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Essays on Health Economics
by Melisa M Williams

Abstract This thesis examines two Health Economics topics: the economics of an-

tibiotic resistance, and the effect of pollution on health and health care costs. Chapter

2 explores the concept of optimal antibiotic use, focusing on antibiotic over/under use.

Overuse is defined as any uncoordinated use above the social optimum which would

prevail in a coordinated market. We find that overuse depends on the infection trans-

mission rate and the cost of antibiotic use. In the simple case where the transmission

rate is 0, there is no over/under use. However, for sufficiently high costs associated

with antibiotic use we see under use of antibiotics while sufficiently low costs result in

overuse.

Chapter 3 examines the link between knowledge about antibiotic consumption and resis-

tance, and willingness–to–pay for antibiotic–free products. I designed a survey to collect

primary data, using the contingent valuation method to obtain the willingness–to–pay.

On average, respondents are willing to pay 57% more for the antibiotic–free product

they purchase the most and 52% more for the product they purchase the least, com-

pared to the regular option of the good. I find that for the product most purchased, a

one standard deviation increase in knowledge, increases the willingness–to–pay for the

antibiotic–free product by £0.085 over the price of the regular option of the good.

Chapter 4 investigates the impact of pollution on hospital attendance and subsequent

costs in Leicester, using data from the University Hospitals of Leicester NHS Trust.

The identification relies on the spatial and temporal variation of pollution, and tem-

poral variation in wind speed and direction. We find that exposure to higher levels

of particulate matter with an aerodynamic diameter less than 10 µm (PM10) has a

positive effect on the total number of hospital visits and total costs. Specifically, each

extra standard deviation of exposure to PM10 costs the city of Leicester £5.7 million

to treat older adults and children.
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Chapter 1

Introduction

In this thesis I explore two main Health Economics topics, the economics of antibiotic

resistance and the effects of pollution on health care costs, both of which are current

public health concerns. In recent years, there has been an increase in bacteria resistance

to antibiotics, especially those considered as the last line of defence. Whenever an

antibiotic is used, bacteria are given the opportunity to develop resistance to the drug.

This shows that resistance is a natural consequence of treatment therefore some level of

resistance is inevitable in any optimal treatment policy. Words such as “unnecessary”

and “overuse” are commonly used to describe contemporary antibiotic consumption.

To understand increasing resistance as a public health problem, we need to formally

define optimal antibiotic use and study the factors that lead to deviations from this

optimum.

In Chapter 2 we define antibiotic overuse as any free market or uncoordinated use in

excess of the social optimum which would prevail in a coordinated market. Using this

definition, we model humans’ utility maximising behaviour with regards to antibiotic

use in the presence of a bacterial infection in contrast to a social planner’s welfare

maximising behaviour. In our simple two individual model, each individual takes an

antibiotic if the probability of being cured is greater than the cost–benefit ratio of an-

tibiotic use. We show that an individual’s antibiotic use results in positive externalities

(a decrease in the spreading of microbes that are susceptible to antibiotic use) and

negative externalities (an increase in the spreading of microbes that are resistant to

antibiotic use). Furthermore, overuse depends on the infection transmission rate and

1



the cost of antibiotic. Specifically, when the transmission rate is 0 the market case

coincide with the social optimum. Additionally, for sufficiently high costs associated

with antibiotic use we see under use of antibiotics while sufficiently low costs result in

overuse.

It is evident that increased public awareness about antibiotic consumption and resis-

tance could lead to behavioural changes which would help slow the pace of antibiotic

resistance. One such behavioural change is a higher demand for goods produced with-

out antibiotics or with antibiotics only when necessary. This could incentivize farmers

to reduce or stop using antibiotics for disease prevention and as growth inducers. I ex-

plore whether such incentives exist in Chapter 3 by examining the effect of knowledge

about antibiotic consumption and resistance, on people’s stated willingness–to–pay for

antibiotic–free products. I designed a survey instrument to collect primary data since

no secondary dataset exists with the required information. The survey includes a choice

experiment using the sequential bid Contingent Valuation Method to collect the willing-

ness–to–pay data. Using the sequential bid approach respondents are presented with a

sequence of hypothetical market scenarios to ascertain the interval which contains their

true willingness–to–pay. I find that on average respondents are willing to pay 57% more

for the antibiotic free product they purchase the most and 52% more for the product

they purchase the least, compared to the regular option of the good. Furthermore, for

the product most purchased, a one standard deviation increase in knowledge, increases

the willingness–to–pay for the antibiotic free product by £0.085 over the price of the

regular option of the good.

In the final chapter, I explore the second health topic, pollution and its effect on health

and health care costs. Despite the ample literature that establishes that chronic expo-

sure of children and older adults to air pollution results in worsening of health condi-

tions, there is little empirical evidence that evaluates the immediate effects of nitrogen

dioxide (NO2) and particulate matter with an aerodynamic diameter less than 10 µm

(PM10) on healthcare costs for the most vulnerable groups, i.e. children and seniors.

In Chapter 4 we evaluate this immediate impact by quantifying the effect of NO2 and

PM10 on the economic costs of Emergency Department visits and their subsequent

admission to the hospital. We use proprietary data from the University Hospitals of

Leicester NHS Trust and pollution data from the Air Quality Management Area mon-

itors provided by Leicester City Council. Our study exploits the spatial and temporal

variation of pollution as well as temporal variation in wind speed and direction. We

2



find that each extra standard deviation of exposure to PM10 costs the city of Leicester

a total of £5.7 million treating children and older adults (£4.4 million for older adults

and £1.3 million for children). We do not find clear effects of changes in daily average

exposure to NO2 on hospital visits and their costs. Nonetheless, we find that larger

daily ranges of exposure to NO2 increase total number of hospital visits per day and

postcode sector, increase the total costs per visit of discharged patients, and increases

the total costs per visit of admitted older adults only when controlling for fiscal year

fixed effects.
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Chapter 2

Are we overusing antibiotics?

Defining and analyzing optimal

antibiotic consumption

“A post-antibiotic era—in which common infections and minor injuries can kill—far from

being an apocalyptic fantasy, is a very real possibility for the 21st century.”

World Health Organisation (2014)“Antimicrobial resistance: global report on surveillance.”

2.1 Introduction

The discovery and successful use of antibiotics revolutionized the treatment of infectious

diseases. Before the 20th century infectious diseases were virtually incurable account-

ing for high proportion of human morbidity and mortality worldwide (Aminov, 2010).

Today we rely heavily on antibiotics for treatment of infectious diseases and routine

medical procedures. However, this reliance comes with a cost as increased antibiotic

use is associated with increased resistance (Austin et al., 1997, 1999; Goossens et al.,

2005). The World Health Organisation (WHO) declared antimicrobial resistance as “a

problem so serious it threatens the achievements of modern medicine” (WHO, 2014).

Antimicrobial agents are drugs used to treat illnesses caused by micro–organisms/microbes

such as bacteria, viruses, and fungi. Antimicrobial resistance arises when the targeted

micro-organisms survive exposure to the antimicrobial drug unaffected. Some level
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of resistance will always be present, potentially through random mutations in micro-

organisms. Studies such as D’Costa et al. (2011) and Bhullar et al. (2012) have found

evidence that antibiotic resistance pre-dates the clinical use of antibiotics. Additionally,

penicillin resistant bacteria were identified before widespread use of the drug (Stuart,

1992; Walsh et al., 2003; Alanis, 2005; Davies and Davies, 2010).

Within a single infected individual, antibiotic use may exacerbate the presence of a

small number of resistant micro-organisms. By killing off susceptible microbes, the

antibiotics lessen the competition between mutant resistant microbes and susceptible

microbes for scarce resources, allowing the resistant population to grow. In addition to

increasing the presence of these resistant microbes within one individual, this also in-

creases the probability that resistant microbes are spread between individuals. Through

this process, antibiotic use may increase the presence of resistant microbes in a human

population.

In this paper we use a simple two-agent model to analyse this process of bacteria

resistance and consider the following question: What factors lead to the free market—

the uncoordinated scenario—use of antibiotics deviating from optimal antibiotic use?

We focus specifically on three factors, the known initial distribution of resistant bacteria,

the cost-versus-benefits for the individual user of antibiotics, and the rate of microbial

transmission between individuals. Optimal use is defined by the solution to a social

planner’s problem—the coordinated scenario—in which antibiotics are used to maximize

social welfare.

The model consists of two agents and two periods. In the first period, individual 1

realises an infection and makes a utility-maximizing treatment decision. In the second

period, with some probability there is a microbial transmission from individual 1 to

individual 2, and individual 2 makes a utility-maximizing treatment decision based

on: a) whether an infection is realised, and b) the likelihood that a realised infection

is susceptible or resistant. Both individuals have complete knowledge except they do

not know whether an untreated infection contains only susceptible microbes, and is

therefore treatable with antibiotic technology, or also contains resistant microbes.

While simple, our model captures the important features of microbial dynamics de-

scribed above. First, microbial dynamics are modelled using a Lotka–Volterra two

species competition model, modified to include the effects of antibiotics on bacteria

populations. Second, and most important, it captures the externality that comes from
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individual antibiotic use: individual 1’s decision impacts both the likelihood individual

2 becomes infected, and the type of infection individual 2 is likely to realise.

The initial distribution of susceptible and resistant microbes is important in determining

antibiotic use. We consider a simple distribution where with probability p individual

1’s initial infection is entirely composed of susceptible microbes, with probability 1− p
individual 1’s initial infection is composed of resistant microbes. When p = 1 antibiotics

are always effective and when p = 0 antibiotics are never effective. For 0 < p < 1 there

will be uncertainty about the antibiotics effectiveness.

We compare antibiotic use in different scenarios by determining the minimum value of p

for which individuals 1 and 2 take antibiotics, given the other parameters of the model.

When the value of this minimum p is greater in the coordinated scenario versus the

uncoordinated scenario, we say that antibiotics have the potential to be overused. When

the value of this minimum p is less in the coordinated scenario versus the uncoordinated

scenario, we say that antibiotics have the potential to be underused.

Whether antibiotics are overused or underused, relative to the optimal solution, depends

on two critical parameters. The first is the private costs versus benefits of antibiotic

use. All else equal, when the cost is low relative to benefits, the likelihood of overuse is

high. However, when the cost is high relative to the benefits, antibiotics are underused

relative to the optimum.

The second critical parameter is the rate of between-individual microbe transmission.

To see this, consider the special case where the transmission rate is zero. In this case

there is no externality, and therefore no over or under use; the uncoordinated decisions

are always optimal. As the transmission rate increases, there is a monotonic divergence

between coordinated and uncoordinated use. A higher transmission rate increases the

social cost of greater antibiotic use.

Words such as “unnecessary” and “overuse” are commonly used to describe contempo-

rary antibiotic consumption. It does not follow from our model that individuals always

overuse antibiotics. This is because, while antibiotic use increases resistance, it also

decreases the likelihood of spreading resistant microbes. This suggests that we face a

trade-off between treating current illnesses and treating future illnesses. Antimicrobial

infection has two properties that make it economically interesting. First, antimicro-

bial illnesses are communicable, meaning that there may be externalities to individual
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decisions. Second, since resistance is a consequence of treatment, the efficacy of an

antimicrobial should be treated as a finite resource.

This paper contributes to the literature by explicitly modelling the behavioural mech-

anisms through which antibiotic resistance will increase (or decrease). In this model,

an individual’s antibiotic use results in positive externalities (a decrease in the spread-

ing of microbes that are susceptible to antibiotic use) and negative externalities (an

increase in the spreading of microbes that are resistant to antibiotic use). The relative

size of these externalities determine whether uncoordinated antibiotic use is above or

below the social optimum. Further, the propensity to deviate from optimal antibiotic

use depends crucially on the rate of bacterial transmission between individuals. In

contrast to the literature which model optimal drug use as a resource extraction prob-

lem (Laxminarayan et al., 2001; Wilen and Msangi, 2003; Rowthorn and Brown, 2003;

Laxminarayan and Weitzman, 2002), we focus on the question of why uncoordinated

antibiotic use deviates from the social optimum. Additionally, our model explicitly links

the evolution of bacteria within an individual with the spread of resistance between in-

dividuals. We conclude that geographic areas and diseases for which transmission rates

are high are particularly susceptible to over-use.

The remainder of the paper is organised as follows. In Section 2.2 we provide an

overview of the literature on optimal antibiotic use and modelling antibiotic resistance.

In Section 2.3 we discuss bacteria dynamics and the outcomes of competition between

susceptible and resistant strains. We present the model with transmission between

humans in Section 2.4 and closing remarks in Section 2.5.

2.2 Literature Review

This paper contributes to two strands of literature, optimal antibiotic use and modelling

antibiotic resistance evolution. Firstly, by looking at how optimal antibiotic use/overuse

is defined and applied, we contribute by providing a new way of defining optimal antibi-

otic use. Secondly, we focus on modelling the evolution of antibiotic resistance. Given

the unique properties of antibiotic resistance, in addition to the economic literature, we

explore a wide range of literature from other disciplines such as biology, mathematics,

and epidemiology—collectively called the epidemiology literature.
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Optimal antibiotic therapy/prescription strategy includes choosing when to use an an-

tibiotic, and how to best use the available antibiotic options.1 If the decision to use

an antibiotic is based on preventing resistance, then the optimal choice would be to

withhold treatment. However, since treatment is necessary, the optimal choice should

minimize resistance. Then, the optimal treatment strategy is the option that reduces

the total number of infected or colonised individuals—individuals who experience a

growth of illness–causing bacteria but are not infected—over a specific time period

(Bonhoeffer et al., 1997; Blanquart, 2019).

In this context, there are several definitions of overuse in the literature, Chang et al.

(2019) define appropriate antibiotic use in primary healthcare, such as hospitals, as any

use that is based on the diagnosis of probable bacterial infection. Antibiotic overuse is

defined as either incorrect spectrum of antibiotic, escalated use of extended spectrum

antibiotics, or combined use of antibiotics.2 Similarly, Kardos (2017) indicates that

overuse includes the use of broad–spectrum antibiotics in healthcare when the bacteria

that cause the infection is unknown along with widespread antibiotic consumption in

agriculture. Sulis et al. (2020) defines overuse as the proportion of standardized pa-

tients–healthcare provider interactions that resulted in prescription or dispensing of at

least one antibiotic where the condition does not require antibiotics.3 Karakonstantis

and Kalemaki (2019) highlights that in addition to over prescription, self-medication—

administration of antibiotics by parents or pharmacists without consultation from a

physician— is another factor of overuse.

In contrast, our definition of overuse focuses on the externalities to antibiotic use. That

is, over/under use is framed relative to the decision that a total welfare maximizing

social planner would make. Therefore, appropriate antibiotic use as defined by these

papers might be seen as overuse in our model, since our definition hinges on the relative

size of the positive and negative externalities associated with uncoordinated individual

use.

To prevent overuse, a key decision is whether or not the optimal treatment decision

1The discussion in this paper on optimal antibiotic use does not include optimal treatment duration
or optimal drug dosage. A discussion on the literature of these topics can be found in Tetteh et al.
(2020).

2Extended spectrum antibiotics are those that affect additional types of bacteria as a result of
chemical modification while combined use of antibiotics is defined as use of more than one antibiotic
group per patient visit without any indications.

3Standardized patients are healthy individuals recruited from local communities and extensively
trained to portray a standardised clinical condition to a healthcare provider (Sulis et al., 2020).
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is to forgo antibiotic use. In economics, it has been found that when fitness costs are

taken into account, ecological/infection control methods may be more economical than

aggressive antibiotic treatment (Wilen and Msangi, 2003).4 Additionally, the choice of

policy—antibiotics vs infection control methods—depends on cost considerations and

on the probability of success when the infection control strategy is used (Batabyal and

Nijkamp, 2005).

Another key decision is how best to use a single antibiotic. In epidemiology, it has

been found that the long term treatment benefit does not depend on the pattern of use

however, the benefit increases slightly if the drug is used heavily at first (Bonhoeffer

et al., 1997). In economics, it is found that the optimal treatment is for all patients

to be treated with the antibiotic that is effective against the more prevalent strain

(Rowthorn and Brown, 2003).

The pattern of use/treatment strategies for using multiple antibiotics is one of the key

debates in the optimal use literature. Strategies such as mixing—treating infected indi-

viduals with different antibiotics at any point in time—and cycling—treating infected

individuals with a sequence of different antibiotics where the sequence is repeated—form

a key part of such debates (Masterton, 2010; Brown and Nathwani, 2005; Bonhoeffer

et al., 1997).5 The key in cycling antibiotics is that the predominant class is reintro-

duced which, if not accurately timed, could increase resistance to it given the change

in the frequency of resistance overtime (Austin et al., 1997, 1999).

In epidemiology, it has been found that in most cases the optimal treatment is the mix-

ing strategy, combination therapy where both drugs are simultaneously administered

to each infected host (Bonhoeffer et al., 1997). In economics, it is recommended that

the most effective drug be used first until the resistance level is the same then each

drug should be used in precise proportion to the rate that use deteriorates their ef-

fectiveness (Laxminarayan et al., 2001).6 Additionally, the optimal treatment strategy

4Fitness costs are a biological cost to the resistant strain that is reflected in increased mortality in
the absence of treatment, which arises from the possession of genes that allow it to survive under drug
treatment (Wilen and Msangi, 2003).

5Mixing involves strategies such as 50–50 treatment—the administration of each drug to equal
proportions of the infected population; and combination therapy—the simultaneous administration
of both drugs to each infected host (Bonhoeffer et al., 1997). The antibiotics used in cycling have a
comparable spectrum of activity (the range of microorganisms it can kill or inhibit) but do not share
a common mechanism of resistance (Brown and Nathwani, 2005).

6The difference in recommendation between Bonhoeffer et al. (1997) and Laxminarayan et al. (2001)
highlights the contrast in the results obtained for the optimum treatment strategy derived from an
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should include a variety of drugs, including some less cost effective ones, and to mini-

mize the increase in resistance, the choice of drug should be randomized over patients

(Laxminarayan and Weitzman, 2002).

Generally, studies that have evaluated the effectiveness of cycling vs mixing generally

finds that mixing provides better results than cycling in both hospitals and the commu-

nity (Blanquart, 2019; Tetteh et al., 2020). However, there no clear empirical evidence

to support the efficacy either strategy (Blanquart, 2019). Studies have found that there

is no difference in outcomes such as mortality, colonization by resistance strain or the

incidence of infection when cycling is compared to normal practice or mixing, despite

the theoretical support for mixing (Toltzis et al., 2002; van Duijn et al., 2018).

Antibiotic resistance evolution is modelled both at the within-individual level and the

between-individual level. The models found in the economic literature are between-

individual models which describe the spread of resistance in the population. One of

the key features of economic models is that resistance is modelled as an externality to

antibiotic use. Coast et al. (1998) discusses resistance as an externality and as well as

policy options for addressing it. Phelps (1989) is one of the earliest papers to quantify

the negative externality associated with antimicrobial resistance.7 Phelp’s model has

been adapted and expanded to determine whether assumptions about antibiotic effec-

tiveness are important when modelling resistance as an externality and to calculate the

net welfare deadweight loss to society from resistance (Kaier, 2012; Elbasha, 2003).8

Optimal antibiotic use is also modelled in the economic literature as a resource ex-

traction problem. Laxminarayan et al. (2001) explores optimal antibiotic treatment

policy. Specifically, they examine the use of two antibiotics in a hospital setting in

which antibiotic effectiveness is treated as a non–renewable resource.9 This strand of

economic formulation of the problem and epidemiological formulation. This is mainly due to the 0
discount rate assumption by epidemiologists, that is they attribute the same value to a successful
treatment today as they do a successful treatment in the future (Rowthorn and Brown, 2003).

7Using estimates from the literature, Phelps (1989) reports that for the estimated 150 million annual
antibiotic prescriptions, the cost of the externality is at least US$0.1 billion, and may exceed US$30
billion in the worst case.

8Using hospital data Kaier (2012) concludes that the relative fitness of resistant bacteria is one
driving factor for the size of the externality and Elbasha (2003) finds that the annual deadweight
loss associated with outpatient prescriptions for amoxicillin in the United States is estimated at $225
million.

9The methodology modifies the Kermack–McKendrick Susceptible-Infected-Susceptible (SIS) model
to include the dynamics of resistance. The SIS model describes the transition of people from susceptible
(to an infection) to infection states. There are other variations of the model to account for the char-
acteristics of different illnesses. Another popular version is the SIR- Susceptible Infected Recovered-
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the literature expands the model developed by Laxminarayan et al. (2001) to explore

the case where resistance is renewable, and include fitness cost with and without uncer-

tainty (Rowthorn and Brown, 2003; Batabyal and Nijkamp, 2005; Wilen and Msangi,

2003).

Brown and Layton (1996) model the utility maximizing behaviour of individuals and

farmers with regards to antibiotic use in comparison to a social planner who aims

to maximize the net benefit to society. Their results show that privately optimizing

individuals and farmers will ignore the social-cost component of antibiotic use which

leads to a fast depletion of the antibiotic effectiveness. In contrast to them, we explicitly

model the behavioural mechanisms through which antibiotic resistance will increase (or

decrease) and we focus on the question of why uncoordinated antibiotic use deviates

from a social optimum.

Another methodological difference between our work and the previous economics work

is the inclusion of within–individual resistance evolution in our model. One of the gaps

in the economic literature on optimal antibiotic use is that the evolution of resistance

within individuals is not explicitly modelled. Within-individual models describe resis-

tance evolution, how antibiotic treatment affects it, and how resistance can be prevented

within an individual. The type of model used in Laxminarayan et al. (2001); Rowthorn

and Brown (2003); Batabyal and Nijkamp (2005); Wilen and Msangi (2003) divides the

infected population into two subgroups depending on the strain causing the infection:

resistant or susceptible. While the choice of compartment is determined by competition

between strains, this is not explicitly modelled. However, competition between resis-

tant and sensitive strains —referred to in this paper as susceptible strains— is a key

feature of models of antibiotic resistant evolution (Blanquart, 2019; Tetteh et al., 2020).

As such, unlike the other models in the economics literature, we explicitly model the

within–individual bacteria dynamics and explicitly link this to the between–individual

dynamics.

While the economics models have not focussed on within-individual resistance evolu-

tion, it has been a feature of epidemiology models since the 1970s (Blanquart, 2019).

However, only a few studies have developed models of resistance dynamics which link

model. Other variations include moving between two states such as susceptible to infected— SI model,
see Spicknall et al. (2013) for a discussion on state transmissions. The version of the SIS model used
in Laxminarayan et al. (2001) describes the dynamics of infection when antibiotics are used. This
modified SIS model is combined with an economic modelling of natural resource extraction.
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both within–individual and between–individual models. Massad et al. (1993) uses bac-

teria competition to determine the proportion of treated patients which provides the

resistant strains a competitive advantage over the susceptible strain.

Webb et al. (2005); D’Agata et al. (2007); D’Agata et al. (2008); Caudill and Lawson

(2017) have also developed models of resistance dynamics which link these two types

of models. Webb et al. (2005) models resistance evolution by connecting the dynamics

of bacteria within infected individuals, and patients interacting in the hospital. Later

versions of the model account for variations in treatment–timing, length, and prescrip-

tion strategies mentioned previously, and the individual’s immune response to bacteria

invasion (D’Agata et al., 2007; D’Agata et al., 2008). Finally, Caudill and Lawson

(2017) presents a detailed model linking an agent-based structure at the patient–health

care worker interaction level with a very detailed model at the within-individual level.

We contribute to this strand of literature by linking the within–individual model of

bacteria competition with and without antibiotic use with a between–individual model

of antibiotic resistance transmission to answer a new question: what factors lead to a

deviation of uncoordinated antibiotic use from the optimal antibiotic use?

2.3 Within-Individual Bacteria Dynamics and Re-

sistance

Here we consider the dynamics of heterogeneous microbial population, within the body

of a single host, in the presence of an antibiotic. This will establish the mechanism

through which antibiotic use increases the density of resistant bacteria within a host.

It is the microfoundation which motivates how we build the model in Section 2.4.

Consider the growth of a single bacteria species with two interacting strains, susceptible

and resistant, denoted by subscripts {r, s}. Bacteria are referred to as susceptible if

when exposed to an antibiotic the antibiotic is able to alter or kill the bacteria cell,

and resistant otherwise. We model the growth of the bacteria species using a modified

version of the Lotka–Volterra two–species competition framework to include the effect

of antibiotics on population growth.

First we consider the dynamics without the introduction of antibiotics. The growth of
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each strain is described by the set of equations:

Ṅs(t) = ρsNs(t)

(
K −Ns(t)− βsrNr(t)

K

)
(2.1)

Ṅr(t) = ρrNr(t)

(
K −Nr(t)− βrsNs(t)

K

)
(2.2)

Where Ṅk(t) =
dNk(t)

dt
and Nk(t), for k ∈ {r, s}, denote the population size of bacteria

type k at time t. We assume that the initial number of susceptible bacteria is higher

than the initial number of resistant bacteria, i.e. Ns(0) > Nr(0), this is consistent with

r bacteria being a rare mutation of s bacteria. For cell division to be possible we assume

that Ns(0) > 1;Nr(0) ≥ 1. K is the carrying capacity, or maximum size, of a bacteria

colony. K captures the fact that there are resource constraints to bacterial growth (we

assume for now that resource availability replenishes in every period). As the resource

requirements for the r and s bacteria are the same, K does not vary between them.

βsr and βrs are the competition coefficients, measuring the per unit effect of one strain

on the population growth of the other, relative to the effect of competition between

members of the same strain (Begon et al., 1996). The effect of competition between

members of the same strain (intra–specific competition) on its own population growth,

βss and βrr, is 1. Now, βsr < 1 implies that the effect of competition between members

of the susceptible strain is more harmful to the growth of the susceptible bacteria than

the per unit effect of competition with the resistant strain. We allow for different

inherent per-unit growth-rates, ρs > 0 and ρr > 0, and population sizes Ns(t) and

Nr(t).

Now consider the introduction of an antibiotic. The antibiotic kills a fraction of the

susceptible bacteria population δsNs(t). By definition, the highest concentration of the

antibiotic the body can tolerate has no effect on the resistant strain of the bacteria.

The antibiotic therefore changes the proportion of susceptible and resistant bacteria in

the colony.

13



The growth of each strain will now be described by:

Ṅs(t) = ρsNs(t)

(
K −Ns(t)− βsrNr(t)

K

)
− δsNs(t) (2.3)

Ṅr(t) = ρrNr(t)

(
K −Nr(t)− βrsNs(t)

K

)
(2.4)

following Nikolaou and Tam (2006). We assume that ρs ≥ ρr > δs. Notice that when

δs = 1 the antibiotic kills all susceptible bacteria.

Using these growth equations we calculate the equilibrium population size (steady state

solutions) and analyse the outcomes of competitive interaction. The equilibrium pop-

ulation size is dependent on the relative size of the species competitive coefficients (βsr

and βrs) and the initial population values (Ns(0) and Nr(0)). The steady state solutions

are detailed in Appendices 2.A.1 and 2.A.2 and summarised in Table 2.1.

There are four possible steady states as depicted in Table 2.1, no infection steady state

(SS1), resistant infection steady state (SS2), susceptible infection steady state (SS3),

or mixed infection steady state (SS4). In an antibiotic–free environment we can rule

out a resistant infection steady state as resistant bacteria are at a disadvantage in

this environment. The initial size of the population is below the susceptible bacteria

(Ns(0) > Nr(0)) and the susceptible bacteria grows at least as fast as the resistant ones

(ρs ≥ ρr). These conditions rule out SS2 therefore we will only have a susceptible or

mixed infection steady state.

When antibiotics are introduced only SS3 and SS4 changes, as expected, since only

the susceptible bacteria population is affected by the introduction of antibiotics. In

the case where the antibiotic only kills a fraction of the susceptible bacteria (δs 6=
1), the outcome of competition now also depend on the ratio

δs
ρs

, the efficacy of the

antibiotic. If the effect of the antibiotic is sufficiently large it gives the resistant bacteria

a competitive advantage leading to the extinction of susceptible bacteria in the steady

state (SS2). Otherwise we have the extinction of resistant bacteria in the steady state

(SS3). This may be due to an ineffective antibiotic or a very large Ns(0) compared

to Nr(0). The resulting equilibrium number of susceptible strain is
δs
ρs

lower than

the no–antibiotic case. In the case where the bacteria are able to coexist peacefully

(SS4 ), antibiotic use reduces the equilibrium population of the susceptible strain while

increasing the population of the resistant bacteria strains. Appendix 2.B provides
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a more detailed discussion on the dynamics of competitive interaction and expected

steady state outcomes both with and without antibiotic use. Where antibiotic use is

detrimental to the entire susceptible bacteria population (δs = 1), then in equilibrium

there will either be no bacteria (SS1 ) or only resistant bacteria (SS2 ).

Using the steady state solutions we now turn to how the outcome of bacteria com-

petition determines the probability of getting an infection from resistant bacteria. In

the antibiotic case, the steady state population is either comprised of only susceptible

bacteria or a mixed population with some probability. Let p be the probability that the

population is comprised only of susceptible bacteria. The mixed population contains

some proportion, θ of resistant bacteria. Therefore, in the case where no antibiotics are

used the probability of being infected with a resistant bacteria is (1− p)θ, conditional

on the bacteria being in the mixed steady state, and (1− p) otherwise (see Figure 2.1).

When antibiotics are used then in the case where δs = 1, the infection is solely caused

by a resistant infection (p = 0). We explore these probabilities further in the follow-

ing section through a two person model with bacteria transmission in order to define

optimal antibiotic treatment.

2.4 Between-Individual Antibiotic Use and Resis-

tance

Following the insight from the microfoundation of the model that antibiotic use leads

to a possible increase in resistance within a host, we look at how antibiotic use can

affect the transmission of different bacteria between different hosts.

2.4.1 Timing and transmission

Individual 1 has realised a bacterial infection. With probability p the infection is entirely

due to a susceptible strain of bacteria. With probability 1−p the infection is composed

(in part) of bacteria which is resistant to existing antibiotics. The infection will be

passed to individual 2 with probability λ (the transmission rate). We denote with θ

the conditional probability that bacteria are composed of the resistant strain, when
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bacteria are transmitted from individual 1 to individual 2 (see Figure 2.1).10 In this

simple model, individual 1 is the only source of infection for individual 2.

The timing of events is as follows. Individual 1 realises an infection and makes a

treatment decision. After the treatment takes effect (possibly changing the composition

of individual 1’s bacteria flora) individual 1 interacts with individual 2, and there is a

possible transmission of bacteria.11

2.4.2 Utility

Individual utility is made up of two components. The first is the utility an individual

receives from his or her health status. This is a function of the individual’s bacterial

composition and the use of antibiotics. We denote this by H(Bi, Ai) where Bi =

Bn, Bs, Br is the bacterial composition to which individual i is exposed (no infection,

susceptible, resistant) and Ai = {0, 1} is an indicator for whether i uses the existing

antibiotic treatment (of which there is only one). We make the following assumption:

Assumption 1:

H(Br, 1) = H(Br, 0) = H(Bs, 0) < H(Bs, 1) < H(Bn, 0)

Intuitively, this simplifying assumption means that 1) the use of antibiotics does not

affect utility beyond what is captured by the additively separable cost (C described

below), and 2) the negative utility from antibiotic use does not differ dependent on the

type of infection (Br versus Bs).12 This implies that left untreated, a Bs bacteria will

have the same health-utility consequence as a Br bacteria.

The other component of utility, as mentioned above, is the cost (pecuniary, health, or

other) associated with taking the antibiotic, which we denote by C > 0. To simplify

10Notice that this could also be relaxed to say that there is a mass of the resistant bacteria that needs
to be passed from individual 1 to individual 2 before it is problematic. θ then reflects the probability
that the transmission involves some amount of the resistant strain that is less than this critical mass.

11Notice that the timing of individual 1 and individual 2’s interaction, after individual 1’s treatment
decision, is important. If transmission takes place before the treatment decision then there is no
mechanism for which treatment will lead to an externality.

12A more general version of this assumption is that H(Br, 1) ≤ H(Br, 0) ≤ H(Bs, 0) < H(Bs, 1) <
H(Bn, 1). Assumption 1 simplifies the analysis considerably.
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the analysis we assume that these two components of utility are additive such that:

Ui = H(Bi, Ai)− C × Ai (2.5)

Both agents choose antibiotic use to maximise their expected utility. Individuals know

if they have contracted an infection when the decision is made but do not know the

composition of the bacteria of which they have been infected. In the second period,

when individual 2 realises an infection, the antibiotic use and health status of individual

1 is observable.

2.4.3 Antibiotic use

Here we examine the uncoordinated use of antibiotics for the two individuals. We start

by looking at individual 1’s decision and then we turn our attention to individual 2.

Individual 1

Individual 1 is exogenously infected with a bacteria of an unknown composition. In-

dividual 1 takes an antibiotic if and only if the expected utility from doing so exceeds

the expected utility from forgoing antibiotic use. That is:

pH(Bs, 0) + (1− p)H(Br, 0) < pH(Bs, 1) + (1− p)H(Br, 1)− C

rearranging we get

p(H(Bs, 1)−H(Bs, 0)) + (1− p)(H(Br, 1)−H(Br, 0)) > C

Given Assumption 1, H(Br, 1) = H(Br, 0), the condition simplifies to:

p >
C

(H(Bs, 1)−H(Bs, 0))
, (2.6)

Individual 1 only uses antibiotics if the ratio of the cost, C, to the benefit of antibiotic

use with a susceptible bacteria, H(Bs, 1) − H(Bs, 0), is less than the probability of
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realising the benefit (i.e. curing the infection). We refer to the right hand side of this

inequality as the cost-benefit ratio,

(
CBR =

C

(H(Bs, 1)−H(Bs, 0)

)
.

Define the critical value of p to be pu such that

pu =
C

(H(Bs, 1)−H(Bs, 0))
. (2.7)

Individual 1 will only choose to take an antibiotic if the probability of Bs infection is

sufficiently high, p > pu.

Individual 2

In the next period individual 2 makes an antibiotic use decision. There are two states

under which individual 2 will make this decision. The first is the healthy state, B2 = Bn.

In this state there is no benefit to taking the antibiotic, so A2 = 0, and realised utility

is U2 = H(Bn, 0).

The second possible state is that individual 2 has an infection. In this state the antibi-

otic decision is less trivial and depends on individual 1’s antibiotic use. First consider

when individual 1 does not use an antibiotic. This means that there is no information

about the composition of the bacteria, and individual 2 must infer the probability of a

resistant infection from the known parameters. Individual 2’s infection will be suscepti-

ble if either individual 1’s infection is susceptible, or individual 1’s infection is resistant

but only susceptible bacteria are transmitted:

P (Bs|A1 = 0, B2 6= Bn) = p+ (1− p)(1− θ) = (1− (1− p)θ)

Individual 2’s infection will be resistant if individual 1’s infection is resistant and resis-

tant bacteria are transmitted:

P (Br|A1 = 0, B2 6= Bn) = (1− p)θ

As with individual 1, individual 2 will take an antibiotic only if the expected benefits
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to doing so exceed the cost:

(1− (1− p)θ)(H(Bs, 1)−H(Bs, 0)) + (1− p)θ(H(Br, 1)−H(Br, 0)) > C (2.8)

Again, when H(Br, 1) = H(Br, 0) this simplifies to

(1− (1− p)θ) > C

(H(Bs, 1)−H(Bs, 0))
. (2.9)

Notice that it is always the case that p < (1− (1− p)θ), therefore the range of values

for the cost–benefit ratio which individual 1 takes an antibiotic is smaller than that for

which individual 2 takes an antibiotic.

From inequality 2.9 we define the critical probability, puu, for individual 2’s decision as

puu =

(
1− 1

θ

)
+

1

θ

C

(H(Bs, 1)−H(Bs, 0))
. (2.10)

For individual 2 to use an antibiotic, it is necessary (but not sufficient) that p > puu.

Now consider if individual 1 does use an antibiotic. In this case the bacteria type of

individual 1 can be inferred from his health level. If individual 1’s health is H(Br, 1),

then individual 2 knows that his infection is the Br type. In this case there is no point

in taking the antibiotic. If individual 1’s health is H(Bs, 1), then there will not be a

bacterial transmission, as the antibiotic kills off all the susceptible bacteria. In this

case the information provided by individual 1’s use of the antibiotic perfectly informs

individual 2’s decision, and it will never be optimal for individual 2 to take an antibiotic.

2.4.4 Uncoordinated equilibrium

Here we summarize the Nash equilibrium for the case of uncoordinated antibiotic use,

using the cost–benefit ratio of taking the antibiotic with a susceptible bacteria

(
CBR =

C

(H(Bs, 1)−H(Bs, 0))

)
. The Nash equilibrium for each realised state of individual 2’s

health status will be as follows:
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Uncoordinated equilibrium when B2 = Bn

If p ≤ CBR, then A1 = 0, A2 = 0

If p > CBR, then A1 = 1, A2 = 0

Uncoordinated equilibrium when B2 6= Bn

If CBR > (1− (1− p)θ), then A1 = 0, A2 = 0

If (1− (1− p)θ) > CBR > p, then A1 = 0, A2 = 1

If p > CBR, then A1 = 1, A2 = 0

This equilibrium is depicted across different values of p and CBR in Figure 2.2. The

timing and information in this game is important. If individual 2 gets sick when individ-

ual 1 takes the antibiotic, then individual 2 can perfectly infer that he has the resistant

strain. Therefore, individual 1 and individual 2 never both take the antibiotic. Also,

the probability that an infected individual 2 has a susceptible strain (1 − (1 − p)θ) is

strictly less than the probability that individual 1 has a susceptible strain (p). There-

fore, individual 2 will use the antibiotic when the CBR is relatively high.

2.4.5 A social planner’s choice

A priori infection probabilities

The social planner will make decisions regarding antibiotic use in the first stage. There-

fore, we must know the a priori probability of the type of infection that individual 2 is

expected to experience.

Consider first what happens if individual 1 does not use antibiotics. There are three

possible outcomes for individual 2’s infection status (Bn, Bs, and Br), each of which
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will be realised with the following probability:

P (Bn|A1 = 0) = 1− λ

P (Bs|A1 = 0) = λ(p+ (1− p)(1− θ))

P (Br|A1 = 0) = λ(1− p)θ

Now consider what happens if individual 1 takes an antibiotic. We assume that the

antibiotic kills all susceptible bacteria, but not the resistant ones. In this case individual

1 only passes bacteria on to individual 2 if individual 1 has a resistant strain.

P (Bn|A1 = 1) = 1− λ+ λp

P (Bs|A1 = 1) = 0

P (Br|A1 = 1) = λ(1− p)

Therefore individual 1 taking an antibiotic has a positive and a negative externality. The

positive externality is that the probability of individual 2 remaining healthy increases

by λp. The negative externality is that the probability that 2 is infected with the

resistant strain increases by λ(1− p)(1− θ)

Optimal antibiotic use

Given that individual 1 has an infection, when will the social planner choose to give

individual 1 antibiotics? The social planner uses antibiotics such that the total welfare

(the summed utility of individual 1 and individual 2) is maximized. In this simple

model there is no externality associated with individual 2’s antibiotic use; for individual

2 the social planer’s choice will always coincide with the uncoordinated solution above.

Therefore, we can use backwards induction to solve for the welfare maximizing antibiotic

use for individual 1, given that individual 2 uses antibiotics when infected based on the

critical probability defined by condition (2.10).

Consider if condition (2.9) holds, so that when A1 = 0, an infected individual 2 always
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takes the antibiotic. Total welfare can be written as:

pH(Bs, 0) + (1− p)H(Br, 0) + P (Bn|0)H(Bn, 0) + P (Bs|0)H(Bs, 1)

+P (Br|0)H(Br, 1)− (1− P (Bn|0))C

When A1 = 1 then individual 2 never takes the antibiotic, because an infection can

only be the result of a resistant bacteria. In this case, total welfare can be written as:

pH(Bs, 1) + (1− p)H(Br, 1)− C + P (Bn|1)H(Bn, 0) + P (Br|1)H(Br, 0)

The social planner sets A1 = 1 if and only if it provides greater welfare than A1 = 0:

p(H(Bs, 1)−H(Bs, 0)) + (P (Bn|1)− P (Bn|0))H(Bn, 0)− P (Bs|0)H(Bs, 1)

+(P (Br|1)− P (Br|0))H(Br, 0)− P (Bn|0)C > 0

Notice that P (Bn|0) + P (Bs|0) + P (Br|0) = 1 and P (Bn|1) + P (Br|1) = 1. It follows

that P (Bs|0) = (P (Bn|1)−P (Bn|0))+(P (Br|1)−P (Br|0)). Therefore, we can rewrite

the above inequality as:

p(H(Bs, 1)−H(Bs, 0)) + (P (Bn|1)− P (Bn|0))(H(Bn, 0)−H(Bs, 1))

+(P (Br|1)− P (Br|0))(H(Br, 0)−H(Bs, 1))− P (Bn|0)C > 0

From this inequality the costs and benefits from individual 1’s antibiotic use are clear.

The first term reflects a private benefit to individual 1, realised only if individual 1’s

infection does not include Br. The social benefit includes a reduction in the probability

of transmitting an infection P (Bn|1) − P (Bn|0) > 0, times the benefit of no infection

over a treatable infection H(Bn, 0) − H(Bs, 1). The social cost is reflected by the

increase in the probability of the resistant infection P (Br|1) − P (Br|0) > 0 times the

loss of health due to a resistant over a treatable infection H(Br, 0)−H(Bs, 1).

Substituting in the values for the a priori probabilities derived in Section 2.4.5, and

noting that H(Bs, 1) −H(Bs, 0) = −(H(Br, 0) −H(Bs, 1)) (from Assumption 1), the
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social planner sets A1 = 1 if and only if the following condition is satisfied:

p >
λ(1− θ)

(1 + λZ + λ(1− θ))
+

(1− λ)

(1 + λZ + λ(1− θ))
CBR,

where Z =
H(Bn, 0)−H(Bs, 1)

H(Bs, 1)−H(Bs, 0)
. Z is the ratio of the incremental health benefit of no

infection over a treated susceptible infection and a treated susceptible infection over an

untreated infection.

Now consider if condition (2.9) does not hold (p < puu). In this case, individual 2

always chooses A2 = 0. Social welfare when A1 = 1 will remain unchanged from above

(as individual 2 never take the antibiotic when A1 = 1). When A1 = 0 social welfare

will now be:

pH(Bs, 0) + (1− p)H(Br, 0) + P (Bn|0)H(Bn, 0) + P (Bs|0)H(Bs, 0).

Given this, the social planner only gives individual 1 the antibiotic when the following

condition holds:

p(H(Bs, 1)−H(Bs, 0)) + (P (Bn|1)− P (Bn|0))H(Bn, 0)

−(1− P (Br|1)− P (Bn|0))H(Br, 0) > C

Substituting in the values for P (Br|1), P (Bn|0) and P (Bn|1) from Section 2.4.5:

p(H(Bs, 1)−H(Bs, 0)) + λp(H(Bn, 0)−H(Br, 0)) > C

A final collection of terms and we find that this condition can be written as

p >
1

1 + λZ ′
CBR

where Z ′ =
H(Bn, 0)−H(Br, 0)

H(Bs, 1)−H(Bs, 0)
, so the term 1 + λZ ′ > 1.13

Define the social planner’s critical value of p, denoted p?, for given values of λ, θ, Z,

13It follows from Assumption 1 that Z ′ > Z.

23



Z ′, and CBR as

p? =


λ(1−θ)

1+λZ+λ(1−θ) + (1−λ)
1+λZ+λ(1−θ)CBR if p > puu

1
1+λZ′CBR if p ≤ puu

(2.11)

The social planner will only prescribe an antibiotic to individual 1 for values of p > p?.

The delineation of optimal allocations in (CBR, p) space is shown in Figure 2.3.

There are a couple of things to notice about (2.11). First, when λ = 0 (no transmission)

then p? = pu; no transmission between individuals means that uncoordinated individual

use always coincides with the social optimum. Second, consider λ = 1 (transmission

is guaranteed) then p? depends on the health utility difference H(Bn, 0) − H(Bs, 0).

Notice, as H(Bn, 0) − H(Bs, 0) increases, the positive externality from 1’s antibiotic

use (curing a susceptible infection) increases, therefore p? decreases.

The other important distributional parameter is θ, which determines the concentration

of resistant bacteria in an untreated infection (conditional on a mixed microbial popu-

lation), and therefore plays a role in determining the rate of transmission of resistant

microbes absent treatment. At one extreme of θ = 1, individual 1 taking an antibiotic

will influence the overall probability of infection, but not the probability of a resistant

infection (conditional on an infection). Therefore, there is only a positive externality to

taking the antibiotic (a reduction in transmitting a susceptible infection). At the other

extreme of θ = 0, again there is only a positive externality (although larger this time) as

the antibiotic reduces the probability of individual 2 being infected to 0. However, the

for values of θ a little bit larger than 0, the potential negative consequences of individual

1 taking the antibiotic increase dramatically. When θ is very close to 0, the chances

of passing resistant bacteria to individual 2 are very low, absent treatment. However,

if an antibiotic is taken by individual 1, the chances of passing resistant bacteria to

individual 2 increase dramatically. For θ values closer to 1 this negative component of

the externality decreases.

Figure 2.3b highlights the combination values of p and CBR for which individual 1

overuses (solid blue area) and under-uses (textured red area) antibiotics. Overuse occurs

when both the cost to antibiotic use and the probability of a susceptible infection are

relatively low. Intuitively, this makes sense: there the private cost (CBR) to antibiotic

use is low, but the social cost (increased transmission of resistant microbes) is relatively
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high. In contrast, when the personal cost to antibiotic use is high, but the probability

of susceptible infection is also high, then under-use of antibiotics relative to the social

optimum is more likely.

The health benefits to the patient are an important part of determining over/under use.

Both the individuals and the social planner take this into account. For example, in the

social planner’s critical value p∗ (Equation 2.11), the cost-benefit ratio enters. Consider

the case where a patient will receive infinite utility (i.e. avoid a painful death), and

incur a finite cost, from using the antibiotic. In this case CBR approaches 0 and the

social planner’s p∗ falls (possibly to 0), relative to a larger value of CBR. Holding all

else equal, this will also result in the “overuse” (blue) area in Figure 2.3 to disappear.

The model may give rise to the “problematic” scenario where a patient may die without

treatment but the size of the positive externality is smaller than the negative externality.

For example, consider a situation in which: a) the benefit to not having or curing an

infection is very high, b) the probability that an infection is entirely susceptible is very

low (low p), and c) the proportion of bacteria that are resistant in a non-susceptible

infection is very low (low θ). There is a low chance that the antibiotic will cure individual

1, but it will significantly increase the probability that a resistant microbe is passed

on to individual 2. In such a case it may be optimal to not give individual 1 the

antibiotic, even though it may mean a very bad outcome with certainty. While this

conclusion may seem problematic, it nicely highlights the importance of understanding

both the positive and negative externalities. To ensure that a model does not result

in this scenario, would require adding in additional parameters to the social planner’s

problem, such as a limit on how bad an outcome can be when treatment is withheld.

2.5 Discussion & Conclusion

The use of antibiotics creates a selection pressure leading to increased proportions of

resistant bacteria in an individual and the environment. The increase in the frequency

of resistant organisms diminishes the effectiveness of antibiotics in treating future in-

fections. Therefore, the long-term value of the antimicrobial resource is reduced. The

problem is exacerbated when antibiotics are misused resulting in increased resistance

with little or no compensating benefit. This effect is not taken into consideration when

individuals decide to take antibiotics but would be taken into consideration by a so-
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cial planner. In this paper we define antibiotic overuse as free market (uncoordinated)

antibiotic use in excess of the social optimum which would prevail in a coordinated

market.

We demonstrate that uncoordinated individuals use antibiotics if the expected benefits

exceed the individual cost (pecuniary, health, or other). Given that the social planner

considers total welfare, the conditions under which the first individual who becomes

ill will be treated is smaller than the market case. The difference between the market

optimum and the social optimum depends on the transmission rate and the cost of

antibiotic use to the first individual who becomes ill.

We show that when the transmission rate is 0 there is no overuse of antibiotics and

uncoordinated decisions are always optimal. As the transmission rate increases, there

is a monotonic divergence between coordinated and uncoordinated use. Moreover, a

higher transmission rate increases the social cost of greater antibiotic use. We also find

a negative relationship between individual costs and overuse. For sufficiently high costs

associated with antibiotic use we see underuse of antibiotics while sufficiently low costs

results in overuse.

In this paper we provide guidance for how we should approach the empirical analysis of

antibiotic overuse. In particular, analysing transmission rates should be a determining

factor for antibiotic consumption. It is key to note that areas and diseases for which

transmission rates are high are particularly susceptible to overuse. While data on

transmission rates in the absence of an infection outbreak is relatively scarce there are

several factors that could increase transmission rates. These include poor infection

control in health care settings, and poor hygiene and sanitation.

The model used here is a starting point for us to think about optimal antibiotic use.

As such, there are some simplifications to the analysis which limits its applicability.

Our analysis uses a simple two-agent model where the source of the infection is known

and there is only one antibiotic treatment option. By using this simple model, we

can understand the importance of transmission rates in a small, enclosed area such as

a hospital setting where transmission can be traced. We say hospital setting, as we

have seen with the COVID-19 pandemic that even with the best technology, tracking

transmission of infections in the community setting is often difficult and imprecise.

However, we are aware that should we relax any one of these assumptions, we will be

able to apply the model more widely but the results may not hold. We discuss these
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assumptions—the population, treatment option, and timing— below along with some

ideas for relaxing them in future research.

Firstly, having only two people in the model might seem unrealistic for obvious reasons.

However, we can think of the two people as two subsets of the population where one

subset is infected while the other subset is susceptible to infection (this would be in

line with the SIS models in the literature, see Section 2.2). Secondly, our model has

one treatment option, which while being another simplification, is not an unrealistic

one. It is true that treating an infection is complicated, even if two people have the

same infection they may be offered different treatment options depending on several

factors including their age, gender, and medical history. However, we can think of the

antibiotic treatment in the model as a generalization of the first line therapy antibiotics.

That is, for each antibacterial infection, this antibiotic/antibiotic class is most effective

and less expensive (in terms of less side effects, and cost) of all the options.

Thirdly, one of the key assumptions of our model is that there is perfect information.

Individual 2 knows the type of infection, the source of infection, and if the infection is

treatable since individual 1’s antibiotic use is observable, and the timing is such that the

treatment would have taken effect before their interaction. This may be problematic

as there are several uncertainties here, all of which cannot realistically be known. For

example an individual could know the type of infection or whether it is treatable but

not the source. Therefore, we can introduce some uncertainties here in the source of

the infection, the timing of the interaction, and the effect of the antibiotic on the sus-

ceptible population. Suppose individual 2 could get an infection from the environment

or Individual 1. In this case, individual 1’s health status only provides imperfect infor-

mation about the type of bacterial infection that individual 2 has. Notice also that due

to the uncertainty of the source of the infection, the timing of the interaction between

the individuals is not important. In this case, there is a possibility that individual 2

takes an antibiotic when individual 1 does.

The timing of the interaction between the individuals is also key to the model, here

we assumed that the interaction between the two individuals occur after the treatment

takes effect. We have also assumed that antibiotic treatment kills all susceptible bacteria

and therefore any transmission between the individuals will only be resistant bacteria,

that is θ = 1. Both of these assumptions result in individual 1 only transmitting

resistant bacteria to individual 2 and therefore individual 2 never takes an antibiotic.
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We can modify either of these assumptions by allowing the interaction to take place

before the treatment takes effect and/or allowing for varying effects of the antibiotic on

the susceptible bacteria population. Either of these options will provide the possibility

of susceptible bacteria being transmitted. Therefore there would be no way to know

whether the infection is treatable and could result in higher antibiotic use than in the

simple case.

To see this more clearly, suppose the treatment takes 5 days to be fully effective.

If we allow for interaction within a window starting from the first day of treatment

to the final day, then individual 2’s illness could be treatable. In the case where the

antibiotic kills all susceptible bacteria, whether or not the treatment is effective depends

on the day of the interaction. Any contact before the end of the 5 days will only

imperfectly inform individual 2’s antibiotic decision. In this case the probability that

the illness is untreatable will be higher the closer the interaction is to the end of the

treatment window. That is, θ gets closer to 1 the closer the interaction is to Day 5 —the

end of treatment. And, as we have assumed in the model presented, any interaction

after treatment takes effect (5 days or later) will result in only resistant bacteria being

transmitted, θ = 1.

Now let us consider the case where when exposed to an antibiotic only a fraction of the

susceptible bacteria will be killed.14 In this case there is the possibility that individual

2 has a treatable infection even if the interaction takes place after the treatment takes

effect. That is, the timing of the interaction is not important here. Here once again,

individual 1’s health state only provides imperfect information about the type of bac-

terial infection that individual 2 has and therefore does not determine individual 2’s

antibiotic use.

For future developments, we will first introduce another source of infection, the envi-

ronment. This will allow us to study optimal antibiotic use in the simple case giving us

a starting point for the analysis. Here individual 1’s decision making will be unaffected

and it is individual 2 who will have to make a decision under uncertainty. We will then

expand the current model to a population of people and study infection from human

transmission. This will also introduce uncertainty in the source of infection, instead of

the source of infection being individual 1, it would be any of the infected persons who

had contact with the susceptible person. Also now the timing of the interaction will

14This case, δs 6= 1, is discussed in Sections 2.3 and Appendix 2.B.2.
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not be as important as in the simple case since there is uncertainty in the source of the

infection. In a final instalment, we will introduce the possibility of two different sources

of infection in the population of people. In all of these we will consider the varying the

effectiveness of the antibiotic. In the current model, we have a strong antibiotic which

completely eradicates the susceptible bacteria population. We can modify this to allow

for different effects, however the key effect of the antibiotic use will remain unchanged,

that is, it increases the probability of having and transmitting resistant bacteria.
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Tables

Table 2.1: Lotka–Volterra Steady State Solutions

Steady State & Infection Type Population size (N̄s, N̄r) =
No antibiotic use
SS1: No infection steady state (0, 0)
SS2: Resistant infection steady state (0, K)
SS3: Susceptible infection steady state (K, 0)

SS4: Mixed infection steady state

(
1− βsr

1− βsrβrs
K,

1− βrs
1− βsrβrs

K

)
Antibiotic use, δs 6= 1
SS1: No infection steady state (0, 0)
SS2: Resistant infection steady state (0, K)

SS3: Susceptible infection steady state

((
1− δs

ρs

)
K, 0

)

SS4: Mixed infection steady state

((1− δs
ρs
− βsr

1− βsrβrs

)
K,

(1− βrs
(

1− δs
ρs

)
1− βsrβrs

)
K

)

Antibiotic use, δs = 1
SS1: No infection steady state (0, 0)
SS2: Resistant infection steady state (0, K)

This table shows the equilibrium population size (steady state solutions) with and without antibiotic use.
In the case where antibiotics are used, we show the results when the antibiotic kills only a fraction of
the susceptible bacteria (δs 6= 1) and the case where the antibiotic kills the entire susceptible bacteria
population (δs = 1). The equilibrium population size is dependent on the relative size of the species
competitive coefficients (βsr and βrs) and the initial population values (Ns(0) and Nr(0)). Steady State
4 (SS4) is only feasible when either: (1) βsr > 1 and βsrβrs > 1; OR βsr < 1, and βsrβrs < 1. See
Appendices 2.A.1 and 2.A.2 for more details.
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Figures

Figure 2.1: Bacteria Competition and Resulting Infection
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This figure shows how the outcome of bacteria competition, determines the probability of getting an
infection from resistant bacteria. In the antibiotic case, the steady state population is either comprised
of only susceptible bacteria or a mixed population. p is the probability that the population is comprised
only of susceptible bacteria. The mixed population contains some proportion, θ of resistant bacteria.
When antibiotics are used then in the case where the antibiotic kills all susceptible bacteria, the
infection is solely caused by a resistant infection (p = 0).
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Figure 2.2: Uncoordinated equilibrium when B2 6= Bn
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Notes: This figure depicts the uncoordinated equilibrium when individual 2 has a bacterial infection.
The figure delineates the different uncoordinated antibiotic use equilibrium in p, CBR space. pu and
puu are the critical values for p, as defined in the main text. Equilibrium for the different areas in the
figure are shown in parenthesis as (A1, A2).
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Figure 2.3: Social optimum antibiotic use
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(a) Social optimum allocations
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Notes: Figure (a) delineates the socially optimal antibiotic use in p, CBR space. p? is the social
planner’s critical p value for individual 1’s antibiotic use. puu is the critical values for p, defining
individual 2’s antibiotic use (conditional on A1 = 0). Equilibrium for the different areas in the figure
are shown in parenthesis as (A1, A2). Figure (b) shows combinations of p and CBR where the
uncoordinated equilibrium deviates from optimal antibiotic use. The blue area shows uncoordinated
over-use, the textured red area shows uncoordinated under-use.
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Appendix 2.A Proof of Results in Table 2.1

2.A.1 No Antibiotic use

As stated before, without antibiotic use, the growth of each strain is given by:

˙Ns(t) = ρsNs(t)

(
K −Ns(t)− βsrNr(t)

K

)
(2.A.1)

Ṅr(t) = ρrNr(t)

(
K −Nr(t)− βrsNs(t)

K

)
(2.A.2)

The steady state solution to Equations (2.A.1) and (2.A.2) is the pair of values N̄s and

N̄r at which Ṅs(t) and Ṅr(t) both equal 0.

For the susceptible bacteria Ṅs(t) = 0 can be satisfied with:

N̄s = 015 (2.A.3)

or

K − N̄s − βsrN̄r

K
= 0

N̄s = K − βsrN̄r
16 (2.A.4)

or both. Similarly for the resistant bacteria Ṅr(t) = 0 can be satisfied with

N̄r = 0 (2.A.5)
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or

K − N̄r − βrsN̄s

K
= 0

N̄r = K − βrsN̄s (2.A.6)

or both. Equations 2.A.3–2.A.6 are the zero–growth equations for each strain from

which the zero–growth isoclines are constructed.

Corner Solution

The corner solutions are:

1. Both the susceptible and resistant strains are extinct (Equations 2.A.3 and 2.A.5

are true). In the steady state the equilibrium population is (N̄s, N̄r) = (0, 0).

2. The susceptible bacteria are extinct, Equations 2.A.3 and 2.A.6 are true. Substi-

tuting N̄s = 0 (Equation 2.A.3) into 2.A.6 gives the equilibrium population for the

resistant bacteria. In this case the steady state population is (N̄s, N̄r) = (0, K).

3. The resistant bacteria are extinct, Equations 2.A.4 and 2.A.5 are true. Similar

to the previous case, substituting N̄r = 0 (Equation 2.A.5) into 2.A.4 gives the

equilibrium population for the susceptible bacteria. In this case the steady state

population is (N̄s, N̄r) = (K, 0).

Interior Solution

In the previous steady state solutions we have the extinction of either one or both

strains. The final steady state solution is found at the intersection of Equations 2.A.4

and 2.A.6. We obtain this equilibrium solution by substitution as follows:

15Equations 2.A.3 and 2.A.5 are possible given our assumption that ρs > 0 and ρr > 0.
16Equations 2.A.4 and 2.A.6 are possible using the assumptions K > 0, N̄s > 0, and N̄r > 0.
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N̄s = K − βsrN̄r

N̄s = K − βsr(Kr − βrsN̄s)

N̄s =
1− βsr

1− βsrβrs
K (2.A.7)

and

N̄r = K − βrsN̄s

N̄r = K − βrs
(

1− βsr
1− βsrβrs

K

)
N̄r =

1− βrs
1− βsrβrs

K (2.A.8)

Therefore the coexistence steady state, is

(
1− βsr

1− βsrβrs
K,

1− βrs
1− βsrβrs

K

)
. A necessary

condition for coexistence is for either: (1) βsr < 1, βrs < 1 and βsrβrs < 1, or (2)

βsr > 1, βrs > 1 and βsrβrs > 1.

2.A.2 Antibiotic use

Now consider the introduction of an antibiotic. The growth of each strain will now be

described by:

Ṅs(t) = ρsNs(t)

(
K −Ns(t)− βsrNr(t)

K

)
− δsNs(t) (2.A.9)

Ṅr(t) = ρrNr(t)

(
K −Nr(t)− βrsNs(t)

K

)
(2.A.10)

following Nikolaou and Tam (2006). We assume that ρs ≥ ρr > δs. Notice that when

δs = 1, the susceptible bacteria will be extinct and there would be no competition.17

Therefore we focus on the case where δs 6= 1.

17The steady state solutions would collapse to (N̄s, N̄r) = (0, 0) or (N̄s, N̄r) = (0,K) in this case.
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Once again, the solution to Equations (2.A.9) and (2.A.10) are the pair of values N̄s

and N̄r at which Ṅs(t) and Ṅr(t) both equal 0.

N̄s = 0 (2.A.11)

or

ρs

(
K − N̄s − βsrN̄r

K

)
− δs = 0

N̄s =

(
1− δs

ρs

)
K − βsrN̄r (2.A.12)

or both. The conditions for Ṅr(t) = 0 is the same as the no antibiotic case:

N̄r = 0 (2.A.13)

or

N̄r = K − βrsN̄s (2.A.14)

or both.

Corner Solutions

As in the case with no antibiotic use, we have three steady state solutions with one

or both of the strains becoming extinct. The corner solutions remain the same except

for the case where the resistant bacteria are extinct. In this case, Equations 2.A.12

and 2.A.13 are true. Substituting N̄r = 0 (Equation 2.A.13) into 2.A.12 gives the

equilibrium population for the susceptible bacteria. The steady state population is

now: (N̄s, N̄r) =

((
1− δs

ρs

)
K, 0

)
.

Interior Solution
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The fourth steady state solution, the interior solution, is be found at the intersection

of Equations 2.A.12 and 2.A.14. Substitution yields:

N̄s =

(
1− δs

ρs

)
K − βsrN̄r

N̄s =

(
1− δs

ρs

)
K − βsr

(
K − βrsN̄s

)

N̄s =

(1− δs
ρs
− βsr

1− βsrβrs

)
K (2.A.15)

and

N̄r = K − βrsN̄s

N̄r = K − βrs
(1− δs

ρs
− βsr

1− βsrβrs

)
K

N̄r =

(1− βrs
(

1− δs
ρs

)
1− βsrβrs

)
K

(2.A.16)

As before, a necessary condition for coexistence is for either: (1) βsr + δs
ρs
< 1; βrs(1−

δs
ρs

) < 1 and βsrβrs < 1; or (2) βsr + δs
ρs
> 1; βrs(1− δs

ρs
) > 1 and βsrβrs > 1.

Appendix 2.B Dynamics of Competitive Interactions

2.B.1 No Antibiotics

There are four possible steady state outcomes when no antibiotics are used leading to

4 types of infections. These are:
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SS1: No infection steady state (N̄s, N̄r) = (0, 0)

SS2: Resistant infection steady state (N̄s, N̄r) = (0, K)

SS3: Susceptible infection steady state (N̄s, N̄r) = (K, 0)

SS4: Mixed infection steady state (N̄s, N̄r)) =

(
1− βsr

1− βsrβrs
K,

1− βrs
1− βsrβrs

K

)
,

which is only feasible when either: (1) βsr > 1, βrs > 1 and βsrβrs > 1; or (2) βsr <

1.βrs < 1, and βsrβrs < 1.

The steady state outcome that occurs highly depends on the initial values of Nr and Ns,

Ns(0) and Nr(0). First we will analyse initial values on the boundary using the typical

Lokta–Volterra model solutions then apply it to the case of bacteria. There are three

possible starting points on the boundary, Ns(0) = 0, Nr(0) = 0; Ns(0) = 0, Nr(0) > 0;

and Ns(0) > 0, Nr(0) = 0. The Lokta–Volterra model is a form of the Kolmogorov

system of equations. This gives two results that we will use, first trajectories starting

on the axes stay on the axes and, second interior trajectories cannot reach the axes in

finite time (Dobrushkin, 2017). When Ns(0) = 0 and Nr(0) = 0 this results in a steady

state, SS1. This steady state is unstable as any unexpected shock to population of

either or both bacteria strains will cause the populations to grow away from this steady

state.

When either Ns(t) = 0 while Nr(t) > 0 or Ns(t) > 0 while Nr(t) = 0 competition will

result in one species dominating the other. The species with the positive initial value

always drives the other to extinction resulting in steady state SS2 or SS3. Given the

assumption that the initial value of Ns and Nr is at least 1, we do not have a case where

the pair of initial values fall the boundaries.

Let us now consider initial population values where Ns(0) > 0, Nr(0) > 0. There are

four distinguishable cases corresponding to the four possible sign combinations of βsr

and βrs as shown in Figure 2.B.1. The growth trajectories depend on the relationship

between the initial value of each strain and its zero–growth isocline. Generally, when

a strain’s population is below its zero–growth isocline the population will increase and

when the population is above its zero–growth isocline the population will decline.

For Case 1 and 2, inter-specific competition always leads to the extinction of one species

by the other. The species with the strongest competition always drives the other to
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Figure 2.B.1: Possible Isocline Crossings for the Lokta-Volterra Model
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(d) Case 4: βsr < 1 and βrs < 1

The zero–growth isocline describes expected equilibrium population sizes of one strain’s growth if the
growth of the other is held constant. Using Equation 2.A.4: N̄s = K − βsrN̄r the coordinates are are
when N̄r = 0, N̄s = K and when N̄s = 0, N̄r = K

βsr
. The coordinates for the susceptible bacteria

isolcline are: (Ns(t), Nr(t)) = (K, 0) and

(
0, Kβsr

)
. Similarly from Equation 2.A.6 the coordinates for

the resistant bacteria isolcline are (Ns(t), Nr(t)) = (0,K) and

(
K
βsr

, 0

)
.

A stable equilibrium is shown by a solid–line box while an unstable equilibrium is shown by a bro-
ken–line box.

extinction. We can rule out Case 1 as we assumed ρs ≥ ρr therefore the zero growth line

for resistant bacteria cannot be above the susceptible bacteria. In Case 2 (refer Figure

2.B.1b) we have βrs > 1 meaning the competition with the susceptible bacteria is more
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harmful to the resistant strain’s growth than competition within the resistant strain.

Also competition with the resistant strain is less harmful to the susceptible bacteria

growth than competition between the members of the susceptible strain, βsr < 1.

Together this means the susceptible bacteria are the better competitors. As such for

all interior initial values, competition will lead to the outcome (K, 0), the extinction of

the resistant bacteria by the susceptible ones. The other two steady states SS1 and

SS3 are unstable.

For Case 3, presented in Figure 2.B.1c, all four steady states are possible outcomes.

However, only two of these, SS2 : (0, K) and SS3 : (K, 0), are stable. From Figure

2.B.1c we have βsr > 1, and βrs > 1. Where βsr > 1 means that the effect of resistant

bacteria on the susceptible is greater than the effect of susceptible bacteria on its own

growth. In other words, each species limits the other growth more than it’s own. In this

case the species cannot coexist peacefully and the outcome will be that one population

wins, while the other is driven to extinction. The winner depends on which species has

the starting advantage. The 45◦ line shows all the points where Ns(t) = Nr(t), as such

all points above the line we have Nr(t) > Ns(t) and for the points below Ns(t) > Nr(t).

Given our assumption about the initial values of each strain Ns(0) > Nr(0), all possible

initial population values will be below the 45◦ line. Therefore the outcome of Case 3

will be the same as Case 2 unless the trajectory of the strains growth is directly in line

with the unstable equilibrium, SS4.

As in the previous case, for Case 4 all four steady states are possible outcomes however

only SS4 :

(
1− βsr

1− βsrβrs
K,

1− βrs
1− βsrβrs

K

)
is stable and all interior initial points leads to

the stable steady state. From Figure 2.B.1d we have that each strain limits it’s own

growth more than that of its competitor βsr < 1, and βrs < 1. Therefore there will be

stable coexistence even though the strains compete with each other.

2.B.2 With Antibiotics

When antibiotics are used we have the same four types of infection from the steady

state outcomes. These are:

SS1: No infection steady state (N̄s, N̄r) = (0, 0)

SS2: Resistant infection steady state (N̄s, N̄r) = (0, K)
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SS3: Susceptible infection steady state (N̄s, N̄r) =

((
1− δs

ρs

)
K, 0

)

SS4: Mixed infection steady state(N̄s, N̄r) =

((1− δs
ρs
− βsr

1− βsrβrs

)
K,

(1− βrs
(

1− δs
ρs

)
1− βsrβrs

)
K

)
,

and as before is only feasible when either: (1) βsr > 1 and βsrβrs > 1; OR βsr < 1, and

βsrβrs < 1.

There are a few obvious changes to the competitive interactions when antibiotics are

introduced. First, only SS3 and SS4 changes which is expected, as only susceptible

bacteria population is affected by the introduction of antibiotics. Second, the outcome

of competitive interactions now also depend on the ratio
δs
ρs

, the efficacy of the antibiotic.

Third, we can no longer rule out Case 1 or SS3. Finally the susceptible bacteria is now

affected by the efficacy of the antibiotic in addition to competition with the resistant

bacteria (βsr).

We will analyse the outcomes of competitive interactions when antibiotics are intro-

duced building on the previous section (Section 2.B.1). In an antibiotic–free environ-

ment we ruled out a resistant infection steady state. This is because our assumption

of ρs ≥ ρr ruled out Case 1 and Ns(0) > Nr(0) makes it impossible for the bacteria

population to arrive at SS3 in Case 3. As stated before, the use of antibiotics affects

the ratio of susceptible to resistant bacteria and therefore the outcome of competitive

interaction.

There are now two ways in which competitive interaction results in the extinction of

susceptible bacteria. To see this, let us assume that each strain’s growth rate is such

that the zero-growth isoclines do not cross (Case 1 and 2). In the absence of antibiotics

the susceptible bacteria’s zero–growth iscoline is above the resistant bacteria as depicted

in Figure 2.B.1a. Now we will introduce an antibiotic into the bacteria’s environment.

The antibiotic reduces the susceptible population by δsNs and the zero growth line

decreases by
δs
ρs

. It is clear that the magnitude of
δs
ρs

determines the relationship of the

zero growth lines. If the effect of the antibiotic is sufficiently large it gives the resistant

bacteria a competitive advantage leading to the extinction of susceptible bacteria in

the steady state, depicted in Case 1, Figure 2.B.2a. Otherwise we have the extinction

of resistant bacteria in the steady state (Case 2 Figure 2.B.2b).
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In Case 1 (Figure 2.B.2a) the use of antibiotic is detrimental to the susceptible bacteria

population in two ways. Firstly, the antibiotic assists the resistant bacteria so that the

competition between the susceptible and resistant bacteria is more harmful than com-

petition among the susceptible strain (βsr +
δs
ρs

> 1). Secondly, the antibiotic reduces

the susceptible bacteria population such that the effect on the susceptible bacteria,

post–antibiotic use, is less harmful to the growth of the resistant bacteria than the

effect of competition between the members of the resistant strain

((
1− δs

ρs

)
βrs < 1

)
.

These two effects combined result in a steady state equilibrium where the susceptible

bacteria are driven to extinction (SS2).

For Case 2 (Figure 2.B.2b) notice that even with the antibiotic reducing the zero–growth

line for the susceptible bacteria, the susceptible bacteria are still able to out–compete

the resistant bacteria. This may be due to an ineffective antibiotic or a very large Ns(0)

compared to Nr(0). The resulting equilibrium number of the susceptible strain is
δs
ρs

lower than the no antibiotics case.

The second way in which competition leads to the extinction of the susceptible bacteria

is where the isoclines cross and each strain limit each other’s growth more than its

own. This situation, Case 3 is depicted in Figure 2.B.2c. Let us focus on the stable

equilibria represented by solid boxes, these are: (N̄s, N̄r) = (0, K) and (N̄s, N̄r) =((
1 − δs

ρs

)
K, 0

)
. In the no antibiotics case the initial values are all below the 45◦

line since we assumed Ns(0) > Nr(0). As mentioned before, antibiotic use reduces

the population of susceptible bacteria by δsNs. If the remaining population (1− δs)Ns

falls below Nr the result will be SS2 (0, K) the extinction of the susceptible bacteria.

Otherwise we have the extinction of the resistant bacteria (SS3 : (0, K)).

Finally, both species are able to coexist peacefully as before in Case 4. Notice that the

outcome doesn’t change however, antibiotic use changes the equilibrium population of

susceptible and resistant bacteria strains by

(
−

δs
ρs

1− βsrβsr
K,

δs
ρs
βrs

1− βsrβsr
K

)
as shown

below.
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for N̄s

N̄s
antibiotic − N̄s =

=

(1− βsr −
δs
ρs

1− βrsβrs

)
K − 1− βsr

1− βsrβsr
K

=

1− βsr −
δs
ρs
− 1 + βsr

1− βsrβsr
K

= −

δs
ρs

1− βsrβsr
K

for N̄r

N̄r
antibiotic − N̄r =

=

(1− βrs +
δs
ρs
βrs

1− βrsβrs

)
K − 1− βrs

1− βsrβsr
K

=

1− βrs +
δs
ρs
βrs − 1 + βrs

1− βsrβsr
K

=

δs
ρs
βrs

1− βsrβsr
K
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Figure 2.B.2: Possible Isocline Crossings for the Lokta-Volterra Model with Antibiotic
Use
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The zero–growth isocline describes expected equilibrium population sizes of one strain’s growth if the
growth of the other is held constant and an antibiotic is introduced. Since the antibiotic only affects
the susceptible bacteria the coordinates for the susceptible bacteria isocline are different from 2.B.1.

Using Equation (2.A.12): N̄s =

(
1 − δs

ρs

)
K − βsrN̄r), when N̄r = 0, N̄s =

(
1 − δs

ρs

)
K and when

N̄s = 0, N̄r =

(
1 − δs

ρs

)
K
βsr

. Therefore points for the zero–growth line for susceptible bacteria are

(Ns(t), Nr(t)) =

((
1 − δs

ρs

)
K, 0

)
and

(
0,

(
1 − δs

ρs

)
K
βsr

)
for susceptible bacteria and as in Figure

2.B.1 for resistant bacteria the points are (Ns(t), Nr(t)) = (0,K) and

(
K
βsr

, 0

)
.

A stable equilibrium is shown by a solid–line while an unstable equilibrium is shown by a broken–line.
The boxes represent the equilibrium in the antibiotic–use case while the no antibiotic equilibrium is
represent by a circle.
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Chapter 3

Does Knowledge Affect

Willingness–to–Pay for

Antibiotic–free Goods?

3.1 Introduction

Public health authorities have been placing more emphasis on controlling antimicrobial

resistance in light of the lack of innovation in new antibiotic classes.18 Controlling

resistance includes ensuring optimal use of antibiotics in both humans and agriculture.

Globally antibiotics are used in food production for disease treatment, prevention of

diseases (prophylaxis), and growth promotion. A joint report by the European Centre

for Disease Prevention and Control (ECDC), European Food Safety Authority (EFSA),

and European Medicines Agency (EMA) found that in 2014 the average antimicrobial

consumption was higher in animals than in humans (ECDC and EMA, 2017). In

addition, antibiotics deemed medically important to humans are used in agriculture.

There is a general consensus that the use of antibiotics in agriculture has an impact on

its effectiveness in treating humans even though there is no evidence of a direct link

(O’Neill et al., 2015; Scott et al., 2018; Tang et al., 2017). Despite this consensus, there

is a lack of public awareness regarding antibiotic resistance which must be addressed as

18Antimicrobial agents are drugs used to treat illnesses caused by micro–organisms such as bacteria,
viruses, and fungi. I use antibiotics in this chapter to refer to agents used to treat bacterial infections.
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a part of broader strategy to reduce resistance (WHO et al., 2015; O’Neill et al., 2016).

The implication being that increasing the general public’s knowledge about antibiotic

consumption and resistance could lead to behavioural changes. In health care, this in-

cludes patients only requesting or purchasing antibiotics when there is a genuine need,

and proper antibiotic prescribing techniques.19 In terms of agriculture, farmers would

reduce unnecessary antibiotic use and receive additional incentives through higher de-

mand for goods produced using appropriate antibiotic methods. In this paper I explore

whether such incentives exist by examining the effect of knowledge about antibiotic

consumption and resistance, on people’s stated willingness–to–pay for antibiotic–free

products.

This paper has two main purposes: (1) to estimate respondents’ willingness–to–pay

to forgo antibiotic use in the food they consume and (2) to identify how this willing-

ness–to–pay is affected by knowledge. To estimate the key effects, I designed a survey

instrument to collect primary data since no secondary dataset exists with the required

information. Knowledge is measured directly by six questions in the survey based on

antibiotic use, antibiotic resistance, the use of antibiotics in food production, and in-

directly through the respondent’s area(s) of work. The survey also includes a choice

experiment using the sequential bid Contingent Valuation Method to collect the willing-

ness–to–pay data. Using the sequential bid approach, respondents are presented with

a sequence of hypothetical market scenarios In each market scenario the respondent

chooses either the regular option (Option 1), the antibiotic–free option (Option 2) or

neither of these options (Option 3). The choice made in each scenario is used to ascer-

tain the interval which contains their true willingness–to–pay. The method applied to

estimating the willingness–to–pay has up to six scenarios which is the highest in the

willingness–to–pay literature. This results in tighter willingness–to–pay intervals and

therefore more precise bounds for the respondents’ true willingness–to–pay.

The experiment is comprised of two parts, the first part has market scenarios for the

product the respondent purchases the most (Frame 1), and the second for the least

purchased product (Frame 2). I use these two frames to test whether willingness–to–pay

varies not only by protein of choice but also by frequency of purchase, i.e. whether the

protein is most or least commonly bought. This gives some idea about what preferences

may be driving willingness–to–pay. The results indicate that there is variation in both

19Genuine need for antibiotics here refer to the case where the individual has a bacterial infection
or most likely has a bacterial infection. In Chapter 2 Section 2.2 we cover the various definitions of
optimal antibiotic use.
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these cases, but this is more evident when comparing willingness–to–pay by protein. I

find that on average the willingness–to–pay for the antibiotic–free option compared to

the regular option is 57% higher for Frame 1 and 52% higher for Frame 2. Furthermore,

willingness–to–pay is higher for antibiotic–free chicken and antibiotic–free chickpeas

than for antibiotic–free sea bass.

I estimate the effect of knowledge on willingness–to–pay with both the maximum like-

lihood method using interval regression, and OLS. Both methods give similar results

indicating a positive and significant effect of knowledge on willingness–to–pay for Frame

1, and positive but non–significant effect for Frame 2. Using my preferred specifica-

tion, the interval regression estimates suggest that the willingness–to–pay for the an-

tibiotic–free good increases by approximately £0.085 for each one standard deviation

increase in Knowledge. For Frame 2, the willingness–to–pay for the antibiotic–free good

increases by £0.056 over the price of the regular good, in response to a one standard

deviation increase in knowledge. The positive effect of knowledge is robust to various

specifications and is consistent with the literature on organic products (see Dı́az et al.,

2012; Owusu and Owusu Anifori, 2013).

This paper adds to the literature by directly estimating the effect of knowledge about

antibiotic consumption and resistance on willingness–to–pay for antibiotic free goods.

Moreover, this is the first study to explore willingness–to–pay for antibiotic–free goods

in the UK. A previous study Lusk et al. (2006) estimates the willingness–to–pay for

antibiotic free products in the U.S.A. However in contrast to Lusk et al. (2006) I provide

no information about the use of antibiotics in food production to the respondents before

the choice experiment, and I test the respondent’s knowledge level directly and estimate

its effect on willingness–to–pay. I essentially capture the respondent’s preferences for

antibiotic–free goods by providing no information, and by asking questions further in

the survey about antibiotic use and resistance, I am able to test directly whether the

respondent’s knowledge had any effect on the choices made.

The remainder of this paper is organised as follows. In Section 3.2, I highlight the

previous literature on willingness–to–pay, the effect of knowledge, and the Contingent

Valuation Method. In Section 3.3, I describe the survey instrument, how I calculate

willingness–to–pay, and provide summary statistics. I detail the interval and OLS

regression techniques in Section 3.4 and report the resulting estimates in Section 3.5.

In Section 3.6, I test the robustness of the main results, and present final remarks in
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Section 3.7.

3.2 Literature Review

Willingness–to–pay can be estimated from existing markets using the revealed prefer-

ences method, or from hypothetical markets using the stated preferences method such as

the Contingent Valuation Method, and Choice Experiment. There are three approaches

to Contingent Valuation Method: open–ended, sequential bids and closed–ended ques-

tions. The sequential bid approach, applied in this paper, asks an individual if he/she

would pay some given amount for an improvement in some good followed by a second

question with another dollar amount, higher or lower depending on the response to

the first question (Hanemann et al., 1991; Alberini, 1995; Scarpa and Bateman, 2000).

This double–bounded method to estimate willingness–to–pay is utilised by Hutchinson

et al. (2001); Jin et al. (2006); Cairns and van der Pol (2000). Less prevalent is the

repeated follow–up method, an extension of the double-bounded method. The high-

est bounded method used in the willingness–to–pay literature is triple–bounded used

in Scarpa and Bateman (2000). However, there is no one set rule to determining the

number of bounds to use. Scott et al. (2003) notes that usually, people are presented

with additional follow-up choices until an indifference point is identified.

One or a combination of these methods are often used to determine the willingness–to–pay

for the valuation of environmental resources including clean air, food and water safety,

and reduction in waiting times for health services (Dupont, 2004; Bateman, 1996; Huang

et al., 2018; Andersson et al., 2016; Bishai and Lang, 2000). There is also a sizeable

literature that explores the willingness–to–pay for organic products, which is in some

way similar to antibiotic–free goods. Some of these studies finds that an increase in

consumer knowledge results in an increase in the willingness–to–pay for these healthier

food alternatives (Bonti-Ankomah and Yiridoe, 2006; Dı́az et al., 2012; Owusu and

Owusu Anifori, 2013).

The literature on willingness–to–pay for antibiotic free products on the other hand is

relatively scarce, limited to two studies Lusk et al. (2006) and Lusk et al. (2007). Lusk

et al. (2007) investigates the effect of altruism and free riding on demand for pork chops

with public good attributes including certified free of antibiotic.20 The results indicate

20Lusk et al. (2007) defines altruism as the extent to which an individual derives satisfaction from
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a negative willingness–to–pay which is interpreted as some people preferring the use

of sub-therapeutic antibiotics because this keeps animals healthy and promotes animal

welfare.

Lusk et al. (2006) takes a more detailed look at the topic using a Choice Experiment

to estimate consumers’ willingness–to–pay for pork produced without sub–therapeutic

antibiotics (antibiotics used indiscriminately), and consumers’ willingness to contribute

to a reduction in antibiotic resistance. The respondents were randomly given infor-

mation sheets on the use of antibiotics from the WHO, or the industry, or were given

no information.21 After reading the information they were asked to choose between

one free antibiotic–friendly product and one free regular product plus a coupon for $X

off their total grocery bill, or a coupon for $X+ $Y off their total grocery bill.22 His

estimates indicate that on average, willingness–to–pay for antibiotic-friendly product

over regular product was US$1.86 per choice, a 76.7% premium for antibiotic–friendly

product over regular product. Lusk et al. (2006) notes that while the premium seems

high it may be due to low knowledge levels as there is very little evidence to suggest

that consumers in the U.S.A. know that most pork is produced with subtherapeutic

antibiotics.

There are two key differences between this study and the previous in the willing-

ness–to–pay for antibiotic–free food literature. First, unlike Lusk et al. (2006), the

respondents were not provided any information about the use of antibiotics in food

production prior to the choice experiment. Lusk et al. (2006) found that the choice be-

haviour of those with no information was similar to those with some information. This

was attributed to either the consumers having strong ‘priors’ or that the underlying

message for all the information groups was that the antibiotic use in pig production

may be harmful to human health. This leads to the second key difference, I directly

estimate the effect of knowledge on WTP. While, Lusk et al. (2006) identifies the need

to estimate the effect of consumers’ knowledge on willingness–to–pay, this was not done.

The consumers may have had ‘priors’ resulting in similar choice regardless of the infor-

mation provided however, there was no direct measure for what the consumers knew

the utility of others and free-riding is the extent to which an individual is a purely selfish utility
maximizer.

21Specifically, the WHO perspective compiled using information from the National Academy of
Science (National Research Council 1999) and World Health Organization (2002), and the industry
perspective compiled in consultation with representatives from pork producer organizations.

22Antibiotic–friendly refers to products from pigs that were only administered antibiotics when the
animal was sick.
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prior to participation in the survey.

This paper contributes by filling the gap in the literature. I estimate the effect of

consumer knowledge and perception about antibiotics and antibiotic resistance on will-

ingness–to–pay for antibiotic free food. By providing no information to the respondents

before the choice experiment, I essentially capture the respondent’s preferences for an-

tibiotic–free goods. Additionally, using responses from the knowledge section of the

survey—which is done after the choice experiment—I test directly whether knowledge

had any effect on the choices made. Furthermore this is first study to estimate the

willingness–to–pay for antibiotic free products in the UK.

3.3 Data Description

Given the absence of a secondary data source containing information on willingness–to–pay

and knowledge about antibiotic use and resistance, I designed a survey instrument to

collect primary data. The survey was designed to collect data from a representative

sample of the UK population as such a survey company was approached to conduct the

survey. I applied for both ethical approval and funding from the University of Leicester

prior to disseminating the survey. Once ethical approval was granted, funding for the

survey was sought and received from the College of Social Science Research Develop-

ment Fund.23 The sample size was entirely determined by the funding received, with

the funding only 500 persons could have been recruited for the survey. However, at the

end of the survey I received 23 extra responses at no extra cost.

Given the limitations of funding, the pilot study was conducted using a convenience

sample. The survey was developed on an online platform, which was used to conduct

the pilot testing. In total the pilot testing was done by 10 persons who were other PhD

students, as well as some Economics and Science faculty members. Persons who agreed

to assist with the testing were provided with a link to survey which they completed

online and then shared their feedback on the survey. No preliminary econometric anal-

ysis was conducted with the data from the pilot testing, the purpose of the testing was

23Ethical approval was granted by the Chair of the University Ethics Sub-Committee of School of
Business Dr. Chris Grocott in June 2019, Ethics Reference: 20851-mmw18-ss/bu:economics. The
funding totalled £2000 and the survey company charged £4 per person to disseminate the survey,
therefore the sample size would be 500.
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to ensure that the choice experiment and the knowledge questions were sound and in

no way misleading. The survey instrument was edited after these tests were completed

based on the feedback from the sessions. The notes from the sessions were written and

used to update the instrument. One of the changes made following the focus group was

for example, asking persons to rank the proteins instead of choosing the most often

purchased.24

Once the survey instrument was finalised, the survey company was employed to recruit

respondents and deploy the survey online. There was no pilot testing of the current

instrument however, the administration of the survey in October 2019 included a soft

launch, that is, the survey was launched and a fraction of the data was collected (30

responses) then the survey was paused for analysis. As no problems were found with

the data from the soft launch, the data collection resumed until the full sample was

collected. This resulted in 523 respondents, all of whom are U.K. residents aged 25 −
50.25

The survey consists of three distinct sections, the demographic information, the choice

experiment, and the knowledge section. These sections were not randomised for a few

reasons. Firstly, since there was an age criteria, the Demographic information was col-

lected first. Furthermore, the survey company indicated that research and experience

show that demographic questions enhance data quality when they are at the beginning

of the survey. Secondly, the method and research question required that the Choice Ex-

periment is done before the Knowledge Section to ensure validity of the responses from

choice experiment. The knowledge questions had information that could have influence

the choices made such as Question 137 “Which of the following is true about the use

of antibiotics in food production (such as poultry, beef, swine, fish and crop)?” with

responses like: “Antibiotics are used to enhance growth.” and “The same antibiotics

used in humans are also used in food production.” (see Appendix 3.A for the survey

instrument). This question could signal to the respondent that these responses are

true and therefore influence their willingness–to–pay. As such, it was important that

the Choice Experiment be done before the Knowledge section so that the respondent’s

current knowledge and preferences are what drive the choices made. Each of the survey

sections is discussed below.

24None of the changes made here required any updates to the ethics committee or further approval
being sought.

25I chose to restrict the age to 25 − 50 because I wanted the respondents to be persons who most
likely did their own shopping and I believe this age group best captures that population.
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3.3.1 Socio–demographic Statistics

Table 3.1 summarizes the descriptive statistics of the 523 UK residents who completed

the survey in October 2019. While the age group is restricted, the sample is otherwise

representative of the UK population. The age was restricted to 25 − 50 years old, as

such the average age of the respondents 37 years. Males constitute 46.3% of the sample

and the largest ethnic group, White constitutes 88.9%. More than 80% of the sample

reside in England with the regions South East and London having the highest number

of respondents while North East and Yorkshire and the Humber have the least. Only

45.7% of the sample has higher education as their highest level of education while the

remaining 54.5% has GCSE or A–Levels as the highest level of education.

3.3.2 The Choice Experiment

The choice experiment is best described as a sequential bid Contingent Valuation Ex-

periment with up to six rounds of bidding. Going forward, this will be referred to as

the Experiment. The experiment proceeds as follows. First, respondents rank three sets

of proteins—chicken, seafood, and legumes—by frequency of purchase (1 being most

purchased). This ranking is used to frame the experiment. For each respondent, the

experiment is run with two frames, the most commonly purchased protein (Frame 1 )

and the least commonly purchased protein (Frame 2 ). I use these two frames to test

whether willingness–to–pay varies both by protein of choice and by the frequency of

purchase. The frames are expected to provide some information about individual pref-

erences, as it may be the case that persons care more about antibiotic use in the foods

they consume the most but may be less concerned about its use in foods they consume

the least.

Each frame starts by presenting the subject with a hypothetical context in which the

choices are to be made, for example:

This section of the survey comprises questions exploring whether antibi-

otic use in poultry production affects the demand for chicken.

In this hypothetical situation there are two farmers producing chicken. The

first farmer uses antibiotics to treat and prevent diseases. The second farmer
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does not use antibiotics in chicken production, utilising organic methods in-

stead. Your local supermarket sells both types of chicken and labels the

second type Antibiotic free. Both types of chicken are safe for consumption.

For each of the following questions, please carefully consider each option

and indicate your choice. Even though this is a hypothetical situation, it is

important that you make your selections as you would if you were facing

these choices in your retail purchase decisions. Therefore, allocating funds

to the purchase of any of these products means there will be less money

available for other goods. Please note that the objective of this research is

to learn about decision making, it is not meant to persuade your decisions

in any way.

For each frame, the respondent is presented with up to six choice Scenarios. Each

choice scenario consists of 2 options of the good: a regular option, a good not specifi-

cally labelled as antibiotic–free (Option 1 ), and the antibiotic–free option (Option 2 ).

Options are described by price, special label, and the use of antibiotics (see Table 3.2

for further information and Table 3.3 for the initial scenario in the chickpeas frame).

Scenarios within a frame differ only in variation of the relative price between Option

1 and Option 2. The price is varied in such a way that a price threshold can be es-

tablished where the respondent changes their choice from the no–label option to the

antibiotic–free option (or vice versa).

The initial scenario within a frame is the same for all respondents. The subsequent

scenarios depend on the option each respondent chooses. If Option 1 is chosen in

the initial scenario, then subsequent scenario has a lower relative price as the price of

Option 1 increases while Option 2’s price is unchanged. The Frame ends whenever

the respondent chooses Option 3.26 Figure 3.B.1 presents the experiment Frame for a

respondent who never chooses Option 3 in the first 5 scenarios.

The price for Option 1 in the initial scenario is based on the actual price of the corre-

sponding product during February 2018. Using mySupermarket, I collected the price

26In the survey design, whenever a respondent chooses Option 3 they receive a final choice scenario
(except the case where Option 3 is chosen in the sixth scenario). The final choice scenario is designed
to keep the relative price constant at the previous level. Given that the focus here is on the relative
price, this final choice scenario does not add any new information and therefore is not used in this
paper. If the nominal prices were used to inform the willingness to pay then this final choice scenario
would be relevant.
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for the products selected from major supermarkets over a one month period.27 For ease

of comparison, only the supermarkets that sold the product of the same weight were

included in the comparison. The median price at the end of the month was used as

the initial price for Option 1. The initial price of the antibiotic–free product was set

20% − 65% higher than the regular good, depending on the product. Each additional

price level was 20% − 25% higher than the previous price to provide a unique relative

price for each question. The highest price for each option is a 100% increase of the

initial price.

The data from the ranking of the proteins at the beginning of the choice experiment

shows that chicken is the most common purchase among the respondents while chickpeas

is the least common (see Table 3.4). In Frame 1, approximately 76% of the respondents

identified chicken as the most frequent purchase, while only 18% indicated it as their

least frequent purchase. Of the proteins least purchased (Frame 2), chickpeas is the

most common as it is selected by 47% of the respondents. The chicken frame therefore

has the largest number of respondents in Frame 1 and the chickpeas frame in Frame 2.

3.3.3 Calculating Willingness–to–Pay

I define each respondent’s willingness–to–pay (WTPi) for the antibiotic–free option

as the maximum relative price (RP ) for which they select Option 2 in each frame.

Relative price is calculated as the ratio of the Option 2 price to Option 1 price for a

given scenario. With an infinite number of scenarios in continuous increments of RP ,

the calculation of willingness–to–pay would be straightforward. However, there are no

more than six scenarios, in discrete increments, from which we can gather information.

For this reason I consider my calculations to provide bounds on the true willingness-

to-pay. Here I explain the bounds in three cases, upper, lower, and interior bounds.

1. An upper bound is calculated in cases where the respondent never selects Option

2. This suggests that valuation of the antibiotic–free option lies below the lowest

relative price the respondent faced, RPmin. Since no lower bound is observed, I

set the lower bound equal to 0. In this case, for respondent i, WTPi = [0, RPmin)

27mySupermarket was an independent shopping and comparison shopping website for groceries in
the UK which provided price information for all major supermarkets in the UK. The data covered 4
supermarkets due to the restriction that the only the supermarkets that sold the product of the same
weight were included in the comparison. The website closed on March 1, 2020.
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2. A lower bound is calculated when the respondent only chooses Option 2 or chooses

Option 2 at the highest relative price in the Frame. In this case the respondent’s

valuation of the antibiotic–free good is at least the highest relative price they

faced, RPmax. Therefore for respondent i, WTPi = [RPmax,∞).

3. Interior bounds are calculated for the cases where the respondent switches from

Option 2 at least once. The lower bound is defined as the highest observed relative

price at which Option 2 is chosen (RPk−1). The upper bound (= RPk) is the next

highest relative price at which the respondent indicated an unwillingness–to–pay

for Option 2. In this case for respondent i, WTPi = [RPk−1, RPk), where

RPmin < RPk−1 < RPk ≤ RPmax.
28

For the analysis I will be using OLS estimation which requires a point estimate for

WTPi, as such I need to replace the unobservable bounds with a measurable value.

As indicated before, in the case where the respondent never chooses Option 2, I set

the lower bound equal to 0. For the case where only Option 2 is chosen I consider

two alternatives: (1) setting WTPi equal to the lower bound, and (2) using the relative

price from a hypothetical 7th choice scenario as the upper bound. By setting, the WTPi

equal to the lower bound, the assumption is that the highest relative price in the frame

(RPmax) is the respondent’s willingness–to–pay for the antibiotic–free option. While

this is a feasible assumption, some respondents may have a higher valuation. As such, I

created a hypothetical 7th choice scenario for the individuals who only choose Option 2.

The new choice scenario consists of the initial price Option 1 and the price for Option 2

increasing the corresponding base price for the antibiotic–good by 120%.29 The relative

price from this choice scenario is used as the upper bound. There is a special case where

there is no upper bound but the respondent chooses Option 1 as well. In this case, the

upper bound RPk, is selected from the other relative prices in the frame.

The observed willingness–to–pay falls into 3 data categories: left–censored (no lower

bound is observed); right–censored (no upper bound is observed); and interval censored

(see Table 3.5). Majority of the willingness–to–pay observations is interval data in

both frames. For Frame 2 a larger number of the observations are left–censored which

suggests that the respondents are less likely to select Option 2 for the protein they

28Notice that the upper bound is never truly observed in this case, I can only conclude that the
upper bound is less than the observed maximum.

29This is consistent with each additional price level being 20%− 25% higher than the previous price
to provide a unique RP s.
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consume the least (see Table 3.5 for more information and Table 3.C.1 for a breakdown

by protein).

One of the key indicators of the reliability of willingness–to–pay data is the bounds

(the number of bids or questions used to elicit willingness–to–pay) in a Contingent

Valuation experiment. In this case the bounds refer to the number of relative prices

used in the calculation of willingness–to–pay. Generally, the higher the number of

bounds the more precise the estimated willingness–to–pay.30 In Table 3.6, I present the

number of bounds used in calculating the willingness–to–pay (for the number of bounds

by protein see Table 3.C.2). Over 90% of the estimates are at least double–bounded

(2 RP s are used to estimate WTPi) in Frame 1 and approximately 80% in Frame 2.

Of this, majority of the willingness–to–pay estimates results from all 6 relative prices

being used (approximately 69% in Frame 1 and 60% in Frame 2).

Table 3.7 depicts a summary of the willingness–to–pay estimates using the interval

midpoint as a proxy for the true willingness–to–pay. The estimates in Frame 1 are

extremely close. On average using only the observed values, respondents are willing to

pay 57% more for the antibiotic–free option compared to the regular option. When a

lower bound of 0 is imposed and using the lower bound as the WTPi estimate when

only Option 2 is chosen, the average the willingness–to–pay for antibiotic–free product

remains the same. Finally using a 7th choice scenario results in a slight increase in the

willingness–to–pay to 58% above the price of the regular product.

In Frame 2, using only the observed relative prices, on average respondents are willing to

pay 52% more than the price of the regular product for antibiotic–free product. Making

assumptions for the unobserved bounds reduces the willingness–to–pay in this frame.

The average willingness–to–pay decreases to 47% more than the price of the regular

product when a lower bound of 0 is imposed and WTPi is equal to the lower bound

(WTPi = LB) when only Option 2 is chosen. When the upper bound is increased using

a 7th choice scenario, the average willingness–to–pay for antibiotic–free good becomes

49% more than the price of the regular option. Overall, respondents are willing to pay

more for Option 2 for the protein they purchase most frequently. Notice that on average,

the estimated willingness–to–pay is similar to the observed values. This suggests that

the methods employed to deal with unobserved bounds are consistent with the observed

30There are discussions in the literature regarding bounds and the efficiency of higher order bounding,
this is not addressed here. See Hanemann et al. (1991); Scarpa and Bateman (2000); Alberini (1995)
for a discussion on this topic.
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data.

The willingness–to–pay summary statistics is presented by product in Table 3.C.3. An-

tibiotic–free chicken and chickpeas have a higher willingness–to–pay than antibiotic–free

sea bass. This could be due to the fact that the nominal price for sea bass is much

higher than the price of the other two proteins, or that people are more worried about

antibiotics use in chicken than in sea bass.

3.3.4 Knowledge

Knowledge is measured directly through six questions in the survey based on antibiotic

use, antibiotic resistance and the use of antibiotics in food production, and indirectly

through the respondent’s area(s) of work. The survey tests whether the respondent

has heard of antibiotic resistance and other related terms such as drug resistance and

superbugs; whether the respondent knows that antibiotics are only effective against

bacterial infection; and knows the use of antibiotics in food production. The questions

were drawn from the WHO resources on antimicrobial resistance including a multi-

country awareness survey, quizzes, and other topical information, and questions relating

to antibiotic use is agriculture were developed from the UK review on antimicrobial

resistance.31

Each respondent receives a score for the number of correct answers selected in each

question, which is then summed to provide the knowledge index, however the overall

score presented here ranges from 0 to 1.32 The survey asks respondents to report if they

work in Farming, Food production, and/ or Health care. Only 94 respondents (roughly

18%) worked in at least 1 of these areas. These areas were chosen because they provide

a level of exposure to issues related to antibiotic use and resistance.

31The sources are: The WHO Antibiotic Resistance: Multi-Country Public Awareness Survey https:
//www.who.int/news/item/16-11-2015-who-multi-country-survey-reveals-widespread-public-mi
sunderstanding-about-antibiotic-resistance, WHO Quiz: How much do you know about antibiotic
resistance? (this has been removed from the website); the Antimicrobial and Antibiotic Resistance from
the WHO health Topics pages https://www.who.int/health-topics/antimicrobial-resistance; and the
UK’s review on antimicrobial resistance report: Antimicrobials in Agriculture and the Environment:
Reducing Unnecessary use and Waste https://amr-review.org/Publications.html

32For the six questions, the maximum scores are as follows: (1) 1 for Knows the impact of antibiotic
resistance; Knows antibiotics treat bacterial infections; and Knows illnesses treated by antibiotics; (2)
2 for Knows common antibiotics; (3) 4 for Knows the use of antibiotics in food production; and 5 for
Heard of antibiotic resistance or any related terms. Therefore the knowledge index has a maximum
score of 15.
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Table 3.8 presents a summary of the respondents’ knowledge level and gives a breakdown

by field of work. In Panel (A) I depict the percentage of the population having at

least some level of knowledge for each area (identifying at least 1 correct answer for

each question where applicable), as well as the percentage identifying all the correct

answers. Panel (B) contains the average score across the sample for each question and

the average knowledge index. Majority of the respondents (87.5%) heard of antibiotic

resistance or one of the related terms. One of the key knowledge variables is the use of

antibiotics in food production. Of the sample, 80% knows at least one use of antibiotics

in food production, however, only 1.3% could identify all the uses (Table 3.8 Panel A).

As such, the respondents scored 27% on average for this question.

In terms of the average score, overall, knowledge levels are below average (respondents

receive below 50%) in all areas except the respondents knowledge about antibiotics

treating bacterial infection (see Table 3.8 Panel B). Knowledge by work fields gives a

different picture. Knowledge is below average in all areas for respondents working in

Farming and Food production (this relationship holds even when I control for individual

characteristics such as education). This goes against the expectation that these respon-

dents would know the use of antibiotics in food production. Respondents working in

the Health care sector, show above average knowledge in one area, identifying some

illnesses that can be treated with antibiotics. Overall the knowledge index is slightly

higher for respondents who work in the healthcare sector compared to the other sectors.

3.4 Econometric Model

I assume that each respondent’s willingness–to–pay for the antibiotic free good is de-

termined by:

WTP ∗i = x
′

iβ + εi (3.4.1)

where E(εi | xi) = 0;V ar(εi | xi) = σ2,

WTP ∗i is the unobserved willingness–to–pay for individual i, for which only the interval

bounds containing it is observed using the responses given in the Experiment. As
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such the intervals are completely exogenously determined. xi is a vector of individual

characteristics, β is a vector of coefficients to be estimated, and εi is the error term

which is assumed to have zero conditional mean. For simplicity I also assume constant

variance, V ar(εi | xi) = σ2, and in practice I use robust standard errors.

I assume that each respondent has a single willingness–to–pay value, and that the

responses to the initial and follow–up questions are driven by this single value. I

estimate Equation 3.4.1 using two methods: maximum likelihood estimation (MLE)

using Interval Regression, and OLS estimation. The rationale for using each of these

methods as well as the assumptions made in each are discussed below.

Interval Regression

Interval regression is apt to estimate Equation 3.4.1 as it can fit models for data where

each observation is either censored, as is the case in this paper (see Table 3.5), or is a

point estimate (see Colombo et al., 2009).33 The single WTP value assumption makes

the interval regression more appropriate than other bivariate binary response models

such as probit.34 Other advantages of using interval regression is that the estimates are

easily interpreted compared to tobit or probit estimates and perhaps most importantly,

there is no need to make any assumption about the unobserved bounds for the WTP

unlike the OLS case.

I assume normality of the error term, εi ∼ N (0, σ2) , to get consistent β estimates for

Equation 3.4.1. The conditional distribution of the unobserved willingness–to–pay is

therefore WTP ∗i | xi ∼ N (xiβ, σ
2) , where σ2 = V ar(yi | xi) is assumed independent

of xi (see Wooldridge, 2010). Using the observed data on willingness–to–pay in Section

3.3.3, all the possible realizations of WTP ∗i were divided in K intervals in each frame.

The intervals were designed using the relative prices from each choice scenario with the

33Generally, when the data is censored a näıve estimation using OLS would provide inconsistent
results (Davidson et al., 1993; Long, 1997). There are two options for estimation: the tobit regression
or the interval regression. However, the tobit model can only fit data where the dependent variable
is either left–censored, right–censored or both, but not interval censored. Interval regression is a
generalisation of the tobit model.

34The estimates from interval regression has been found robust even if this assumption is incorrect
(see Cameron and Quiggin, 1994; Alberini, 1995, for a detailed discussion).
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boundaries being RPk, k = 0, 1, ..., K. WTPi = k is observed if

RPk−1 ≤ WTP ∗i < RPk

and probability that WTP ∗i falls into the kth interval is

P (WTPi = k | xi) = P (RPk−1 ≤ WTP ∗i < RPk | xi)

= P (RPk−1 − xiβ ≤ εi < RPk − xiβ)

= Φ

(
RPk − xiβ

σ

)
− Φ

(
RPk−1 − xiβ

σ

)
where Φ denotes the standard normal distribution function.

The probability that WTP ∗i is left censored, that is falls in the 1st interval, is:

P (WTPi = 1 | xi) = P (WTP ∗i < RP1 | xi)

= P (WTP ∗i − xiβ < RP1 − xiβ)

= Φ

(
RP1 − xiβ

σ

)

For right censored observations, the probability that WTP ∗i falls in the Kth interval is:

P (WTPi = K | xi) = P (RPK−1 ≤ WTP ∗i | xi)

= P (RPK−1 − xiβ ≤ WTP ∗i − xiβ)

= 1− Φ

(
RPK−1 − xiβ

σ

)
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The log likelihood function is:

L(β;σ) =
n∑
i=1

∑
k

{
1(RPk−1 ≤ WTP ∗i < RPk) log

[
Φ

(
RPk − xiβ

σ

)
− Φ

(
RPk−1 − xiβ

σ

)]
+

(3.4.2)

1(WTP ∗i < RP1) log Φ

(
RP1 − xiβ

σ

)
+ 1(RPK−1 ≤ WTP ∗i ) log

[
1− Φ

(
RPk−1 − xiβ

σ

)]}

where 1(·) is an indicator function which is equal to 1 where the argument in brackets

is true and 0 otherwise. Maximum likelihood estimates for β and σ are found by

maximizing Equation 3.4.2 using interval regression with robust standard errors.

Using this method, I estimate the effect of knowledge on willingness–to–pay for indi-

vidual i in each frame with the following equation:

WTP ∗i = β0 + β1Knowledgei + x̃
′

iγ + εi (3.4.3)

where (εi | Knowledgei, x̃i) ∼ N (0, σ2)

and Knowledgei, the variable of interest, is the knowledge index for individual i calcu-

lated as the sum of the correct answers given in the Perceptions on Antibiotic Resistance

section of the survey (see Section 3.3.4) which is then standardized. I also control for

other individual characteristics in x̃i including age, highest level of education, ethnicity,

household income, and protein choice. In order to identify β1, Knowlegei and the other

controls x̃i, are assumed to be uncorrelated with the error term εi.

Additionally, I perform the estimation in Equation 3.4.3 controlling for the respondent’s

field of work using a binary variableWorki which is 1 if the respondent works in farming,

food production and/ or health care.

Linear Regression

If each respondent’s true willingness–to–pay was observable then OLS could be used

to estimate Equation 3.4.1. However, given that it is unobserved, in order to estimate
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Equation 3.4.1 using OLS I assume WTP ∗i is equal to the midpoint of the interval

[RPk−1, RPk]. I recognize that using the midpoints may produce biased estimates how-

ever, since the intervals used in this paper are sufficiently fine/ small this minimizes the

potential bias (see Cameron, 1987; Cameron and Huppert, 1989).35 The main advan-

tage of using OLS is there is no need to make a functional assumption about the error

term. To address observations in the tails, I assume that the unobserved lower bound

is 0 and define the upper bound using the relative prices in the Frame or a hypothetical

7th choice scenario as described in Section 3.3.3.36

Using these adjustments I estimate the effect of knowledge on willingness–to–pay for

the antibiotic–free good as follows:

WTPi = β0 + β1Knowledgei + x̃
′

iγ + υi (3.4.4)

where υi = εi + (WTP ∗i −WTPi),

and WTPi is individual i′s willingness–to–pay in each Frame calculated as the midpoint

of the interval containing WTP ∗i . The error term υi captures the true error term

εi and the measurement error which results from using the midpoint as a proxy for

WTP ∗i . Identification of β1 now requires two error assumptions. First, as in the interval

regression case, Knowledgei is assumed to be uncorrelated with the true error term εi.

Second, I assume that the Knowledge is also uncorrelated with the error introduced

by using the midpoint as a proxy for the unobserved willingness to pay (WTP ∗i −
WTPi). The same assumptions are made for the other regressors x̃i. As with the

interval regression, I also estimate the marginal effect of Knowledgei controlling for

the individual’s field of work.

The direction of the effect of Knowledge on willingness–to–pay depends on the be-

35There is no standard definition in the literature for what ‘sufficiently fine/small’ means. However,
Cameron (1987) and Cameron and Huppert (1989) included intervals that were classified as fine, these
intervals are: 0− 5, 5− 10 etc in Cameron and Huppert (1989) and < 3000, 3000− 3999, 4000− 4999
etc in Cameron (1987). The intervals used in this paper are much smaller, using Figure 3.B.1 these
are as small as 1.70− 1.71 and the bigger intervals are 1.47− 1.83 and 2.64− 2.93, therefore I can say
that the intervals used here are sufficiently fine/small.

36The assumptions made about the respondent’s true WTP is the main disadvantage of using this
method. For interval censored data, assuming the WTP is equal to the midpoint may provide biased
estimates as the true WTP may fall in the tails, however, given that the intervals used in my work is
fine this potential bias is significantly reduced.
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haviour of the respondents who are less knowledgeable. A positive β1 indicates that the

less knowledgeable respondents have a lower valuation of antibiotic–free goods as they

are unaware of the threat of antibiotic resistance. It is also possible that respondents

who are less knowledgeable perceive antibiotic resistance as a much bigger problem than

it is and therefore have a higher WTPi. Respondents who work in Health care, Farm-

ing and/ or Food production are expected to be more exposed to information about

antibiotics and resistance than those who work in other fields. Therefore the inclusion

of Work in the regression could also yield a positive or negative coefficient. It may be

the case that these respondents know that the problem is not a large one and therefore

have a lower WTPi using similar arguments.

3.5 Results

In Table 3.9, I present the results for the effect of individual characteristics on willing-

ness–to–pay. Willingness–to–pay is defined as the price of the antibiotic free option over

the price of the regular option (the incremental value for the antibiotic free good). My

preferred estimation method is the MLE using interval regression. The results for OLS

are very similar as such I will discuss the interval regression estimates throughout as it

is the preferred method for fitting censored data (see section 3.4 for more information).

The estimates show that knowledge has a positive effect on willingness–to–pay in both

frames however the effect is only significant for Frame 1. In Frame 1, using the base

specification presented in Column 1, the results indicate that a one standard deviation

increase in Knowledge increases the WTP for the antibiotic free good by £0.080. In

Column 3, I estimate the effect of Knowledge with the added control Work. Work is

a binary variable which takes a value of 1 for respondents working in: farming, food

production and/or health care. In this specification we see a small increase in the effect

of Knowledge. This indicates that when we account for the effect of work fields, the

willingness to pay for the antibiotic free option increases by £0.085 for each standard

deviation increase in Knowledge. As it relates to the sectors identified, the incremental

value for the antibiotic free option is 0.334 higher for the respondents working in those

fields compared to all other fields.

For Frame 2, Knowledge is non–significant in both specifications and the effect is smaller

than in Frame 1. Using the base specification, a one standard deviation increase in
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Knowledge increases the WTP for antibiotic free good by £0.051. When Work is

included, the estimate for Knowledge increases to £0.056. The effect of Work is damp-

ened compared to Frame 1. Respondents who work in farming, food production and/or

health care are willing to pay 0.188 more than those who work in neither of those fields.

This result of a positive effect of knowledge is consistent with the literature on organic

products. Dı́az et al. (2012) found that the maximum willingness–to–pay for organic

tomatoes was slightly higher among informed consumers. Owusu and Owusu Anifori

(2013) report that consumer awareness of chemical residues in conventional food prod-

ucts has a significant positive effect on their willingness–to–pay premiums for organic

lettuce and watermelon compared to conventional watermelon and lettuce.

The results in Table 3.9 indicate that women have a higher willingness–to–pay than

men in all specifications for both frames, but the effect is only significant for Frame

1. In Frame 1 using the base specification, I find that the willingness–to–pay for the

antibiotic–free good for men is 0.204 less than women (Column 1). When I include the

added control for field of work, I find that men are willing to pay 0.219 less than women

for the antibiotic free good (Column 3). Other studies have also shown that women

are more willing to pay higher premiums for safe foods (Owusu and Owusu Anifori,

2013; Williams and Hammitt, 2001). Some studies have found that women have a

higher risk perception than men for food safety hazards and are more concerned with

health, nourishment, and the environment (Williams and Hammitt, 2001; Ureña et al.,

2008). Furthermore, being the primary grocery shoppers in most households, women

would have more knowledge about food safety and various farming practices.37 On the

contrary, Haghiri et al. (2009) and Wandel and Bugge (1997) found that men have a

higher willingness to pay.

I also find a significant effect of education on willingness–to–pay in both frames. Specif-

ically, respondents with higher education have a higher willingness–to–pay than those

with lower levels of education. Of the education variables included, only A levels is

significant in Frame 1. The estimates show that respondents with A levels are willing

to pay an increment of 0.220 less than those with higher education, using the base spec-

ification (Column 1). The willingness–to–pay for the antibiotic free good is 0.211 less

for respondents with A levels compared to those with higher education, when I add the

37Bonti-Ankomah and Yiridoe (2006), Williams and Hammitt (2001), and Dı́az et al. (2012) have
indicated that women are the primary grocery shoppers either directly or by sampling only primary
grocery shoppers and the sample contains a higher proportion of women than men.
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control for work areas (Column 3). In Frame 2, A levels is non–significant but GCSE

becomes significant in both specifications. The willingness to pay for GCSE holders is

0.224 and 0.174 lower than those with higher education, in the base specification and

the specification with work areas included as a control.

This education effect is also present in the literature. Studies such as Owusu and

Owusu Anifori (2013) and Magnusson and Cranfield (2005), have found that higher

educated customers are more likely to purchase foods produced in an environmentally

sound manner such as organic food, and pay more for these products. The argument

being that higher educated consumers tend to understand issues regarding consump-

tion of chemically free food better than other consumers (Haghiri et al., 2009). This

argument easily extends to the issue of antibiotic use in food production.

In terms of the specific proteins used in the experiment, I find that the willingness–to–pay

for chicken is higher than both fish and chickpeas. However, only the fish framing has

a significant effect on willingness–to–pay in both frames. Respondents are willing to

pay an increment of 0.395 less for antibiotic–free fish than antibiotic–free chicken. This

incremental value increases to 0.429 less than the price for antibiotic free chicken when

I control for work areas. In Frame 2, the willingness to pay for antibiotic–free fish is

0.687 and 0.683 lower than antibiotic–free chicken, for the base specification and the

addition of Work, respectively. It is not surprising that there is product differentiation

in willingness to pay as Rodriguez et al. (2008) and Magnusson and Cranfield (2005)

also find that willingness–to–pay varies by product.

There is no significant effect of age, ethnicity, or household income on WTP in any of

the specifications for both frames. This is not an anomaly as other studies have also

found no significant effect of age and that the household income effect on WTP is small

and/ or not statistically significant (see Goldman and Clancy, 1991; Buzby and Skees,

1994; Darby et al., 2008).

Overall, the estimates of both regression methods are close which suggests that the

midpoint technique used for OLS is close to the true WTP ∗i . My preferred specifica-

tion for explaining the effect of Knowledge on the respondent’s true willingness to pay,

WTP ∗i is presented Columns 3 and 7 of Table 3.9. This specification includes work ar-

eas as added controls as these provide an insight into the issues surrounding antibiotic

use and resistance, and into food safety and production. These issues influence will-

ingness–to–pay, therefore it is important to include in the regression analysis. Given
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that Work is also correlated with Knowledge, including Work could introduce multi-

collinearity. However, we can rule that out since the standard error for the knowledge

coefficient did not change between the two specifications.

To summarize, my main result is that knowledge has a positive effect on willing-

ness–to–pay, which is significant for Frame 1. Using the preferred specification, for

Frame 1, the willingness–to–pay for the antibiotic–free good increases by £0.085 for

each standard deviation increase in Knowledge. For Frame 2, the increase in willing-

ness–to–pay for the antibiotic–free good in response to a one standard deviation increase

in Knowledge is £0.056, however Knowledge is not a significant determining factor for

changes in willingness–to–pay. As mentioned before, this positive effect is consistent

with the literature which explores knowledge/ consumer awareness on organic products.

3.6 Robustness Checks

To test the robustness of the interval regression estimates in the main results (Table

3.9), I report several estimates in Table 3.10 and Table 3.11 corresponding to changes

in the preferred specification.

In Column 1 of Tables 3.10 and 3.11, I present the preferred specification. I redefine

household income using dummy variables for each household income group in Column

2. I replace the work dummy variable with dummies for each work area in Column 3.

The knowledge variable is redefined in Columns 4− 7 using various dummy variables,

key knowledge variables and a principal component analysis index.

Starting with Frame 1, Knowledge remains significant though slightly lower when the

household income groups: below 10, 000, £10, 001−£20, 000, £20, 001−£30, 000 are

included, and over £40, 000 is excluded (Column 2). When work areas are included

(Column 3), Knowledge remains significant but reduces slightly compared to the pre-

ferred specification (Column 1). Of the work areas included, only Health care is signifi-

cant, those who work in the health care sector are willing to pay 0.360 more than those

who do not, to avoid the use of antibiotics in the food they consume.

In Column 4 two knowledge dummy variables are included, below average knowledge (

=1 if knowledge is < 50%), and average knowledge (=1 if 50% ≤ knowledge < 70%),
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while above average knowledge (=1 if knowledge> 70%) is excluded. Only below av-

erage knowledge is significant. Respondents with below average knowledge are willing

to pay 0.238 less than those with above average knowledge for antibiotic–free food. I

use Knowledgeable, a dummy variable which is 1 if the respondent has at least aver-

age level knowledge (Knowledge ≥ 50%) in Column 5. In this specification knowledge

is not significant in explaining variations in willingness to pay. The result from us-

ing these knowledge binary variables is consistent with the positive effect found in the

main results, and shows that the higher the level of knowledge the higher the willing-

ness–to–pay.

Column 6 includes the use of the key knowledge variables. These are: (1) knows the

impact of antibiotic resistance, (2) knows that antibiotics treat bacterial infections, (3)

knows how antibiotics are used in food production. The variables knows the implication

of antibiotic resistance and knows antibiotic use in food production are higher for the

respondents who know compared to those who do not. Only knows antibiotic use in

food production has a significant effect on willingness–to–pay. The respondents who

know how antibiotics are used in food production are willing to pay 0.397 more than

those who do not to avoid antibiotics use in the food they consume. Interestingly, the

respondents who knows antibiotics treat bacterial infection are willing to pay less than

those who do not know this.

In Column 7, a standardized knowledge index is created using a Principal Component

Analysis (PCA) of all the knowledge variables. This index reports the most important

knowledge variable for each individual.38 The Knowledge PCA index also has significant

effect on willingness to pay though slightly smaller than the preferred specification. In

this specification, a one standard deviation increase in Knowledge, using the PCA index

increases willingness–to–pay for the antibiotic–free good by £0.084.

For Frame 2, the effect of Knowledge remains unchanged when the household income

groups are included individually (Column 2). In Column 3, using the work areas in

the regression slightly increases the effect of Knowledge compared to the preferred

specification (Column 1) though it remains non–significant. In Frame 2, Farming &

Food production now has a significant effect on willingness–to–pay. Respondents who

work in the Farming and or Food Production are willing to pay 0.482 more than those

who work in other fields, to avoid the use of antibiotics in the food they consume.

38The index was created using a Principal Component Analysis method developed by Anderson
(2008).
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Using Average and Below average knowledge dummies (Column 4) while non–significant,

the direction of the effect is as expected. Respondents with average and below aver-

age knowledge are willing to pay less than those with above average knowledge to

avoid antibiotics use in their food. When Knowledgeable, is included (Column 5), the

effect of knowledge is stronger than the preferred specification, however it remains

non–significant in explaining variations in willingness to pay. The effect of the binary

variables is similar to that of Frame 1.

In Column 6, key antibiotic knowledge variables are included the results are similar to

Frame 1. As in Frame 1 the variable knows antibiotic use in food production has a sig-

nificant effect on willingness–to–pay. The willingness to pay for respondents who know

how antibiotics are used in food production is 0.396 higher than the other respondents.

Column 7 presents the results using the Knowledge PCA index, this specification gives

a much smaller estimate than the preferred specification.

In addition to the tests done for interval regression, I also test the robustness of the

OLS results to changes in the calculation of the willingness–to–pay when the upper

bound is unobserved (only Option 2 is chosen). The robustness checks for the OLS

estimates are presented in Appendix 3.D. In the preferred specification, I use the relative

price from hypothetical 7th choice scenario as the upper bound when only Option 2 is

chosen. In Column 2, I use the other option for dealing with unobserved upper bounds,

setting WTPi equal to the lower bound (see Section 3.3.3). The results indicate only

a slight decrease in the effect of knowledge in both Frames compared to the preferred

specification in Column 1 (see Table 3.D.1 and 3.D.2). Therefore the chosen method

to estimate the willingness–to–pay in the presence of unobserved upper bounds does

not distort the effect of knowledge on willingness–to–pay. The other robustness checks

give similar results as in the interval regression case. The only exception being that

Knowledge becomes significant in Frame 2 when the work areas are included in the

regression (Table 3.D.2, Column 4). For the product least purchased, each standard

deviation increase in knowledge increases the willingness–to–pay for the antibiotic–free

product by 0.064.

Overall the results are largely unchanged using these alternative specifications. However

since the alternative specifications mostly involved including more variables, given the

sample size, this suggests that the estimation of the key effect with less power.
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3.7 Summary and Concluding Remarks

This paper investigates the effect of knowledge of antibiotic use and resistance on will-

ingness to pay for antibiotic free goods. I designed a survey for the study which was

disseminated to 523 respondents. Using the survey, I tested the respondents’ knowledge

levels and conducted a choice experiment using the sequential bid contingent valuation

method to estimate willingness to pay. On average, only approximately 34% of the

respondents were able to correctly identify the potential impact of antibiotic resistance.

The average scores across the knowledge variables are below 50% in almost all areas,

including the respondents knowledge of the use of antibiotics in food production. This

level is below average for all the work areas specified, however the respondents in the

health care sector were slightly more knowledgeable about this issue. This highlights

the fact that the issues relating to antibiotic resistance is still largely misunderstood. I

find that on average, willingness–to–pay for the antibiotic free product is over 50% more

than the price of regular good. A one standard deviation increase in knowledge leads

to 0.085 and 0.056 increase in the willingness–to–pay for the protein most purchased

and the protein least purchased. This result is fairly robust to changes in the preferred

specification.

One of the limitations of this paper is that the sample size is small which may mean

that the power of the estimates is low. Generally, a larger sample size would increase

the power of the test and provide stronger evidence for whether or not the relationships

estimated exist. Another limitation is the measurement of the knowledge index. While

I maintain that this overall measure of knowledge provides a good understanding of the

respondent’s knowledge about antibiotic consumption and resistance, there are other

ways the questions could have been weighted, which may have provided a more accurate

description of knowledge. For example, low levels of knowledge could be redefined to

mean that the respondent has at most heard of one antibiotic resistance related term,

or has selected at least one correct answer for each of the knowledge questions. Another

option could be to weight the three key knowledge variables included in the robustness

checks more than the other three variables. This is due to the fact that being aware of

a term does not mean the respondent knows what the term means or its implications.

One limitation of the survey instrument is that the choice experiment does not collect

any information about the maximum willingness for respondents. As such the max-

imum willingness to pay was estimated making some assumptions. While this was
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not a significant issue as only approximately 13% of the sample was right–censored,

including an open ended question to collect this data would provide more accurate will-

ingness–to–pay data. A minimum WTP question was not included either but this is

trivial as the minimum can be assumed to be 0.

Two main policy implications arise from this study: first there is room for improving

public awareness campaigns regarding antibiotic resistance. The low levels of public

awareness regarding antibiotic resistance needs to be addressed. Public awareness cam-

paigns may need to be more tailored to addressing the general audience. Second, there

is evidence that individuals are concerned about the food they consume. The willing-

ness–to–pay is over 50% higher than the price of the regular good even for the protein

identified as the least purchased. This suggests that while knowledge about antibiotics

use in food production is low the respondents would still prefer food produced without

antibiotics. This may be of interest to agriculture companies or food safety regulators.

This paper serves as evidence that there is a link between consumer knowledge and

willingness to pay for antibiotic–free goods. There are two directions that future work

on this topic could take. The first route involves utilizing the current dataset. I plan

to explore other ways to measure knowledge using the current data, including: using

different weights for each question, and measuring different levels of knowledge as dis-

cussed above. Additionally, in a future study I will explore the relationship between

respondents attitudes towards issues relating to antibiotics and resistance and their

willingness–to–pay for antibiotic free goods.

The second route is to rerun the survey which would require further funding. A natural

extension of this paper is to replicate it with a larger sample to improve the power of

the estimates. I plan to use this study as a concept paper as the findings regarding

willingness–to–pay for antibiotic free food are relevant for agricultural and food safety

groups, and to some extent public health authorities. The survey could be redesigned to

provide data on the possible pricing for future antibiotic–free products, whether people

are interested in such products, and the concerns people have with antibiotic resistance

and/or its use in the food they consume.
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Tables

Table 3.1: Survey Participants Summary Statistics

Variable Mean Std. Dev.
Age 37.201 7.401
Male 0.463 0.499
Higher Education 0.457 0.499
Household Income

below £10,000 0.08 0.272
£10, 001 - £20, 000 0.17 0.376
£20, 001 - £30, 000 0.226 0.418
£30, 001 - £40, 000 0.226 0.418
above £40, 000 0.298 0.458

White 0.889 0.314
Country
England 0.843 0.364

North East 0.04 0.197
North West 0.115 0.319
Yorkshire and the Humber 0.08 0.272
East Midlands 0.067 0.25
West Midlands 0.092 0.289
East of England 0.092 0.289
London 0.134 0.341
South East 0.145 0.353
South West 0.078 0.269

Wales 0.048 0.213
Scotland 0.082 0.275
Northern Ireland 0.027 0.161

N 523

This table shows the descriptive statistics of the 523 UK resi-
dents who completed the survey in October 2019.
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Table 3.2: Informational Attributes Used in the Choice Scenarios

Attributes Number of Levels Description
Price (Chicken) 17 Price expressed in £per 1kg

Price (Chickpeas) 16 Price expressed in £per 500g

Price (Sea bass) 17 Price expressed in £per 300g

Special Label 2 If special label (Antibiotic–free) is present,
organic methods were used in food produc-
tion instead of antibiotics

Antibiotic Use 2 If used, the use of antibiotics occur fre-
quently for disease treatment and preven-
tion

This table depicts the attributes used to describe each option of the good in presented in each choice
scenario.
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Table 3.3: Chickpeas Frame Initial Choice Scenario

Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options
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Table 3.4: Number of Respondents by Experiment Frame and Protein

Frame 1 Frame 2
N % N %

Chicken 385 76.31 95 18.16
Sea bass 55 10.52 181 34.61
Chickpeas 83 15.87 247 47.23
Total 523 100 523 100
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Table 3.5: Willingness–to–Pay Observations by Data Type and Experiment Frame

Data Type Frame 1 Frame 2
Left censored [0, RPmin) 86 139
Interval censored [RPk−1, RPk) 367 317
Right censored [RPmax,∞) 70 67
N 523

This table shows the willingness–to–pay observations by data type
and experiment frame. RPmin is the lowest relative price in each
Frame, while RPmax is the highest. RPk−1 is the highest observed
relative price at which Option 2 is chosen and RPk is the next
highest relative price at which the respondent indicated an unwill-
ingness–to–pay. I use 0 to represent the unobserved lower bounds
and ∞ for the unobserved upper bounds.
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Table 3.6: Number of Unique Relative Prices (Bounds) Used in Estimating Willing-
ness–to–Pay

Bounds Frame 1 Frame 2
1 42 103
2 23 34
3 40 33
4 28 25
5 28 16
6 362 312
N 523
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Table 3.7: Willingness–to–Pay Summary Statistics

Willingness–to–pay Mean Std. Dev. Min. Max. N

Frame 1
Observed Interval Data 1.572 0.554 0.774 2.793 367
Unobserved UB: WTPi = LB 1.567 0.763 0.307 3.286 523
Unobserved UB= RP from 7th CS 1.582 0.790 0.307 3.450 523

Frame 2
Observed Interval Data 1.518 0.539 0.865 3.121 317
Unobserved UB: WTPi = LB 1.470 0.816 0.307 3.286 523
Unobserved UB= RP from 7th CS 1.487 0.851 0.307 3.450 523

This table provides a summary of the willingness–to–pay estimates, by frame, using the interval midpoint as
a proxy for the true willingness–to–pay. I use 0 for unobserved lower bounds, that is the case where Option
2 is not chosen. For the case where only Option 2 is chosen I present two alternatives: (1)WTPi = LB:
setting the WTPi equal to the lower bound, and (2) UB= RP from 7th CS: using the relative price from a
hypothetical 7th choice scenario as the upper bound.
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Table 3.8: Knowledge Summary Statistics by Field of Work

Farming & Food Health Neither
Variable All production care Field

(A) % of N
Heard of antibiotic resistance or
any related terms

0.875 0.875 0.892 0.851

Heard of antibiotic resistance and
all related terms

0.057 0.000 0.015 0.068

Knows the impact of antibiotic
resistance

0.338 0.156 0.338 0.350

Knows antibiotics treat bacterial
infections

0.532 0.313 0.462 0.555

Knows at least one use of antibi-
otics in food production

0.803 0.844 0.862 0.793

Knows all the use of antibiotics
in food production

0.013 0.000 0.015 0.014

Knows illnesses treated by an-
tibiotics

0.478 0.125 0.523 0.494

Knows at least one common an-
tibiotic

0.700 0.406 0.723 0.716

Knows all the common antibi-
otics

0.199 0.125 0.200 0.205

(B) Average Scores
Heard of antibiotic resistance
and related terms

0.437 0.292 0.485 0.441

Knows the impact of antibiotic
resistance

0.338 0.156 0.338 0.350

Knows antibiotics treat bacterial
infections

0.532 0.313 0.462 0.555

Knows the use of antibiotics in
food production

0.271 0.242 0.300 0.269

Knows illnesses treated by an-
tibiotics

0.478 0.125 0.523 0.494

Knows common antibiotics 0.449 0.266 0.462 0.460
Knowledge index 0.397 0.256 0.424 0.403

Std. Dev. (0.206) (0.127) (0.203) (0.208)
N 523 32 65 429

This table shows the Knowledge summary statistics by field of work. Three of the respondents worked in
all three fields identified, as such the sample totals do not add up to 523. The variables relate directly to
the survey questions. In Panel (A) I present the percentage of the population who identifies at least one
correct answer/heard of at least one of the terms. In Panel (B) I present the average knowledge scores for
each question, the overall average knowledge score (knowledge index) and its standard deviation.

79



Table 3.9: Interval and OLS Regression Estimates

Frame 1 Frame 2
(1) (2) (3) (4) (5) (6) (7) (8)

Int. Reg OLS Int. Reg OLS Int. Reg OLS Int. Reg OLS
Knowledge 0.080** 0.080** 0.085** 0.085** 0.051 0.052 0.056 0.055

(0.040) (0.035) (0.040) (0.035) (0.045) (0.037) (0.045) (0.037)
Work 0.334*** 0.272*** 0.188 0.141

(0.109) (0.092) (0.123) (0.101)
Age 0.003 0.001 0.004 0.002 0.010 0.008 0.010 0.008

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.005)
Education (Higher education excluded)

GCSE -0.093 -0.066 -0.088 -0.062 -0.228** -0.176** -0.224** -0.174**
(0.108) (0.093) (0.108) (0.093) (0.113) (0.088) (0.113) (0.088)

A Levels -0.220** -0.188** -0.211** -0.183** -0.052 -0.043 -0.048 -0.040
(0.093) (0.081) (0.092) (0.079) (0.109) (0.089) (0.108) (0.089)

Ethnicity (White excluded)
Mixed -0.050 -0.058 -0.071 -0.080 -0.220 -0.225 -0.236 -0.237

(0.197) (0.169) (0.203) (0.176) (0.235) (0.176) (0.235) (0.177)
Asian 0.199 0.165 0.185 0.149 -0.098 -0.060 -0.112 -0.070

(0.193) (0.167) (0.191) (0.166) (0.197) (0.160) (0.190) (0.155)
Black -0.213 -0.164 -0.265 -0.211 0.105 0.124 0.071 0.099

(0.187) (0.180) (0.167) (0.166) (0.165) (0.159) (0.152) (0.148)
Male -0.204** -0.178** -0.219*** -0.190*** -0.037 -0.029 -0.044 -0.035

(0.083) (0.072) (0.082) (0.071) (0.091) (0.074) (0.091) (0.074)
Income (Low income ≤ £20, 000 excluded)

Average Income (£20, 001−£40, 000) 0.074 0.057 0.076 0.061 0.175 0.135 0.176 0.137
(0.103) (0.089) (0.101) (0.088) (0.111) (0.087) (0.111) (0.087)

High Income (over £40, 000) 0.024 0.017 0.031 0.024 0.128 0.093 0.131 0.097
(0.115) (0.100) (0.113) (0.099) (0.128) (0.102) (0.128) (0.102)

Protein (Chicken excluded)
Chickpeas -0.131 -0.116 -0.141 -0.122 -0.033 -0.006 -0.024 0.002

(0.122) (0.107) (0.120) (0.104) (0.128) (0.107) (0.128) (0.107)
Fish -0.395*** -0.350*** -0.429*** -0.379*** -0.687*** -0.561*** -0.683*** -0.554***

(0.111) (0.089) (0.112) (0.090) (0.129) (0.100) (0.129) (0.100)
Constant 1.702*** 1.708*** 1.633*** 1.653*** 1.359*** 1.375*** 1.315*** 1.338***

(0.214) (0.192) (0.211) (0.189) (0.259) (0.204) (0.256) (0.203)
N 523 523 523 523 523 523 523 523

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

This table presents the estimation of the effect of knowledge on willingness to pay using both Interval
regression and OLS. Columns (1) to (4) present the corresponding estimates for Frame 1 and Columns
(5) to (8) that of Frame 2.Work is a binary variable which is 1 if the respondent works in Food
Production, Farming and/ or Health care. Income refers to household income.
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Table 3.10: Interval Regression Robustness Checks Frame 1

(1) (2) (3) (4) (5) (6) (7)
Knowledge 0.085** 0.082** 0.084**

(0.040) (0.040) (0.040)
Work 0.334*** 0.326*** 0.325*** 0.334*** 0.319*** 0.336***

(0.109) (0.109) (0.110) (0.111) (0.111) (0.109)

Work Fields
Farming 0.271

Food production (0.182)
Health care 0.360***

(0.124)
Knowledge Dummy Variables

Average Knowledge levels
(Above Average Excluded)

Below average -0.238*
knowledge (0.136)

Average -0.210
knowledge (0.150)

Knowledgeable 0.095
(0.088)

Key Knowledge Variables
Knows the impact 0.085

of antibiotic resistance (0.086)
Knows antibiotics treat -0.020

bacterial infections (0.081)
Knows the use of antibiotics 0.397**

in food production (0.197)

Knowledge PCA 0.084**
(0.038)

N 523 523 523 523 523 523 523
Age Control X X X X X X X
Gender Control X X X X X X X
Ethnicity Control X X X X X X X
Income Control X X X X X X X
Protein Control X X X X X X X

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

This table displays the robustness checks for the interval regression estimates for willingness–to–pay
in Frame 1. The results presented for each column is: (1) preferred specification, (2) household income
groups below 10, 000, £10, 001−£20, 000, £20, 001−£30, 000, £30, 001−£40, 000 and over £40, 000
(this is the excluded group), (4) below average and average knowledge compared to above average
knowledge, (5) binary knowledge variable = 1 if Knowledge ≥ 50%, (6) key knowledge variables, (7)
knowledge principal component analysis index.

81



Table 3.11: Interval Regression Robustness Checks Frame 2

(1) (2) (3) (4) (5) (6) (7)
Knowledge 0.056 0.056 0.067

(0.045) (0.045) (0.045)
Work 0.188 0.186 0.181 0.184 0.170 0.184

(0.123) (0.123) (0.123) (0.123) (0.124) (0.123)
Work Fields

Farming & 0.482**
Food production (0.211)

Health care 0.091
(0.140)

Knowledge Dummy Variables
Average Knowledge levels
(Above Average Excluded)

Below average -0.098
knowledge (0.150)

Average -0.090
Knowledge (0.164)

Knowledgeable 0.037
(0.101)

Key Knowledge Variables
Knows the impact 0.048

of antibiotic resistance (0.100)
Knows antibiotics treat -0.054

bacterial infections (0.092)
Knows the use of antibiotics 0.396*

in food production (0.227)

Knowledge PCA 0.025
(0.044)

N 523 523 523 523 523 523 523
Age Control X X X X X X X
Gender Control X X X X X X X
Ethnicity Control X X X X X X X
Income Control X X X X X X X
Protein Control X X X X X X X

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

This table displays the robustness checks for the interval regression estimates for willingness–to–pay
in Frame 2. The results presented for each column is: (1) preferred specification, (2) household income
groups below 10, 000, £10, 001−£20, 000, £20, 001−£30, 000, £30, 001−£40, 000 and over £40, 000
(this is the excluded group), (4) below average and average knowledge compared to above average
knowledge, (5) binary knowledge variable = 1 if Knowledge ≥ 50%, (6) key knowledge variables, (7)
knowledge principal component analysis index.
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Appendix 3.A The Survey

3.A.1 Consent Form

Introduction

You are being invited to take part in a research project on antibiotic use in food produc-

tion. Before you decide on whether to take part, it is important for you to understand

why the research is being done and what it will involve. Please take time to read the

following information carefully before you decide whether you wish to take part.

Purpose of Research This is a research project being conducted by Melisa Williams,

a PhD student at the University of Leicester. The aim of the project is to measure

preferences and beliefs with respect to antibiotic use. The data for the project will be

collected from this online survey.

Participation

Your participation in this survey is voluntary. You may refuse to take part in the

research or exit the survey at any time without penalty. You are free to decline to

answer any question you do not wish to answer for any reason. The survey should take

approximately 15 minutes to complete.

Benefits

There are no benefits relating to your answers to any question in the survey, however,

you will receive an incentive based on the length of the survey. You will be able to

choose the specific type of reward which includes cash, airline miles, gift cards, re-

deemable points, sweepstakes entrance and vouchers.

Risks

There are no foreseeable risks involved in participating in this study.

Confidentiality
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The information provided by you in this questionnaire will be used for research pur-

poses. It will not be used in any manner which would allow identification of your

individual responses. Your survey answers will be sent to a link at Qualtrics where

data will be stored in a password protected electronic format. Qualtrics will not collect

identifying information such as your name, email address, or IP address. Anonymised

research data will be archived to make them available to other researchers in line with

current data sharing practices.

Contact

If you have questions at any time about the study or the procedures, you may contact

Melisa Williams (mmw18@leicester.ac.uk) or her supervisors Dr Arkadiusz Szydlowski

(ams102@leicester.ac.uk) or Dr Jesse Matheson (j.matheson@sheffield.ac.uk).

Thank you for taking the time out to read the information sheet. Please select your

choice below. Clicking on the ”Agree” button indicates that:

# You have read the above information

# You voluntarily agree to participate

# You are 18 years of age or older

# Agree

# Disagree
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3.A.2 Survey Questionnaire

Part 1: Demographics

PART 1 This part of the survey consists of some demographic questions. As previously

stated, the questions will not be used in a manner which would allow identification of

you or your individual responses. Please answer as many of the following questions as

you feel comfortable.

1. Please enter your age

2. Sex:

# Female

# Male

# Other

# Prefer not to say

3. In which of the following regions do you live?

# North East

# North West

# Yorkshire and the Humber

# East Midlands

# West Midlands

# East of England

# London

# South East

# South West

# Wales

# Scotland

# Northern Ireland
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4. What is your highest level of qualification?

# GCSE or lower

# A Levels

# Higher Education

5. Are you currently working in any of the following areas?

Choose all that apply

� Farming

� Food production

� Health care

� None of the above

6. Please indicate the total annual income of your household (before tax and deduc-

tions, but including benefits/allowances)?

# Below £10,000

# £10,001–£20, 000

# £20,001–£30, 000

# £30,001–£40, 000

# Above £40,000

7. To which of the following ethnic groups do you belong??

# White

# Mixed / multiple ethnic groups

# Asian / Asian British

# Black / African / Caribbean / Black British

# Another ethnic group

End of Part 1: Demographics
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Part 2: Choice Experiment- Background

Part 2 This part of the survey consists a series of questions exploring whether antibiotic

use in the production of meats and other proteins for human consumption has an effect

on your purchasing choices.

8. Which of the following proteins do you most often purchase? Rank the choices

1-3 (1 being the most often purchased).

Chicken

Seafood

Beans, Lentils, Chickpeas

Note: The respondent faces a choice experiment for the protein ranked 1 then 3.
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Part 2: Choice Experiment- Chicken

This section of the survey comprises questions exploring whether antibiotic use in poul-

try production affects the demand for chicken.

In this hypothetical situation there are two farmers producing chicken. The first farmer

uses antibiotics to treat and prevent diseases. The second farmer does not use antibiotics

in chicken production, utilising organic methods instead. Your local supermarket sells

both types of chicken and labels the second type Antibiotic free. Both types of chicken

are safe for consumption.

For each of the following questions, please carefully consider each option and indicate

your choice. Even though this is a hypothetical situation, it is important that you make

your selections as you would if you were facing these choices in your retail purchase

decisions. Therefore, allocating funds to the purchase of any of these products means

there will be less money available for other goods. Please note that the objective of this

research is to learn about decision making, it is not meant to persuade your decisions

in any way.

9. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of these options

If Option 1 is selected move to Question 10, if Option 2 move to Question 11, if

Option 3 move to Question 30

10. Please choose the option that you would prefer
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Chicken (1 kg) Option 1 Option 2
Price £1.80 £2.20
Special labelt None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 12, if Option 2 move to Question 13, if

Option 3 move to Question 31

11. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 13, if Option 2 move to Question 14, if

Option 3 move to Question 32

12. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1
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# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 15, if Option 2 move to Question 16, if

Option 3 move to Question 33

13. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 16, if Option 2 move to Question 17.

If Option is 3 is selected then: move to Question 34 if Option 1 was selected in

Question 11, move to Question 35 if Option 2 was selected in Question 10.

14. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 17, if Option 2 move to Question 18, if

Option 3 move to Question 36
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15. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.40 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 19, if Option 2 move to Question 20, if

Option 3 move to Question 37

16. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 20, if Option 2 move to Question 21.

If Option is 3 is selected then: move to Question 38 if Option 1 was selected in

Question 13, move to Question 39 if Option 2 was selected in Question 12.

17. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 21, if Option 2 move to Question 22.

If Option is 3 is selected then: move to Question 40 if Option 1 was selected in

Question 14, move to Question 41 if Option 2 was selected in Question 13.

18. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £3.52
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 22, if Option 2 move to Question 23, if

Option 3 move to Question 42

19. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.70 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question , if Option 2 move to Question , if Option

3 move to Question 43.
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20. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.40 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 25, if Option 2 move to Question 26.

If Option is 3 is selected then: move to Question 44 if Option 1 was selected in

Question 16, move to Question 45 if Option 2 was selected in Question 15.

21. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £3.19
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 26, if Option 2 move to Question 27.

If Option is 3 is selected then: move to Question 46 if Option 1 was selected in

Question 17, move to Question 47 if Option 2 was selected in Question 16.

22. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £3.52
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 27, if Option 2 move to Question 28.

If Option is 3 is selected then: move to Question 48 if Option 1 was selected in

Question 18, move to Question 49 if Option 2 was selected in Question 17.

23. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £3.96
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 28, if Option 2 move to Question 29, if

Option 3 move to Question 50

24. Please choose the option that you would prefer

Option 1 Option 2
Price £3.00 £2.20
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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25. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.70 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

26. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.40 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

27. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £3.52
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

28. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £3.96
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

29. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £4.40
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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30. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.20 £1.76
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

31. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £1.83
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

32. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.20 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

97



# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

33. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £1.89
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

34. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £2.29
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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35. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.44 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

36. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

37. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £1.93
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

38. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £2.36
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

39. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.68 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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40. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £2.66
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

41. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.55 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

42. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.36 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

43. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.40 £1.96
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

44. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £2.10 £2.41
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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45. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.92 £2.20
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

46. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.80 £2.73
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

47. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.81 £2.75
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

48. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.50 £2.93
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken

49. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.63 £3.19
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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50. Please choose the option that you would prefer

Chicken (1 kg) Option 1 Option 2
Price £1.33 £3.52
Special label None Antibiotic free
Antibiotics
use

Frequently used for disease
treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2: Choice Experiment- Chicken
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Part 2: Choice Experiment -Fish

This section of the survey consists a series of questions exploring whether antibiotic use

in fish production affects the demand for sea bass.

In this hypothetical situation there are two farmers producing sea bass. The first

farmer uses antibiotics to treat and prevent diseases. The second farmer does not use

antibiotics in the production of sea bass, utilising organic methods instead. Your local

supermarket sells both types of sea bass and labels the second type Antibiotic free.

Both types of products are safe for consumption.

For each of the following questions, please carefully consider each option and indicate

your choice. Even though this is a hypothetical situation, it is important that you make

your selections as you would if you were facing these choices in your retail purchase

decisions. Therefore, allocating funds to the purchase of any of these products means

there will be less money available for other goods. Please note that the objective of this

research is to learn about decision making, it is not meant to persuade your decisions

in any way.

51. Please choose the option that you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 52, if Option 2 move to Question 53, if

Option 3 move to Question 72.

52. Please choose the option that you would prefer
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Sea bass (300 g) Option 1 Option 2
Price £4.20 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 54, if Option 2 move to Question 55, if

Option 3 move to Question 73.

53. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 55, if Option 2 move to Question 56, if

Option 3 move to Question 74.

54. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1
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# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 58, if Option 2 move to Question 59.

If Option is 3 is selected and Option 1 was selected in Question 53 then move to

Question 76, otherwise move to Question 77.

55. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 59, if Option 2 move to Question 60, if

Option 3 move to Question 78.

56. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 61, if Option 2 move to Question 62, if

Option 3 move to Question 79.
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57. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £5.60 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 62, if Option 2 move to Question 63.

If Option is 3 is selected and Option 1 was selected in Question 55 then move to

Question 80, otherwise move to Question 81.

58. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 63, if Option 2 move to Question 64.

If Option is 3 is selected and Option 1 was selected in Question 56 then move to

Question 82, otherwise move to Question 83.

59. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 64, if Option 2 move to Question 65, if

Option 3 move to Question 84.

60. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £6.88
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 57, if Option 2 move to Question 58, if

Option 3 move to Question 75.

61. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £6.30 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 66, if Option 2 move to Question 67, if

Option 3 move to Question 85.
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62. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £5.60 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 67, if Option 2 move to Question 68.

If Option is 3 is selected then: move to Question 86 if Option 1 was selected in

Question 58, move to Question 87 if Option 2 was selected in Question 57.

63. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 68, if Option 2 move to Question 69.

If Option is 3 is selected then: move to Question 88 if Option 1 was selected in

Question 59, move to Question 89 if Option 2 was selected in Question 58.

64. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £6.88
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 69, if Option 2 move to Question 70.

If Option is 3 is selected then: move to Question 90 if Option 1 was selected in

Question 60, move to Question 91 if Option 2 was selected in Question 59.

65. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £7.74
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 70, if Option 2 move to Question 71, if

Option 3 move to Question 92.

66. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £7.00 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish
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67. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £6.30 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

68. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £5.60 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

69. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £6.88
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1
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# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

70. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £7.74
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

71. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £8.60
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

72. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £2.80 £3.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

73. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £3.58
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

74. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £2.80 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

75. Please choose the option you would prefer
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Sea bass (300 g) Option 1 Option 2
Price £4.20 £3.69
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

76. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £4.48
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

77. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.36 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2
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# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

78. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.02 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

79. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £3.76
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

80. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £4.61
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

81. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.92 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

82. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £5.20
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

83. Please choose the option you would prefer
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Sea bass (300 g) Option 1 Option 2
Price £3.62 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

84. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.17 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

85. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £5.60 £3.82
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2
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# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

86. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.90 £4.70
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

87. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.48 £4.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

88. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.20 £5.34
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

89. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £4.22 £5.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

90. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.50 £5.73
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

91. Please choose the option you would prefer
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Sea bass (300 g) Option 1 Option 2
Price £3.81 £6.24
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish

92. Please choose the option you would prefer

Sea bass (300 g) Option 1 Option 2
Price £3.11 £6.88
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Fish
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Part 2: Choice Experiment- Chickpeas

This section of the survey consists a series of questions exploring whether antibiotic use

in crop production affects the demand for chickpeas.

In this hypothetical situation there are two farmers producing chickpeas. The first

farmer uses antibiotics to treat and prevent diseases. The second farmer does not use

antibiotics in crop production, utilising organic methods instead. Your local supermar-

ket sells both types of chickpeas and labels the second type Antibiotic free. Both types

of chickpeas are safe for consumption.

For each of the following questions, please carefully consider each option and indicate

your choice. Even though this is a hypothetical situation, it is important that you make

your selections as you would if you were facing these choices in your retail purchase

decisions. Therefore, allocating funds to the purchase of any of these products means

there will be less money available for other goods. Please note that the objective of this

research is to learn about decision making, it is not meant to persuade your decisions

in any way.

93. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 94, if Option 2 move to Question 95, if

Option 3 move to Question 114.

94. Please choose the option you would prefer
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Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 96, if Option 2 move to Question 97, if

Option 3 move to Question 115.

95. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 97, if Option 2 move to Question 98, if

Option 3 move to Question 116.

96. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1
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# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 99, if Option 2 move to Question 100,

if Option 3 move to Question 117.

97. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 100, if Option 2 move to Question 101.

If Option is 3 is selected then: move to Question 118 if Option 1 was selected in

Question 95, move to Question 119 if Option 2 was selected in Question 94.

98. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.67
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 101, if Option 2 move to Question 102,

if Option 3 move to Question 120.
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99. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.12 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 103, if Option 2 move to Question 104,

if Option 3 move to Question 121.

100. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 104, if Option 2 move to Question 105.

If Option is 3 is selected then: move to Question 122 if Option 1 was selected in

Question 97, move to Question 123 if Option 2 was selected in Question 96.

101. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.67
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 105, if Option 2 move to Question 106.

If Option is 3 is selected then: move to Question 124 if Option 1 was selected in

Question 98, move to Question 125 if Option 2 was selected in Question 97.

102. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.84
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 106, if Option 2 move to Question 107,

if Option 3 move to Question 126.

103. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.26 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 108, if Option 2 move to Question 109,

if Option 3 move to Question 127.
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104. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.12 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 109, if Option 2 move to Question 110.

If Option is 3 is selected then: move to Question 128 if Option 1 was selected in

Question 100, move to Question 129 if Option 2 was selected in Question 99.

105. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.67
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 110, if Option 2 move to Question 111,

if Option 3 move to Question 130.

106. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.84
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 111, if Option 2 move to Question 112.

If Option is 3 is selected then: move to Question 131 if Option 1 was selected in

Question 102, move to Question 132 if Option 2 was selected in Question 101.

107. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £2.07
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

If Option 1 is selected move to Question 112, if Option 2 move to Question 113,

if Option 3 move to Question 133.

108. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.40 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas
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109. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.26 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

110. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.12 £1.67
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

111. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.84
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1
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# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

112. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £2.07
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

113. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £2.30
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

114. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.56 £1.64
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

115. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.37
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

116. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.56 £2.05
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

117. Please choose the option you would prefer
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Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.17
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

118. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.71
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

119. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.67 £1.71
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2
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# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

120. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.60 £2.38
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

121. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.03
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

122. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.47
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

123. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.78 £1.47
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

124. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.99
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

125. Please choose the option you would prefer
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Chickpeas (500 g) Option 1 Option 2
Price £0.72 £1.99
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

126. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.63 £2.63
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

127. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £1.12 £0.91
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2
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# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

128. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.98 £1.28
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

129. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.90 £1.15
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

130. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.84 £1.44
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used
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# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

131. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.70 £1.53
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

132. Please choose the option you would prefer

Chickpeas (500 g) Option 1 Option 2
Price £0.76 £1.67
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas

133. Please choose the option you would prefer
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Chickpeas (500 g) Option 1 Option 2
Price £0.62 £1.84
Special label None Antibiotic free
Antibiotics use Frequently used for disease

treatment, prevention and
to enhance growth

Not used

# I would like Option 1

# I would like Option 2

# I wouldn’t choose any of the options

End of Part 2:Choice Experiment- Chickpeas
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Part 3: Perceptions on Antibiotic Resistance

This part of the survey consists of questions regarding your current knowledge of an-

tibiotics and antibiotic resistance. We therefore ask that you do not look for answers

on Google or any other source, online or otherwise.

134. Before taking this survey, which of the following terms have you heard of?

Choose all that apply

� Antibiotic resistance

� Superbugs

� Antimicrobial resistance

� Drug resistance

� Antibiotic–resistant bacteria

� I haven’t heard of any of these terms

135. Antibiotics are medicines use to fight that cause infections.

Choose all that apply

� Bacteria

� Fungi

� Parasites

� Viruses

� Don’t know

136. Which of the following is true about antibiotic resistance?

# Antibiotic resistance is only a problem for people who take antibiotics regu-

larly

# Using antibacterial cleaning products and soap will reduce the chances of

having an antibiotic resistant infection

# Antibiotic–resistant infections could make routine medical procedures much

more dangerous

# Don’t know
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137. Which of the following is true about the use of antibiotics in food production

(such as poultry, beef, swine, fish and crop)? Choose all that apply

� Antibiotics are used to treat diseases.

� Antibiotics are used to prevent diseases.

� Antibiotics are used to enhance growth.

� The same antibiotics used in humans are also used in food production.

� Don’t know

138. Which of the following do you think an antibiotic should be used for?

Choose all that apply

� Cold

� Flu (influenza)

� Sore throat

� Urinary tract infections

� Don’t know

139. Which of the following are common antibiotics? Choose all that apply

� aspirin

� penicillin

� paracetamol

� tetracycline

� Don’t know

End of Part 3: Perceptions on Antibiotic Resistance
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Part 4: Attitudes Regarding Antibiotic Usage and Resistance

This part of the survey consists of questions regarding your beliefs about antibiotic

usage and resistance.

140. Do you think antibiotics will be less effective in the future?

# Yes, in the next year

# Yes, in less than 5 years

# Yes, in 5 - 10 years

# Yes, in 10 - 15 years

# Yes, in over 20 years

# No

141. Among 1,000 persons, how many of them do you think will have an infection/illness

that cannot be treated by the standard antibiotic?

142. Among 1,000 persons, how many of them do you think will die due to an infec-

tion/illness that cannot be treated by the standard antibiotic?

143. Which of the following statements describe your attitude towards an-

tibiotic use in agriculture?

Use the following statements to share your views by indicating whether you

Strongly Agree, Agree Slightly, Neither Agree nor Disagree, Disagree Slightly,

or Strongly Disagree with each statement.
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Strongly
Agree

Agree
slightly

Neither
Agree nor
Disagree

Disagree
Slightly

Disagree
Strongly

Using antibiotics in food-
producing animals is a main
contributor to antibiotic re-
sistance

# # # # #

It is OK to use antibiotics
to treat sick animals

# # # # #

Antibiotic use in
food–producing animals
is too small to be a problem
for humans

# # # # #

Only antibiotics that are
not used to treat humans
should be used to treat sick
animals

# # # # #

144. How do you view antibiotic resistance?

Use the following statements to share your views by indicating whether you

Strongly Agree, Agree Slightly, Neither Agree nor Disagree, Disagree Slightly,

or Strongly Disagree with each statement.

Strongly
Agree

Agree
slightly

Neither
Agree nor
Disagree

Disagree
Slightly

Disagree
Strongly

Antibiotic resistance is one
of the biggest problems the
world faces

# # # # #

I am worried about the
impact that antibiotic re-
sistance will have on my
health, and that of my fam-
ily

# # # # #

I am not at risk of getting
an antibiotic-resistant infec-
tion

# # # # #

145. How do you think antibiotic resistance can be reduced?

Use the following phrases to share your views by indicating whether you Strongly

Agree, Agree Slightly, Neither Agree nor Disagree, Disagree Slightly, or Strongly
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Disagree with each statement.

Strongly
Agree

Agree
slightly

Neither
Agree nor
Disagree

Disagree
Slightly

Disagree
Strongly

Parents ensuring all their
children’s vaccinations are
up-to-date

# # # # #

Doctors prescribing antibi-
otics only when they are
needed

# # # # #

Governments providing fi-
nancial assistance for the
development of new antibi-
otics

# # # # #

Everyone taking antibiotics
responsibly

# # # # #

End of Part 4: Attitudes Regarding Antibiotic Usage and Resistance

We thank you for your time spent taking this survey. Your response has been recorded.

End of Survey
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Appendix 3.B The Experiment Flow

Figure 3.B.1: Experiment Frame - Chicken Framing Choice Scenarios

The figure presents the Frame for the chicken option. The flow of choice scenarios
does not include Option 3— the frame ends once Option 3 is chosen. The number in
each circle represent the relative price for that choice scenario. The number beside
each arrow represent the option selected (1: Option 1 and 2: Option 2) which takes
the respondent to the next choice scenario or the end of the experiment.
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Appendix 3.C Willingness–to–Pay

Table 3.C.1: Willingness–to–Pay Observations by Data Type, Experiment Frame, and
Protein

Data Type N Chicken Fish Chickpeas
Left censored [0, RPmin) 86 53 11 22
Interval censored [RPk−1, RPk) 367 277 38 52
Right censored [RPmax,∞) 70 55 6 9
N 523 385 55 83
Left censored [0, RPmin) 139 17 62 60
Interval censored [RPk−1, RPk) 317 65 114 159
Right censored [RPmax,∞) 67 18 13 36
N 523 60 106 151

RPmin is the lowest relative price in each Frame, while RPmax is the highest. RPk−1
is the highest observed relative price at which Option 2 is chosen and RPk is the next
highest relative price at which the respondent indicated an unwillingness–to–pay. I
use 0 to represent the unobserved lower bounds and ∞ for the unobserved upper
bounds.

Table 3.C.2: Number of Unique Relative Prices (Bounds) Used in Estimating
Willingness –to–Pay by Frame, and Protein

Bounds
Frame 1 Frame 2

All Chicken Fish Chickpeas All Chicken Fish Chickpeas
1 42 29 5 8 103 10 48 45
2 23 15 5 3 34 7 16 11
3 40 31 5 4 33 6 14 13
4 28 14 6 8 25 1 11 13
5 28 23 3 2 16 2 4 10
6 362 273 31 58 312 69 88 155
N 523 385 55 83 523 95 181 247

In this table I present the number of unique relative prices (bounds) used in calculating the willing-
ness–to–pay by protein.
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Table 3.C.3: Willingness–to–Pay Summary Statistics by Frame and Protein

Willingness–to–pay Mean Std. Dev. Min. Max. N
Frame 1 Observed Interval Data 1.555 0.551 0.774 3.386 405

Unobserved UB: WTPi = LB 1.566 0.745 0.307 3.386 523
Unobserved UB= RP from 7th CS 1.581 0.773 0.307 3.450 523

Chicken
Observed Interval Data 1.565 0.545 0.774 2.785 306
Unobserved UB: WTPi = LB 1.613 0.731 0.367 2.933 385
Unobserved UB= RP from 7th CS 1.629 0.760 0.367 3.080 385

Sea bass
Observed Interval Data 1.316 0.347 0.878 2.334 41
Unobserved UB: WTPi = LB 1.279 0.580 0.307 2.457 55
Unobserved UB= RP from 7th CS 1.290 0.603 0.307 2.580 55

Chickpeas
Observed Interval Data 1.672 0.652 0.970 3.386 58
Unobserved UB: WTPi = LB 1.539 0.866 0.411 3.386 83
Unobserved UB= RP from 7th CS 1.551 0.891 0.411 3.450 83

Frame 2 Observed Interval Data 1.534 0.583 0.865 3.386 338
Unobserved UB: WTPi = LB 1.494 0.828 0.307 3.386 523
Unobserved UB= RP from 7th CS 1.511 0.862 0.307 3.450 523

Chicken
Observed Interval Data 1.519 0.510 0.866 2.787 65
Unobserved UB: WTPi = LB 1.625 0.793 0.367 2.933 95
Unobserved UB= RP from 7th CS 1.650 0.835 0.367 3.080 95

Sea bass
Observed Interval Data 1.297 0.317 0.865 2.334 114
Unobserved UB: WTPi = LB 1.143 0.537 0.307 2.457 181
Unobserved UB= RP from 7th CS 1.150 0.556 0.307 2.580 181

Chickpeas
Observed relative prices 1.710 0.690 0.867 3.386 159
Unobserved UB: WTPi = LB 1.701 0.929 0.411 3.386 247
Unobserved UB= RP from 7th CS 1.723 0.967 0.411 3.450 247

This table provides a summary of the willingness–to–pay estimates, by frame and protein, using the interval
midpoint as a proxy for the true willingness–to–pay. I use 0 for unobserved lower bounds, that is the case where
Option 2 is not chosen. For the case where only Option 2 is chosen I present two alternatives: (1)WTPi = LB:
setting the WTPi equal to the lower bound, and (2) UB= RP from 7th CS: using the relative price from a
hypothetical 7th choice scenario as the upper bound.
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Appendix 3.D OLS Estimates Robustness Checks

In this Appendix I test the robustness of the OLS estimates presented in Table 3.9.

The resulting estimates are presented in Table 3.D.1 and Table 3.D.2. For both tables,

in Column 1 I present the preferred specification. In Column 2, willingness–to–pay

is equal to the lower bound (WTPi = LB) when only Option 2 is chosen. I redefine

household income using dummy variables for each income group in Column 3. I replace

the work dummy variable with dummies for each work area in Column 4. The knowledge

variable is redefined in Columns 5−8. In Column 5 two knowledge dummy variables are

included, below average knowledge ( =1 if knowledge is < 50%), and average knowledge

(=1 if 50% ≤ knowledge < 70%), while above average knowledge (=1 if knowledge>

70%) is excluded. I use Knowledgeable, a dummy variable which is 1 if the respondent

has at least average level knowledge (Knowledge ≥ 50%) in Column 6. Column 7

includes the use of the following key knowledge variables: (1) knows the impact of

antibiotic resistance, (2) knows that antibiotics treat bacterial infections, (3) knows

how antibiotics are used in food production. In Column 8 a knowledge index is created,

using a Principal Component Analysis (PCA) of all the knowledge variables, which

reports the most important knowledge variable for each individual.
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Table 3.D.1: OLS Regression Robustness Checks Frame 1

(1) (2) (3) (4) (5) (6) (7) (8)
Knowledge 0.085** 0.084** 0.083** 0.082**

(0.035) (0.034) (0.035) (0.035)
Work 0.272*** 0.262*** 0.266*** 0.263*** 0.272*** 0.259*** 0.274***

(0.092) (0.089) (0.092) (0.094) (0.094) (0.093) (0.092)

Work Fields
Farming & 0.182

Food Production (0.146)
Health care 0.315***

(0.107)
Knowledge Dummy Variables

Average Knowledge levels
(Above Average Excluded)

Below average -0.245**
knowledge (0.123)

Average -0.209
knowledge (0.136)

Knowledgeable 0.102
(0.077)

Key Knowledge Variables
Knows the impact 0.070

of antibiotic resistance (0.075)
Knows antibiotics treat -0.025

bacterial infection (0.071)
Knows the use of antibiotics 0.375**

in food production (0.170)

Knowledge PCA 0.079**
(0.033)

N 523 523 523 523 523 523 523 523
Age Control X X X X X X X X
Gender Control X X X X X X X X
Ethnicity Control X X X X X X X X
Income Control X X X X X X X X
Protein Control X X X X X X X X

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

This table displays the robustness checks for the OLS regression estimates for willingness–to–pay in
Frame 1. The results presented for each column is: (1) preferred specification, (2) willingness–to–pay
is equal to the lower bound WTPi = LB when only Option 2 is chosen (3) household income groups
below 10, 000, £10, 001−£20, 000, £20, 001−£30, 000, and over £40, 000 (this is the excluded group),
(4) work areas, (5) below average and average knowledge compared to above average knowledge, (6)
binary knowledge variable = 1 if Knowledge ≥ 50%, (7) key knowledge variables, (8) knowledge
principal component analysis index.
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Table 3.D.2: OLS Regression Robustness Checks Frame 2

(1) (2) (3) (4) (5) (6) (7) (8)
Knowledge 0.055 0.054 0.055 0.064*

(0.037) (0.035) (0.037) (0.037)
Work 0.141 0.131 0.139 0.137 0.140 0.130 0.139

(0.101) (0.097) (0.101) (0.101) (0.101) (0.102) (0.101)

Work Fields
Farming & 0.373**

Food production (0.167)
Health care 0.064

(0.117)

Knowledge Dummy Variables
Average Knowledge levels
(Above Average Excluded)

Below average -0.096
knowledge (0.129)

Average -0.064
knowledge (0.141)

Knowledgeable 0.052
(0.083)

Key Knowledge Variables
Knows the impact 0.059

of antibiotic resistance (0.082)
Knows antibiotics treat -0.038

bacterial infection (0.075)
Knows the use of antibiotics 0.317*

in food production (0.184)

Knowledge PCA 0.029
(0.036)

N 523 523 523 523 523 523 523 523
Age Control X X X X X X X X
Gender Control X X X X X X X X
Ethnicity Control X X X X X X X X
Income Control X X X X X X X X
Protein Control X X X X X X X X

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

This table displays the robustness checks for the OLS regression estimates for willingness–to–pay in
Frame 2. The results presented for each column is: (1) preferred specification, (2) willingness–to–pay
is equal to the lower bound WTPi = LB when only Option 2 is chosen (3) household income groups
below 10, 000, £10, 001−£20, 000, £20, 001−£30, 000, and over £40, 000 (this is the excluded group),
(4) work areas, (5) below average and average knowledge compared to above average knowledge, (6)
binary knowledge variable = 1 if Knowledge ≥ 50%, (7) key knowledge variables, (8) knowledge
principal component analysis index.
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Chapter 4

Pollution and Health: The

allocation of resources dilemma.

Evidence from the University

Hospitals of Leicester NHS Trust.

4.1 Introduction

The Great Smog of London of 1952 was a five day event that is estimated to have

killed up to 12,000 people (Bell and Davis, 2001). Since then, air pollution has dropped

greatly. However, it still poses a major health threat. The UK Government identified

poor air quality as the largest environmental risk to public health (Smith, 2017). Ac-

cording to the Royal College, 40,000 deaths annually in the UK are attributable to air

pollution costing more than £20 billion in 2016 (Holgate et al., 2016).

There is ample literature that establishes that chronic exposure of children and older

adults to air pollution results in decreased development and lung function, increased

number of respiratory and coronary diseases, diabetes and dementia (Brunekreef and

Holgate, 2002; Margaryan, 2019). These effects are usually associated with nitrogen

dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and particulate matter with an aero-
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dynamic diameter less than 2.5 µm and 10 µm (PM2.5 and PM10).39

This paper analyses the impact of pollution on the economic costs of public health-

care. We quantify the effect of different types of air pollution on the economic costs

of Emergency Department (ED) visits and subsequent admission to hospital using pro-

prietary data from the University Hospitals of Leicester NHS Trust and pollution data

from the Air Quality Management Area (AQMA) monitors provided by the Leicester

City Council. We focus on two air pollutants: nitrogen dioxide (NO2) and particulate

matter with an aerodynamic diameter less than 10 µm (PM10).

We find that days that exhibit higher average levels of PM10 also exhibit higher total

numbers of hospital visits by children and seniors. Among children, these results are

driven by higher numbers of ED visits leading to discharge while, among seniors, these

results hold for both hospital admitted patients as well as patients discharged from

ED. In addition, we analyse the effects of PM10 among hospital admitted patients by

diagnosis and find that an increase in exposure to PM10 increases the total numbers

of children and seniors admitted to the hospital due to cerebrovascular conditions.

We then quantify the costs of higher pollution for the healthcare system to see whether

the above results reflect in the healthcare system costs. Consistent with our previous

findings, we show that higher exposure to PM10 has a positive effect on total costs. In

the case of older adults, even when this higher exposure to PM10 does not generate

higher average costs of visits for discharged older adults, our results of more costly

hospital visits are driven by higher numbers of hospital visits in general—both visits

ending in admission to hospital and discharge from ED— due to higher exposure to

PM10. Our results allow us to quantify the the economic costs of pollution due to

PM10 for hospital admitted older adults in Leicester. We find that each standard

deviation of increase of exposure to PM10 increases daily cost for hospital admitted

39According to the American Lung Association, NO2 causes a range of harmful effects on the lungs,
including: increased inflammation of the airways, worsened cough and wheezing, reduced lung function,
increased asthma attacks, greater likelihood of emergency department and hospital admissions, in
addition to be likely a cause of asthma in children, see lung.org acceded on July 21st 2021. Similarly,
short-term increases in particle pollution have been linked to: increased mortality in infants, increased
hospital admissions for cardiovascular disease (including heart attacks and ischemic heart disease),
increased hospital admissions and emergency department visits for chronic obstructive pulmonary
disease (COPD), increased hospitalization for asthma among children and increased severity of asthma
attacks in children. In addition to this, they present that year-round exposure to particle pollution
is linked to: development of asthma in children, worsening of COPD in adults, slowed lung function
growth in children and teenagers, increased risk of death from cardiovascular disease, and increased
risk of heart attacks and strokes, see lung.org acceded on July 21st 2021.
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seniors by £273.90 which translates to £4, 398, 834 on a yearly basis.

In the case of children, a higher average daily exposure to PM10 implies higher lev-

els of hospital admissions and average and total costs of children hospital admissions

are higher when children are more exposed to PM10. Similar to our results for older

adults, we find that each standard deviation of increase of exposure to PM10 increases

daily cost for hospital admitted children and children discharged from ED by £74.71

and £4.08 which translates to £1, 199, 843 and £65, 525 on a yearly basis, respec-

tively. In total, each extra standard deviation of exposure to PM10 costs the Leicester

Clinical Commissioning Groups (CCGs) £4, 398, 834 a year treating older adults and

£1, 265, 368 treating children adding up to £5, 664, 202.40,41

We find that a larger daily range of exposure to NO2 increases the total number of hos-

pital visits per day and postcode sector, increases the total costs per visit of discharged

patients, and increases the total costs per visit of admitted older adults. However, NO2

results are not as strong as PM10, and are sensitive to the specification used.

There are several methodological challenges present in the literature involved with quan-

tifying the effects of pollution on health outcomes and their subsequent healthcare costs,

such as omitted variable bias, measurement error, and avoidance behaviour (see Neidell,

2006; Deryugina et al., 2019).42 We overcome these by using a novel dataset which com-

bines air pollution and meteorological readings with individual level data on Emergency

Department attendance at the University Hospitals of Leicester (UHL), NHS Trust be-

tween 2006 and 2011. In addition, we restrict our analysis to children and older adults

for two reasons. Firstly, to address concerns of omitted variables and measurement

40For consistency purposes, these calculations are based in specification without any type of fixed
effects, which does not allow us to quantify the costs for discharged older adults since the corresponding
coefficient are non-significant. Given this, the results presented should be interpreted as a lower bound
in costs as the total costs for discharged older adults are positive and significant in the remaining three
specifications where fixed effects are included.

41The Leicester CCGs (NHS East Leicestershire and Rutland CCG, NHS Leicester City CCG, and
NHS West Leicestershire CCG) determine what health services their local population require then
purchase these services from health providers. Using data from the University Hospitals of Leicester
NHS Trust annual reports we find that the average total expenditure from fiscal years 2007/08 to
2011/12 is £667.4 million, see Leicester Hospitals Annual Reports (2007-2012). The total cost to
the Leicester CCGs of each standard deviation of exposure to PM10 is 0.85% of this average total
expenditure. See Section 4.3 for further explanation on how the health services in the NHS are funded.

42In general, avoidance behaviors are defined as any actions a person takes to escape from difficult
thoughts and feelings. In environmental economics, this term has been translated to behavioural
adjustments in response to pollution, such as people respond to pollution by staying indoors instead
of outdoors, see Neidell (2006).
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error, our data allows us to geo–locate each individual given their home address. Since

children go to school close to home and older adults are predominantly retired and spent

most of their time at home we are able to assign to each individual the most accurate

hourly pollution readings.43,44 Secondly, and to address concerns about the potential

presence of avoidance behaviour where individuals avoid outings on days/areas of higher

pollution (see Neidell, 2006, 2009; Moretti and Neidell, 2011; Janke, 2014), we use a

level of disaggregation of pollution data that is not publicly/easily available and, most

importantly, our target population for this analysis has very little to no possibilities

of avoidance behaviour. Individuals could check air quality in Leicester as a whole,

then avoidance behaviour could potentially be present only in the time dimension but

not in the geographical dimension we use for our analysis and, in addition, our target

population is children (schools are close to their residence) and older adults (whom are

retired). This allowed us to better impute pollution using their residence postcode and,

in addition, should alleviate any concerns about avoidance behaviour.

To quantify these causal effects, we employ a novel identification strategy. We define

Inverse Distance Weighted (IDW) as the weighted average inverse distance from a

pollution monitor to the centroid of a postcode sector. A fundamental premise of

this paper’s analysis is the exogeneity of our pollution measure. We weigh the different

available monitors by accounting for wind direction and speed. The motivation for the

use of wind direction and speed is not only as a source of exogenous variation—as the

variation of pollution readings over time also are—but a more accurate calculation of

its impact. Our measure combines elements of the ones used in Boggiano (2019) and

43For more details on how schools are assigned in Leicester, see 4.A.
44The average age of retirement has increased over the past two decades. The average age of

retirement for men is 65.1, while for women it is 63.9 years old and with retirement one could argue that
there is a reduction in mobility due to the lack of the commute to work both in terms of distance and
frequency, see “Later Life in the United Kingdom 2019”, Accessed on July 21st 2021 from ageuk.org.uk.
Nontheless, it could also be argued that we are overstating the likelihood of 60 and over spending all
their time at home. However, the emergence of organisations, such as ageuk.org.uk which aim to tackle
issues associated with older adults staying at home for long periods of time, for instance isolation and
loneliness should alleviate this concern. Moreover, in line of the emergence of this type of organisations,
it is reported that 41% of people aged 65 and over in the UK feel out of touch with the pace of modern
life and 12% say they feel cut off from society, see “Evidence Review: Loneliness in Later Life”,
Accessed on July 21st 2021 from ageuk.org.uk. This does not mean that all older adults spent all
their time at home but, as this report shows, a significant number of older adults are detached from
social life (20 % detached from 3 or more domains, 50 % detached from civic participation and leisure
activities and 5 % detached from social networks) which, in the context of our paper, means that they
end up spending most of their time at home and much more time than adults economically active or
below 60. In this context, older adults who live alone are more likely to attend ED, see “Later Life in
the United Kingdom 2019”, Accessed on July 21st 2021 from ageuk.org.uk.
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Deryugina et al. (2019). However, it differs from the measure in Boggiano (2019) since

each monitor has a time varying weight due to wind direction and speed. It also differs

from the measure used in Deryugina et al. (2019) since we build a pollution measure

contingent on the strength of the effect of each monitor on each postcode sector based

on wind direction and wind speed directly.45

In order to test for the robustness of our results, we perform a series of additional anal-

yses. Firstly, we perform the same analysis with daily ranges of exposure to pollution—

NO2 and PM10—instead of using the daily averages. Secondly, we perform our main

analysis replacing our key explanatory variable—IDW—with the pollution reading from

the nearest monitor and find that our results are largely unaltered. Thirdly, since we

only have average daily air pressure data from 2009 and 2011, we have excluded this

control from our main analysis. We find that including air pressure as a control for

the available years does not alter our main findings. In addition, we also examine the

robustness of our results by restricting our sample to weekdays only and we find that

our results still hold on the restricted sample. Finally, we run a falsification test re-

placing our main explanatory variable—IDW—by its 7 day lagged and lead versions

and we find that the coefficients associated with both changes are non-significant when

analysing the effects of IDWPM10.

The findings presented in this paper contribute to two strands of literature. Firstly, we

contribute to the pollution effects on health literature by documenting the short term

effects of pollution in health and its immediate consequences for the healthcare system

in terms of healthcare costs. In particular, while most studies look at the relationship

between air pollution and health focus on infant and child health, our paper expands

this analysis by also looking at the effects on the older adults population and quan-

tifying the economic costs of these effects for both groups. Children are of particular

interest because of their susceptibility to respiratory conditions while older adults are

of particular interest because of their susceptibility to cardiovascular conditions. Sec-

ondly, we contribute to the public policy literature by identifying and quantifying the

direct NHS costs associated with treatments and services for specific health conditions

that are associated with more polluted environments and covered by public funds. By

quantifying these higher economic costs, we can inform the debate on how to allocate

resources in Leicester.

45Since our measure of pollution is computed hourly and our ED visits data is recorded daily, in
our main analysis we use the daily average. However, we also examine these effects using alternative
measures in Section 4.7.
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The remainder of this paper is structured as follows. In Section 4.2, we review the

related literature. Section 4.3 describes the institutional framework for environmental

and health care policies in the UK in the period 2006-2011. In Section 4.4, we discuss

the data. In Section 4.5, we present a description of the IDW measure and the em-

pirical methodology, respectively. Section 4.6 and Section 4.7 present the results and

robustness checks, respectively. We conclude with final remarks in Section 4.8.

4.2 Literature Review

There is a wealth of literature exploring the relationship between air quality, meteoro-

logical conditions and human health outcomes. Pintarić et al. (2012) shows that higher

ED visits are positively associated with higher concentration of NO2 and higher tem-

peratures, but negatively associated with the average daily moisture and the average

daily atmospheric pressure.

A sizeable part of this literature focuses in particular on the effects of worse air quality

on children’s health. Chay and Greenstone (2003) estimates the effects of particulates

pollution on infant mortality and find that about 2,500 fewer infants died than would

have died in the absence of the dramatic reductions in pollution during a recession.

Currie and Neidell (2005) quantifies the number of infant lives—1,000—saved by the

reductions in CO. Similarly, Knittel et al. (2016) quantifies the number of infant lives—

18 lives per 100,000 live births—saved by a one-unit decrease in PM10.

Another important strand of this literature focuses on the pollution effects on respi-

ratory illnesses such as asthma, bronchitis, and pneumonia. This strand of literature

focuses on the general population but usually finds more severe effects for children

and older adults. Samoli et al. (2006) shows a positive relationship between NO2 and

cardiovascular and respiratory mortality with larger effects in cities with higher propor-

tions of older adults and higher levels of PM10.46 Coneus and Spiess (2012) finds that

high exposure to CO prior to birth causes lower birth weight, and that O3 exposure

leads to higher probability of respiratory diseases and impairment for toddlers. Neidell

(2004) finds that CO has an effect on hospitalizations for asthma among children and

that public alerts of pollution levels predicted to exceed certain limits decreases asthma

46These effects are stronger on cause-specific mortality in cities participating in the Air Pollution on
Health: a European Approach (APHEA)-2 project.
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hospitalizations by approximately 1%.

There is ample literature that exploits the effect of the new pollution policies, aimed at

reduction of air pollution, on health outcomes. Currie and Walker (2011) show that the

introduction of electronic toll collection (E-ZPass) had a positive effect on the health

of infants born to mothers living near toll plazas. They show that E-ZPass reduced

the incidence of prematurity and low birth-weight of mothers within 2 kilometres (km)

of a toll plaza relative to mothers 2–10 km away. In another study, Simeonova et al.

(2018) show that the introduction of congestion pricing in an urban area significantly

reduced NO2 and PM10 levels and reduced the rate of acute asthma visits. Mar-

garyan (2019) shows that low emission zones (LEZs)—designated areas that restrict

cars’ access based on their emission class—reduce monthly PM10 concentrations and

reduces cardiovascular disease with this effect being more pronounced in older adults

(aged over 65 years). Beatty and Shimshack (2011) finds that school bus emissions

reductions induced statistically significant and large reductions in bronchitis, asthma,

and pneumonia incidence for children and adults with chronic conditions.

Schlenker and Walker (2016) and Deryugina et al. (2019) explore the effect of pollution

on health care costs. Schlenker and Walker (2016) estimates how daily variation in

ground level airport congestion due to network delays affects local measures of health.

They find that a one standard deviation increase in daily pollution explains roughly

one third of average daily admissions for asthma problems. As it relates to the cost,

Schlenker and Walker (2016) finds that this increase in daily pollution leads to an

additional US$540 thousand per day in hospitalization costs for respiratory and heart

related admissions of individuals within 10 km of one of the twelve largest airports in

California. Unlike Schlenker and Walker (2016) we do not restrict our cost evaluations

to admissions only or specific illnesses.

Deryugina et al. (2019) estimates the effect of fine particulate matter PM2.5 exposure

on older adults’ mortality, health care use, and medical cost over a three–day window

that spans the day of the increase and the following two days. The study combines

administrative data on Medicare beneficiaries of the US population aged 65 and over

with daily pollution data for the United States from 1999 to 2013. Using changes in

wind direction as an IV for pollution, they found that increases in daily PM2.5 is found

to have a positive effect on mortality, hospitalizations and inpatient spending (mainly

due to admissions that originate in ER). Our study differs from Deryugina et al. (2019)
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in one key way. We build a pollution measure directly accounting for wind direction and

speed, instead of using them as part of an instrumental variable approach to identify

pollution variation.

Some studies have found that avoidance behaviour is an important aspect in estimating

effect of pollution on hospitalizations and health care costs. Janke (2014) finds a 10%

increase in NO2 or O3 increases the rate of hospital emergency admissions for respira-

tory diseases and symptoms in children by around 1%. However, when he controls for

avoidance behaviour, he finds an 8% reduction in asthma admissions (a subset of respi-

ratory diseases) in response to a pollution warning the day before.47 Neidell (2009) also

finds that individuals respond to smog alert announcements by reducing daily outdoor

activities, and that this avoidance behaviour significantly impacts asthma hospitaliza-

tions for children and older adults. Specifically, the pollution standard index increases

estimates of the effect of ozone on children by roughly 160 percent for children and 40

percent for older adults, when smog alerts are included. Moretti and Neidell (2011)

quantifies the effect of pollution avoidance behaviour reporting that respiratory related

hospitalizations due to ozone exposure costs at least $44 million annually in Los Angeles

and that the cost of avoidance behaviour is at least $11 million.

The literature also provides some insight as to how the effect of pollution, and hospital

attendance and admissions vary by day of the week. Green et al. (2016) shows that

despite the introduction of congestion charge in London, the monthly traffic accident

counts did not increase for weekend days which were exempt from charges. This sug-

gests that pollution levels may be lower on weekends given the level of activity in the

weekday. Meacock et al. (2017) reports differences in admissions and mortality on week-

ends compared to weekdays. Specifically, they find that proportionally fewer patients

who attended ED on weekends were admitted to hospital, and the probability of dying

was higher among ED attendants who were subsequently admitted on the weekend.

Furthermore, they find that there were fewer deaths (in numbers) following direct ad-

mission (admissions from services in the community/ GPs) on weekends than weekdays.

However, they also find that the mortality rate was significantly higher because there

was a greater reduction in admissions compared to deaths on weekends. Additionally,

Green et al. (2020) examine the effect of the London Congestion Charge introduced in

2003 and found varied but substantial reductions in three pollutants (including PM10)

47Janke (2014) also notes that ignoring avoidance behaviour, does not result in statistically significant
underestimation of the effects of nitrogen dioxide and ozone.
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but a sharp increase in NO2. This suggests that when PM10 decreases NO2 increases

due to their sources (petrol based cars vs. diesel) which is consistent with our results.

Another set of literature focuses on the effect of air quality on non-health outcomes such

as labour supply and crime. Holub et al. (2016) uses the air quality at an individual’s

residence and finds a positve effect of PM10 levels on the probability that a worker

takes a sick leave from work due to cardiovascular or respiratory disease. Bondy et al.

(2018) estimate the impact of short–term exposure to elevated levels of air pollution

on crime levels in London. They show that an additional 10 Air Quality Index points

increase the crime rate by 0.9%.

4.3 Institutional Framework

Air Quality Standards In order to protect human health the first European level air

quality standards have been implemented by the European Union in the 1970s, obliging

member states to assure adequate air quality for their citizens. These standards have

significantly evolved over the years. Since 2008, the Ambient Air Quality Directive

(AAQD) provides the current framework for the control of ambient concentrations of

air pollution in the EU.48 In Table 4.1, we present the current air quality standards

(AQS) for the relevant high priority air pollutants for this paper, NO2 and PM10.

One particular aspect of the AAQD is that the NO2 limits set were to be achieved by

all EU members by 1st January 2010. By the 2010 deadline, the UK was in breach of

regulations in 93% of its designated zones and agglomerations and applied for a Time

Extension Notification (TEN) of five years for 60% of its exceeding zones and agglom-

erations in September 2011. Moreover, by 2011 the UK Government also required the

local authorities to comply with the AAQD, despite local authorities not having any

say over which zones or agglomerations were included in the TEN application. By 2015,

the UK government reported that 37 out of the 43 areas were in breach of the NO2

limits set by the AAQD. Failing to meet the AAQD in 2017, the European Commission

issued a warning to the UK, escalating the potential for fines if the UK government

cannot produce plans to meet the AAQD as soon as possible. For more details about

the evolution of air quality standards in the UK, see Barnes et al. (2018).

48In this paper’s period of analysis (2006-2011), the UK was obliged to abide by these standards.
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Public Funding and the NHS Majority of the NHS funding comes from general

taxation while a small proportion comes from patient charges, such as prescription

charges and dental treatment. The level of NHS funding in a given year is set by the

central government through the Spending Review process. This process estimates how

much income the NHS will receive from sources such as user charges, National Insurance

and general taxation. If National Insurance or patient charges raise less funding for the

NHS than estimated, funds from general taxation are used to ensure that the NHS

receives the original level of funding it was allocated.

NHS England is responsible for allocating funding to the CCGs. The CCGs assess

the health needs of their local population to make decisions about the health and care

services they need. They then buy those services, given their budget constraints, from

providers such as hospitals. During the period 2006-2011, the funding for hospital

services in NHS England was under a system of Payment by Results (PbR). Under

PbR, CCGs pay healthcare providers a nationally determined price for each patient

seen or treated. Where there is no fixed price for a service, the price the CCG pays is

determined locally between the CCG and the hospital. Funding from the CCGs covers

over 60% of the healthcare costs. Hospitals can generate additional income through

parking charges, land sales and treating private patients.49

4.4 Data

To identify direct NHS costs for services that are associated with higher levels of air

pollution we combine data from multiple sources to create our final dataset. Each of

these and the notation we use to address them are discussed below. For details about

these data sources, see Table 4.2.

49Please see A Simple Guide to Payment by Results at https://www.gov.uk/government/publicatio
ns/simple-guide-to-payment-by-results, and How the NHS is Funded at https://www.kingsfund.org.
uk/projects/nhs-in-a-nutshell/how-nhs-funded for more information. The limitations of using HRGs
and National Tariffs to calculate the cost of hospital use are discussed in section 4.C.
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4.4.1 Pollution, Meteorological Data, and Additional Controls

Pollution and Meteorological data were provided by the Leicester City Council. Leices-

ter City Council collects hourly data on an array of pollution variables among which

are NO2 and PM10. The monitors used for this data collection are: St Matthews Way,

Vaughan Way, Melton Road, Abbey Lane, Glenhills Way, Imperial Ave, London Road,

and Uppingham Road. NO2 data is collected in all the monitors while PM10 data is

only collected in Vaughan Way, Melton Road, Abbey Lane, Glenhills Way, Imperial

Ave, and London Road. In Map 4.1 we show the locations of these monitors.

Similarly, these monitors collect hourly data on climate variables such as wind direction

and speed, air pressure, rainfall, and temperature. In the case of air pressure, we only

have data for the period 2009-2011. Therefore we exclude air pressure data from the

main analysis and use it as a robustness check later in the paper. In Table 4.3 we

present the summary statistics of the hourly pollution measures of each monitor and

the climate measures over the period 2006-2011.

In addition, and to control for socio-economic characteristics in our analysis we use

the Deprivation Indices of 2004, 2007 and 2010. These data—provided by the Office

of the Deputy Prime Minister (ODPM)—is at the Lower Layer Super Output Areas

(LSOAs) which we translated into their respective postcode sectors. These provide us

an understanding of the level of deprivation of the population in each postcode sector

of the following characteristics: income, employment, health and disabilities, education

and training, barriers to housing, crime, and living environment. We use the deprivation

indices of the year 2004 for the year 2006, of the year 2007 for the years 2007 to 2009

and of the year 2010 for the years 2010 and 2011.

4.4.2 Health Data

The Health Data consists of individual level data for all patients who attended the

Emergency Department at Leicester Royal Infirmary or the Clinical Decisions Unit at

Glenfield Hospital (ED) from January 1, 2006 to December 31, 2011. The data is

restricted to individuals aged from birth up to the 18th birthday and from the 60th

birthday upwards at the time of ED attendance, and whose registered address postcode

is within the following Postcode Districts: LE1, LE2, LE3, LE4, LE5, and LE19. Other
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demographic information includes ethnicity, and gender. The health–related data in-

clude the date of attendance, reason for visit, and the healthcare resource group (HRG)

code.

In Table 4.4, we present some summary statistics for the patients who attended ED

from 2006−2011. For this period, 272,757 individuals of the specified age group visited

the ED. Of this number, 56% are children (153,937) and the remaining 44% (118,820)

are older adults. Our sample consists of slightly more males (143,839 or 53%) than

females (128,918 or 47%). In terms of ethnic groups, White constitute majority of the

sample (168,036 or 62%), next in size is Asian (64,576 or 24%), while Black is the

smallest ethnic group (11,764 or 4%). The remaining 10% of individuals are either of

other ethnic groups or chose not to indicate their ethnicity.

A total of 87,400 individuals were admitted to the hospital following a visit to the

ED, representing 32% of total visits. Older adults were more likely to be admitted

than children (56% compared to 13%). Length of stay varies widely for the two broad

age groups. The average length of stay for children is approximately 2 days while older

adults spend 9 days on average. We present a breakdown of these statistics by Postcode

Districts in Table 4.B.2.

We have HRG codes for 93% of the sample (254,203 ED attendants). The HRG code is a

combination of all the intervention and diagnoses of hospital attendants from attendance

to discharge into a single code. As such, each code is a standard grouping of clinically

similar treatments which use similar levels of resources.50 The HRG code determines

the cost of the hospital visit for ED attendants and admitted patients. We complement

the individual level data with the National Tariff Data to get the cost of attendance.

We obtain the National Tariff Data for the fiscal years 2005/06 to 2011/12 from the

National Archives. The National Tariff Data provides: the price for each HRG code

(tariff); whether the price can be increased when predetermined specialised services

are done; and where relevant, the expected length of stay; the price per day above the

expected length of stay; and the price for short length of stay (< 2 days). We are able

to match 98% (248,572) of the HRG codes in the sample to the cost information from

the National Tariff data.

50Please see A Simple Guide to Payment by Results at https://www.gov.uk/government/publicat
ions/simple-guide-to-payment-by-results for more information.
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4.5 Empirical Specification

The main contribution of this paper is to quantify the immediate effects of pollution

on hospital visits, obtained diagnoses, and its subsequent economic costs. We link

NO2 and PM10 variation with administrative records of hospital visits, their mode of

disposal, the obtained diagnosis, and economic costs of the overall visit. We classify

this analysis into two groups of models. We begin by examining the effects of pollution

on the total number of hospital visits, and obtained diagnoses by age group—children

and older adults—and postcode sector. We then analyse the effects of pollution on the

costs of attendance at the individual level. We refer to these groups as non-cost analysis

and cost analysis, respectively.

Firstly, we examine the effects of pollution—NO2 and PM10—on the total number of

visits by age group and postcode sector as follows:

HospitalV isitsact = β0 + β1 Pollution
p
ct + β2 WCt + β3 DIct + γd + δwy + ωc + εct,

(4.5.1)

where HospitalV isitsact is the number of hospital visits on day t by age group a ∈
{children, older adults}, and postcode sector c, Pollutionpct is each measure of pollution

used for postcode sector c day t, p ∈ {daily NO2, daily PM10}. Each postcode sector

has a unique centroid therefore both centroids and postcode sectors are identified by

the subscript c.51 WCt are the weather controls, such as average daily temperature,

and average daily rainfall, and εct are the error terms. DIct are the postcode sector

controls. We use the deprivation indices of the year 2004 for the year 2006, of the year

2007 for the years 2007 to 2009 and of the year 2010 for the years 2010 and 2011. These

indices provide us an understanding of the level of deprivation of the population in

each postcode sector of the following characteristics: income, employment, health and

disabilities, education and training, barriers to housing, crime, and living environment.

This specification also includes γd, δwy and ωc which are day of the week, week/year

and postdistrict fixed effects, respectively. The day of the week fixed effects account for

differences in hospital attendance by day of the week while the week/year fixed effects

account for seasonal effects that can vary across years, such as influenza, asthma, and

51The Postcode sector identifier is composed by the Postcode district plus one digit.
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urinary tract infection prevalence.52 We include these in a staggered way. We also

perform the same analysis with Pollutionpct lagged by seven days.

To perform the analysis presented we would need a monitor per postcode sector, ideally

on their centroids. However, Leicester only has 8 monitors between 2006 and 2011

while in the Postcode Districts of analysis there are 48 postcode sectors. Furthermore,

a postcode sector’s pollution may not be adequately measured by a simple average

pollution exposure for residents based on the closest monitor readings due to the sparse

placement of monitors within postcode sectors. As we show in Map 4.2, these monitors

are not only less than the number of postcode sectors we are analysing but are also

placed on the border of some postcode sectors. To impute pollution to the centroid

of each postcode sector more accurately, we build a pollution measure based on wind

direction and wind speed in addition to the geographic coordinates of the centroid and

monitors. We refer to this measure as the inverse distance weighted (IDW).

We calculate the weights of each monitor’s pollution based on two main factors, strength

and distance. Strength refers to the exposure of the centroid of each postcode sector to

the pollution readings of each monitor using the wind speed and direction. We denote

each monitor with the subscript k. We calculate the hourly strength of a monitor to a

centroid as follows:

Strengthckt = abs (cos θckt) ∗WindSpeedt (4.5.2)

where θckt is the angle difference between the wind direction and the projected line that

connects the monitor k and the centroid c at time t, and WindSpeed is the wind speed

at time t. Additionally, we take the absolute value of the cos of the angle difference to

capture the case where a centroid is behind a monitor in terms of the wind direction.

This use of wind speed and direction assumes two things. Firstly, the higher the wind

speed the further away pollution particles travel. Secondly, if the monitor and centroid

of the postcode sector are aligned in terms of wind direction then the exposure of that

centroid with respect to that monitor is high, the converse also holds. For a graphical

representation of this calculation, see Figure 4.2. We also use the distance in kilometres

from each monitor to each centroid.

52See Johnston et al. (1996); Rosello et al. (2018) for discussions on seasonality in hospital admissions.
See https://www.bbc.com/news/health-45783005 for more details on differences of hospital attendance
by day of the week.
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IDW is defined as the weighted average inverse distance from a pollution monitor to

the centroid of a postcode sector at the hourly level:

IDWckt =

∑
k

Strengthckt
Distanceck

∗ Pollutionkt∑
k

Strengthckt
Distanceck

(4.5.3)

where Strength is the projected proportion of the effect of monitor k at time t on

centroid c conditional on wind speed and direction at time t, Distance is the distance

in kilometres from centroid c to the monitor k, and Pollution is the mean of the 24

hourly measures of NO2 or PM10 of monitor k at time t. Figure 4.1 depicts the

distribution of IDW NO2 and IDW PM10 from 2006 to 2011.

A potential concern is the well established fact that lower wind speeds are correlated

with higher concentrations of pollution (Grundstrom et al., 2015; Czernecki et al.,

2017).53 Since the monitors simultaneously capture both measures, the resulting pol-

lution measure already accounts for this relationship. An additional concern is the

endogeneity of pollution monitors locations. Map 4.3 should alleviate this concerns

since Leicester Industrial workers’ work place is relatively evenly distributed in the

outskirts of Leicester City. However, to address this concern in a systematic way our

measure construction approach exploits variation in wind speed and direction—both

considered to be exogenous with respect to health—by weighting the impact of each

monitor’s pollution measure by the wind direction and speed. Moreover, our measure

exploits hourly pollution that is independent of monitor placement, therefore our esti-

mates should not be biased by changes in monitor composition due to wind direction

and speed. For more details on wind direction and speed in Leicester from 2006 to

2011, see Figure 4.3.

In addition to analysing the effects of daily pollution on the total number of hospital

visit, we examine whether daily pollution has an effect on the total number of visits by

mode of disposal, i.e. discharged from ED and admitted to hospital.54 To do so, we

use the following empirical specification:

MODb
ct = β0 + β1 IDWct + β2 WCt + β3 DIct + γd + δwy + ωc + εct, (4.5.4)

53This result also holds in Leicester in the analysed period, see Table 4.B.3.
54We exclude from this analysis the individuals that died on arrival at the Emergency Department.
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where MOD is the total number of visits from individuals residing in postcode sector c

at time t, resulting in b ∈ {admitted to hospital, discharged from ED}. Since individu-

als more severely ill are more likely to be admitted to hospital, a potential interpretation

of these specifications is the severity of the immediate effects of pollution. While a pos-

itive coefficient of total number of discharged from ED visits would increase the total

costs of healthcare in Leicester due to pollution, an increase of the total number of hos-

pital admitted patients would increase the total costs of healthcare in Leicester more

since the differences in average costs by mode of disposal are substantial even when

assuming the average cost per visit is fixed.

To further explore the immediate effects of daily pollution among more severe condi-

tions, we additionally examine the effects of daily pollution on the total number of

hospital admitted patients by diagnosis. We exploit diagnosis data at the individual

level and classify the hospital admitted patients into respiratory, cardiovascular, and

cerebrovascular diagnosis. We then regress:

Diagnosisect = β0 + β1 IDWct + β2 WCt + β3 DIct + γd + δwy + ωc + εct, (4.5.5)

where Diagnosis is the total number of visits from individuals residing in postcode

sector c at time t, and e ∈ {respiratory, cardiovascular, and cerebrovascular}. There

is ample literature that establishes the short and long term effects of pollution among

respiratory, cardiovascular, and cerebrovascular conditions. In this context, we expect

to find effects of NO2 on respiratory and cardiovascular diseases and effects of PM10

on cerebrovascular diseases similar to the ones documented by Samoli et al. (2006),

Beatty and Shimshack (2011), Simeonova et al. (2018), among many others.

The second part of our analysis focuses on examining whether and to what extent

daily pollution affects healthcare costs to inform the debate of resource allocation in

Leicester. We firstly use OLS to estimate the effect of pollution on hospital costs at

the individual level. Since the individual costs of hospital attendance vary greatly by

mode of disposal, we examine these effects on discharged from ED patients and hospital

admitted patients separately, see Section 4.C for a detailed account of how we compute

the individual level costs per hospital visit. Since this analysis is at the individual level,

variables at the level of an individual attending the ED are denoted by subscript i. We

then estimate the following specifications:

Costbict = β0 + β1 IDWct + β2 WCt + β3 DIct + γd + ∆wy + ωc + εct, (4.5.6)
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where Cost is the cost of attendance for individual i residing in postcode sector c at

time t, b ∈ {admitted to hospital, discharged from ED}, and ∆ are the interacted week

of the year, fiscal year fixed effects.55 β1 can be interpreted as the changes in the average

cost per visit by mode of disposal due to spatial and daily changes in pollution and

we expect it to be positive. Although average cost per visit is an informative indicator

of the effects of pollution on healthcare costs, the goal of this paper is to quantify

the immediate total costs of pollution in terms of emergency department visits. We

therefore further examine the effects of pollution on the total costs. To do so, we

aggregate the individual level costs by mode of disposal, day, and postcode sector. This

allows us to estimate the changes in the total costs by mode of disposal due to spatial

and daily changes in pollution as follows:

TotalCostbct = β0 + β1 IDWct + β2 WCt + β3 DIct + γd + ∆wy + ωc + εct, (4.5.7)

where TotalCost is the total costs of all hospital visits of individuals residing in postcode

sector c at time t, b ∈ {admitted to hospital, discharged from ED}, and β1 can be

interpreted as the changes in total costs due to spatial and daily changes in pollution.

It is noteworthy that these estimates are composed by the effects presented in Equations

(4.5.4) and (4.5.6). Nonetheless, by estimating β1, we are quantifying the amount of

resources that are being allocated to remedy the immediate daily costs of pollution.

4.6 Results

Figure 4.4 depicts the relationship between the IDWNO2 and IDWPM10 daily demeaned

average and the hospital visits’ count demeaned average by age group—children and

older adults—during the 6 year period from 2006 to 2011. From this, we observe a

positive relationship between IDWNO2 and IDWPM10 daily demeaned average and the

hospital visits’ count demeaned average for older adults and between IDWPM10 daily

demeaned average and the hospital visits’ count demeaned average for children. These

relationships are more pronounced for older adults than for children. In addition, we

find a negative relationship between IDWNO2 daily demeaned average and the hos-

pital visits’ count demeaned average for children. It is noteworthy that all of these

55We use fiscal year fixed effects and its interaction with week of the year instead of calendar year
since they are not equivalent and costs are updated each fiscal year in the Payment by Results system,
see Section 4.C.
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descriptive relationships hold when observing a plot with all observations and a plot

where all observations are grouped by 100 pollution level bins. Nonetheless, since these

descriptive relationships do not control for any of the relevant characteristic described

in Section 4.5, in Table 4.5 we examine the relationship between daily IDWNO2 and

IDWPM10 and hospital visits by postcode sector from Equation (4.5.1) where we replace

Pollution by IDW . In this analysis, we make a distinction between the ED visits by

population age group, i.e. children (age 17 or less) and older adults (age 60 and above).

In Columns (1) to (4), we show the estimates of the effects of pollution—IDWNO2 and

IDWPM10—on the total number of children attending hospital by day and postcode

sector. We find that all estimates associated with the effect of IDWPM10 on the total

number of children attending hospital per day and postcode sector are positive, signifi-

cant and robust to the inclusion of day of the week, week times year, and post districts

fixed effects. An increase of one standard deviation of the average daily exposure to

PM10 increases the total number of children attending hospital by 0.091 or 4.87 per-

centage points (p.p.) with respect to the dependent variable mean, see Column (3).

Once we include post district fixed effects, a one standard deviation increase of the

average daily exposure to PM10 translates into 0.069 more children attending hospital

or 6.69 p.p. with respect to the variable mean. In addition, and consistent with the

relationship presented in Figure 4.4, we find that the coefficient related to the effect

of IDWNO2 on the total number of children attending hospital by day and postcode

sector is negative and significant.

Analogously, in Columns (5) to (8), we present the estimates of the effects of pollution—

IDWNO2 and IDWPM10—on the total number of older adults attending hospital by day

and postcode sector. We find that all estimates associated with the effect of IDWPM10

on the total number of older adults attending the ED per day and postcode sector

are positive, significant and largely unaltered by the inclusion of day of the week fixed

effects, week times year fixed effects, and post district fixed effects. An increase of

one standard deviation of average daily exposure to PM10 increases the total number

of older adults attending hospital by 0.081 or 5.8 p.p. with respect to the dependent

variable mean, see Column (7). Once including controls that by construction were not

included in Figure 4.4, we find a stronger effect of IDWPM10 on the total number of

children attending hospital per day and postcode sector than in the total number of

older adults. Additionally, we find that the coefficient related to the effect IDWNO2

on the total number of older adults attending hospital by day and postcode sector is
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positive and significant. However, this coefficient is not robust to the inclusion of day

of the week fixed effects, week times year fixed effects, and post district fixed effects

since its sign is reversed by the inclusion of these.

We then further investigate the effects of pollution, in particular, the effects of IDWNO2

on hospital visits decomposing the effects by mode of disposal. In Table 4.6, we present

the estimates corresponding to Equation (4.5.4). We find that the results presented

hold irrespective of the classification by mode of disposal. In the case of children,

each standard deviation increase of average daily exposure to PM10 increases the total

number of children being discharged by 0.084 (4.94 p.p. with respect to the mean) and

the total number of admitted children to hospital by 0.012 (4.63 p.p. with respect to

the mean), see Column (3). Meanwhile, and consistent with the relationship presented

in Figure 4.4, we find that the coefficient related to the effect of IDWNO2 on the

total number of children attending hospital by day and postcode sector is negative and

significant irrespective to the mode of disposal. Similarly, in the case of older adults,

an increase of one standard deviation of average daily exposure to PM10 increases the

total number of older adults being admitted to hospital by 0.042 (4.91 p.p. with respect

to the mean) and the total number of older adults being discharged from hospital by

0.050 (7.69 p.p. with respect to the mean), see Column (7). Similar to our main

specification, we find that the coefficient related to the effect IDWNO2 on the total

number of older adults attending hospital by day and postcode sector is positive and

significant irrespective to the mode of disposal. However, as with our main specification,

this coefficient is not robust to the inclusion of day of the week fixed effects, week times

year fixed effects, and post district fixed effects since its sign is reversed by the inclusion

of these.

In addition, we analyse the effects of pollution on hospital admissions by diagnosis.

We focus on three types of diagnoses of hospital admitted patients:(1) respiratory

conditions, (2) cardiovascular conditions, and (3) cerebrovascular conditions. When

analysing all conditions together, we find that all estimates associated with the effect of

IDWPM10 on these conditions hospital admitted patients are positive and largely unal-

tered by the addition of day of the week fixed effects, week times year fixed effects, and

post district fixed effects. However, almost all are non-significant. When analysing the

conditions separately for older adults, we find that estimates associated with the effect

of IDWPM10 on cardiovascular and cerebrovascular conditions for older adults admitted

patients are positive, significant and robust to the inclusion of fixed effects. However,
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the robustness mentioned does not hold in the case for respiratory diseases where the

inclusion of week of the year times year fixed effects make the results non-significant.

When analysing the conditions separately for children, we find that estimates associ-

ated with the effect of IDWPM10 on cerebrovascular conditions for admitted children

are positive, significant and robust to the inclusion of fixed effects. However, this result

does not hold for respiratory and cardiovascular conditions on children.

Meanwhile, when analysing all conditions together, we find that estimates associated

with the effect of IDWNO2 on these conditions for older adults hospital admitted pa-

tients are positive, significant but non-robust to the inclusion week of the year times

year fixed effects. Moreover, when we examine the effects of IDWNO2 separately by

condition, we find that these results are mainly driven by respiratory conditions. How-

ever, these are non-robust to the inclusion of day of the week fixed effects and week

times year fixed effects.

In Table 4.8, we present the effect of daily IDWNO2 and IDWPM10 on hospital costs at

the individual level following Equation (4.5.6). Similar to the specification presented

in Table 4.6, we distinguish between the hospital visits by mode of disposal, hospital

admission or discharged from ED. In Panel (A), we present the results for hospital

admitted patients. In the case of hospital admitted children, we find that changes in

IDWPM10 have a positive and significant effect on individual level costs of visit when

controlling for postcode sector characteristics and weather conditions. This effect is non-

robust to the inclusion of week of the year times fiscal year fixed effects. Nonetheless,

an increase of one standard deviation of average daily exposure to PM10 increases

the average cost per hospital admitted child by £60.40 or 7.15 p.p. with respect to

the dependent variable mean, see Column (1). In the case of hospital admitted older

adults, we find that in IDWPM10 have a positive and significant effect on individual

level costs of visit, however, this effect is not robust to the inclusion of day of the week

fixed effects. An increase of one standard deviation of average daily exposure to PM10

increases the average cost per hospital admitted older adults by £179.89 or 9.81 p.p.

with respect to the dependent variable mean, see Column (5). Likewise, the effects

of IDWNO2 on costs at the individual level for admitted children and older adults are

negative and significant but non-robust to the inclusion of day of the week fixed effects.

In Panel (B), we present results corresponding to Equation (4.5.6) for patients dis-

charged from ED. We find that IDWPM10 have a positive and significant effect on in-
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dividual level costs of discharged children’s visits when including day of the week fixed

effects fiscal year fixed effects and week times year fixed effects. For each standard devi-

ation of increase on IDWPM10 and IDWNO2 the individual costs of discharged hospital

visits by children increase by £0.31 and £0.27. These magnitudes might seem small,

however, these coefficients can be interpreted as the average costs of visit which for

132,895 individuals can add up to £41, 197 (or 546 extra discharged visits) and £35, 882

(or 478 extra discharged visits), respectively. Meanwhile, we find that IDWPM10 has

negative effect and IDWNO2 has a positive effect on individual level costs of discharged

older adults’ visits. However, these are not robust to the inclusion of any fixed effects,

the coefficient associated with IDWPM10 becomes non-significant while the coefficients’

sign associated with IDWNO2 becomes negative.

To further investigate the effects of pollution—IDWPM10 and IDWNO2—on healthcare

costs we analyse its effects on total costs by day and postcode sector following Equation

(4.5.7). In Table 4.9, we present the estimates for the hospital admitted patients in

Panel A and in Panel B that of the discharged from ED patients. In the case of

the hospital admitted children, we find that changes in IDWPM10 have positive and

significant effects on total costs that are robust to the inclusion of day of the week fixed

effects but non-robust to the addition of week times fiscal year fixed effects. An increase

of one standard deviation of average daily exposure to PM10 increases the total costs

for hospital admitted children by £74.71 (or 7.98 p.p. with respect to the mean) and

£39.79 (or 4.25 p.p. with respect to the mean) per day and postcode sector if we do

not include and include day of the week fixed effects, respectively, see Columns (1) and

(2). Meanwhile, in the case of hospital admitted older adults, we find that changes in

IDWPM10 have positive and significant effects on total costs for older adults hospital

admitted patients. However, these are non-robust to the inclusion of day of the week

fixed effects. An increase of one standard deviation of average daily exposure to PM10

increases the total costs for older adults hospital admitted patients by £273.90 (or 10.70

p.p. with respect to the mean) per day and postcode sector if we include postcode sector

and weather controls but do not include fixed effects, respectively, see Columns (5). In

addition, we find that changes in IDWNO2 have negative and significant effects on total

costs for children and older adults hospital admitted patients that are non-robust to

the inclusion of day of the week fixed effects.

When analysing total costs for discharged patients, we find that coefficients associated

with changes in IDWNO2 are non-robust to the inclusion of day of the week fixed effects
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are included irrespective of the age group. Meanwhile, when analysing the effects of

IDWPM10 on total costs for children, we find that an increase of one standard deviation

of exposure to PM10 increases the total costs of ED visits by children by £4.08 and

£3.94 on average per day per postcode sector if we do not include and include day

of the week fixed effects, respectively, see Columns (1) and (2). Likewise, increased

exposure to PM10 has a positive effect and significant effect of £0.78 on total costs for

older adults on average per day and postcode sector when including day of the week

fixed effects and £2.06 when including in addition week of the year times fiscal year

and post district fixed effects, respectively.

The combination of these results suggest that a higher exposure to PM10 increases

healthcare costs since it causes more, and more costly hospital visits, see Tables 4.5,

4.6, and 4.9. In the case of older adults, even when this higher exposure to PM10 does

not generate higher average costs of visits for discharged older adults, our results of

more costly hospital visits are driven by higher numbers of hospital visits in general—

admitted to hospital and discharged from ED— due to higher exposure to PM10. Our

results allow us to quantify the economic costs of pollution due to PM10 for hospital

admitted older adults in Leicester. An increase in one standard deviation of exposure to

PM10 increases the total costs by £273.90 per day per postcode sector on average and

by £4, 398, 834 in the whole city in a year only accounting for the higher total costs of

older adults hospital admitted patients.56 When making the same calculations for older

adults discharged from ED, we find non-significant results when we do not include fixed

effects, see Table 4.9, Columns (5) to (8). In the case of children, higher exposure to

PM10 generates higher hospital admissions and both average and total costs of children

hospital admissions are higher when children are more exposed to PM10. Similar to

our results for the hospital admitted older adults, we find that each standard deviation

of increase of exposure to PM10 increases daily cost for hospital admitted children

and discharged from ED children by £74.71 and £4.08 which translates to £1, 199, 843

and £65, 525 on a yearly basis, respectively. In total, each extra standard deviation of

exposure to PM10 costs the Leicester CCGs £4, 398, 834 a year treating older adults

and £1, 265, 368 treating children adding up to £5, 664, 202.57

56This result is accounting for years of 365 days and 44 postcode sectors for which we have their
local characteristics (deprivation indices).

57For consistency purposes, these calculations are based in specification without any type of fixed
effects, which does not allow us to quantify the costs for discharged older adults since the corresponding
coefficient are non-significant. Given this, the results presented should be interpreted as a lower bound
in costs as the total costs for discharged older adults are positive and significant in the remaining three
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Our results with respect to NO2 are mixed which prevent us from fully quantifying

the economic costs of pollution due to NO2. We find negative, often non-significant

and very small in magnitude effects of positive changes in NO2 on total number of

hospital visits irrespective of the age group and mode of disposal. In addition, we

find that only the average costs for children discharged from ED consistently increases

when NO2 increases. As a consequence, these mixed results are also reflected in our

estimates of the effects of changes in NO2 on total costs by day and postcode sector. In

line with these mixed findings, our results for children discharged from ED associated

with positive changes in NO2 are negative and the only ones robust to the inclusion of

controls and fixed effects.

4.7 Robustness Checks

A potential concern regarding our main analysis is the use of average daily exposure

to pollution. In order to alleviate this concern, we also perform all our analyses using

the range of exposure to pollution within a day, i.e. maximum minus minimum daily

exposure. The daily range is a relevant indicator since big changes in pollution in a short

period of time can trigger health conditions for people to attend hospital. In Table 4.10,

we find that larger daily ranges of exposure to PM10 do not have a consistent effect on

total number of hospital visits, do not have a consistent effect on total costs for hospital

admitted patients; and by and large do not consistently have an effect on total costs for

discharged patients. Additionally, whenever these results are consistent with our main

results they are not robust to the inclusion of controls. Notably, we find that larger

daily ranges of exposure to NO2 increase the total number of hospital visits per day

and postcode sector—since almost all coefficients are positive, significant and robust

to the inclusion of controls— increase the total costs per visit of discharged patients,

and increase the total costs per visit of older adult admitted patients only when fixed

effects are included.

Another potential concern about our results is the possible presence of avoidance be-

haviour where individuals avoid outings on days/areas of higher pollution (see Janke,

2014; Neidell, 2009; Moretti and Neidell, 2011). There are two reasons why avoidance

behaviour should not be of concern. Firstly, since the level of disaggregation of pollution

specifications where fixed effects are included.
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data we work with is not publicly/easily available. Individuals could check air quality

in Leicester as a whole, then avoidance behaviour could potentially be present only in

the time dimension but not in the geographical dimension we use for our analysis. Sec-

ondly, and most importantly, our target population for this analysis has very little to

no possibilities of avoidance behaviour by our design. Our target population is children

(schools are close to their residence) and the older adults (whom are retired). This

allowed us to better impute pollution using their residence postcode and, in addition,

should alleviate any concerns about avoidance behaviour.

An additional concern regarding our results is the way we incorporate wind speed and

direction to our measure of pollution. To alleviate those concerns, we perform the same

analysis presented in Table 4.5 using the nearest monitor as our pollution measure. We

know these estimates are prone to bias since exposure to monitors is not necessarily

randomly assigned. However, since we are analysing pollution within a very small

area—a city—we can assume that the limits to consider the centroid of the postcode

sector closer to one monitor are random. In Table 4.11, we show that our results are

largely unaltered by the change in the pollution measure.

Another potential concern is the exclusion of air pressure as a weather control. The

inclusion of air pressure is relevant, as pressure of the air affects whether pollution levels

build up. During high pressure systems, the air is usually still which allows pollution

to accumulate. Conversely, during low pressure systems the weather is often windy and

rainy, leading to pollutants to disperse or be washed out of the atmosphere. Since we

only have average daily pressure data for 2009 to 2011, we excluded it from the main

analysis. When we include air pressure as a control in Table 4.12, the results from the

main analysis still hold when we restrict the sample to 2009-2011 and include the air

pressure control.

In addition, a potential concern is the fact that weekdays might present different pol-

lution patterns and hospital admissions than weekends. As a robustness check, we

examine the effects of IDWPM10 and IDWNO2 on total hospital visits and total costs

for admitted and discharged patients. In Table 4.13, we show that our results still hold

when we restrict the sample to weekdays only.

Finally, another concern regarding our main result is the potential cumulative effects

of pollution on individuals’ health and therefore the likelihood of a hospital visit. To

address this concern, we perform the same analysis than the one presented in Table 4.5
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but including seven day lags. In Table 4.14, we include seven day lags to check whether

there are cumulative effects. By and large we find that when analysing the effects of

IDWPM10 the lags included are associated with negative coefficients when significant.

To the contrary, when analysing the effects of IDWNO2 the inclusion of lags present

some positive and significant coefficients. Our results suggest that there is positive

and significant cumulative effects of NO2. In addition, we also run a falsification test,

replacing our main explanatory variables with its corresponding seven day lag and lead,

see Table 4.15. When analysing the effects of IDWPM10, we find that none of these

replacements have an effect on of total number hospital visits. However, this is not the

case when analysing the effects of IDWNO2 .

4.8 Final Remarks

This paper investigates the impact of pollution on the economic costs of public health-

care using proprietary data from the University Hospitals of Leicester NHS Trust. Our

study exploits the spatial and temporal variation of pollution—nitrogen dioxide (NO2)

and particulate matter with an aerodynamic diameter less than 10 µm (PM10)—as

well as temporal variation in wind speed and direction.

Despite the ample literature that establishes that chronic exposure of children and older

adults to air pollution results in decreased development and lung function, increased

number of respiratory and coronary conditions, diabetes and dementia, there is little

empirical evidence that evaluates the immediate effects ofNO2 and PM10 on healthcare

costs for the most vulnerable groups, i.e. children and seniors.

In this paper, we have shown each extra standard deviation of exposure to PM10

costs the Leicester CCGs £4, 398, 834 per year treating older adults and £1, 265, 368

treating children which sums to £5, 664, 202 in total costs per year, 0.85% of the average

total expenditure for UHL NHS Trust (from fiscal year 2007/08 to 2011/12). The cost

may seem small compared to the budget but we maintain that the pollution cost is a

substantial burden on the Leicester CCGs. We do not find clear effects of changes in

daily average exposure to NO2 on hospital visits and their costs. Nonetheless, we find

that larger daily ranges of exposure to NO2 increase total number of hospital visits

per day and postcode sector, increase the total costs per visit of discharged patients,

and increases the total costs per visit of admitted older adults only when controlling
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by fiscal year fixed effects.

Our findings quantify the resources that could potentially be reallocated from NHS

treating immediate consequences of pollution, in particular consequences of PM10, on

pollution reduction programs while improving Leicester residents’ health. By overcom-

ing the usual challenges to identify the causal effects of pollution—such as endogeneity,

measurement error and avoidance behaviour—we shed light on how air pollution affects

medical costs, which is in turn critical for crafting efficient environment policies.
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Tables

Table 4.1: EU Standards

Pollutant Averaging period Concentration Limit value to be met as of Permitted exceedences each year

NO2 1 hour 200 µg/m3 1.1.2010 18
1 year 40 µg/m3 1.1.2010 -

PM10 24 hours 50 µg/m3 1.1.2005 35
1 year 40 µg/m3 1.1.2005 -

Source: European Commission, Environment. https://ec.europa.eu/environment/air/quality/standards.htm

*Under Directive 2008/50/EU, the Member State could apply for an extension of up to five years
(i.e. maximum up to 2015) in a specific zone. The request is subject to an assessment by the
Commission. In such cases within the time extension period the limit value applies at the level of
the limit value + maximum margin of tolerance (48 µg/m3 for annual NO2 limit value).

**Under Directive 2008/50/EU, the Member State was able to apply for an extension until three
years after the date of entry into force of the new Directive (i.e. May 2011) in a specific zone. The
request was subject to assessment by the Commission. In such cases within the time extension
period the limit value applies at the level of the limit value + maximum margin of tolerance (35
days at 75µg/m3 for daily PM10 limit value, 48µg/m3 for annual PM10 limit value).
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Table 4.2: Data Description and Sources

Type Date Freq. Level Description Source

(I) Pollution

NO2 2006 to 2011 Hourly Monitor Micrograms per m3 Leicester City Coucil (AQMA)
PM10 2006 to 2011 Hourly Monitor TEOM 1.3 measure Leicester City Coucil (AQMA)

(II) Meteorological

Temperature 2006 to 2011 Hourly Monitor Degree Celcius (degree C) Leicester City Coucil (AQMA)
Rainfall 2006 to 2011 Hourly Monitor Millimiter per hour (mm/h) Leicester City Coucil (AQMA)
Air Pressure 2009 to 2011 Hourly Monitor Millibar (mbar) Leicester City Coucil (AQMA)

(III) Health

Age 2006 to 2011 - ED visit Age Groups: Children (<18), Older Adults(>60) UHL, NHS Trust
Gender 2006 to 2011 - ED visit Female, Male UHL, NHS Trust
Ethnicity 2006 to 2011 - ED visit Asian, Black, White and Other Ethnicities UHL, NHS Trust
Postcode Sector 2006 to 2011 - ED visit Postcode District plus one digit UHL, NHS Trust
Admission Date 2006 to 2011 - ED visit Date the individual enters ED UHL, NHS Trust
Episode End Date 2006 to 2011 - ED visit Date the individual is released from ED or hospital UHL, NHS Trust
Mode of Disposal 2006 to 2011 - ED visit Discharged, Admitted, Dead UHL, NHS Trust
ICD 2006 to 2011 - ED visit International Classification of Diseases UHL, NHS Trust
HRG 2006 to 2011 - ED visit Healthcare Resource Group UHL, NHS Trust
Fiscal Year 2006 to 2011 - ED visit Necessary to merge with the National Tariff Data UHL, NHS Trust

(IV) Administrative

National Tariff 2005/6 to 2011/2 Yearly Fiscal Year Data National Archives
Census 2011 2011 - Whole population by age, gender and postcode sector Consumer Data Research Centre
Maps - Postcode Sectors in LE1, LE2, LE3, LE4, LE5, and LE19 Own elaboration, EDINA Digimap
Deprivation Indices 2004,2007,2010 Yearly Originally in Lower Layer Super Output Areas (LSOAs) (ODPM) Office of the Deputy Prime

but translated into Postcode Sectors Minister

Note: ED stands for Emergency Department at Leicester Royal Infirmary or the Clinical Decisions Unit at Glenfield Hospital
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Table 4.3: Pollution Summary Statistics

Variable Mean Std. Dev. Min. Max. N

St Matthews Way NO2 56.37 28.024 0.191 225.571 1942272
St Matthews Way PM10 - - - - -

Vaughan Way NO2 60.641 34.539 4.393 1076.094 2453616
Vaughan Way PM10 24.729 18.456 0.6 1010.6 2503920

Melton Road NO2 52.571 26.352 2.483 474.444 2454528
Melton Road PM10 22.7 14.016 0.5 792.6 2286672

Abbey Lane NO2 50.439 34.534 0.764 436.626 1246032
Abbey Lane PM10 18.842 12.113 1.1 1022.8 1174608

Glenhills Way NO2 69.387 36.669 1.91 280.388 2495280
Glenhills Way PM10 26.063 12.959 0.9 291.6 2470656

Imperial Ave NO2 35.011 17.901 0.573 148.407 2456208
Imperial Ave PM10 17.021 10.796 0.8 723.2 2402352

London Road NO2 31.145 22.205 0.191 159.485 2382192
London Road PM10 16.222 10.673 0.6 714.4 2328288

Uppingham Road NO2 35.819 22.449 0.191 286.882 2347056
Uppingham Road PM10 - - - - -

Wind Speed 2.829 1.674 0 39.99 2522112
Wind Direction 191.95 97.874 0 360 2522112

Temperature 10.178 6.251 -9.859 34.54 2522112

Rainfall 0.053 0.306 0 14.96 2513424

Air Pressure 1004.008 10.919 957 1032 1245696
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Table 4.4: Health Statistics, 2006 to 2011.

Visits Admissions Length of Stay* Number of Doctors*
Total Total % of Visits Mean St. Dev. Mean St. Dev.

Gender
Female 128918 45158 35.03% 7.64 13.30 1.61 0.82
Male 143839 42242 29.37% 6.33 11.71 1.57 0.81

Age
Children 153937 20349 13.22% 1.55 4.16 1.04 0.22

0 to 4 62383 11,409 18.29% 1.50 4.51 1.02 0.15
5 to 9 29737 2887 9.74% 1.40 2.91 1.02 0.13
10 to 17 61817 6053 9.79% 1.71 3.97 1.09 0.33

Older Adults 118820 67051 56.43% 8.66 13.75 1.76 0.86
60 to 64 21537 8029 37.28% 5.57 10.79 1.64 0.81
65 to 69 17398 7936 45.61% 6.71 12.86 1.68 0.83
70 to 74 19087 10211 53.50% 7.63 12.54 1.72 0.84
75 to 79 19169 11599 60.51% 8.86 14.30 1.79 0.88
80 to 84 18391 12181 66.23% 9.94 14.82 1.81 0.87
85 to 89 14203 10214 71.91% 10.53 14.27 1.83 0.89
90+ 9035 6881 76.16% 10.71 14.73 1.78 0.85

Ethnicities
White 168036 61333 36.50% 7.53 12.91 1.63 0.83
Black 11764 2697 22.93% 4.64 11.79 1.34 0.67
Asian 64576 17954 27.80% 5.82 11.33 1.53 0.80
Other 28381 5416 19.08% 6.22 12.62 1.46 0.77

Total 272757 87400 32.04% – – – –

*Admitted to Hospital sample only.
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Table 4.5: Standardized IDW on Hospital Visits with Weather Controls and Time Fixed
Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

daily IDW PM10 0.080*** 0.077*** 0.091*** 0.069*** 0.030*** 0.035*** 0.081*** 0.087***
(0.007) (0.007) (0.009) (0.009) (0.006) (0.006) (0.007) (0.008)

daily IDW NO2 -0.081*** -0.059*** -0.059*** -0.053*** 0.027*** -0.006 -0.019** -0.006
(0.007) (0.008) (0.011) (0.011) (0.006) (0.006) (0.009) (0.009)

Observations 78219 78219 78219 78219 78219 78219 78219 78219
Adjusted R2 .1818 .1836 .2128 .2315 .0359 .0403 .0457 .0827
Dep. var. mean 1.868 1.868 1.868 1.868 1.395 1.395 1.395 1.395
Dep. var. st. dev. 1.549 1.549 1.549 1.549 1.170 1.170 1.170 1.170
Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates corresponding to Equation (4.5.1) where we replace Pollution
by IDW . Our dependent variable is total number of visits by age group. Our main independent
variables are the daily average IDWPM10 and IDWNO2 . Columns (1) to (4) present the correspond-
ing estimates for children while Columns (5) to (8) present the corresponding results for older adults.
Our unit of observation is day/postcode sector. Our postcode sector controls are the deprivation
indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010 (used for 2010
and 2011) corresponding to the following categories: income, employment, health and disabilities,
education and training, barriers to housing, crime, and living environments. Our weather controls
are average minimum and maximum daily temperature, daily rainfall.
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Table 4.6: Standardized IDW on Hospital Visits with Weather Controls and Time Fixed
Effects by Mode of Disposal

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Admitted

daily IDW PM10 0.011*** 0.009*** 0.012*** 0.011*** 0.013*** 0.015*** 0.042*** 0.047***
(0.003) (0.003) (0.003) (0.003) (0.005) (0.005) (0.006) (0.006)

daily IDW NO2 -0.018*** -0.008*** -0.012*** -0.013*** 0.012** -0.001 -0.008 -0.003
(0.003) (0.003) (0.004) (0.004) (0.005) (0.005) (0.008) (0.008)

Observations 78219 78219 78219 78219 78219 78219 78219 78219
Adjusted R2 .0357 .037 .0514 .0543 .0288 .0297 .0347 .058
Dep. var. mean 0.259 0.259 0.259 0.259 0.854 0.854 0.854 0.854
Dep. var. st. dev. 0.530 0.530 0.530 0.530 0.967 0.967 0.967 0.967

(B) Discharged

daily IDW PM10 0.073*** 0.071*** 0.084*** 0.060*** 0.021*** 0.025*** 0.050*** 0.051***
(0.007) (0.007) (0.009) (0.009) (0.004) (0.004) (0.005) (0.005)

daily IDW NO2 -0.071*** -0.053*** -0.050*** -0.043*** 0.018*** -0.007 -0.015** -0.005
(0.007) (0.008) (0.011) (0.011) (0.004) (0.005) (0.007) (0.007)

Observations 78219 78219 78219 78219 78219 78219 78219 78219
Adjusted R2 .1661 .1676 .1939 .2111 .0139 .0193 .023 .0398
Dep. var. mean 1.699 1.699 1.699 1.699 0.650 0.650 0.650 0.650
Dep. var. st. dev. 1.529 1.529 1.529 1.529 0.841 0.841 0.841 0.841

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.4). Our dependent
variable is total number of visits by age group. Our main independent variables are the daily average
IDWPM10 and IDWNO2 . In Panel (A), we present estimates for the hospital admitted patients
sub-sample while, in Panel (B), we present that of discharged from ED patients. Columns (1) to (4)
present the corresponding estimates for children while Columns (5) to (8) present the corresponding
results for older adults. Our unit of observation is day/postcode sector. Our postcode sector controls
are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010
(used for 2010 and 2011) corresponding to the following categories: income, employment, health
and disabilities, education and training, barriers to housing, crime, and living environments. Our
weather controls are average minimum and maximum daily temperature, daily rainfall.
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Table 4.7: Standardized IDW on Hospital Admissions with Weather Controls and Time Fixed
Effects by Diagnosis

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Respiratory, Caridiovascular, and Cerebrovascular Diagnosis.

daily IDW PM10 0.002 0.001 0.002 0.002 0.001 0.001 0.010* 0.008
(0.002) (0.002) (0.003) (0.003) (0.004) (0.004) (0.005) (0.005)

daily IDW NO2 -0.002 0.004* -0.001 -0.001 0.013*** 0.011** 0.006 0.007
(0.002) (0.003) (0.003) (0.003) (0.004) (0.005) (0.007) (0.007)

Observations 51584 51584 51584 51584 51584 51584 51584 51584
Adjusted R2 .0203 .0214 .0323 .0327 .0189 .0205 .0243 .0338
Dep. var. mean 0.164 0.164 0.164 0.164 1.081 1.081 1.081 1.081
Dep. var. st. dev. 0.403 0.403 0.403 0.403 0.874 0.874 0.874 0.874

(B) Respiratory Diagnosis.

daily IDW PM10 -0.002 0.004* -0.001 -0.001 0.013*** 0.011** 0.006 0.007
(0.002) (0.003) (0.003) (0.003) (0.004) (0.005) (0.007) (0.007)

daily IDW NO2 0.002 0.001 0.002 0.002 0.001 0.001 0.010* 0.008
(0.002) (0.002) (0.003) (0.003) (0.004) (0.004) (0.005) (0.005)

Observations 51584 51584 51584 51584 51584 51584 51584 51584
Adjusted R2 .0174 .0185 .0308 .031 .0162 .0163 .02 .0238
Dep. var. mean ymean 0.125 0.125 0.125 0.125 0.525 0.525 0.525 0.525
Dep. var. st. dev. 0.353 0.353 0.353 0.353 0.677 0.677 0.677 0.677

(C) Cardiovascular Diagnosis.

daily IDW PM10 -0.000 -0.000 -0.000 0.000 0.010** 0.013** 0.030*** 0.029***
(0.001) (0.001) (0.001) (0.001) (0.005) (0.005) (0.006) (0.007)

daily IDW NO2 0.000 0.001 -0.001 -0.001 0.025*** 0.009 -0.005 0.000
(0.001) (0.001) (0.001) (0.001) (0.005) (0.006) (0.008) (0.008)

Observations 51584 51584 51584 51584 51584 51584 51584 51584
Adjusted R2 .0018 .0018 .0021 .0022 .0138 .0155 .0207 .0286
Dep. var. mean 0.015 0.015 0.015 0.015 0.904 0.904 0.904 0.904
Dep. var. st. dev. 0.123 0.123 0.123 0.123 0.824 0.824 0.824 0.824

(D) Cerebrovascular Diagnosis.

daily IDW PM10 0.004*** 0.003*** 0.003** 0.003* 0.004* 0.004* 0.007** 0.008***
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003) (0.003)

daily IDW NO2 -0.004*** -0.002* -0.002 -0.002 0.003 0.001 -0.006 -0.006
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003) (0.004) (0.004)

Observations 51584 51584 51584 51584 51584 51584 51584 51584
Adjusted R2 .005 .0052 .0061 .0063 .0059 .0059 .0073 .0085
Dep. var. mean 0.036 0.036 0.036 0.036 0.159 0.159 0.159 0.159
Dep. var. st. dev. 0.188 0.188 0.188 0.188 0.393 0.393 0.393 0.393

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.5). Our dependent
variable is total number of admitted patients by age group. Our unit of observation is day/postcode
sector for the hospital admitted patients sub-sample. Our main independent variables are the daily
average IDWPM10 and IDWNO2 . In Panel (A), we present estimates for respiratory, cardiovascular
and cerebrovascular diagnosis together while, in Panels (B), (C) and (D), we present that of the
same diagnosis separately. Columns (1) to (4) present the corresponding estimates for children
while Columns (5) to (8) present the corresponding results for older adults. Our postcode sector
controls are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009)
and 2010 (used for 2010 and 2011) corresponding to the following categories: income, employment,
health and disabilities, education and training, barriers to housing, crime, and living environments.
Our weather controls are average minimum and maximum daily temperature, daily rainfall.
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Table 4.8: Standardized IDW on Costs, 2006 to 2011.

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Admitted

IDW PM10 60.396*** 27.927* -5.758 -7.622 179.886*** -2.237 -17.522 -14.209
(14.596) (15.090) (22.462) (21.342) (12.152) (10.895) (14.380) (14.953)

IDW NO2 -62.453*** -17.148 6.342 5.559 -264.802*** 16.260 8.420 7.062
(13.071) (14.886) (29.249) (28.697) (13.180) (11.787) (15.228) (15.231)

Observations 12378 12378 12378 12378 50751 50751 50751 50751
Adjusted R2 .0041 .0519 .0617 .0616 .047 .28 .2825 .2825
Dep. var. mean 845.152 845.152 845.152 845.152 1833.388 1833.388 1833.388 1833.388
Dep. var. st. dev. 932.832 932.832 932.832 932.832 2078.593 2078.593 2078.593 2078.593

(B) Discharged

IDW PM10 -0.019 0.311*** -0.170 -0.355*** -0.560*** -0.070 0.069 0.006
(0.090) (0.089) (0.111) (0.115) (0.147) (0.144) (0.183) (0.189)

IDW NO2 1.221*** 0.274*** 0.970*** 0.977*** 0.674*** -0.317* -0.715*** -0.726***
(0.101) (0.103) (0.131) (0.131) (0.169) (0.170) (0.217) (0.218)

Observations 132895 132895 132895 132895 50871 50871 50871 50871
Adjusted R2 .0285 .0602 .0673 .0676 .03 .0835 .0868 .087
Dep. var. mean 75.053 75.053 75.053 75.053 76.421 76.421 76.421 76.421
Dep. var. st. dev. 25.288 25.288 25.288 25.288 25.579 25.579 25.579 25.579

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.6) at the individual
level. Our dependent variable is individual costs of hospital attendance for individual i in postcode
sector c at time t. Our main independent variables are the daily average IDWPM10 and IDWNO2

.
In Panel (A), we present estimates for the hospital admitted patients sub-sample while, in Panel
(B), we present that of patients discharged from ED. Additionally, Columns (1) to (4) present the
corresponding estimates for children while Columns (5) to (8) present the corresponding results
for older adults. Our unit of observation is day/postcode sector. Our postcode sector controls are
the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010
(used for 2010 and 2011) corresponding to the following categories: income, employment, health
and disabilities, education and training, barriers to housing, crime, and living environments. Our
weather controls are average minimum and maximum daily temperature, daily rainfall.
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Table 4.9: Standardized IDW on Total Costs, 2006 to 2011.

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Admitted

IDW PM10 74.713*** 39.786** 7.289 6.989 273.896*** 29.996 36.346 35.851
(17.344) (17.916) (25.636) (24.923) (20.423) (18.578) (24.480) (25.306)

IDW NO2 -76.336*** -25.053 -8.203 -9.618 -361.405*** 20.114 2.644 4.138
(15.379) (17.413) (32.421) (31.826) (21.842) (19.859) (25.710) (25.712)

Observations 11172 11172 11172 11172 36370 36370 36370 36370
Adjusted R2 .0049 .0485 .0583 .0584 .0428 .2528 .2561 .2578
Dep. var. mean 936.385 936.385 936.385 936.385 2558.325 2558.325 2558.325 2558.325
Dep. var. st. dev. 1018.666 1018.666 1018.666 1018.666 2932.164 2932.164 2932.164 2932.164

(B) Discharged

IDW PM10 4.076*** 3.938*** 4.710*** 2.722*** -0.014 0.776* 2.310*** 2.064***
(0.558) (0.565) (0.716) (0.737) (0.421) (0.423) (0.532) (0.550)

IDW NO2 -1.438** -1.008 -2.817*** -2.483*** 1.572*** 0.422 -0.007 0.382
(0.616) (0.645) (0.817) (0.813) (0.479) (0.498) (0.621) (0.621)

Observations 61189 61189 61189 61189 36465 36465 36465 36465
Adjusted R2 .1443 .148 .1659 .1798 .0233 .0436 .0474 .0546
Dep. var. mean ymean 163.006 163.006 163.006 163.006 106.612 106.612 106.612 106.612
Dep. var. st. dev. 111.945 111.945 111.945 111.945 61.550 61.550 61.550 61.550

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.7) at the day/postcode
sector level. Our dependent variable is total costs of hospital attendance in postcode sector c at time
t. Our main independent variables are the daily average IDWPM10 and IDWNO2

. In Panel (A),
we present estimates for the hospital admitted patients sub-sample while, in Panel (B), we present
that of patients discharged from ED. Additionally, Columns (1) to (4) present the corresponding
estimates for children while Columns (5) to (8) present the corresponding results for older adults.
Our unit of observation is day/postcode sector. Our postcode sector controls are the deprivation
indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010 (used for 2010
and 2011) corresponding to the following categories: income, employment, health and disabilities,
education and training, barriers to housing, crime, and living environments. Our weather controls
are average minimum and maximum daily temperature, daily rainfall.
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Table 4.10: Standardized IDW on Total Hospital Visits and Total Costs Using Exposure
Range (Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Total Number of Hospital Visits

IDW PM10 (Range) 0.016*** 0.016*** 0.006 0.008 0.001 0.003 0.012** 0.018***
(0.006) (0.006) (0.006) (0.006) (0.005) (0.005) (0.006) (0.006)

IDW NO2 (Range) 0.002 0.022*** 0.025*** 0.023*** 0.058*** 0.025*** 0.034*** 0.043***
(0.006) (0.006) (0.008) (0.008) (0.005) (0.005) (0.006) (0.006)

Observations 78219 78219 78219 78219 78219 78219 78219 78219
Adjusted R2 .1802 .1825 .2118 .231 .0366 .04 .0444 .0814
Dep. var. mean ymean 1.868 1.868 1.868 1.868 1.395 1.395 1.395 1.395
Dep. var. st. dev. 1.549 1.549 1.549 1.549 1.170 1.170 1.170 1.170

(B) Total Costs for Admitted Patients

IDW PM10 (Range) 34.535*** 16.911 11.152 11.730 101.089*** -4.829 -14.867 -11.750
(11.160) (11.025) (13.404) (13.406) (16.945) (15.241) (17.229) (17.237)

IDW NO2 (Range) -31.667*** 3.702 2.261 1.587 -180.053*** 40.538*** 50.394*** 52.522***
(11.910) (13.170) (18.215) (18.837) (16.378) (14.614) (17.015) (17.109)

Observations 11172 11172 11172 11172 36370 36370 36370 36370
Adjusted R2 .0027 .048 .0584 .0585 .0382 .2528 .2561 .2579
Dep. var. mean 936.385 936.385 936.385 936.385 2558.325 2558.325 2558.325 2558.325
Dep. var. st. dev. 1018.666 1018.666 1018.666 1018.666 2932.164 2932.164 2932.164 2932.164

(C) Total Costs for Discharged Patients

IDW PM10 (Range) 1.034** 0.720 0.090 0.051 0.074 0.186 0.491 0.467
(0.495) (0.497) (0.550) (0.553) (0.355) (0.346) (0.382) (0.381)

IDW NO2 (Range) 2.860*** 3.015*** 2.027*** 1.660*** 1.167*** 0.700* 1.170*** 1.356***
(0.490) (0.497) (0.555) (0.553) (0.380) (0.384) (0.424) (0.424)

Observations 61189 61189 61189 61189 36465 36465 36465 36465
Adjusted R2 .1443 .1479 .1655 .1797 .0231 .0435 .047 .0544
Dep. var. mean 163.006 163.006 163.006 163.006 106.612 106.612 106.612 106.612
Dep. var. st. dev. 111.945 111.945 111.945 111.945 61.550 61.550 61.550 61.550

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Panel (A) reports the OLS estimates obtained from performing Equation (4.5.1) where we replace
Pollution by IDW (Range). Panels (B) and (C) report the OLS estimates obtained from performing
Equation (4.5.7) replacing IDW by IDW (Range) at the day/postcode sector level for hospital
admitted and discharged from ED patients, respectively. Our unit of observation is day/postcode
sector. Additionally, Columns (1) to (4) present the corresponding estimates for children while
Columns (5) to (8) present the corresponding results for older adults. Our postcode sector controls
are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010
(used for 2010 and 2011) corresponding to the following categories: income, employment, health
and disabilities, education and training, barriers to housing, crime, and living environments. Our
weather controls are average minimum and maximum daily temperature, daily rainfall.

186



Table 4.11: Standardized IDW on Total Hospital Visits and Total Costs Using Nearest
Monitor (Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Total Number of Hospital Visits

IDW PM10 (Near) 0.125*** 0.122*** 0.112*** 0.128*** 0.118*** 0.122*** 0.143*** 0.173***
(0.009) (0.009) (0.009) (0.010) (0.007) (0.007) (0.007) (0.008)

IDW NO2 (Near) -0.113*** -0.105*** -0.099*** -0.113*** -0.007 -0.021*** -0.026*** -0.040***
(0.012) (0.012) (0.012) (0.013) (0.007) (0.007) (0.008) (0.008)

Observations 78219 78219 78219 78219 78219 78219 78219 78219
Adjusted R2 .1832 .1851 .2139 .2335 .0425 .047 .0528 .0916
Dep. var. mean 1.868 1.868 1.868 1.868 1.395 1.395 1.395 1.395
Dep. var. st. dev 1.549 1.549 1.549 1.549 1.170 1.170 1.170 1.170

(B) Total Costs for Admitted Patients

IDW PM10 (Near) 36.489** 17.548 0.504 6.937 264.043*** 86.325*** 89.365*** 126.534***
(17.214) (17.331) (20.801) (20.397) (25.989) (21.287) (22.582) (24.520)

IDW NO2 (Near) -45.074*** -20.635 -7.779 -12.091 -224.089*** -16.649 -19.162 -40.582**
(14.169) (12.990) (13.889) (14.447) (25.904) (18.407) (19.473) (20.330)

Observations 11172 11172 11172 11172 36370 36370 36370 36370
Adjusted R2 .0024 .0479 .0584 .0585 .0386 .2532 .2565 .2585
Dep. var. mean 936.385 936.385 936.385 936.385 2558.325 2558.325 2558.325 2558.325
Dep. var. st. dev. 1018.666 1018.666 1018.666 1018.666 2932.164 2932.164 2932.164 2932.164

(C) Total Costs for Discharged Patients

IDW PM10 (Near) 6.692*** 7.006*** 7.166*** 7.905*** 2.073*** 3.258*** 4.064*** 4.122***
(0.660) (0.663) (0.704) (0.787) (0.504) (0.510) (0.538) (0.578)

IDW NO2 (Near) -5.370*** -5.405*** -6.151*** -7.077*** 0.510 -0.588 -1.193** -0.974*
(0.775) (0.772) (0.838) (0.932) (0.525) (0.533) (0.563) (0.580)

Observations 61189 61189 61189 61189 36465 36465 36465 36465
Adjusted R2 .1452 .149 .167 .1815 .0243 .0454 .0492 .0565
Dep. var. mean 163.006 163.006 163.006 163.006 106.612 106.612 106.612 106.612
Dep. var. st. dev. 111.945 111.945 111.945 111.945 61.550 61.550 61.550 61.550

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Panel (A) reports the OLS estimates obtained from performing Equation (4.5.1) where we replace
Pollution by IDW (Near). Panels (B) and (C) report the OLS estimates obtained from performing
Equation (4.5.7) replacing IDW by IDW (Near) at the day/postcode sector level for hospital
admitted and patients discharged from ED, respectively. Our unit of observation is day/postcode
sector. Additionally, Columns (1) to (4) present the corresponding estimates for children while
Columns (5) to (8) present the corresponding results for older adults. Our postcode sector controls
are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010
(used for 2010 and 2011) corresponding to the following categories: income, employment, health
and disabilities, education and training, barriers to housing, crime, and living environments. Our
weather controls are average minimum and maximum daily temperature, daily rainfall.
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Table 4.12: Standardized IDW on Total Hospital Visits and Total Costs with Air Pressure
Controls, 2009 to 2011 (Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A.1) Total Number of Hospital Visits - No Air Pressure Control

IDW PM10 0.076*** 0.073*** 0.089*** 0.066*** 0.042*** 0.046*** 0.100*** 0.105***
(0.011) (0.011) (0.013) (0.014) (0.009) (0.009) (0.012) (0.012)

IDW NO2 -0.038*** -0.017 -0.038** -0.028* 0.013 -0.019** -0.039*** -0.024*
(0.010) (0.011) (0.015) (0.015) (0.009) (0.009) (0.013) (0.013)

Observations 39365 39365 39365 39365 39365 39365 39365 39365
Adjusted R2 .1951 .1969 .2174 .2328 .041 .0456 .0497 .088
Dep. var. mean 1.833 1.833 1.833 1.833 1.426 1.426 1.426 1.426
Dep. var. st. dev. 1.530 1.530 1.530 1.530 1.182 1.182 1.182 1.182

(A.2) Total Number of Hospital Visits - With Air Pressure Control

IDW PM10 0.072*** 0.070*** 0.086*** 0.062*** 0.045*** 0.048*** 0.101*** 0.107***
(0.011) (0.011) (0.013) (0.014) (0.009) (0.009) (0.012) (0.012)

IDW NO2 -0.040*** -0.020* -0.045*** -0.034** 0.015* -0.018* -0.035*** -0.020
(0.010) (0.011) (0.015) (0.015) (0.009) (0.009) (0.013) (0.013)

Observations 39365 39365 39365 39365 39365 39365 39365 39365
Adjusted R2 .1954 .1971 .2177 .2331 .0412 .0457 .0498 .0882
Dep. var. mean 1.833 1.833 1.833 1.833 1.426 1.426 1.426 1.426
Dep. var. st. dev. 1.530 1.530 1.530 1.530 1.182 1.182 1.182 1.182

(B.1) Total Costs for Admitted Patients - No Air Pressure Control

IDW PM10 81.944*** 44.357 -9.013 6.762 215.351*** 40.950* 61.477** 59.547**
(31.188) (31.637) (47.939) (43.923) (26.011) (21.650) (27.108) (27.979)

IDW NO2 -84.275*** -13.401 27.170 19.908 -375.955*** 10.920 6.139 10.218
(23.678) (27.930) (57.312) (55.335) (23.539) (20.001) (24.501) (24.587)

Observations 5936 5936 5936 5936 19537 19537 19537 19537
Adjusted R2 .0074 .0633 .0771 .0774 .0371 .3678 .3718 .3737
Dep. var. mean 847.393 847.393 847.393 847.393 1624.430 1624.430 1624.430 1624.430
Dep. var. st. dev. 1082.147 1082.147 1082.147 1082.147 2350.277 2350.277 2350.277 2350.277

(B.2) Total Costs for Admitted Patients - With Air Pressure Control

IDW PM10 78.660*** 40.509 -11.887 3.571 214.046*** 41.682* 63.828** 62.457**
(30.479) (30.997) (48.038) (43.950) (26.382) (21.920) (27.257) (28.141)

IDW NO2 -86.538*** -16.079 24.078 16.950 -376.704*** 11.360 8.644 12.812
(24.192) (28.377) (57.174) (55.250) (23.572) (20.050) (24.574) (24.652)

Observations 5936 5936 5936 5936 19537 19537 19537 19537
Adjusted R2 .0075 .0636 .0773 .0775 .037 .3678 .3718 .3737
Dep. var. mean 847.393 847.393 847.393 847.393 1624.430 1624.430 1624.430 1624.430
Dep. var. st. dev. 1082.147 1082.147 1082.147 1082.147 2350.277 2350.277 2350.277 2350.277

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 4.12: Standardized IDW on Total Hospital Visits and Total Costs with Air Pressure
Controls, 2009 to 2011 (Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(C.1) Total Costs for Discharged Patients - No Air Pressure Control

IDW PM10 5.978*** 6.223*** 5.780*** 3.313*** 0.000 -0.518 1.804* 1.403
(0.965) (0.975) (1.228) (1.274) (0.761) (0.763) (0.958) (0.989)

IDW NO2 0.260 -0.474 -1.445 -0.744 0.445 0.657 0.107 0.576
(0.910) (0.968) (1.224) (1.219) (0.738) (0.779) (0.969) (0.969)

Observations 30677 30677 30677 30677 18660 18660 18660 18660
Adjusted R2 .1472 .1476 .1624 .1748 .014 .0239 .0281 .0354
Dep. var. mean 170.045 170.045 170.045 170.045 115.388 115.388 115.388 115.388
Dep. var. st. dev. 117.460 117.460 117.460 117.460 67.466 67.466 67.466 67.466

(C.2) Total Costs for Discharged Patients - With Air Pressure Control

IDW PM10 5.772*** 6.009*** 5.620*** 3.105** 0.259 -0.291 1.898** 1.528
(0.974) (0.982) (1.230) (1.277) (0.764) (0.765) (0.959) (0.991)

IDW NO2 0.133 -0.621 -1.710 -1.022 0.616 0.822 0.241 0.713
(0.909) (0.967) (1.228) (1.222) (0.739) (0.780) (0.973) (0.972)

Observations 30677 30677 30677 30677 18660 18660 18660 18660
Adjusted R2 .1473 .1477 .1625 .175 .0146 .0244 .0282 .0355
Dep. var. mean 170.045 170.045 170.045 170.045 115.388 115.388 115.388 115.388
Dep. var. st. dev. 117.460 117.460 117.460 117.460 67.466 67.466 67.466 67.466

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Panels (A.1) and (A.2) report the OLS estimates obtained from performing Equation (4.5.1) where
we replace Pollution by IDW for the years 2009 to 2011 without and including an Air Pressure
Control, respectively. Panels (B.1) and (B.2) report the OLS estimates obtained from performing
Equation (4.5.7) at the day/postcode sector level for hospital admitted for the years 2009 to 2011
without and including an Air Pressure Control, respectively. Panels (C.1) and (C.2) report the
same OLS estimates of the patients discharged from ED sub-sample. Our unit of observation is
day/postcode sector. Additionally, Columns (1) to (4) present the corresponding estimates for
children while Columns (5) to (8) present the corresponding results for older adults. Our postcode
sector controls are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007
to 2009) and 2010 (used for 2010 and 2011) corresponding to the following categories: income,
employment, health and disabilities, education and training, barriers to housing, crime, and living
environments. Our weather controls are average minimum and maximum daily temperature, daily
rainfall.
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Table 4.13: Standardized IDW on Total Hospital Visits and Total Costs Using Weekdays
Only (Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Children Children Older Adults Older Adults Older Adults Older Adults

(A) Total Number of Hospital Visits

daily IDW PM10 0.077*** 0.075*** 0.096*** 0.071*** 0.039*** 0.038*** 0.097*** 0.108***
(0.008) (0.008) (0.011) (0.012) (0.007) (0.007) (0.010) (0.010)

daily IDW NO2 -0.059*** -0.049*** -0.063*** -0.057*** -0.013* -0.009 -0.020* -0.009
(0.009) (0.009) (0.013) (0.013) (0.008) (0.008) (0.011) (0.011)

Observations 55935 55935 55935 55935 55935 55935 55935 55935
Adjusted R2 .184 .1857 .2162 .235 .0346 .0351 .0406 .0788
Dep. var. mean 1.850 1.850 1.850 1.850 1.445 1.445 1.445 1.445
Dep. var. st. dev. 1.551 1.551 1.551 1.551 1.190 1.190 1.190 1.190

(B) Total Costs for Admitted Patients

daily IDW PM10 54.875*** 18.756 5.137 9.881 292.549*** 24.954 60.014* 59.927*
(12.794) (13.428) (19.663) (19.021) (24.687) (22.554) (31.873) (33.284)

daily IDW NO2 -65.465*** -6.739 19.692 16.454 -402.342*** 13.218 -31.616 -29.793
(13.705) (16.285) (34.431) (33.349) (26.938) (24.305) (33.966) (33.929)

Observations 7645 7645 7645 7645 26362 26362 26362 26362
Adjusted R2 .0035 .0437 .0642 .0638 .0422 .2519 .2568 .2589
Dep. var. mean 934.035 934.035 934.035 934.035 2574.580 2574.580 2574.580 2574.580
Dep. var. st. dev. 1031.931 1031.931 1031.931 1031.931 2966.699 2966.699 2966.699 2966.699

(C) Total Costs for Discharged Patients

daily IDW PM10 3.961*** 3.798*** 6.070*** 3.508*** -0.026 0.733 2.850*** 2.682***
(0.674) (0.684) (0.913) (0.951) (0.510) (0.513) (0.685) (0.715)

daily IDW NO2 -1.345* -0.824 -4.644*** -4.468*** 1.176** -0.084 -0.899 -0.324
(0.763) (0.806) (1.104) (1.103) (0.585) (0.617) (0.826) (0.828)

Observations 43531 43531 43531 43531 27152 27152 27152 27152
Adjusted R2 .1476 .1514 .172 .1858 .0234 .0428 .0462 .0536
Dep. var. mean 164.485 164.485 164.485 164.485 106.946 106.946 106.946 106.946
Dep. var. st. dev. 113.235 113.235 113.235 113.235 62.528 62.528 62.528 62.528

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X X X
Week × Fiscal Year FE X X X X
Post District FE X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Panel (A) reports the OLS estimates obtained from performing Equation (4.5.1) where we replace
Pollution by dailyIDW using weekdays only. Panels (B) and (C) report the OLS estimates obtained
from performing Equation (4.5.7) using weekdays only at the day/postcode sector level for hospital
admitted and discharged from ED patients, respectively. Our unit of observation is day/postcode
sector. Additionally, Columns (1) to (4) present the corresponding estimates for children while
Columns (5) to (8) present the corresponding results for the older adults. Our postcode sector
controls are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009)
and 2010 (used for 2010 and 2011) corresponding to the following categories: income, employment,
health and disabilities, education and training, barriers to housing, crime, and living environments.
Our weather controls are average minimum and maximum daily temperature, daily rainfall.
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Table 4.14: Standardized IDW on Total Number of Hospital Visits with 7 Day Lags
(Robustness Check)

(1) (2) (3) (4) (5) (6) (7) (8)
Children Children Older Adults Older Adults Children Children Older Adults Older Adults

IDW PM10

t = 0 0.080*** 0.264*** 0.030*** 0.170*** 0.091*** 0.242*** 0.081*** 0.186***
(0.007) (0.015) (0.006) (0.012) (0.009) (0.015) (0.007) (0.012)

t = −1 -0.043*** -0.025** -0.039*** -0.018*
(0.013) (0.011) (0.013) (0.010)

t = −2 -0.056*** -0.043*** -0.056*** -0.040***
(0.013) (0.011) (0.013) (0.011)

t = −3 -0.031** -0.032*** -0.028** -0.029***
(0.013) (0.010) (0.013) (0.010)

t = −4 -0.039*** -0.020* -0.035*** -0.017
(0.013) (0.010) (0.013) (0.010)

t = −5 -0.039*** -0.021** -0.038*** -0.020*
(0.013) (0.010) (0.013) (0.010)

t = −6 0.000 -0.030*** -0.000 -0.028***
(0.013) (0.010) (0.013) (0.010)

t = −7 -0.017 -0.003 -0.018 -0.001
(0.012) (0.010) (0.012) (0.010)

IDW NO2

t = 0 -0.081*** -0.235*** 0.027*** -0.065*** -0.059*** -0.178*** -0.019** -0.087***
(0.007) (0.020) (0.006) (0.017) (0.011) (0.020) (0.009) (0.017)

t = −1 0.059*** 0.036** 0.051*** 0.020
(0.020) (0.016) (0.019) (0.016)

t = −2 0.011 0.019 0.009 0.010
(0.020) (0.017) (0.019) (0.016)

t = −3 0.053*** 0.031* 0.047** 0.027
(0.020) (0.017) (0.020) (0.016)

t = −4 0.052** 0.028* 0.048** 0.023
(0.020) (0.017) (0.020) (0.017)

t = −5 0.010 -0.020 0.008 -0.018
(0.020) (0.016) (0.020) (0.016)

t = −6 -0.026 0.032* -0.025 0.037**
(0.020) (0.016) (0.019) (0.016)

t = −7 0.020 -0.018 0.017 -0.008
(0.019) (0.015) (0.018) (0.015)

Observations 78219 78213 78219 78213 78219 78213 78219 78213
Adjusted R2 .1818 .1841 .0359 .0384 .2128 .2147 .0457 .0473
Dep. var. mean ymean 1.868 1.868 1.395 1.395 1.868 1.868 1.395
Dep. var. st. dev. 1.549 1.549 1.170 1.170 1.549 1.549 1.170

Postcode Sector Controls X X X X X X X X
Weather Controls X X X X X X X X
Day of the week FE X X X X
Week × Year FE X X X X

Standard errors in parentheses

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.1) where we replace
Pollution by IDW and control for its 7 day lagged version. Our unit of observation is day/postcode
sector. Additionally, Columns (1) to (4) present the corresponding estimates for children—Columns
(1) and (2) and older adults—Columns (3) and (4)—using postcode sector controls and weather
controls. Meanwhile, Columns (5) to (8) present the corresponding results when adding day of the
week fixed effects, and week times year fixed effects. Our postcode sector controls are the deprivation
indices for the years 2004 (used for 2006), 2007 (used for 2007 to 2009) and 2010 (used for 2010
and 2011) corresponding to the following categories: income, employment, health and disabilities,
education and training, barriers to housing, crime, and living environments. Our weather controls
are average minimum and maximum daily temperature, daily rainfall.

191



Table 4.15: Standardized IDW on Total Number of Hospital Visits with 10–, 7–, and
3–Day Lags and Leads (Robustness Check)

(1) (2) (3) (4) (5) (6)
Children Children Children Older Adults Older Adults Older Adults

(A) 10 day differences

IDW PM10

t = 0 0.091*** 0.074***
(0.009) (0.007)

t = −10 -0.002 0.005
(0.008) (0.007)

t = 10 -0.007 0.000
(0.008) (0.007)

IDW NO2

t = 0 -0.059*** 0.020**
(0.011) (0.008)

t = −10 -0.008 0.030***
(0.010) (0.008)

t = 10 0.012 0.033***
(0.010) (0.008)

Observations 78219 78211 78212 78219 78211 78212
Adjusted R2 .2128 .2116 .2117 .0442 .0419 .0419
Dep. var. mean 1.868 1.868 1.868 1.395 1.395 1.395
ysd Dep. var. st. dev. 1.549 1.549 1.549 1.170 1.170 1.170

(B) 7 day differences

IDW PM10

t = 0 0.091*** 0.074***
(0.009) (0.007)

t = −7 0.002 0.007
(0.008) (0.007)

t = 7 -0.006 -0.007
(0.008) (0.007)

IDW NO2

t = 0 -0.059*** 0.020**
(0.011) (0.008)

t = −7 -0.006 0.037***
(0.010) (0.008)

t = 7 0.019* 0.045***
(0.010) (0.008)

Observations 78219 78213 78213 78219 78213 78213
Adjusted R2 .2128 .2116 .2117 .0442 .0421 .042
Dep. var. mean 1.868 1.868 1.868 1.395 1.395 1.395
Dep. var. st. dev. 1.549 1.549 1.549 1.170 1.170 1.170

Postcode Sector Controls X X X X X X
Weather Controls X X X X X X
Day of the week FE X X X X X X
Week × Year FE X X X X X X

Standard errors in parentheses, ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01
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Table 4.15: Standardized IDW on Total Number of Hospital Visits with 10–, 7–, and
3–Day Lags and Leads (Robustness Check)

(1) (2) (3) (4) (5) (6)
Children Children Children Older Adults Older Adults Older Adults

(C) 3 day differences

IDW PM10

t = 0 0.091*** 0.074***
(0.009) (0.007)

t = −3 0.003 0.002
(0.008) (0.007)

t = 3 0.001 0.010
(0.008) (0.007)

IDW NO2

t = 0 -0.059*** 0.020**
(0.011) (0.008)

t = −3 -0.001 0.048***
(0.011) (0.008)

t = 3 0.002 0.039***
(0.010) (0.008)

Observations 78219 78216 78217 78219 78216 78217
Adjusted R2 .2128 .2117 .2117 .0442 .0422 .0422
Dep. var. mean 1.868 1.868 1.868 1.395 1.395 1.395
Dep. var. st. dev. 1.549 1.549 1.549 1.170 1.170 1.170

Postcode Sector Controls X X X X X X
Weather Controls X X X X X X
Day of the week FE X X X X X X
Week × Year FE X X X X X X

Standard errors in parentheses, ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

This table reports the OLS estimates obtained from performing Equation (4.5.1) where we replace
Pollution by IDW and control for its lagged and leaded versions. Our unit of observation is
day/postcode sector. This table reports the OLS estimates obtained from performing Equation
(4.5.1) where we replace Pollution by IDW . Our unit of observation is day/postcode sector. Panel
(A) presents results for 10 day differences while Panels (B) and (C) present results for 7 and 3
days, respectively. Columns (1) to (3) present the corresponding estimates for children without any
fixed effects while Columns (4) to (6) present the corresponding results for older adults including
postcode sector and weather controls, day of the week and week/year fixed effects. Our postcode
sector controls are the deprivation indices for the years 2004 (used for 2006), 2007 (used for 2007
to 2009) and 2010 (used for 2010 and 2011) corresponding to the following categories: income,
employment, health and disabilities, education and training, barriers to housing, crime, and living
environments. Our weather controls are average minimum and maximum daily temperature, daily
rainfall.
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Maps

Map 4.1: Monitors
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(a) Leicester Map, Postcode Sectors with Centroids

(b) Leicester Map, Postcode Sectors

Map 4.2: Leicester Map, Postcode Sectors
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(a) Where workers work.

(b) Where workers live.

Map 4.3: Population Distribution by Industry.
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Figures

Figure 4.1: Inverse Distance Weighted, IDW
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Figure 4.2: Strength
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Figure 4.3: Wind-roses, 2006-2011

(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011
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Figure 4.4: IDW on Hospital Visits by Age Group, 2006 to 2011.
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Notes:
(1) The top four figures are performed with all observations and no grouping.
(2) The bottom four figures are created using binscatter. The command groups the x-variable into 100 equal-sized bins,
computed the mean of the x-variable and y-variable within each bin, and created a scatterplot of these 100 data points.
Each dot shows the average ”Hospital Visits” for a given level of ”IDW, demeaned”. Finally, binscatter plots the best linear
fit line, constructed from an OLS regession of the y-observations on the x-observations.
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Appendix 4.A School Catchment Areas

Figure 4.A.1: School Catchment Areas

(a) Infant and Junior Schools Catchment Ar-
eas

(b) Secondary Schools Catchment Areas

(c) Primary Schools Catchment Areas
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Appendix 4.B Extra Descriptive Statistics

4.B.1 Health and Population Data

Table 4.B.1: Census 2011, Population Totals by Postcode District

Population Totals

LE1 LE2 LE3 LE4 LE5 LE19

Gender
Female 1514 23524 20973 21075 18827 3317
Male 1480 21999 19964 20201 18275 3221

Age
Children

0 to 4 910 7191 7526 6601 6809 865
5 to 9 627 6614 6110 5916 6081 874
10 to 17 655 11325 9438 10140 10048 1539

Older Adults
60 to 64 240 5226 4840 5297 3725 974
65 to 69 157 3935 3494 3710 2746 715
70 to 74 147 3452 3132 3316 2440 528
75 to 79 92 3001 2644 2786 2085 428
80 to 84 94 2416 1877 1912 1685 341
85 to 89 40 1546 1279 1101 1011 191
90+ 32 817 597 497 472 83

Total 2994 45523 40937 41276 37102 6538
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Table 4.B.2: Health Statistics, 2006 to 2011 by Postcode District.

Postcode District Visits Admissions Length of Stay* Number of Doctors*
Total Total % of Visits Mean St. Dev. Mean St. Dev.

LE1
Gender

Female 2231 635 28.46% 6.50 14.28 1.43 0.70
Male 3002 703 23.42% 4.86 8.77 1.41 0.70

Age
Children

0 to 4 1905 337 17.69% 1.74 5.88 1.01 0.12
5 to 9 592 57 9.63% 0.91 1.06 1.00 0.00
10 to 17 1157 133 11.50% 1.71 3.11 1.08 0.29

Older Adults
60 to 64 488 200 40.98% 5.78 9.11 1.61 0.80
65 to 69 289 121 41.87% 6.61 12.89 1.65 0.81
70 to 74 244 122 50.00% 5.91 10.39 1.59 0.72
75 to 79 193 102 52.85% 10.79 20.83 1.79 0.81
80 to 84 165 120 72.73% 10.47 14.64 1.65 0.73
85 to 89 114 84 73.68% 10.20 11.63 1.77 0.86
90+ 86 62 72.09% 12.73 19.09 1.79 0.81

Ethnicities
White 1807 702 38.85% 7.65 13.98 1.59 0.78
Black 1124 220 19.57% 2.37 6.27 1.13 0.41
Asian 1232 281 22.81% 4.82 9.85 1.34 0.65
Other 1070 135 12.62% 2.23 5.69 1.14 0.43

Total 5233 1338 25.57% – – – –

LE2
Gender

Female 34431 12517 36.35% 7.68 12.71 1.63 0.83
Male 37095 11191 30.17% 6.63 12.26 1.59 0.83

Age
Children

0 to 4 14831 2627 17.71% 1.43 3.57 1.02 0.18
5 to 9 7503 741 9.88% 1.43 2.33 1.02 0.15
10 to 17 16063 1612 10.04% 1.72 4.67 1.10 0.36

Older Adults
60 to 64 5536 2098 37.90% 5.71 10.40 1.65 0.83
65 to 69 4606 2036 44.20% 6.97 13.14 1.71 0.86
70 to 74 5176 2718 52.51% 7.12 11.85 1.71 0.84
75 to 79 5389 3218 59.71% 8.71 13.95 1.77 0.88
80 to 84 5236 3434 65.58% 9.91 14.33 1.80 0.86
85 to 89 4209 2982 70.85% 10.55 14.39 1.85 0.90
90+ 2978 2242 75.29% 10.51 14.58 1.78 0.85

Ethnicities
White 46311 17547 37.89% 7.73 13.00 1.65 0.84
Black 3040 716 23.55% 5.13 10.42 1.44 0.74
Asian 14864 3979 26.77% 5.24 10.23 1.53 0.79
Other 7312 1466 20.05% 6.86 12.56 1.51 0.80

Total 71527 23708 33.15% – – – –

LE3
Gender

Female 34456 11901 34.54% 7.58 13.51 1.59 0.81
Male 37055 10970 29.60% 6.43 11.89 1.57 0.81

Age
Children

0 to 4 17311 3114 17.99% 1.50 4.98 1.02 0.14
5 to 9 7603 697 9.17% 1.39 3.36 1.01 0.11
10 to 17 16224 1586 9.78% 1.68 4.34 1.07 0.28

Older Adults
60 to 64 4935 1931 39.13% 5.55 12.57 1.60 0.79
65 to 69 4285 1962 45.79% 6.55 11.07 1.66 0.83
70 to 74 5097 2708 53.13% 7.68 11.98 1.72 0.84
75 to 79 4848 2955 60.95% 8.93 15.48 1.78 0.87
80 to 84 4834 3201 66.22% 10.32 15.63 1.82 0.88
85 to 89 3908 2795 71.52% 10.27 13.98 1.80 0.87
90+ 2468 1922 77.88% 10.41 14.07 1.77 0.83

Ethnicities
White 56704 19402 34.22% 7.23 12.86 1.60 0.82
Black 2150 474 22.05% 4.90 13.50 1.30 0.64
Asian 5882 1647 28.00% 5.83 10.95 1.54 0.79
Other 6777 1348 19.89% 6.37 13.19 1.45 0.77

Total 71513 22871 31.98% – – – –

*Admitted to Hospital sample only.
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Table 4.B.2: Health Statistics, 2006 to 2011 by Postcode District.

Postcode District Visits Admissions Length of Stay* Number of Doctors*
Total Total % of Visits Mean St. Dev. Mean St. Dev.

LE4
Gender

Female 28932 9685 33.48% 7.42 12.84 1.61 0.83
Male 33153 9330 28.14% 6.09 11.22 1.57 0.81

Age
Children

0 to 4 14104 2548 18.07% 1.43 3.48 1.02 0.15
5 to 9 6748 639 9.47% 1.41 3.16 1.01 0.10
10 to 17 14295 1366 9.56% 1.61 2.97 1.10 0.36

Older Adults
60 to 64 5925 2083 35.16% 5.28 9.75 1.64 0.80
65 to 69 4270 1874 43.89% 6.55 13.56 1.68 0.83
70 to 74 4334 2294 52.93% 7.62 12.41 1.74 0.87
75 to 79 4334 2559 59.04% 8.85 13.61 1.80 0.87
80 to 84 3835 2530 65.97% 9.61 13.24 1.82 0.88
85 to 89 2750 2012 73.16% 10.67 13.96 1.87 0.91
90+ 1492 1110 74.40% 11.48 16.54 1.79 0.85

Ethnicities
White 33423 11201 33.51% 7.15 12.08 1.62 0.83
Black 2721 590 21.68% 4.00 11.48 1.27 0.61
Asian 19679 6131 31.16% 6.58 12.27 1.60 0.83
Other 6264 1093 17.45% 5.34 11.17 1.41 0.72

Total 62087 19015 30.63% – – – –

LE5
Gender

Female 25485 9220 36.18% 8.11 14.43 1.61 0.83
Male 29944 8924 29.80% 6.22 11.58 1.55 0.80

Age
Children

0 to 4 12911 2522 19.53% 1.61 5.54 1.01 0.13
5 to 9 6600 671 10.17% 1.43 2.92 1.02 0.14
10 to 17 12407 1203 9.70% 1.88 3.65 1.08 0.30

Older Adults
60 to 64 4029 1502 37.28% 5.72 10.65 1.64 0.81
65 to 69 3426 1709 49.88% 6.80 13.78 1.66 0.81
70 to 74 3759 2106 56.03% 8.50 14.49 1.75 0.85
75 to 79 3879 2446 63.06% 9.10 13.84 1.78 0.87
80 to 84 3817 2576 67.49% 9.91 15.99 1.80 0.87
85 to 89 2868 2085 72.70% 10.67 14.94 1.80 0.89
90+ 1734 1324 76.36% 11.22 14.71 1.79 0.85

Ethnicities
White 23303 10286 44.14% 8.39 13.97 1.67 0.84
Black 2700 693 25.67% 5.22 13.32 1.39 0.70
Asian 22815 5892 25.83% 5.48 11.17 1.47 0.77
Other 6612 1273 19.25% 6.39 13.49 1.47 0.77

Total 55430 18144 32.73% – – – –

LE19
Gender

Female 3377 1200 35.53% 6.73 10.77 1.63 0.86
Male 3590 1124 31.31% 6.05 10.92 1.59 0.82

Age
Children

0 to 4 1321 261 19.76% 1.51 2.46 1.02 0.12
5 to 9 691 82 11.87% 1.35 2.28 1.01 0.11
10 to 17 1671 153 9.16% 1.51 1.95 1.05 0.28

Older Adults
60 to 64 624 215 34.46% 5.81 8.99 1.67 0.88
65 to 69 522 234 44.83% 6.52 11.47 1.72 0.90
70 to 74 477 263 55.14% 6.42 9.59 1.67 0.79
75 to 79 526 319 60.65% 7.34 12.78 1.82 0.91
80 to 84 504 320 63.49% 8.97 13.72 1.81 0.84
85 to 89 354 256 72.32% 10.75 13.72 1.86 0.90
90+ 277 221 79.78% 7.74 9.27 1.81 0.94

Ethnicities
White 6488 2195 33.83% 6.38 10.70 1.61 0.84
Black 29 4 13.79% 2.25 3.86 1.25 0.50
Asian 104 24 23.08% 3.00 4.86 1.75 0.99
Other 346 101 29.19% 7.86 14.47 1.60 0.88

Total 6967 2324 33.36% – – – –

*Admitted to Hospital sample only.
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4.B.2 Pollution Data

Table 4.B.3: Correlation Between Hourly Pollution and Wind Speed (2006-2011)

Monitor Pollutant Wind Speed
(Correlation)

St Matthews Way NO2 -0.2127
PM10 -

Vaughan Way NO2 -0.1757
PM10 -0.0835

Melton Road NO2 -0.1773
PM10 -0.117

Abbey Lane NO2 -0.165
PM10 -0.0966

Glenhills Way NO2 -0.1803
PM10 -0.1679

Imperial Ave NO2 -0.2429
PM10 -0.1249

London Road NO2 -0.2578
PM10 -0.1204

Uppingham Road NO2 -0.2327
PM10 -
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Appendix 4.C Cost Calculations

We estimate healthcare costs using the Payment by Results system as follows:

Costit = AETariffhy (4.C.1)

for ED attendants, and

Costit = Tariffhy + topupidy ∗ NSTariffhy (4.C.2)

where

Tariffhy =


SSTariffhy if LOSit < 2

NSTariffhy if 2 ≤ LOSit ≤ TPhy

LSTariffhy = NSTariffhy + ppdhy ∗ (LOSit − TPhy) if LOSit > TPhy

LocalTariffhy

(4.C.3)

for admitted patients, where the HRG code does not have a short stay tariff we use

the normal stay tariff. Costit is the cost of hospital attendance for individual i at

attendance date t, AETariffhy is the price for the HRG code h in fiscal year y for ED

attendants, LOSit is the length of stay for individual i measured in days, SSTariffhy

is the price for short length of stay (LOS < 2) corresponding to HRG code h in fiscal

year y, TPhy is the expected length of stay in days for HRG code h in fiscal year y,

NSTariffhy is the price for HRG code h in fiscal year y for normal stay (LOS ≤ TP ),

LSTariffhy is the price for long length of stay (LOS > TP ) or HRG code h in fiscal year

y, ppdhy is the price per day above the expected length of stay for HRG code h in fiscal

year y, LocalTariffhy is the locally determined price for for HRG code h in fiscal year y,

and topupidy is the extra cost of treating individual i when disease d is predetermined

as specialised service for fiscal year y.

The cost for admitted patients is a sum of the tariff and top up. For nationally de-

termined costs, the applicable tariff depends on the length of stay, both actual and
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expected. For some HRGs there is a short stay tariff (SSTariff) that is payable when-

ever the patient spend less than 2 days in the hospital. Where the patient’s length

of stay is at most the expected length of stay, the normal stay tariff (NSTariff) is ap-

plicable. For length of stay exceeding the expected length of stay, the long stay tariff

(LSTariff) is applicable which includes the normal stay tariff in addition to per day

price for the days above the expected length of stay. Finally, the price for some HRG

codes is locally (LocalTariff) determined through negotiation between the hospital and

the CCGs which is not dependent on length of stay. Top up payments are made to

compensate for specialised services and is triggered when a predetermined ICD code is

present. These top up payments are a percent increase of the normal stay tariff. Some

top ups are limited to eligible providers.

There are some limitations with using the PbR system such as the range of services

covered and the methodology for cost calculation. While it is stated that the hospital

is paid for each person seen or treated, not all services are included in the system.

Some services are added to the system gradually and when introduced either does not

have an HRG code or does not have a national tariff. We encountered both of these

issues in our sample. There were no HRG codes for 18,554 ED attendants (7% of the

sample), and of the ED attendants with an HRG code, there were no cost information

for 5,631 (or 2%). Another limitation is that the national tariff is calculated as the

average of cost of services submitted by NHS organisations.58 This means that the cost

we calculated for Leicester reflect the national average rather than the actual cost for

services provided by the hospital. This is because PbR is meant to incentivise providers

with higher levels of cost to improve their efficiency in order to make savings on services.

This suggests further that the cost calculations we have provided are a lower bound for

the total costs of providing health services in Leicester. Despite the limitations, as the

health care costs in England during 2006-2011 were covered by PbR, using this method

is the most accurate cost calculation that can be provided.

58Please see A Simple Guide to Payment by Results at gov.uk accessed July 30th 2021.
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