
w1, with consideration of the Equation (65) of the right-hand side in the inhomogenous
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part, we utilised the method of variation of parameters of one of the quantities of the
complementary function solution for w1, named as w(1)

1 in the form [w1 = t1w1 − t2w1],
this yields

t1 =
∫ ζ

2
(

α0α1 +
β0β1

r2

)
w2

0(t)dt,

t2 =
∫ ζ (

α1 −
β1α0

β0

)
x
(U′′(t) ¯̄U(t)− ¯̄U′′(t)U(t)

¯̄U2(t)

)
w2

0(t)dt, (67)

and to obtain the solution of the particular integration, we replaced the expression for w(2)
1 ,

in order to give

w1 = 2
(

α0α1 +
β0β1

r2

)
w0(η)

∫ η

¯̄η

dζ

w2
0(ζ)

∫ ζ

∞
w2

0(θ)dθ

+
(

α1 −
β1α0

β0

)
rw0(η)

∫ η

¯̄η

dζ

w2
0(ζ)

∫ ζ

∞
w2

0(θ)
(U′′(θ) ¯̄U(θ)− ¯̄U′′(θ)U(θ)

¯̄U2(θ)

)
dθ, (68)

Here ¯̄η < η. We observed that the expression which we obtained is similar to the one
obtained for rotating disk by Hall [41]. The solution that we noticed is only valid when
η > ¯̄η. Consequently, by expanding w0(ζ) as a Taylor series for ζ close to zero, we obtained
the same eigenrelation that Hall [41] obtained, taking into account that w0(0) = 0 at the
wall.

w0(0) = 2
(

α0α1 +
β0β1

r2

) I1

w′0(0)
+
( α1

β0
− β1α0

β0

) rI2

w′0(0)
, (69)

where
I1 =

∫ ∞

0
w2

0(θ)dθ, (70)

I2 =
∫ ∞

0
β0w2

0(θ)
(U′′(θ) ¯̄U(θ)− ¯̄U′′(θ)U(θ)

¯̄U2(θ)

)
dθ. (71)

In Equation (70) we computed the I1 value through a numerical integration approxi-
mation of a fixed-step Simpson’s rule. However, we found that Equation (71) is singular
at η = η̄ for I2. To be consistent with a viscous critical layer calculation, deforming the
integration path above the singularity is required. The integrated path of deformation is
above the singularity as long as ¯̄U′ ¯(η) < 0 (below if we have a positive value), will help
us to obtain I2 correctly. Consequently, the integration of I2 can be expressed by using the
original definition for ¯̄U in the form

f2(θ) = µ2w2
0(θ)

U′′(θ)Vθ −V′′(θ)U(θ)

(U(θ) + µV(θ))2 , (72)

3.2.1. Rotating Disk in Axial Flow When Ts > 0.25 and Ts < 0

In this case, we focus and analyse the rotating disk with oncoming axial flow Ts. We
found the singularity appearance at η̄ = 1.0878. When applying a fixed step Simpson’s
rule numerical integration approximation, we anticipate this integral again, taking into our
consideration the singularity by integration from η = 0 to just below the singularity, η̄− ηδ,
also from the above the singularity, η̄ + ηδ to infinity. For the imaginary part calculation, we
must evaluate half of the complex residue, whilst for the real part of I2, we use ηδ = 0.124,
importantly the integration of I2 at the point η = η̄ has a simple pole. Therefore, parts of
the Taylor series were expanded. Then ¯̄U = ¯̄U′′ = 0 criteria were used at the singularity in
order to obtain

Im(I2) = −πµ2
[

w2
0

U′′′V −V′′′U + U′′V′ −V′′U′

(U′ + µV′)2

]
|η=η̄ . (73)
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On one hand when the case of the rotating disk in axial flow is Ts = 0.30, we evaluated
both integrals to obtain

I1 = 0.0446 (74)

I2 = 0.3056 + 0.1685i (75)

We observed a significant difference between the values we obtained and the ones
obtained by Hussain [15] for the type I case of rotating disk in axial flow. Hussain obtained
the axial flow Ts = 0 to Ts = 0.25, while we obtained Ts = 0.30 to Ts = 0.65. On the other
hand, when the axial flow is Ts = −0.01, we obtained

I1 = 0.0982 (76)

I2 = 0.0618 + 0.0302i (77)

Therefore, proceeding to follow the analysis, we used our previous computed values
for each I1, and I2 to match with the solution in the wall layer of Equation (60), consequently
the eigenrelation result is

w′0(0)Ai′(0)
γ
∫ ∞

0 Ai(s)ds
= 2

(
α0α1 +

β0β1

r2

)
I1 +

( α1

β0
− β1α0

β2
0

)
rI2, (78)

By using the results of Ai′(0) = −1/(31/3Γ( 1
3 )) and

∫ ∞
0 Ai(s)ds = 1

3 , we have

α0α1 +
β0β1

r2 = −12.55γ0r−1/3, (79)

( α1

β0
− β1α0

β2
0

)
r = 2.996r−1/3. (80)

We observed the above expressions would help us to compute both the first-order
corrections and leading order estimates of the effective wavenumber

(
α2 +

β2

r2

)2
= γ0 +

(
α0α1 +

β0β1

r2

)
ε/γ + ...

= 1.5995− 12.55
r−1/3

R1/6 + ...., (81)

Since φ the spiral waveangle has the following expansion

tan
(π

2
− φ

)
=

α0r
β0

+
( α1

β0
− β1α0

β2
0

)
rε + ...

= 2.3507 +
2.996x−1/3

R1/6 + ... (82)

Following Hall [41] and Hussain [15], we re-scaled these obtained results, writing
both the waveangle and wavenumber using the Reynolds number based on boundary
layer thickness

δ∗ =
( v∗

Ω∗
)1/2

, (83)

given by
Rδ∗ = R1/2r. (84)

This will result in expressing the inviscid model local (wavenumber)

γ∗δ = 1.5995− 8314R−1/3
δ∗ + ..., (85)
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and the inviscid mode waveangle expansion as following:

tan
(π

2
− φ

)
= 2.3507 + 2.996R−1/3

δ∗ + ... (86)

Therefore, we expression of the waveangle and wavenumber using displacement
thickness Reynolds number would eliminate their reliance on the radial coordinate, r.
Figures 11 and 12 show the type I branches of the asymptotic waveangle and wavenum-
ber predictions, where scales of semi-log and log-log were used for the waveangle and
wavenumber plots.

Figure 11. Plot illustrating predictions of asymptotic neutral wavenumber γδ∗ against Rδ∗ for type I
modes for Ts = 0.30− 0.65. Larger Ts values move the plots up as shown by the arrow.

The acquired data for the case of the rotating disk in axial flow type I spiral modes are
illustrated in Tables 1 and 2 showing the significant parameter values for Ts > 0.25 and
Ts < 0. At the wall these are the parameters of the azimuthal and radial velocity gradients,
µ are representing values of the profile of effective velocity and the location of the critical
layer. The integrals I1 and I2 are defined in Equations (70) and (71).

Figure 12. Plot illustrating predictions of asymptotic neutral waveangle φ against Rδ∗ for type I
modes for Ts = 0.30− 0.65. Larger Ts values move the plots up as shown by the arrow.
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Table 1. Values of stability parameter for a rotating disk in axial flow Ts > 0.25.

Ts U′ V ′ µ η̄ γ I1 I2

0.3 0.6219 −0.7359 0.4254 1.0878 1.5995 0.0446 0.3056 + 0.1685i
0.35 0.6615 −0.7628 0.4675 1.0399 1.6759 0.0392 0.3801 + 0.2153i
0.4 0.7066 −0.7904 0.5112 0.9964 1.7514 0.0346 0.4654 + 0.2707i
0.45 0.7567 −0.8183 0.556 0.9569 1.8257 0.0308 0.5584 + 0.3351i
0.5 0.8116 −0.8462 0.6019 0.9209 1.8985 0.0275 0.6612 + 0.4086i
0.55 0.871 −0.8741 0.6486 0.8882 1.9698 0.0247 0.7711 + 0.4907i
0.6 0.9347 −0.9017 0.696 0.8582 2.0397 0.0223 0.8861 + 0.5821i
0.65 1.0024 −0.9291 0.744 0.8307 2.1081 0.0203 1.0106 + 0.6810i

Table 2. Values of stability parameter for a rotating disk in axial flow Ts < 0.

Ts U′ V ′ µ η̄ γ I1 I2

−0.01 0.5104 −0.6145 0.2329 1.9695 1.1516 0.0982 0.0618 + 0.0302i
−0.02 0.5018 −0.6138 0.2305 1.479 1.1426 0.0996 0.0604 + 0.0292i
−0.03 0.5115 −0.6131 0.2307 1.4827 1.1389 0.1 0.0602 + 0.0289i
−0.04 0.5121 −0.612 0.2278 1.4959 1.1267 0.1019 0.0582 + 0.0275i

As a consequence, we observed the effective velocity profile µ-values elevate with
increasing the axial flow Ts, via the perpendicular geometry of the rotating disk, the greater
streamwise forced flow is diverted and swept along the disk surface. The more the flow
is naturally swept around along the disk’s surface, the higher the ratio of azimuthal to
radial wavenumbers. We also observed that effective velocity direction wavenumbers,γ0,
increases and the critical layer location for the type I mode disturbances is moving closer to
the wall. Accordingly, the boundary layer of the disk is experiencing a larger oncoming axial
flow (Ts). By using those computations of the type I mode waveangles and wavenumber,
we proceed with the evaluation of asymptotic estimates at large Reynolds number for
various cases of the axial flow, Ts > 0.25. These are shown in Figures 11 and 12, respectively.
On the other hand for the case Ts < 0 we observed the results are opposite to the case
Ts > 0.25, then we decided to evaluate estimates which are asymptotic for the inviscid
mode both waveangles and wavenumbers at large Reynolds number for different cases of
the axial flow Ts < 0 . Figures 13 and 14 illustrate these results.

Figure 13. Plot illustrating predictions of asymptotic neutral wavenumber γδ∗ against Rδ∗ for type I
modes for Ts = (−0.01)− (−0.04). Smaller Ts values move the plots up as shown by the arrow.
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Figure 14. Plot illustrating predictions of asymptotic neutral waveangle φ against Rδ∗ for type I
modes for Ts = (−0.01)− (−0.04). Smaller Ts values move the plots up as shown by the arrow.

In conclusion, the efficiency has degraded substantially, and also, we could not get
the convergence for Ts parameters approximately less than Ts = −0.04. Whereas, at
Ts = 0.3− 0.65 it was easier to obtain the convergence.

3.2.2. Rotating Disk with a Varying Suction/Injection Parameter W∗

We combined the rotating disk case where axial flow Ts is fixed with varying suc-
tion/injection parameters. To this end, we used the same approach from the previous case
as shown in Table 3, which includes the values of the most critical parameters for varying
suction and injection W∗ within fixed axial flow Ts = 0.05. Additionally, we chose the
fixed axial flow Ts = 0.05 that was given by Hussain [15] and applied various suction and
injection parameters W∗. Figure 7 demonstrates the mean flow profile as acquired from
the previous case. We can see in Table 3 the most important parameter values for various
suction and injection W∗ with fixed axial flow Ts = 0.05.

Despite the injection parameters better exhibiting convergence, the required iterations
number for the maintenance of the convergence enormously increased while using the
injection parameter. Moreover, the necessary number of terms to attain convergence were
considered for solutions for Ts = 0.05. However, we observed the µ-values increasing
with increasing W∗, while, the effective velocity direction wavenumbers γ0 reduced with
increasing W∗, and the critical layer location for the type I mode disturbances moved away
from the wall. We also observed that the injection situation would be more obvious to
obtain the convergence when increasing W∗ at fixed axial flow Ts = 0.05. Figure 10 shows
the normalised eigenfunction w0 with gradient w′0 = 1 at η = 0 as well as the effective
velocity profile. Figures 15 and 16 demonstrates inviscid branches of the asymptotic
predictions of waveangles and wavenumbers where semi-log and log-log scales were used
for the plots.

Table 3. Values of stability parameter corresponding to several suction and injection velocities.

Ts W∗ U′ V ′ µ η̄ γ I1 I2

0.05 −0.55 0.4725 −0.9094 0.1886 1.0753 1.5614 0.0368 0.0392 + 0.0228i
0.05 −0.45 0.4825 −0.8509 0.1997 1.1305 1.4885 0.0432 0.0438 + 0.0253i
0.05 −0.35 0.4914 −0.7958 0.2116 1.1872 1.4212 0.0506 0.0488 + 0.0281i
0.05 0 0.5132 −0.6270 0.2543 1.3944 1.2238 0.0868 0.6830 + 0.0408i
0.05 0.35 0.5185 −0.4907 0.2956 1.6131 1.0731 0.1458 0.1165 + 0.594i
0.05 0.452 0.5171 −0.4561 0.3071 1.6789 1.0358 0.1689 0.1287 + 0.0663i
0.05 0.55 0.5145 −0.4249 0.3177 1.7430 1.0023 0.1943 0.1414 + 0.0598i
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Figure 15. Plot illustrating predictions of asymptotic neutral wavenumber γδ∗ against Rδ∗ for type I
modes for Ts = 0.05 with W∗ = (−0.35) to (0.55). Increasing W∗ shifts the curves vertically downwards.

Figure 16. Plot illustrating predictions of asymptotic neutral waveangle predictions φ against Rδ∗
for type I modes for Ts = 0.05 with W∗ = (−0.35) to (0.55). Increasing W∗ shifts the curves vertically
upwards.

4. Conclusions

Through this study, we were able to identify the respective modes of type I with
regards to primary instability on a rotating disk surface. By applying asymptotic analyses
in the linear regime we showed their existence. In addition, we investigated the effect on
essential physical parameters such as the local waveangle, local wavenumber as well as
the large Reynolds number asymptotic behaviour. Collectively, the results of this study are
as follows:

4.1. Positive and Negative Strength of Axial Flow

1. For the rotating disk within axial flow Ts between (0.30–0.65), the stability parameter
values for a rotating disk are gradually increased by increasing axial flow.

2. For negative axial flow, the efficiency is degraded substantially and using Ts parame-
ters less than Ts = −0.04 could not achieve convergence compared to Ts = 0.3− 0.65
which is consistent with the physical interpretation of positive axial flow stabilising
according to Hussain [15], Hussain et al. [31], and Al Malki [42].

3. Positive and negative Ts shifts the curves vertically upwards. In general, our results
are consistent with Hussain et al. [31] in that axial flow causes a stabilisation of the
type I cross flow instability mode.
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4.2. Rotating Disk with a Suction/Injection Parameter W∗

1. Injection at the boundary is easier to obtain convergence of stability when increasing
W∗, for example when compared with a negative axial flow in the bulk fluid.

2. The required number of iterations for the maintenance of convergence for the injection
parameter is comparatively better than for suction parameters.

3. For injection, the efficiency is degraded substantially. Convergence was also not
achieved for injection parameters less than −0.55.

4. Increasing W∗ shifts the curves vertically downwards. In general, our results are
consistent with Al-Malki [43] for Blasius flow, in that suction causes a stabilisation of
the type I cross flow instability mode.

Based on these results the future direction could consider the type II instability of
stationary viscous modes for the cases increasing /reducing the strength of the axial flow
(Ts) for the rotating disk when Ts > 0.25 and Ts < 0, as well as applying suction/injection
(W∗). This work is currently under development following Hall [41] and Hussain [15], and
we hope to report on the results in due course.
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