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UNIVERSITY OF LEICESTER

Abstract
College of Science and Engineering

School of Geography, Geology and Environment

Doctor of Philosophy

Learning Digital Geographies through Geographical Artificial Intelligence

by Pengyuan LIU

As the distinction between online and physical spaces rapidly degrades, dig-
ital platforms have become an integral component of how people’s everyday ex-
periences are mediated. User-generated content (UGC) shared on such platforms
provides insights into how users want to represent their everyday lives, which aug-
ments and reinforces our understanding of local communities through time and lay-
ers dynamic information across and over the geographic space.

Inspired by the development of the newly arisen scientific disciplines within ge-
ography: geographical artificial intelligence (GeoAI), this thesis adopts deep learning
approaches on graph representations of human dynamics illustrated through geo-
tagged UGC to explore how place representations are augmented and reinforced
through users’ spatial experiences by classifying their multimedia activities and iden-
tifying the spatial clusters of UGC at the urban scale. Having the place representa-
tions described through UGC, this thesis explores how these representations can be
used in conjunction with various official spatial statistics to understand and predict
the dynamic changes of the socio-economic characteristics of places.

The principal contributions of this thesis are: (1) to provide frameworks with
higher classification and prediction accuracy but requiring fewer sample data; thus,
contributing to an advanced framework to summarise spatial characteristics of places;
(2) to show that multimedia content provides rich information regarding places, the
use of space, and people’s experience of the landscape; thus, benefiting a better un-
derstanding of place representations; (3) to illustrate that the spatial patterns of UGC
can be adopted as a valuable proxy to understand urban development and neigh-
bourhood change; (4) to reinforce the concept that Spatial is Special. Spatial pro-
cesses are commonly spatially autocorrelated. The mainstream of machine learn-
ing methods do not explicitly incorporate the spatial or spatio-temporal component
to address such a speciality of spatial data. This thesis highlights the importance
of explicitly incorporating spatial or spatio-temporal components in geographical
analysis models.
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Chapter 1

Introduction

Digital platforms enable users to produce vast quantities of user-generated content
(UGC) online and have become an ever-increasing presence in social practices (El-
wood and Leszczynski, 2013). The information created and distributed through such
platforms is now a significant source of information for scholars to understand the
reproduction of urban places (Shaw and Graham, 2017). The intersections between
the "code" (Dodge and Kitchin, 2004) of digital platforms and space capture the
"localities" of users’ everyday activities, augment spatial experiences (Elwood and
Leszczynski, 2013), and shape the representations of places emerging from those
platforms. Such representations further contribute to a digitally layered urban envi-
ronment (Zook and Graham, 2007; Shaw and Graham, 2017).

The focus of this thesis is strongly related to the studies on the understanding
of place representations described by the content production from digital platforms.
Information shared on such platforms provides an insight into how users want to
represent their everyday life, which consistently augments and reinforces the under-
standing of local communities through time, and layer dynamic information across
and over geographic space (Graham et al., 2015a). Therefore, this thesis encapsu-
lates and understands UGC as "augmentations" (Ballatore and De Sabbata, 2019) of
places as "time-space configurations" (Agnew and Livingstone, 2011), and aims to
investigate new possibilities available to explore the representation of places at the
urban scale through geotagged UGC and deep neural networks.

This thesis adopts machine learning and deep learning approaches on graph rep-
resentations of human dynamics (Mocnik, 2016) illustrated through geotagged UGC
to explore how place representations are augmented and reinforced through users’
spatial experiences by classifying their multimedia activities and identifying the spa-
tial clusters of UGC at the urban scale. Having the place representations described
through UGC, this thesis explores how these representations can be used in conjunc-
tion with socio-economic data. Existing research has proved the connection between
place representations described through UGC and local socio-economic structures
(e.g., population density, education level, and income) (Ballatore and De Sabbata,
2019). In the broader context of geographical studies, such local socio-economic
structures of places are often described through various official spatial statistics.
This thesis aims at combining official spatial statistics with place representations de-
scribed through UGC to understand and predict the dynamic changes of the socio-
economic characteristics of places.
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1.1 Motivation

1.1.1 User-generated content

Thanks to the fast development of computing devices, it has become increasingly
easier to connect to and interact with the internet. Beyond the relatively fixed posi-
tions of desktop and mainframes, the internet nowadays has become incredibly mo-
bile and can be easily accessed by devices such as laptop computers, smartphones,
and many other portable devices. Cellular networks, WIFI, Bluetooth and various
other wireless forms of communication have allowed us to carry the internet almost
everywhere we go. Global positioning systems (GPS) tells us where we are with
stunning accuracy. The increasing prevalence of the intersection between the inter-
net and location-based products allow people to use smartphones, mobile devices,
and computers to build up their digital life and to leave their digital footprint on the
Internet (Tsou, 2015), and have brought a tremendous revolution on the use of the
World Wide Web, which is now termed as the "Geographic World Wide Web" or the
"GeoWeb".

The geoweb is a geographically distributed digital network of nodes that cap-
ture, produce, and communicate data with explicit spatial components (Herring,
1994). The smartphone is an important and increasingly ubiquitous example of a ge-
oweb node with multiple integrated location-based applications (e.g., GoogleMap,
Twitter, Uber). Since 48.37% population in the world owns smartphones nowadays
(Turner, 2021), and billions of users are using location-based services monthly, we
are producing and collecting enormous amounts of geographically referenced data
every day. The accelerated incorporation of location-based services into digital infor-
mation and communication technologies in the last decade has fostered major shifts
in geographical practices and the studies within geographic information science (GI-
Science). The information production includes phenomena that have been described
as spatial crowdsourcing, volunteered geographic information (VGI), UGC, as well
as big data (See et al., 2016). Despite the fact that there are differences in the def-
initions of these terms (will be detailed in Chapter 2), they share the same basic
idea of people (usually not professionals) being involved in carrying out various ac-
tivities associating with geographic information science (See et al., 2016). UGC on
various digital platforms is now considered as a significant source of information
to understand the reproduction of urban spaces. For instance, as one of the major
components of UGC, spatial social media is described as one of the defining compo-
nents of geoweb technologies (Sui and Goodchild, 2001). Information created and
shared on social media platforms provides an insight into how users want to repre-
sent their everyday life, which has significant impacts towards the understanding of
places based on users’ activities described through their content production. Most
social media integrated with location-based services allow users to know and see
on a map where other users or the content they produce are physically located at
a particular time. As such, data generated by individuals on various social media
platforms such as Twitter and Facebook can capture the diversity of spatial content
produced by users and help scholars to understand social activities and experiences
in specific spaces, or regarding specific events.

Over the past decades, due to the increasing use of the internet and mobile de-
vices, digital platforms and technologies have expanded and challenged many as-
pects of social practices, including traditional political, social and economic activ-
ities in society (Liaropoulos, 2013). Consequently, such phenomenon raises long-
standing research questions of how physical space adapts to the rapid development
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of digital platforms and vice versa (Goby, 2003). Goodchild (2011) discusses the idea
of formalising place in the digital world. He addresses the relationship between the
informal world of human discourse and the formal world of digitally represented
geography where place stands at the central position of those platial (Gao et al., 2013)
studies within geography and GIScience. Such an academic advocation later pro-
motes a wide range of studies towards embedding the digitalised human dynam-
ics and their interaction with space (e.g., emotions, sentiments, place descriptions,
etc.) into geographical research (e.g., place-based GIScience (Gao et al., 2013) and
space–place (splatial) GIScience framework (Shaw and Sui, 2020)).

The analysis of human conceptualisations of space often involves categorisations
of some kind, such summarisation and categorisation of the representative geo-
graphical phenomena of a given space inform us the understanding of socio-spatial
practices in places. For instance, the clustering of similar users’ activities in par-
ticular geographic areas provides insights into the abstract spatial representation of
places. Place in geography is broadly defined as a series of "locales" where human’s
everyday activities take place (Agnew and Livingstone, 2011). Place representation
can be explored through "the overall information available in a target geographic
space for a given data source" (Ballatore and De Sabbata, 2019, p. 880). The studies
on place representation provide a sociological understanding of place and take such
an understanding as a fundamental aspect of the configurations of the space (Brant-
ner and Rodriguez-Amat, 2016). Conceptualising users as sensors within spaces
(Goodchild, 2007), the intersections between an unprecedented variety of geotagged
UGC from digital platforms and spaces capture the "localities" of users’ everyday
activities, augment spatial experiences (Elwood and Leszczynski, 2013) and shape
the representations of places. Such representations further contribute to a digitally
layered urban environment (Zook and Graham, 2007; Shaw and Graham, 2017).

Understanding place representations is a central problem in GIScience (Purves et
al., 2019), and UGC represents a significant source of information about places. Due
to the potential of digital platforms for exploring social practices in space and the
narrative of places (Abernathy, 2016), social media platforms in general, and Twitter
in particular, has been at the centre of data-driven analysis in GIScience and quanti-
tative geography for about a decade (Miller and Goodchild, 2015a). Although exist-
ing studies have advanced our abilities to understand the spatial patterns of social
media, they are primarily only focused on text content. However, text UGC is not
the only form of communication that users post on social media platforms. Images
or photos constitute around 36% of posts on Twitter(Glenn, 2012), which renders the
analysis of visual data, an interesting area to explore. Despite the growing popu-
larity of visual content in social media, limited work has been done so far on such
content within the field of GIScience. The lack of visual content analysis is a severe
limitation, as image content is a key component of social media posts – especially
considering the rise of image-focused platforms such as Instagram or Flickr. As "a
picture is worth thousand words" (Wang and Li, 2015), visual content can also pro-
vide rich information regarding places, the use of space, and people’s experiences
of landscape. Earlier work on the visual content of geotagged UGC mostly focused
on tags or meta-data or the text posted along with the images (e.g., Hollenstein and
Purves, 2010; Gao et al., 2015; Xu et al., 2017b), therefore it heavily relies on social
media users tagging their posts accurately. However, information created on social
media platforms tend to be noisy which contains a considerable amount of informa-
tion that are challenging to interpret even for human researchers due to a variety of
reasons (e.g., linguistic errors including misspellings and grammatical mistakes in
the text, or posts only have not- or less-informative images and with no provided
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illustrative text to explain), and images are commonly attached with multiple tags
which are irrelevant to the content.

Despite the fact that the growing availability of GPS-enabled devices and social
media platforms has led to an increasing interest in mining geolocated content, our
understanding of the role played by social media in the social construction of place
has been limited by the fact that only a small percentage of social media posts are
precisely geolocated (e.g., 0.85% of tweets are geolocated according to Sloan and
Morgan (2015)). Existing approaches aimed at tackling such issues focus on esti-
mating locations of users by analysing placenames present in the text using geop-
arsing methods (Li et al., 2012a; Li et al., 2012b; Chang et al., 2012; Purves et al.,
2018) in the text content. By including rare placenames (Flatow et al., 2015) and spe-
cific geographical words (Chong and Lim, 2017) or analysing location-based topics
(Eisenstein et al., 2010; Eisenstein et al., 2011), the location of each post can be es-
timated based on the content. Although geoparsing of textual content is the main
approach used in existing research, such approaches potentially ignore social media
posts that do not include location information explicitly in the content. Lansley and
Longley (2016) identified a strong association between users’ activity types and the
spatial distribution of users, which indicates that estimating the location of users’
posts solely based on a semantic understanding of their content is a feasible but
also challenging research objective to explore. Such an association can also further
benefit our understanding of the places by exploring whether users’ activities are
clustered in certain urban spaces (Gurevich and Ghosh, 2014) and how that can be
used to identify their unique socio-spatial patterns. As such, being an integral part of
UGC, spatial social media show their great potential contributing to place presenta-
tions through learning users’ activities. Taking visual and text content into account,
this thesis aims to understand place representations through analysing multimedia
UGC, and estimate users’ locations based on the association between users’ activity
types and the spatial distribution of UGC.

As discussed above, UGC is an essential source of information that describes
the perceptions of places, but it is not the only source of data used to understand
places. In the broader context of geography, the understanding of places is often
with the socio-economic context of local spatial infrastructures (Ballatore and De
Sabbata, 2019). Such understanding is commonly described by various official spa-
tial statistics as well as using socio-demographic classification approaches. For ex-
ample, geodemographic classification based on census data is a commonly adopted
approach, which has a long-standing history of being created in the UK to under-
stand socio-demographic characteristics (e.g., Harris, 2003; Gale et al., 2016). De-
privation indices are another vital approach to interpret urban development, which
has been used for a wide range of analyses, from human health research (Cox et al.,
2018) to socio-economic studies (Kontopantelis et al., 2018). However, the major-
ity of socio-demographic data are commonly collected periodically. For example,
census data are collected every ten years, but local areas are dynamic and may un-
dergo changes which might not be captured by decadal censuses (Gray et al., 2018).
The socio-demographic classifications remain rigid during the development of cities
(Singleton et al., 2016) and become less informative as time passes from the data col-
lection, which can lead to potential uncertainties when adopted to understand urban
spaces (Gale and Longley, 2013).

As discussed in the previous paragraphs, geographers aim at understanding
how places function in terms of human activities. Such an understanding of place
is taken as a fundamental aspect of the configurations of the space (Brantner and
Rodriguez-Amat, 2016). Some of UGC sources can provide a homogeneous spatial
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coverage, while others embed some locational information which is only concerning
particular locations of users or their posts. For example, contributors to Wikipedia
aim at providing information to include all cities and areas in a systematic way, while
geotagged social media such as Twitter posts (also called as tweets) are considered as
a communication process between users, which can then be adopted to study collec-
tive spatial activities and urban dynamics (Ballatore and De Sabbata, 2018; Ballatore
and De Sabbata, 2019). Ballatore and De Sabbata (2018) identified how the spatial
distribution of UGC is related to population density, ethnicity, education level, and
income due to the bias in participation and types of activities people share or dis-
cuss. For instance, in their study, they observed that UGC generated in Greater Lon-
don exhibits a significant bias towards areas characterised by a wealthier, younger,
and higher-qualified population. Despite that every city and platform has its own
idiosyncrasies, such connection between the spatial distribution of UGC and local
socio-economic structures indicates a possibility that the digital place representation
emerging from those platforms could be used as a proxy to estimate urban socio-
demographic dynamics (Reades et al., 2019), thus benefiting the understanding of
place for research as well as governance.

1.1.2 GeoAI

Current developments in artificial intelligence provide new directions within the
study of geography and from which a novel discipline emerged, named "GeoAI" (ge-
ographical artificial intelligence) (VoPham et al., 2018). Sitting at the junction of arti-
ficial intelligence (AI), geospatial big data, and high-performance computing, GeoAI
aims to "provide a promising solution technology for data- or compute-intensive
geospatial problems" (Li, 2020, p. 72), which enable "machines" to perform spatial
reasoning and analysis like humans.

According to Marshall McLuhan’s Law of the Media (McLuhan, 1975), modern me-
dia can be considered as modifiable perceptive extensions of human thoughts and
experience (Sui and Goodchild, 2011). The use of AI methods in digital platforms
studies plays an important role in understanding place representations. However,
the majority of such studies on UGC within digital geographies and GISciences focus
on text content or hashtags (Brantner and Rodriguez-Amat, 2016; Shaw, 2017). Deep
learning opens new opportunities for bridging the gap in visual content studies on
geotagged UGC data when studying users’ spatial activities, and moving beyond
the use of tags chosen by the users and low- or mid-level attributes, and combine
high-level representations extracted directly from the media content. Within the dis-
cipline of computer science, some work (Xu et al., 2014; You et al., 2015; Gajarla and
Gupta, 2015) has been done using convolutional neural networks to analyse users’
sentiments directly from the images posted on social media posts. Attracted by the
growing popularity of multimedia content on social media posts, research has been
widely conducted from single-modal (e.g., text or image) analysis to multimedia
content (e.g., text and image) study (Cai and Xia, 2015; Nadeem et al., 2019; Ahmad
and Conci, 2019), and the multimedia UGC has been widely accepted as an import
source of information to support geographical studies and spatial analysis (Newsam
and Leung, 2019). A typical issue when applying AI methods to study UGC is that
they often require a large amount of labelled data (namely training data) to help an
AI algorithm learn and produce sophisticated results. As such, current research has
mainly focused on supervised learning approaches with well labelled and balanced
data (Abudalfa and Ahmed, 2019). However, labelling large volumes of social me-
dia posts can be a lengthy and costly procedure as it requires a significant amount
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of human intervention. Such approaches are only viable when a pre-defined set of
topics or categories has been agreed upon by a large number of stakeholders, for
instance, for monitoring scheduled events or natural disasters. Such approaches are
more difficult to be adopted effectively for exploratory analysis or when monitor-
ing unexpected events. Thus far, limited attention has been given to the study of
exploratory analysis, where only vague categories or no categories at all have been
predefined for a specific event or a geographical phenomenon.

Many machine learning or deep learning models that have been applied to ge-
ographical analysis are a-spatial, which do not incorporate space and spatial prox-
imity as a factor in the model itself. For example, random forest Reades et al., 2019;
Alejandro and Palafox, 2019, support vector machines (SVM) (Liuying and Sichun,
2018) and principal component analysis (PCA) (Demšar et al., 2013). Although many
of those conventional machine learning approaches have achieved reasonable per-
formance, recent research has shown that spatially-explicit models substantially out-
perform more general models when applied to spatial data (Yan et al., 2019; Chu et
al., 2019; Mac Aodha et al., 2019). Tobler’s First Law of Geography (Tobler, 1970, p. 236)
points out that "everything is related to everything else, but near things are more
related than distant things". Spatial data is special because spatial processes in a re-
gion or a given space is often spatially autocorrelated. Taking gentrification in urban
studies as an example, once an area gentrifies, neighbouring areas can be affected by
that gentrification process independently or in conjunction with other factors. In
other words, many of the variables that are usually used to model gentrification
(from population age to house prices) are frequently spatially autocorrelated – that
is, similar values are found in neighbouring areas.

Tobler’s First Law of Geography has a prominent role in geographical research and
geospatial analysis, and it has been applied to the study of geotagged digital content
(Ostermann et al., 2015), where UGC nearest to a social event or activities are more
similar to each other than the more distant messages (Andrade et al., 2018). Thus,
the interplay of UGC and the use of space are also spatially correlated (Ostermann
et al., 2015). The use of distance to define the neighbourhood and its conceptual-
isation as graph representations of places and human activities has long been one
of the core approaches in geographic information analysis (Dacey, 1965; O’Sullivan
and Unwin, 2010; Mocnik, 2016). Recent studies in deep learning models introduce
a local operation—graph convolution—into the learning process. Such a process is
specialised dealing with graph-structured data in the irregular spatial domain (i.e.,
vector model in GIS), where the input data is represented as objects and their con-
nections (Zhu and Liu, 2018). Thus, it holds the promise to encode the geographical
and temporal proximity explicitly into the model to study users’ spatial activities
and to further understand the place representations.

1.2 Thesis Objectives

Everyday life in urban space is increasingly experienced through, as well as pro-
duced by, coded digital information (Graham et al., 2013b). Digital representations
of places are becoming pivotal for scholars to comprehend urban life using vast
quantities of data produced on various digital platforms. The "coded space" (Dodge
and Kitchin, 2005) produced by the content on digital platforms shape the place rep-
resentations based on the amount, quality, and type of digital information available
in a geographic area (Ballatore and De Sabbata, 2019). The main research objective
of this thesis is proposed as:



1.2. Thesis Objectives 7

• Research Objective: How can the use of content production of UGC inform our
understanding of place representations and their socio-economic characteristics?

As discussed in the previous section, existing studies and research mainly focus
on the text content of UGC to describe places through their locales and activities.
Given the increasing popularity of visual content produced online, multimedia con-
tent has the potential to provide rich information regarding places, the use of space,
and people’s experiences of landscape. Studies within digital geographies and GI-
Science on the visual content of geotagged UGC mostly focused on tags or meta-data
(Hollenstein and Purves, 2010; Gao et al., 2015; Xu et al., 2017b); thus they heavily
rely on users tagging their posts accurately. However, information created on social
media platforms tend to be noisy, and images are commonly attached with multiple
tags, some of which may be irrelevant to the content, or no tags at all. As such, to bet-
ter accounting for visual UGC into the studies of digital geographies and GIScience,
the first research question is proposed as:

• RQ1: How can we combine information extracted from both text and images from
multimedia UGC to better understand places and related activities?

UGC platforms have become major platforms for people to communicate and
exchange information regarding a wide range of topics. Despite the unequal geogra-
phies of UGC platforms (Ballatore and De Sabbata, 2018), there is a growing interest
in analysing such information from a geographic perspective within the field of dig-
ital geographies (Ash et al., 2018b). However, traditional qualitative analysis often
struggles with tackling large datasets, and the volume of data produced daily on
UGC platforms is enormous. Thus quantitative analysis and summarisation are fre-
quently necessary steps in digital geographies. That creates a strong association with
GIScience, where data mining approaches have been applied to identify users’ opin-
ions and online trends, to study the emergence of place from space through content
production (Graham et al., 2015a), or to monitor events from football to earthquakes
(Frias-Martinez and Frias-Martinez, 2014; Ifrim et al., 2014; Sechelea et al., 2016;
Zahra et al., 2017) and to understand the digital representations of a place (Ballatore
and De Sabbata, 2019).

Designing automated learning approaches on multimedia UGC is a challeng-
ing task due to the special characteristics of the data on digital platforms. Firstly,
with regard to the text content, UGC on platforms such as social media are likely
to be short and conversational. The content contained in a single post is limited
and noisy, which may not be sufficient to express comprehensive information. For
multimedia UGC, information expressed through image and text is often comple-
mentary, where users might post a short and simple text but with images that enrich
or complement the text information, and vice versa. Secondly, direct semantic sum-
marisation from images using computational technologies involves practical issues
which are rooted in the nature of images. For example, two images that are express-
ing similar concepts or meanings may have different viewpoints, scales, illumination
conditions, etc.. Thus, interpreting vast quantities of visual content is difficult and
often unfeasible in the qualitative studies of UGC in GIScience and digital geogra-
phies. The rise of deep learning in computer science shows its advances in many
domains of science, business and government, and keep outperforming other tradi-
tional machine learning techniques particularly in the discipline of image processing
(Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016). That opens up the op-
portunity to bridge the gap between text-based analysis and multimedia studies.
However, deep neural networks have been somewhat neglected in GIScience and
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quantitative human geography (Harris et al., 2017). That is partially due to most
deep learning approaches focusing on supervised learning, while GIScience has pri-
marily focused on unsupervised approaches, as well as modelling and exploratory
tasks. Autoencoders are an unsupervised approach within deep learning that is
commonly adopted for extracting and compressing high dimensional data seems to
have the potential to be applied on information extraction from multimedia content
for GIScience and digital geography studies. As such, to address RQ1, I propose and
test an autoencoder-based deep learning framework to directly learn and combine
information from UGC.

UGC enables scholars to understand place representations by describing their
activities and locales (Ballatore and De Sabbata, 2019). Time and geolocation are
important features that UGC includes with their content. Information shared on
digital platforms provides an insight into how users want to share their everyday
life, which consistently augments and reinforces the assumptions of local societies
through time, and layer the dynamic information across and over geographic space
(Graham et al., 2015a). With the idea of conceptualising social media posts as "aug-
mentations" (Ballatore and De Sabbata, 2019) of places as "time-space configura-
tions" (Agnew and Livingstone, 2011), I am interested in exploring if the spatio-
temporal aspects of social media posts would benefit the content analysis and fur-
ther inform our understanding of digital representations of the city (Pereira et al.,
2013). As such, the second research question is proposed as:

• RQ2: How can spatial or spatio-temporal distributions of UGC benefit our under-
standing of places and their representations?

Places in geography are not isolated but are connected in many ways (Nystuen and
Dacey, 1961; Noronha and Goodchild, 1992), which could be both physical and so-
cial, using measures such as distance, adjacency, and spatial interaction (Zhu and
Liu, 2018). Conceptualising UGC as “augmentations” (Ballatore and De Sabbata,
2019) of places, the digital information is connected and interacts in many ways
(e.g., linking posts using "following-follower" networks, –see, Sadilek et al., 2012).

The use of distance to define the neighbourhood and its conceptualisation as
graph representations of places and human activities has long been one of the core
approaches in geographic information analysis (Dacey, 1965; O’Sullivan and Un-
win, 2010; Mocnik, 2016). In recent years, as one of the sub-disciplines of deep
learning, graph neural networks have attracted increasing interests in the field of
computer science because of the great expressive power on the graph-structure data
(Zhou et al., 2018; Zhu and Liu, 2018), which have provided powerful models that
are potentially suitable for GIScience modelling on spatial interactions of places and
understanding place representations. For the second research question, I propose
and test various graph-based machine or deep learning frameworks on graph repre-
sentations of human activities carried out through UGC with their geographical and
temporal proximity to understand places and their related activities.

As discussed in the previous section, I stressed the fact that the role played by
social media in our understanding of places has been limited by the fact that only a
small percentage of social media posts are precisely geolocated. Existing research on
location estimation tasks mainly focuses on analysing placenames with text-based
methods, which potentially ignores a large chunk of data with no spatial information
explicitly in the text content. Lansley and Longley (2016) has identified a strong
association between users’ activity types and the spatial clusters of their content, I
am interested in exploring if the location of the content can be estimated based on
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spatio-temporal topological structures given the users’ activity types, and further
understand places through the distribution of different activities. The third research
question is proposed as follows:

• RQ3: Can the users’ activity type of social media posts reflect the location of the con-
tent and further benefit the understanding of place?

The content production on digital platforms is grounded in the geography of
users and their spatial infrastructures (Yardi and Boyd, 2010; Ballatore and De Sab-
bata, 2019). A sense of place is conceived as a collection of symbolic live patterns,
attitudes with a spatial setting held by an individual or group (Stedman, 2002). In
other words, similar social practices of users are often clustered within a geographic
area. Existing methods focus on using rich information provided by text UGC to
estimate the locations of social media posts (Li et al., 2012b; Li et al., 2012a; Chang
et al., 2012) and understand the place. However, as discussed above, such meth-
ods ignore a large amount of data that are not explicitly geolocated in the text. The
development of graph-based neural network allows to embed the features of nodes
and can be an option to be adopted on estimating the locations of multimedia UGC.
To address the third research question, I propose and test a framework using a varia-
tional graph autoencoder to estimate the locations of social media posts, taking into
account their qualitative coded content and spatial topological structure.

As discussed in the previous section, place representation often associates with
the socio-economic context of local spatial infrastructures (Ballatore and De Sabbata,
2019). This creates a strong connection to various official spatial statistics due to
the fact that the socio-economic characteristics of places are often described through
such statistics. Socio-demographic classification with such statistics is widely adopted
to understand places at different scales. In the past decade, various approaches and
indices have been adopted to understand urban development, such as geodemo-
graphic classification or indices of deprivation, and many existing research focus on
socio-demographic representations at the urban as well as a national scale. However,
the data for creating such socio-demographic classifications are mostly collected pe-
riodically, while UGC from digital platforms can be collected more frequently and
continuously. As discussed in the previous section, Ballatore and De Sabbata (2019)
illustrate how the spatial distribution of UGC is related to population density, eth-
nicity, education level, and income. Despite that every city and platform has its
idiosyncrasies, such connection between the spatial distribution of UGC and local
socio-economic structures indicate a possibility that the digital place representation
emerging from those platforms could be used as a proxy to estimate urban socio-
demographic dynamics (Reades et al., 2019), thus benefiting the understanding of
the place from official governance perspectives. As such, the fourth research ques-
tion is proposed as:

• RQ4: How can the distribution of UGC benefit the modelling of urban socio-demographic
change and inform our understanding of places?

As mentioned above, places in geography are not isolated but are connected in
many ways (Nystuen and Dacey, 1961; Noronha and Goodchild, 1992), which could
be both physical and social, using measures such as distance, adjacency, and spatial
interaction (Zhu and Liu, 2018). One place may associate with multiple defined rep-
resentations described by different data sources and ways of connections and might
be strongly correlated to each other, i.e., the strong correlation between geodemo-
graphic classification and financial deprivation (Dedman et al., 2006). Utilising a
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knowledge graph to capture the characteristics of places described by different data
and the complex spatial connections among places is a feasible solution to illustrate
or estimate urban dynamics in an automated way, and demonstrate how the place
representation described through UGC can be used as a proxy to provide insights
into urban changes. To this end, to address RQ4, I test a knowledge graph deep
neural network approach to model urban socio-demographic changes.

1.3 Thesis Structure

The remainder of the thesis is organised as follows (see Figure 1.1), detailed intro-
duction about the data will be provided in Chapter 3, 4, 5 and 6. Chapter 2 in-
troduces the historical development of digital platforms and big data, and how they
are associated with geographical analysis, as well as reviewing existing research and
methodologies focusing on UGC data in the field of digital geographies. Chapter 3
presents an overall introduction on the data used in the thesis, as well as introduc-
ing my proposed framework and the mathematical background of all methodolo-
gies. Chapters 4, 5 and 6 are three analysis chapters. Each chapter introduces a
framework developed based on the methodologies presented in Chapter 3 with case
studies. In Chapter 4, I will introduce my proposed graph-based semi-supervised
framework to understand places by investigating users’ spatial activities using im-
ages, text and spatial or spatio-temporal information of their social media posts with
case studies using geotagged Twitter data that have precise longitude and latitude
pairs. In Chapter 5, I will introduce my proposed framework to estimate the ge-
olocations of social media posts using activity types and their spatial topological
structures. It will present case studies using geotagged Twitter data that have pre-
cise longitude and latitude pairs as well as data that have no precise geo-coordinates
but with the attached geo-bounding box in their meta-data. In Chapter 6, I will in-
troduce a spatial knowledge graph-based framework to predict socio-demographic
changes at the urban scale, taking into account London Output Area Classification,
UK Indices of Multiple Deprivation, and the distribution of geotagged social media
data and Wikipedia articles in London. Chapter 7 provides a summary discussion
of the results obtained from the three analysis chapters (Chapters 4, 5 and 6) with
a view of harmonising all the findings and evaluating how these compare with the
existing literature in addressing the research gaps observed. It also provides conclu-
sions on the thesis’s highlights, the implications of the findings and their contribu-
tions to broader knowledge, and several limitations encountered in the course of the
research and the objectives of possible further research.
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FIGURE 1.1: A graphical illustration of the various chapters in the
thesis and the connection between them
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Chapter 2

Towards Quantitative Digital
Geographies: Concepts, Research
and Implications

This thesis is rooted in the discipline of digital geographies and GIScience with the
conceptualisation seeing digital platforms as "code", and thus, representing the place
as a "coded space". To better understand such "coded space", I use big data an-
alytics and deep learning methodologies to explore how place representations are
augmented and reinforced through content production on digital platforms and to
identify the spatial clusters of UGC at the urban scale. Therefore, the background
of this thesis is based on three main research areas: geographic information science
(GIScience), digital geographies, and deep learning (DL). British-American geogra-
pher Michael Goodchild defined the term GIScience as the science behind the geo-
graphic information systems (GIS) (Goodchild, 1992). Later, David Mark published
a more comprehensive definition for GIScience as "the development and use of the-
ories, methods, technology, and data for understanding geographic processes, rela-
tionships, and patterns. The basic research field that seeks to redefine geographic
concepts and their use in the context of geographic information systems" (Mark,
2003, p. 2). Digital geographies have emerged from the scientific awareness that
knowledge is constructed, partial, situated and positioned within particular con-
texts (Hubbard et al., 2002). Digital platforms enable users to produce vast quanti-
ties of UGC online and have become an ever-increasing presence in social practices
(Elwood and Leszczynski, 2013). Being an integral part of UGC, geotagged UGC is
enriched with information describing places and their locales and activities, which
draw increasing interests from scholars in many social science disciplines concern-
ing social process embedded within a spatial context (Goodchild and Janelle, 2004).
Traditional qualitative analysis in digital geographies often struggles with tackling
large datasets, and the volume of data produced daily on UGC platforms is enor-
mous. Thus quantitative analysis and summarisation are frequently necessary steps
in digital geographies. That creates a strong association with GIScience, where data
mining approaches have been applied to identify users’ opinions and online trends,
to study the emergence of place from space through content production (Graham
et al., 2015a) and to understand the digital representations of a place (Ballatore and
De Sabbata, 2019).

Deep learning is a class of techniques within Machine Learning technology. It "al-
lows computational models composed of multiple processing layers to learn repre-
sentations of data with multiple levels of abstraction" (LeCun et al., 2015, p. 436) and
these methods have led to tremendous improvements on a large variety of domains
such as visual object recognition, object detection and speech recognition. In recent
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years, the use of computer-based techniques for spatial data analysis has grown into
an important scientific field, combining techniques from GIScience and emerging
areas such as natural language processing, neurocomputing and heuristic search.
Fotheringham (1997) defines geocomputation as quantitative spatial analysis where
the computer plays a vital role in such analysis. Data are considered as "the driving
force" (Miller and Goodchild, 2015b, p. 451) behind analysis rather than merely be-
ing a way of calibration, validation and test. Data-driven techniques are capable of
handling not only large quantities of data but also a wide variety of data spreading at
high speed in the world (Miller and Goodchild, 2015b). However, even though such
data-driven science seeks to be exhaustive and automatically discover insights with-
out proposing a hypothesis (Steadman, 2013), the use of data-driven methodologies
must be carefully employed due to concomitant complex ethical issues (Zook et al.,
2017) and other concerns about big data which will be discussed in the following sec-
tion. With dramatic improvements on the computational capabilities of computers
and the rise of deep learning techniques, this work is trying to explore the poten-
tial of employing deep learning methods in digital geographies discipline to handle
large datasets to provide an in-depth insight of place representations associated with
UGC from digital platforms.

Due to the nature of this thesis that combines a diverse set of fields, I will pro-
vide a brief introduction to each section as follows. The concepts of space and place
have varied throughout recent history and have become central notions in geogra-
phy. In Section 2.1, I will introduce space and place from a historical perspective
of the development, and how they are evolved in "the midst of a digital turn "(Ash
et al., 2018b, p. 25), whereby digital devices and software packages have become
indispensable to geographic practice and scholarship across sub-disciplines.

2.1 Space and Place

The concepts of space and place have varied throughout the recent history of geog-
raphy and have become central notions in disciplines like human geography. Tra-
ditionally, space was considered as a geographical container or geometric system
that holds the object under study. Space is then nothing more than an abstracting
instrument with no social connections for a human being (Tuan, 1979). By allow-
ing users to lay an abstract space (a two-dimensional Euclidean container with an
x- and y-axis geometry) over the Earth’s surface, the use of the concept of space be-
came particularly useful within geographical studies because space can be used to
describe the exact location of every object contained in a specific area. The early
adoption of space can be seen in the regional geography (Hartshorne, 1939) in the
first half of the 20th century, which tasked the space with describing the location of
all objects within it. Objects within such a space are completely independent of each
other; the only connection among the objects are the geographical distances between
each other.

In the second half of the 20th century, geographers started to critique the early
conceptualisation of space as limiting and hampering the actual understanding of
the social as well as spatial processes within a geographical area. Consequently, the
creative thinking of space emerged. The traits of thinking of the space moved be-
yond considering it as an abstract geographic container which is used to describe
all independent objects within it, to associating human spatial experiences and all
other things in the area with the study of the space (Poorthuis, 2015). To clearly
distinguish from the earlier concept of space, human geographers like Tuan (1977)
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conceptualised a new term in geography named as place. Contrary to space, place
is more than just a location and can be described as a location created by human
experiences, emotions and thoughts. In other words, place exists of space that is filled
with meanings and objectives by human experiences situated in a particular geo-
graphic area (Tuan, 1979). Places "are specific time-space configurations made up of
the intersection of many encounters between ’actants’ (people and things)" (Agnew
and Livingstone, 2011, p. 325), and can be viewed as a series of locales where every-
day activities happen (Agnew and Livingstone, 2011). Social and cultural processes
consistently participate in the process of creating, shaping and destroying places.
In that sense, place plays an essential role in human cognition, social practises, and
knowledge representation (Ballatore, 2016).

Thus, analysing how places are perceived and represented is crucial to interpret
the underlying social and spatial practices involved with enriched human activities
such as political, social and economic activities in space. The analysis of human con-
ceptualisations of the space often involve categorisations of some kind. Such sum-
marisation and categorisation processes of representative geographical phenomena
inform us of the understanding of socio-spatial practices in the places of a given
space. Thus, understanding the representation of place is a central problem in geo-
graphical studies (Purves et al., 2019). Place representation has a strong connection
with information science and information systems (Purves et al., 2019), and it often
refers to the overall information available in a target geographic area for a given
dataset (Ballatore and De Sabbata, 2018). According to Graham et al. (2015a, p. 88),
"information has always had geography. It is from somewhere; about somewhere; it
evolves and is transformed somewhere; it is mediated by networks, infrastructures,
and technologies: all of which exist in physical, material places". In the "pre-digital
age" (Graham et al., 2015a, p. 89), studies towards the understanding of places fo-
cus on the individual level of the perceptions on a given space. For example, Lynch
(1960) introduces an approach of mental mapping. His study draws images of cer-
tain aspects of the urban spaces from participators’ mental memory. Taking it yet an-
other step forward, Peter and Rodney (1974) use the same approach but with more
observers, thus the understanding of places can be drawn through the collective per-
ceptions from the observers. In the past decade, thanks to the development of digital
devices and world wide web, human society has witnessed a radical change in the
availability of information, such phenomena are termed as "information revolution"
(Floridi, 2014, p. 87) or "data revolution" (Kitchin, 2014, p. 2). Although there remain
concerns regarding the bias of human participation of the Internet due to uneven
geographies of the ICT access (Graham et al., 2014b), Fuchs (2008) and Shirky (2010)
highlight the ways that the digitally mediated participation allows citizens to play
a more pivotal role in shaping the content and augmentations that play key roles
in their lives. People nowadays are more prone to participate in the construction
of knowledge and culture about places, regardless of their actual geographic loca-
tions (Lessig, 2003). Due to the vast amount of information produced on different
digital devices and web daily, such information and communications technology-
based (ICT-based) platforms function not only as a way of distributing, generating,
monitoring, and controlling data exchange and flow across a range of the internet
infrastructures (e.g., cable, WiFi, 5G network), but also as a host of associated social,
economic, and political practices (Graham et al., 2015a).

Consequently, we can understand such ICT-based platforms as a geographical
concept of codes (Dodge and Kitchin, 2005). Dodge and Kitchin (2005, p. 197) define
a code as " an instruction or rule that has a single outcome determined by binary
logic (yes or no)", and the combination of such individual logic rules produces codes
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which are able to conduct complex functions. The geographies of the conceptualised
digital social practice are defined as a form of cyber or virtual space (Crang et al., 1999;
Fisher and Unwin, 2001) in the studies of geography which are involved with digital
information. Such cyber or virtual space has been termed as artificial reality, inter-
activity, and conceptual and metaphorical spaces with co-presence, low-cognitive
mapping, and egalitarian and global communications (Kellerman, 2016). In other
words, those are spaces that are digitally surveyed and regulated by information
production from the ICT-based software and platforms. In addition to the term cy-
berspace, such digitised space are also defined as "coded space" (Dodge and Kitchin,
2005, p. 197). The geographies of such digitally mediated coded space (the amount
and distribution among space and platforms of digital content about places) often
relate to data at various geographic scales (e.g., streets, cities, countries) reflecting
the percentage of Internet use consumed by mobile devices and other digital com-
munication media (Dodge, 1998); thus, space is continuously reproduced through
the digital information. Such coded space includes the use of check-in activities,
geotagged content production and access of other forms of location-based services,
and the conceptualised spatial experience described through the content production
from individual users who are continuously using the Internet, and their geographic
use of the websites or digital communications. Benefiting from the rise of computing
technologies and the world wide web, researching digitally-augmented experience
from individual users has become an interesting research objective within academia
to understand how code operates. Gathering and analysing crowdsourced mass ac-
tivities have become feasible and dynamically re-/shaped our understanding of the
digital representations of places.

2.2 World Wide Web

The first generation of the world wide web is known as the web 1.0, which is the
"read-only web" according to Berners-Lee (1998). In other words, the early web al-
lowed us to search for information and read it. There was very little in the way of
user interaction or content generation. With the increasing desire of users who want
to participate in online activities and the rapid development of computer technolo-
gies, we moved from web 1.0 to web 2.0. The term "Web 2.0" was coined in 1999 by
DiNucci (1999, p. 32) and later popularised by O’Reilly and Dougherty (2004) at the
O’Reilly Media Web 2.0 Conference in late 2004. Since the emergence of web 2.0, dig-
ital platforms have started to strongly encourage user-generated content (UGC) in
the form of text, video, and photo postings along with comments, tags, and ratings.
Online users can communicate and participate in diverse activities with friends, col-
leagues and families much more conveniently and efficiently by using their mobile
devices. As such, web 2.0 draws a significant number of users, and digital platforms
consequently have become an ever-increasing presence in social practices, becom-
ing part of political, social and economic activities in the society (Liaropoulos, 2013).
Therefore, digital platforms are considered as an essential source for the research
studying social science, including qualitative as well as quantitative fields such as
computational social science that investigates questions (Lazer et al., 2009) using
quantitative techniques (e.g., computational statistics and machine learning) and so-
called big data (will be introduced in Section 2.5) for data mining and simulation
modelling (Cioffi-Revilla, 2010).
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2.2.1 Geoweb

Spatial information and geoprocessing techniques are now directly linked to many
areas, such as commerce (Papamichail and Papamichail, 2007; Zhang et al., 2010),
transportation (Ding, 1998), emergency response (Scholten et al., 2008), health care
(Noon and Hankins, 2001) and many other domains that leverage spatial data to
achieve a more comprehensive understanding of geographic areas. The integration
of web technologies and GPS-enabled services has also created a strong association
with the discipline of geography.

Online mapping was first introduced by Palo Alto Research Center (formerly
Xerox PAPC) (Putz, 1994) in 1993 after the web 1.0 invented with the capability to
show the world on a map, zooming at preferred scales and controlling the visibility
of geographic features. Over the years, geoweb has witnessed a rapid increase in the
development of delivery mechanisms for geographic information on the web (Hak-
lay et al., 2008). The term geoweb has been broadly defined as "a distributed digi-
tal network of geolocated nodes that capture, produce, and communicate data that
include an explicitly spatial component" (Abernathy, 2016, p. 11). As people nowa-
days can easily locate themselves with mobile GPS and ease getting access to the
network, "we live in a geoweb" (Abernathy, 2016, p. 2). New technologies and ever
fast-growing multilevel datasets that include geographic information have drawn
social scientists’ interests in spatial analysis within geography (Logan, 2012).

The concept of "GIS as media" (Sui and Goodchild, 2001, p. 387) creates a strong
connection between geoweb and big data (this will be discussed in Section 2.5). With
an increasing number of users using digital platforms which provide location-based
services to geotag their locations, more studies and research from social science per-
spective are highlighting the importance of the collection and analysis of these mas-
sive, cross-referenced data about citizens and their activities (Crampton et al., 2013),
and consequently contributing to a better understanding of the reproduction of ur-
ban spaces (Shaw and Graham, 2017).

2.3 User-generated Content

User-generated content (UGC) originates from people who contribute data, informa-
tion, or media in a useful or entertaining way (Krumm et al., 2008). It could be any
form of content, such as images, videos, text, and audio, which are posted by users
on online platforms such as blogs and social media. In the "pre-digital age" (Graham
et al., 2015a, p. 89), when the development of the digital devices and the Internet
was still at their early stage, traditional "gatekeepers" such as newspaper editors,
publishers, and news shows needed to approve all content and information before
it was published. Thanks to the rapidly developed web technologies on Web 2.0
platforms, they have increased the prevalence of UGC, and flattened of traditional
media hierarchies. The advent of UGC marked a shift among media organisations
from creating online content to providing facilities for amateurs to publish their own
content (Berthon et al., 2015).

Of the many UGC websites online, one of the most renowned is Wikipedia,
which is the largest multilingual free encyclopedia written by users collaboratively.
It is one of the top ten most visited websites worldwide and hosts 5.8 million arti-
cles in English, edited by about 130,000 monthly active editors (Wales, 2014). From
a geographical perspective, in 2013, about 730,000 articles in English were associ-
ated with a location information (Ballatore and De Sabbata, 2019). Graham et al.
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(2015a) point out that most editing distributed in the Global North, also for arti-
cles about places in the Global South, Wikipedia has a deep bias towards contribu-
tions from Western European and North American editors. Due to the popularity of
Wikipedia, and the massive information produced on it monthly, the geographies of
the information from the platform draws a wide range of scientific research towards
to how Wikipedia shape our perception of the places (Graham et al., 2015b; Jenk-
ins et al., 2016; Ballatore and De Sabbata, 2019) and its bias (Callahan and Herring,
2011; Graells-Garrido et al., 2015) as well its uneven geographies of the information
(Graham et al., 2014b; Graham et al., 2015a).

Information produced on Wikipedia is certainly not the only source of UGC with
geotagged information. In the rest of this section, I will introduce two important
sources of UGC, social media and volunteered geographic information (VGI), that
have been heavily involved in geographical studies. Note that a complete review
of the literature around social media and VGI is beyond the scope of this disserta-
tion, the introduction of them in this section includes scientific studies in relevant
to understanding place representations within the fields of GIScience and digital ge-
ographies.

2.3.1 Volunteered Geographic Information

The rise of Web 2.0 represents an essential change in the way that the Web is per-
ceived, and its products are developed, introducing an age in which ordinary users
can freely share content online. In the past decades, the rapidly growing crowd-
sourcing techniques have been aggregated into GIScience democratisation projects
(Butler, 2006), leading to Volunteered Geographic Information (VGI) initiatives, along
with other geographic crowdsourcing and crowdsensing products (Pinheiro and
Davis, 2018).

VGI was defined by Goodchild (2007, p. 212) as "the widespread engagement of
large numbers of private citizens, often with little in the way of formal qualifications,
in the creation of geographic information, a function that for centuries has been re-
served to official agencies". VGI is a special subset of UGC tied to the proliferation
of GPS technologies and the emergence of Web 2.0 technologies (e.g., blogs, social
media, and wikis). The combination of digital platforms for sharing spatial data
such as Wikimapia (2006) and OpenStreetMap (2004) (OSM) and cheap and accurate
geotagging devices enable people to more actively participate in the data collection
and distribution and geo-visualisations (Zook and Breen, 2017) regardless of their
geographic background (Capineri, 2016b). One of the typical examples is OSM,
an open-source, volunteer-generated global map that aspires to be the "Wikipedia
of Maps" (Fox, 2012). Instead of scientific observations, the OSM project produces
a large quantity of VGI in forms of nodes, lines, and features to a base map con-
tributed by volunteers worldwide. As OSM operates under a Creative Commons
license which ensures the data is free to use with attribution, the OSM has become a
widely used resource supporting scientific research or commercial products. For ex-
ample, after the Haitian earthquake, OSM became the most notable VGI to respond
to crisis (Zook et al., 2010).

One of the key characteristics of VGI is that the creation of geotagged data can be
derived from users’ everyday activities (Zook and Breen, 2017). Such a characteristic
expands VGI into the geoweb (Elwood, 2010). It has become a standard practice for
users to create map mashups that adopt third-party data benefiting from the open-
ing of the Google Maps API. Much of the data are crowdsourced and often focused
on the social practices of the everyday activities, to create a whole new context for
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the information (Zook and Breen, 2017). Goodchild (2007) highlighted such a trend
and noted that a critical novelty of VGI might be "informing about local activities in
various geographic locations that go unnoticed by the world’s media" (Goodchild,
2007, p. 220). As illustrated in Section 2.1, place can be viewed as a series of locales
where everyday activities happen (Agnew and Livingstone, 2011), the conceptuali-
sation of VGI platforms as a host producing social practices of human participants
creates a strong connection towards understanding places within the discipline of
geography. The individual-level content of VGI can be seen as a form of qualita-
tive geographical information, and it provides a powerful source of information on
human spatial experiences for places with a precision which was unattainable in the
past using traditional time-constrained investigations (e.g., surveys, interviews, etc.)
or official data (e.g., census) (Capineri, 2016a). Datasets and projects that constitute
part of VGI can be seen as the result of a social creation process (Mayer et al., 2020), in
which usually a large number of human participants are involved. Thus, every per-
son holds a biased representation of their physical spaces, including geographical
and geometrical features as well as information about objects (e.g., buildings, parks
and streets) and their functions. VGI platforms integrate these representations from
individual perceptions into a single shared conceptualisation represented in the data
(Mayer et al., 2020). One of the typical VGI data sources for studying users’ spatial
experiences and place representations is social media data which will be discussed
in the next subsection.

Given that VGI participants may vary greatly in expertise and often collect data
without established protocols or standards, there is often considerable concern about
the quality and usability of the data, which may influence our understanding of the
places using VGI content. Early on, Flanagin and Metzger (2008) realised that it is
essential to identify and develop methods and techniques to adequately evaluate
VGI quality, and Goodchild (2008) highlighted the challenge to redefine the assess-
ment of spatial accuracy in the VGI era. Although a complete review of VGI quality
assessment is beyond the scope of this thesis, it is still worth noticing that there
have been significant efforts from academia to deal with quality issues of VGI data.
More comprehensive literature overviews of the latest developments in VGI qual-
ity assessment are presented in Barron et al. (2014) and Arsanjani et al. (2015) and
Senaratne et al. (2016). Of the topics selected by the authors for future research, they
emphasise the objectives of intrinsic data quality assessment, conflation methods
which combine crowdsourced VGI and other data sources, and the development of
credibility, reputation, and trust methodologies for crowdsourced geographic infor-
mation.

Thanks to the increasing amount of data produced nowadays, studies that in-
volved with VGI inevitably associate with quantitative data analytics. The central
characteristics of such data with significant volumes, wide range of variety, and high
speed of velocity often associate with the term of big data which will be detailed in
Section 2.5.

2.3.2 Social Media

The earliest ancestor of the social media platforms that exist today is most likely
USENET which was developed by two graduate students, Tom Truscott and Jim El-
lis from Duke University in 1979 (Lueg and Fisher, 2012). USENET was a conglom-
eration of separate servers operated by various companies that store and forward
messages to one another in forms of articles and threads. Users could subscribe to
newsgroups depending on the topic and post articles and respond to them, forming
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a thread. This technique made it possible for one person to reach many other users
and also spread their own voices. Following the development of USENET and the
Internet, there was an explosion of different web-based services created for people
to distribute content. In 1999, the platform Napster was created, apart from text con-
tent, it also allowed users to share videos and music files within the community. In
2004, social media portals like MySpace, LinkedIn and Facebook were founded. In
2005, the video platform YouTube was created, and one year later, another social me-
dia platform providing micro-blogging and social networking service called Twitter
entered the market. Thanks to the development of digital devices and the Internet,
social media nowadays are widely considered as interactive Web 2.0 Internet-based
applications that facilitate the creation or sharing of information, ideas, sentiments
and other forms of expression via virtual communities and networks (Kietzmann
et al., 2011).

The term social highlights that the data from social media platforms represent
many aspects of human life, they capture the habitual and relational interactions
between family and friends or even strangers who they never met in person. Such
nature of the data being collected has expanded into new realms of human geogra-
phy and sociability (Poorthuis, 2015), and is a defining characteristic of social media
data.

Social media data have other two core characteristics which are defined as online
and geotagged. Although much of digital social media data is "online", the practical
collection of "online" data is complicated, and the data collected can be categorised
into different types based on the ways of accessing the data (Poorthuis, 2015). The
first type is fully accessible data on the Internet (public data), and such data can be
understood as a membership list or search results on the web that can be copied.
The second type of data has controlled access on the Internet (semi-public data), and
they can be accessed via an application programming interface (API) (e.g., Twitter’s
API), to obtain data that are parts of a social database. The third type of data is
with controlled access and can only be collected through social means (private data)
(asking a provider for a copy of data), such data are not, or at least very rarely, shared
(e.g., Facebook transactions, mobile phone records) publicly. Each type of social
media (public, semi-public, private) also implies different ethical concerns (Metcalf
and Crawford, 2016) (detailed discussions will be provided later in this section). In
the scope of this thesis, my case studies associate with public and semi-public data,
as many researchers do, but it is still important to highlight that other researchers
are not limiting themselves into these types of data.

The second term geotagged often refers to the geotagging which is an act that as-
sociates a given piece of social media data with a particular location on the earth’s
surface (e.g. a geotagged tweet or Foursquare check-in). A large part of geotagged
data has been geotagged with longitude and latitude coordinates; in this thesis, I use
the terminology geolocated social media to define such content. These information or
data points are collected with a variety of technologies and approaches, including
GPS receivers and/or WiFi and cell locative technologies with different levels of
accuracy. However, longitude and latitude coordinate pairs are not the only form
of geotagged data. As mentioned in Chapter 1, only a small fraction of tweets are
geolocated with coordinates. This brings a significant challenge for researchers to
understand geographic phenomena as recorded via online platforms. Existing ap-
proaches aimed at tackling such issues focus on estimating locations of users us-
ing the modellings of placenames with geoparsing methods (Li et al., 2012b; Li et
al., 2012a; Chang et al., 2012; Purves et al., 2018) in the text content. By including
rare placenames (Flatow et al., 2015) and specific geographical words (Chong and
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Lim, 2017) or analysing location-based topics (Eisenstein et al., 2010; Eisenstein et
al., 2011), the location of each post can be estimated based on the content. Thus,
such methods have greatly enriched the data towards analysing geographic phe-
nomenons.

The spatial and social structures of local communities in a city lead to certain
collective human activities patterns (Steiger et al., 2016) clustered within different
geographic areas. With the concept that users from social media as sensors of places
(Goodchild, 2007), social media data can help to "sense" this type of information
from urban environments. Thus, social media data provide a unique insight to
places with the abundant information of sentiment as well as relationships between
individuals, groups, and the physical environment (Roche, 2016). GIScience research
thereby focuses on questions regarding how corresponding spatio-temporal patterns
from social media networks and heterogeneous data streams can be explored, ex-
tracted, validated and aggregated. In turn, such information enables us to analyse
daily spatial processes and to gain knowledge about places, especially with respect
to collective human dynamics (Steiger et al., 2016). Using social media data to under-
stand the interplay between human activities and the use of space, Li et al. (2013) ex-
plored spatio-spatial distribution of Twitter posts (tweets) and Flickr photos in Cali-
fornia, showing that the distribution of photos is more clustered in natural parks and
that Twitter posts tend to originate from areas with educated, high-income people.
Hahmann et al. (2014) investigated the spatial relationship between points of interest
from OSM and geolocated tweets, showing correlations at the local scale for certain
topics (e.g., "railway station", "restaurant", and "supermarket") and not for others
("pub", "bakery"). Gao et al. (2017) introduced a data-synthesis-driven method us-
ing heterogeneous social media sources for detecting and extracting vague cogni-
tive regions as one type of places, and they compared the results with a conven-
tional human-participants study (e.g., survey). In particular, the authors assessed
the spatial cognitive regions of "Northern California" and "Southern California" and
found a firm correlation existed between the data-synthesis-driven method and the
empirical-survey method. Although social media-derived results are often accused
of being biased towards user demographics of social media platforms (Gao et al.,
2017; Ballatore and De Sabbata, 2018; Ballatore and De Sabbata, 2019) and limited to
the user-reachable locations, existing studies have demonstrated that social media
data at least partially are able to reflect people’s spatial experiences, opinions and
interests in places. Thus, the collective sensing approach could benefit the under-
standing of places (Blaschke et al., 2018).

However, despite the fact that studies which are using social media in the con-
text of geographical research questions in GIScience have proliferated, such studies,
in particular with research that involve the mapping of social media, have also been
criticised by scholars for promoting a sort of "speedy pseudopositivism" associated
with a neoliberalizing "new quantitative revolution" (Wyly, 2014, p. 26). In studies of
geotagged social media, researchers often over-privileged the single pair of latitude
and longitude coordinates that are attached to each individual data (Shelton, 2017),
and "ignoring the multiplicity of ways that space is implicated in the creation of such
data" (Crampton et al., 2013, p. 132) by disregarding the socio-spatial practices em-
bedded in the data. For example, as Crampton et al. (2013) illustrated, information
that is geotagged to a particular location may not necessarily have been produced
in that location, relate to that location, or exclude reference to any other geographic
localities. Geotagged content often exhibits a variety of spatial referents apart from
the hidden latitude and longitude coordinates attached to it. Thus, as pointed out by
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Shelton (2017), research which ignores the implicit social and spatial processes em-
bedded in this kind of data, such as many mainstream academically-oriented social
media mapping projects conducted by non-social scientists, can lead to a range of
decontextualised, problematic assertions (Sui, 2008; Crampton, 2011; Wilson, 2015).

Cheshire et al. (2019) identified four uncertainties of spatial analysis using social
media data (e.g., Twitter), geodemographic, utilisation, semantic, and spatial. The
geodemographic uncertainty relates to the self-selection of users. It is understood as
a demographic bias of social media studies, where most users tend to be young, ur-
ban, affluent, and often with English as their first language. It is difficult to identify
the geodemographic associations of any particular individual systematically and to
understand how these biases manifest themselves spatially, as well as enabling eval-
uations against other datasets. Utilisation uncertainty relates to the bias of how the
content production varies over space, time, and in response to different conditions
and events. Since a small number of users produce a large amount of content, anal-
yses of even vast collections of social media data may only portrait very small sec-
tions of society. Also, the spatio-temporal variation in social media usage is another
crucial element of utilisation uncertainty. Temporal trends of users’ activities indi-
cate that users prefer to tweet during leisure hours; spatially, users’ activities tend
to be clustered at the centre of the urban areas and most activities are prone to be
produced at sporting or entertainment venues. Semantic uncertainty relates to the
semantic understanding of the content. Without sufficient cultural or personal con-
text, interpreting the semantic meaning is challenging. Spatial uncertainty is similar
to the issue pointed out by Crampton et al. (2013) concerning the lack of accuracy
and precision measurement of social media content. Thus, an understanding of true
spatial uncertainty is difficult to achieve.

Another important issue with regard to social media studies is their implication
of ethical concerns. The first concern is about whether social media should be con-
sidered as public data which are free to access and analyse or private data which
require extra data safety measurements and protections (e.g., General Data Protec-
tion Regulation in the European Union) (Townsend and Wallace, 2016). Despite the
fact that users on each social media platform have all agreed to a set of terms and
conditions which often contain clauses on how one’s data may be accessed by third
parties (including researchers), Boyd and Crawford (2012, p. 672) pointed out that
"it is problematic for researchers to justify their actions as ethical simply because the
data are accessible", and the process of ethnics evaluation can not be ignored even
if the data are seemingly public. The second concern is about the informed consent.
Unlike traditional research approaches which often involve consent forms prepared
for the participants, social media-based research presents problems concerning the
informed consent of participants. It is common that a social media user’s data is
accessed and analysed without informed consent having first been sought. "Par-
ticipants" in such research are rarely aware of their participation to single studies.
The third concern is about anonymity. In traditional research, it is straightforward
to anonymise data so that the participants can not be identified. However, when
working with social media data, data anonymity is more complex. It is difficult
to anonymise individual data (such as tweets) when these are reproduced in pub-
lications and during presentations (Narayanan and Shmatikov, 2009). The fourth
concern is the potential of harm. It is not always clear to the researchers whether
or not the data they have accessed, collected, analysed or reused can be retraced
in its original online context, or what the repercussions of such retracing might be
(Townsend and Wallace, 2016). Markham and Buchanan (2012) suggested that re-
searchers should be more aware of the increasing risk of harm to their participants,
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or the increased vulnerability of individuals or groups online. The concerns of ethi-
cal issues within social media analysis and big data studies will be further discussed
in Section 2.5.

Nowadays, we immerse ourselves with increasingly abundant data. Rather than
merely dismissing or rejecting analytics of social media data, it is still essential to
study and develop data-driven approaches that enable social scientists to draw valu-
able insights from the data which are "situated and reflexive" (Kitchin, 2014, p. 1).
Crampton et al. (2013, p. 130) proposed five extensions with regard to social me-
dia analysis, which they named them as "beyond geotags", to the typical practice
of mapping geolocated data: (1) going beyond social media that is explicitly geo-
graphic; (2) going beyond spatialities of the ’here and now’; (3) going beyond the
proximate; (4) going beyond the human to data produced by bots and automated
systems, and (5) going beyond the geoweb itself, by leveraging these sources against
ancillary data, such as news reports and census data. They argued that the study
of social media practices should go beyond simple visualisations of content using
latitude and longitude coordinates. They highlighted the significance of the tempo-
ral dimension of the data for deeper insights into the spatial and social process of
the geographic phenomena. Their case study on Twitter regarding the widely re-
ported riots following the University of Kentucky men’s basketball team’s victory in
the 2012 NCAA championship reveals the promise of analysis that is not limited to
the explicitly geographic dimensions of activity but includes a relational dimension,
such as social network analysis. They highlighted the fact that social media content
is not produced solely by human users, but also full of automated content producers
like Twitter spam robots, which may draw uncertainties on the quantitative studies.
Finally, they also highlighted the importance of including non-user-generated data,
such as governmental or proprietary corporate data sources, as a supplement in so-
cial media research. Their paper has set forth a series of research directions for UGC
studies, and the idea of "going beyond geotags" is a fundamental research objective
rooted in the nature of this thesis.

2.4 Digital Geographies

Traditionally, extensive surveys and long periods of observation were required to
collect an adequate amount of data to investigate social practices and study the as-
sociated urban representations. The rise of geoweb and technology innovation have
brought geography in the midst of a digital turn (Ash et al., 2018b). Digital de-
vices such as smartphones, satellites and digital cameras have brought great con-
venience to individual users who are constantly using the location-based services
during our work, travel, production and leisure, thus having become indispensable
to human life. As such, research interests from academia and industry have been
heavily focused on associating their studies with digital platforms and social prac-
tices (Crampton et al., 2013), as well as data-driven geographies (Lazer et al., 2009).
Popular social media platforms like Twitter, Facebook, Google+, LinkedIn and In-
stagram generate enormous amounts of content that is voluntarily shared on social
networks by their users. Nowadays, people regularly use online digital platforms
due to their convenience, efficiency, and significant broadcasting power for sharing
information. Many aspects of human life, including how people identify and so-
cialise with the communities, express their voice, and consume trending content and
entertainment, are now highly mediated through those digital platforms (Ash et al.,
2018b). People often reveal their social practices or their intent to carry out the social
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activities within their online communications or posts, which can now be easily ac-
cessed using a combination of methodologies such as information retrieval, natural
language processing and existed social network analysis tools. Automatic retrieval
of UGC removes many of the constraints associated with traditional methods which
heavily relied on domain-specific expertise such as, collection time, accurate geolo-
cation marks. As we immerse ourselves increasing deeply in a world of abundant
data, much of which is geotagged, it is obvious to state that the digital phenomena
have radically transformed every aspect of human life (Ash et al., 2018a). As a re-
search field, "digital geographies" can be understood as "a turn towards the digital as
object and subject of inquiry in geography, and as a simultaneous inflection of geo-
graphical scholarship by digital phenomena, is more meaningful in that it allows us
to think about how the digital reshapes many geographies, mediates the production
of geographic knowledge, re-configures research relationships, and itself has many
geographies" (Ash et al., 2018a, p. 7).

Qualitative research that relies on data obtained by the researchers from first-
hand observations, interviews, questionnaires, focus groups, participant-observation
and recordings to understand how people experience place and space has been an
essential approach in the discipline of geography. Since the proliferation of digital
technologies, they are widely considered as the standard media of knowledge gen-
eration and analysis in digital geographies research (Ash et al., 2018b) and aid the
further development of qualitative research. For example, transcriptions have been
managed and analysed using qualitative software (e.g., Quirkos (2014), Kwalitan
(2018), etc.) (Hinchliffe et al., 1997); social interactions can be observed in online
forums using internet ethnographies (Hine, 2008); participatory research is being
conducted using digital cameras and video recorders. With the help of new tech-
nologies and tools to collect and observe the data, it is increasing acknowledged
that qualitative information that "born digital" as an indication of "geographies pro-
duced by the digital" (Ash et al., 2018b, p. 29). Many research projects used qual-
itative, resource-intensive approaches, such as studies towards regionally-specific
expressions of religion (Zook and Graham, 2010; Shelton et al., 2012; Wall and Kird-
nark, 2012), gendered nature of the participation on OSM (Leszczynski and Elwood,
2015; Gardner et al., 2020), language use (Graham et al., 2014a), as well as exploring
how places are represented and understood differently by different people (Watkins,
2012; Graham et al., 2013b; Power et al., 2013) and more general questions regarding
how and where events are discussed online (Graham et al., 2013a).

However, qualitative analysis often struggles with tackling large datasets whereas
the volume of data produced daily on digital platforms is enormous. Thus, quanti-
tative analysis and summarisation are frequently necessary steps in digital geogra-
phies. That creates a strong association with GIScience, where data mining ap-
proaches have been applied to identify users’ opinions and online trends, to study
the emergence of place from space through content production (Graham et al., 2015a),
or to monitor events from football to earthquakes (Frias-Martinez and Frias-Martinez,
2014; Ifrim et al., 2014; Sechelea et al., 2016; Zahra et al., 2017) and to understand
the digital representations of a place (Ballatore and De Sabbata, 2019). There is an
increasing appetite amongst scholars for more collaborative and interdisciplinary
working across the quantitative and qualitative realms to understand the potential
complementary value of synchronised methodological approaches on UGC studies
(Sui and DeLyser, 2012), such propositions of mixed methodologies set forth future
research directions for studies within digital geographies and will be later discussed
in Section 2.9.
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2.5 Big Data

On June 23rd, 2008, Chris Anderson, former editor in chief of Wired magazine, pub-
lished a provocative and thought-provoking article: "The end of theory: the data
deluge makes the scientific method obsolete" (Anderson, 2008, p. 7). Anderson
was referring to the idea that computers, algorithms, and big data can potentially
generate more insightful, useful, or accurate results than specialists with domain-
specific knowledge who traditionally crafted carefully targeted hypotheses and re-
search strategies. In the era of petabyte of data as well as super-computing, so-
phisticated algorithms and statistical tools are at the centre of the stage to inves-
tigate into a massive amount of data to find information that could be turned into
knowledge. Similarly, Prensky (2009, p. 4) indicates that "scientists no longer have to
make educated guesses, construct hypotheses and models, and test them with data-
based experiments and examples. Instead, they can mine the complete set of data for
patterns that reveal effects, producing scientific conclusions without further exper-
imentation". Although such arguments attract many criticisms from a wide range
of disciplines and perspectives (will be detailed later in this section), they have also
brought an explosion in the production of big data and the development of new
epistemologies, due to the potential of capturing a whole domain and providing
complete insights into the data (Kitchin, 2014).

Big data is sometimes defined as those datasets that are in huge volumes that can
not be fit in a single Excel spreadsheet or stored on a single machine (Jacobs, 2009).
However, the volume is not the only characteristic of big data. Massive datasets have
been long produced by industry, government and academia, but given the costs and
difficulties of managing such datasets, it is often practical to use sampling methods
to generate summary datasets that support rapid queries (Cormode and Duffield,
2014). However, sampling methods may result in the constraint on the scope of
the data, limitations on data temporality and minimization of the data size (Miller,
2010). In contrast, big data is characterised by being continuously generated in a
flexible and scalable production with an exhaustive and fine-grained scope (Kitchin,
2014). Big data has been variously defined and customised within a wide range of
disciplines. A comprehensive concept of big data is provided by Kitchin (2013), who
draws on an extensive engagement with literature (Boyd and Crawford, 2012; Dodge
and Kitchin, 2005; Laney, 2001; Marz and Warren, 2015; Mayer-Schonberger and
Cukier, 2013; Zikopoulos, Eaton, et al., 2011) and suggests eight core characteristics
of big data:

• huge in volume, consisting of terabytes or petabytes of data;

• high in velocity, being created in or near real-time;

• diverse in variety, being structured and unstructured in nature;

• exhaustive in scope, striving to capture entire populations or systems;

• fine-grained in resolution, aiming to be as detailed as possible, and uniquely
indexical in identification;

• relational in nature, containing common fields that enable the conjoining of
different data sets;

• flexible, holding the traits of extensionality (can add new fields easily) and
scalability (can expand in size rapidly).
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It has been estimated that up to 80% of big data is "spatial" with locational com-
ponents attached to the data (Leszczynski and Crampton, 2016). Traditionally, spa-
tial information is collected or generated through experts with domain-specific knowl-
edge (e.g., census surveyors). Those datasets are usually small in volume, and the
patterns within the datasets can be easily analysed through visual and statistical in-
terpretations on the maps (Jiang and Shekhar, 2017). Nowadays, with the advanced
development in remote sensors, GPS-enabled applications and the popularity of mo-
bile devices, as well as cheap data storage and computational technologies, data are
produced from a wide range of disciplines from commercial business to scientific
research and engineering. Such geotagged data whose volume, velocity, and variety
exceed the capability of current common spatial computing platforms are defined as
spatial big data (SBD) (Jiang, 2016).

Compared to traditional "smaller" spatial data, SBD can make a difference in sev-
eral aspects. At the macro level, SBD provides broad spatial coverage of geographic
phenomena, enabling scientists to conduct large scale (global or continental) data
analysis. For example, scientists can investigate the uneven geographies of access
to contemporary modes of communication and uneven geographies of participation
and representation at the global level based on various digital platforms (Graham
et al., 2015a); the adequate information from mobility data (e.g., data retrieved from
smart cards) can be adopted as a proxy for measuring urban diversity and vitality in
relation to the spatial dynamics and the presence of people in the cities (Sulis et al.,
2018), or supporting urban demographic predictions (Zhang et al., 2019c). At the mi-
cro level, SBD can provide high resolution with significant details, making it possible
to support "precise" decision-making. As an example, geolocated social media data
together with high-resolution hyper-spectral imagery or various sources of VGI data
can be adopted to support disaster management and response for at certain regions.
Existing research illustrates that such UGC content can be critical for sending alerts,
identifying critical needs, and focusing response (Landwehr et al., 2016; Landwehr
et al., 2016). Therefore, SBD is playing an increasingly important role in our physical
world as well as the society.

In the article "The end of theory: the datadeluge makes the scientific method ob-
solete", Chris Anderson claimed that the numbers could speak for themselves with
enough data, which portrays the the use of big data as being exhaustive. How-
ever, there are significant concerns about employing big data methodologies within
social science. In against to Anderson’s article, Kitchin (2014) suggested several cri-
tiques of big data and set forth directions for developing better situated, reflexive
and contextually nuanced methodologies in the "era of big data" (González-Bailón,
2013, p. 147). Firstly, although big data may seek to be exhaustive, the data for both
scientific research and commercial applications is both a representation and a sam-
ple, shaped by the usage of technologies and platforms, and it is subject to sampling
bias. Thus, data are not simply natural and essential elements that collected and ab-
stracted from the world in a neutral and objective manner. The use of data without
further investigation may result in misleading conclusions of the "real-life" phenom-
ena and can even produce harm. Datasets can be used to shape individuals’ lives or
stigmatise on certain groups (Danyllo et al., 2013; Barocas and Selbst, 2016; Craw-
ford and Schultz, 2014), thus, yield discriminatory outcomes. For example, due to
the categorisation based on postal codes, African-Americans in United States cities
have less access to Amazon Prime same-day delivery service (Ingold and Soper,
2016).

Secondly, the process of data interpretation is framed. In other words, data are
processed and interpreted within a particular scientific approach, even though the
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data analysis process is automatic. It indicates that regardless of how big the volume
of data we have, such analytics cannot be free from human bias because "data are ex-
amined through a particular lens that influences how they are interpreted" (Kitchin,
2014, p. 5). A similar idea is proposed by Crampton et al. (2013), and they suggested
that due to the knowledge is partially selected and shaped by our views, data used
can be limited in their "explanatory value " (Crampton et al., 2013) regardless of how
"big" datasets are. Especially when using social media data, conclusions which are
drawn from the data can be naive in seeking to represent a whole society (Boyd and
Crawford, 2012). For example, Ballatore and De Sabbata (2019) illustrate how the
spatial distribution of UGC is related to population density, education level, and in-
come, but different platforms exhibit a significant bias towards areas characterised
by its own users’ profiles and content production. As such, the generalisation of one
single platform does not hold for the full understanding of the place representation.

Thirdly, the analytic methodologies within big data can be reductionist and func-
tionalist. Some researchers developed big data analytics which could be adopted to
model the social and spatial processes within cities (e.g., Bettencourt et al., 2007).
They claimed that by exploring the "rules" of those process, big data could under-
pin the function and formation of the cities. However, researchers argue that such
big data modelling approaches ignore impacts from culture, politics, policy, gov-
ernance and capital, and wilfully neglects domain-specific knowledge from social
science. (Graham, 2012; Kitchin, 2014).

As mentioned in Section 2.3.2, the increasingly abundant data lead to the grow-
ing awareness of ethical issues when conducting ’human-subjects’ research where
human experience, sentiments, opinions, social connections and behaviours are at
the centre of those studies. Metcalf and Crawford (2016) examined several con-
tentious cases of research harm in data science and proposed that it is crucial for the
researchers who use big data approaches to be aware of that even data may seem
public but can cause unintentional breaches of privacy and harms. They suggested
that researchers should be more responsible for accessing, collecting, storing and
analysing the data in an ethical and responsible way. Zook et al. (2017) proposed
"ten rules" to address the complex ethical issues that will inevitably arise during
"human-subjects" studies. Their works help researchers to recognise the human par-
ticipants and complex systems contained within the collected data and encourage
the integration of ethical questions as part of a standard workflow. They suggested
that responsible big data research will ensure the research output is sound, accurate,
and maximises the good while minimising harm, and can help researchers better
understand society and our world.

As discussed above, a broader understanding of geographical analysis that is in-
volved with geotagged data is required when conducting such sociological research
based on big data. Instead of seeing digital platforms or other geoweb applications
as a simple collection of latitude-longitude data attached to other bits of information,
they should be seen as "a socially produced space that blurs the oft-reproduced bi-
nary of virtual and material spaces" (Crampton et al., 2013, p. 132). Further potential
factors that may influence the results of the online platforms need to be considered,
such as confidence in the accuracy of the physical location of geotagged UGC, tem-
poral variation, the connection among users, recognition of "robots" (non-human
sources), as well as a potential combination with ancillary datasets to maximise the
utility of the data. While certain concerns still remain about social network anal-
ysis, research towards digital platforms associated with spatial analysis in digital
geographies which are carefully designed with account for the bias in the data and
results has already begun to reveal fascinating and valuable insights into societies
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and social practices (Abernathy, 2016).

2.6 Geographic Information Retrieval

The rapid growth of geotagged UGC in the form of collaboratively created content
(primarily in the form of text) presents new opportunities for scholars to explore
users’ online spatial experience, the use of space, and people’s experiences of the
landscape. Thus, it provides us with a unique insight into how users’ online spatial
everyday activities carried out by digitally mediated information shape the repre-
sentations of places. However, geographic content in UGC is not always explicit in
the form of geotags or attached longitude-latitude coordinates pairs, but might be
implicitly expressed through the content (e.g., in the form of placenames in the text,
according to Aloteibi and Sanderson (2014)). Given the high volume of UGC pro-
duced daily, geographic information retrieval (GIR) is defined as a computational way
to understand unstructured textual content to detect and resolve references to a lo-
cation where the content is originated (Purves et al., 2018), and being widely studied
within academia as well as commercial sectors.

During the past decade, the rapid development of information retrieval effec-
tiveness has driven web search engines (e.g., Google) to new quality levels, and
web search has become a standard and often preferred means of information find-
ing and access. As a scientific research field, the term information retrieval is de-
fined as "finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored
on computers)" (Cambridge, 2009, p. 1). As discussed in previous sections, signifi-
cant amounts of data available nowadays contain spatial references to places on the
Earth’s surface. Traditionally, such information has been held as structured data and
was tackled by methodologies from GIS (Purves et al., 2018). However, increasing
amounts of data in the form of unstructured text (e.g., tweets) and images (e.g., ge-
olocated photos on Geograph) are available for indexing and retrieval also contain
spatial references. Such phenomena have promoted a growing interest in exploring
how to augment conventional information retrieval approaches interacting with ge-
ographic information. GIR are a "spatially-aware search systems and support user’s
geographical information needs" (Purves et al., 2018, p. 1).

One of the primary tasks in GIR is to identify the candidate locative references in
the text, and such a task is defined as geoparsing (Purves et al., 2018). There exist three
types of geoparsing approaches of identifying candidate references: (1) approaches
based on list lookup; (2) knowledge or rule-based methods; and (3) machine learn-
ing approaches (Leidner and Lieberman, 2011). The list lookup approach is widely
considered as the simplest or the baseline approach identifying entities by looking
up the previously generated lists (Purves et al., 2018). For example, Mikheev et al.
(1999) illustrates that the performance using a simple list lookup for locations could
achieve over 90% precision and recall of 75-85% with 5,000 locations collected from
the Central Intelligence Agency World Fact Book (CIA, 2011) and evaluated on Mes-
sage Understanding Conference-7 data (Chinchor, 1998). Although such approaches
can achieve high performance, they are lack of the scalability because the methods
heavily rely on the quality and size of the previously generated lists, and can not
identify new entities not found in the lists. A more effective and sophisticated ap-
proach is to make use of the surrounding context; that is, developing rules that can
capture more complex matching entities expressed within a grammar (Purves et al.,
2018). Taking the sentence of "the university is located next to the Victoria Park, north



2.6. Geographic Information Retrieval 29

of Howard Road" as an example. To locate where the university is, rules can be de-
veloped into a way that not only captures the entities with capitalisation (Victoria
Park and Howard Road) in the text which are clearly related to the location of the uni-
versity, but also the locational information that indicates the relationships between
the university and the entities (next to and north of ). The matching of text is per-
formed by defining regular expressions that encapsulate the rules. In older geopars-
ing systems, such rules are generally hand-crafted, while nowadays, most modern
approaches adopt machine learning or deep learning methods to induce rules au-
tomatically from previously annotated training samples using features that capture
contextual information (Purves et al., 2018). For example, Wang et al. (2020b) in-
troduce a Neuro-net ToPonym Recognition model targeting the language irregular-
ities associated with social media text to recognise locations. Their proposed model
extends a general bidirectional recurrent neural network (deep learning related lit-
erature review will be introduced later in this chapter) with a number of features
designed to address the task of location recognition in social media messages. The
model tested on GeoCorpora (Wallgrün et al., 2018) achieves 80% precision and 78%
F-score, which are superior to state-of-the-art models presented in their paper. De-
spite machine learning or deep learning approaches have achieved reasonable per-
formances, Purves et al. (2018) point out two issues of concern with such approaches.
The first issue is about training data. This is about the issue of how much data is suf-
ficient for a machine learning or deep learning approach to train a classifier, which
can be used reliably on unseen text. The second issue regards to the generalisation of
the resulting classifiers. This concerns whether the induced classifier can generalise
across new unseen texts or whether they only operate successfully on the example
datasets.

Thanks to the emerging research and development of geoparsing systems, a wide
range of studies that utilise the systems to solve practical issues such as text-based
location estimation have also been proposed within the scientific discipline. In par-
ticular, in studies on UGC, although digital platforms have profound impacts on
understanding geographical social practices, the lack of geolocated data has been
a longstanding issue within the spatial analysis of digital platforms. The research
theme of location estimation and prediction opens up the opportunity to comple-
ment the issue of lack of data, as well as researching into human mobility patterns.
Chen et al. (2013) proposed a location estimation framework targeting on social
media data. The framework firstly sorts the tweets of each user in a chronology
order, and employs a latent dirichlet allocation-based topic modelling approach to
discover the personal interest distribution of each user. Then, it proposes a function-
interests mapping method to construct the hidden relationship between users’ inter-
ests to the functions of real physical places. Such functions of real physical places
are defined by the functions of each tweet’s closest Point of Interest (POI). Finally,
given the historical locations of users and the function-interests mapping, they esti-
mate the locations of the social media posts using a Bayesian model to predict the
current location from the history travel records of the users. Their framework shows
a 70% accuracy tested on Weibo (a well-known Chinese social media platform), con-
sidering if the distance between the estimated location and the actual location of
posts are within 1-kilometre distance. Their studies presented in this paper demon-
strates that a user’s location is strongly related to his or her interest. Moncla et al.
(2014a) and their substantial work Moncla et al. (2014b) developed an unsupervised
algorithm that employs clustering algorithms to estimate a spatial footprint of to-
ponyms which are not found in gazetteers. They evaluate their approach with a
corpus of hiking description in three different languages. However, Skoumas et al.
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(2016) argued that such proposed assumptions in the hiking text consider no uncer-
tainties exist. In other words, their works assumed that the text description from
a human is precisely accurate, which is potentially an over strong assumption in
real-world applications. Skoumas et al. (2016) introduced a text-based location esti-
mation framework that adopts information extraction methods to identify toponyms
and spatial relations in the text content, and they formulated a quantitative approach
based on distance and orientation features to represent the spatial relations. Proba-
bility density functions for spatial relations are defined through a greedy expectation
maximisation-based algorithm. These PDFs then were used to estimate unknown
object locations and achieve high-quality location estimation results as evidenced
by a range of real-world datasets constructed using travel blogs. They also argued
that their framework is robust regarding handling the uncertainties derived from
crowdsourced textual data.

Location estimation can be analysed through not only text content, but also other
properties attached to UGC, which can also be retrieved through GIR methods. For
example, research has focused on location estimation based on users’ social interac-
tions with other people. Backstrom et al. (2010) examined the interaction between
geographical information and social relationship through a maximum likelihood ap-
proach to estimate a user’s location by knowing the geographic information of the
user’s friends. Davis Jr et al. (2011) predicted users’ locations using a voting mecha-
nism with three adjusting parameters based on a Twitter following-follower network
and demonstrated that the size of social interactions between users plays a vital role
in the location estimation process. That is, the large friends networks users have,
the better information can be provided for location estimation. Similarly, Rout et al.
(2013) applied a Support Vector Machine (SVM) to classify users’ locations based on
features that are extracted from a follower-based network on Twitter. Kong et al.
(2014) proposed a framework named SPOT, which infers users’ locations by mea-
suring social closeness. Moreover, peoples’ activities can also be employed as useful
information for the location estimation tasks. For example, Ye et al. (2013) exploited
the check-in category information to model the underlying user movement pattern
using a mixed hidden Markov model to predict the category of user activity and its
most likely locations given the estimated category.

As discussed in the previous paragraphs, Purves et al. (2018) have pointed out
that the most modern approaches for geoparsing are through machine learning or
deep learning models. As a matter of fact, the innovation of the newly raised ma-
chine learning and deep learning technologies also provide new directions of study
within other geographical research disciplines, which will be detailed in the next
section.

2.7 Artificial Intelligence in GIScience

Artificial Intelligence (AI) is a term frequently applied to the project of developing
machine learning or deep learning algorithms and systems endowed with the in-
tellectual processes characteristic of humans, such as the ability to reason, discover
meaning, generalise, or learn from past experience. Machine learning is a sub-field
of computer science that gives computers the capability to learn from experiences
without being explicitly programmed (Samuel, 1959). Machine learning techniques
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are designed with the principle to explore the nature of data with well-designed al-
gorithms and models to process sample inputs for making predictions or classifica-
tions. Machine learning algorithms have empowered many aspects of modern soci-
ety, from recommendations on e-commercial websites (e.g., Ding et al., 2002;Yang et
al., 2004) to medical diagnosis (e.g., Kononenko et al., 1997). However, conventional
machine learning techniques lack abilities to process data in their raw format (Le-
Cun et al., 2015). In past decades, developing a machine learning system required
careful engineering and considerable domain expertise to transform the raw data
(such as the pixel values of an image) into a suitable internal representation for fur-
ther classification or clustering tasks. As a sub-class of techniques of machine learn-
ing, deep learning methods are composed of simple but non-linear modules, and
every module transforms the data representation from a lower level into a higher
level with more abstract representations by applying a back-propagation algorithm,
to discover complicated and subtle structures within large and high-dimensional
datasets (LeCun et al., 2015). Deep learning has shown its advances in many do-
mains of science, business and policy decisions, and kept outperforming other ma-
chine learning techniques within disciplines such as image recognition (Krizhevsky
et al., 2012; Szegedy et al., 2015; He et al., 2016), speech recognition (Mikolov et al.,
2011; Hinton et al., 2012) and natural language processing (Collobert et al., 2011;
Sutskever et al., 2014).

2.7.1 Artificial Neural Network

Artificial neural networks (ANN) are a set of algorithms based on the idea of ar-
tificial neurons, loosely inspired by the biological neural networks that constitute
human brains, which are designed to recognise patterns. Considered the first gen-
eration of neural networks, perceptrons (Rosenblatt, 1958) are simply computational
models of a single neuron. As shown in Figure 2.1, a neuron is a place where com-
putation happens. A neuron combines input from the data with a set of weights,
which either amplify or dampen that input, thereby assigning significance to inputs
concerning the task the algorithm is trying to learn.

FIGURE 2.1: Schematic of Rosenblatt’s perceptron (Image by BERGH-
OUT Tarek, via MathWorks, BSD-3-Clause).

Deep learning often refers to "stacked neural networks"; that is, neural networks
composed of multiple processing layers (commonly more than three layers, includ-
ing the input layer and output layer). As can be seen in Figure 2.2, a layer is a row
of those neurons which computationally process the input fed through the network.
Each layer’s output is simultaneously the subsequent layer’s input, starting from an
initial input layer receiving the data.

In each iteration of the learning process of the network, the inputs are fed into the
neuron, processed, and result in an output. The error which is back-propagated is
usually the difference between the input and the output data. The network updates
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FIGURE 2.2: Schematic of a multi-layer perceptron (Image by Michael
Nielsen, via Neural Networks and Deep Learning online free book,

Determination Press, CC BY-SA 3.0).

the weights in the network accordingly for performance optimisation in the next
iteration. Detailed introductions will be provided in Chapter 3.

2.7.2 Convolutional Neural Network

FIGURE 2.3: A traditional CNN design. (Image by Aphex34, via Wiki-
media Commons, CC BY-SA 4.0)

Convolutional neural networks (CNNs) a type of ANNs which is primarily used
for image processing tasks, but can also be adopted for other types of input, such as
audio or text. A typical use case for CNNs is where the network is fed with images,
and it classifies the categories of the input data. The performance of these deep neu-
ral networks has already exceeded human performance in object recognition tasks.
The top-5 classification error rate (a fraction of test images for which the correct la-
bel is not among the five labels considered most probable by the model) performed
by human annotators on the large scale ImageNet dataset1 has been reported to be
5.1% (Russakovsky et al., 2015), whereas a state-of-the-art CNN (He et al., 2016)
achieves a top-5 error rate of 3.57%. CNNs consist of filters or kernels or neurons
that have learnable weights or parameters and biases. As shown in Figure 2.3, each
filter takes some inputs, performs convolution and optionally follows it with a non-
linearity (Uçar et al., 2017). The spatial relationship between pixels is preserved by
adopting convolution using small squares of the input image. The input image is
convoluted by employing a set of learnable neurons, and the convolutional layer
produces an activation map as a layer output. Such output is further fed into the
following convolutional layers. The pooling layer is another essential element in
CNNs, which significantly reduces the dimensionality of each activation map but
continues to preserve the most crucial information. A commonly found pooling
technique is max pooling, as shown in Figure 2.3, which calculates the maximum
value in each patch of each feature map. Using pooling layers is aimed at achieving
better generalisation, faster convergence, robust to translation and distortion, and
they are usually placed between convolutional layers.

1http://www.image-net.org/
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Within the discipline of geography, the remote sensing community has exten-
sively used CNNs for scene classification (natural and urban) (e.g., Zhang et al.,
2017; Zhang et al., 2019a; Zhou et al., 2020), change detection (e.g., Wang et al.,
2018a; Wang et al., 2018b; Seydi et al., 2020), and other image analysis tasks in recent
years. Some CNNs have also been adopted to support research in GIScience, for ex-
ample, studies on green space and urban built environment (e.g., Wang et al., 2019a;
Wang et al., 2020a), traffic prediction and analysis (e.g., Zhang et al., 2019b; Zheng
et al., 2019; Zhang et al., 2019d), geodemographics (De Sabbata and Liu, 2019), etc..
More examples of the research that adopt CNNs will be provided in Section 2.7.6.

2.7.3 Recurrent Neural Networks

FIGURE 2.4: A RNN and the unfolding in time of the computation
involved in its forward computation. (Image by Ixnay, via Wikimedia

Commons, CC BY-SA 4.0)

Recurrent neural networks (RNNs), of which long short-term memory (LSTM)
networks are the most potent and well-known subset, are a type of ANNs designed
to recognise patterns in sequences of data, such as time-series analysis (e.g., Gers
et al., 2002), stock markets prediction (e.g., Chen et al., 2015) and natural language
processing (e.g., Nowak et al., 2017). One of the outstanding characteristics of RNNs
is that they take time and sequence into account, they have a temporal dimension.
RNNs process an input sequence one element at a time, maintaining in their hidden
units a "state vector" that implicitly contains information about the history of all the
past elements of the sequence. In a more intuitive way to understand such type of
networks, RNNs function similar to the human way of processing data, they com-
bine two sources of input, the present and the recent past, to determine how they
respond to new data. One of the typical use of RNNs is shown in Figure 2.4, the
artificial neurons get inputs from other neurons at previous time steps, a RNN can
map an input sequence with elements xt into an output sequence with elements ot,
with each ot depending on all the previous x′t (for t′≤t).

RNNs have been widely adopted in geospatial domains, in particular dealing
with time-series data to achieve real-time prediction and analyses (Reichstein et al.,
2019; Li, 2020). For example, Ma et al. (2015) proposed an LSTM-based network
for travel speed prediction. Their empirical results on data from Beijing indicate
that LSTMs have the ability to capture long-term dependencies over the time-series
of the traffic data. Xu et al. (2017a) developed a framework that combines LSTMs
with mixture density networks (MDNs) to predict taxi demand in New York, United
States. In their approach, the city is previously divided into smaller areas, and then
the LSTM-based model is used to jointly predict the taxi demand for the given time
period (20-60 minutes) in all the areas. Yu et al. (2017) introduced a LSTM-based
framework for forecasting peak-hour traffic and identified unique characteristics of
the traffic data. In their research, they identified that feeding the time stamps such as
time of day and day of week as input to the model will significantly improve the model



34
Chapter 2. Towards Quantitative Digital Geographies: Concepts, Research and

Implications

performance for the accurate peak-hour forecasting, and, LSTM can learn the traffic
patterns taking into account the historical average traffic as well as the interruption
caused by accidents.

2.7.4 Graph Theory and Graph Convolutional Network

Graph theory is the studies on graphs. In mathematics, graph structures are used to
model pairwise relations between objects. A graph is made up of vertices or nodes
which are connected by edges. An adjacency matrix of a graph is a square matrix
to represent the graph. The elements of the matrix indicate whether pairs of ver-
tices are adjacent or not in the graph. Depending on whether the edges of a graph
have directions, the graphs can be classified into two types, directed graphs and
undirected graphs. In an undirected graph, edges have no directions and indicate
two-way relationships between nodes. Hence, the graph can be traversed in either
direction. The adjacency matrix of an undirected graph is symmetric. On the other
hand, a directed graph is a set of vertices connected by edges, with each node having
a direction associated with it.

The use of various measures to define the neighbourhood and its conceptualisa-
tion as a graph network has long been one of the core approaches in geographical
information analysis (O’Sullivan and Unwin, 2010). Spatial weights are mathemati-
cal structures used to represent such spatial relationships. A spatial weight wi,j rep-
resents a geographical relationship between locations i and j. Many spatial analysis
methods, such as spatial autocorrelation statistics, and regionalisation algorithms,
rely on spatial weights. These relationships can be formulated with several criteria,
including contiguity and geospatial distance. A commonly-used type of weight is
the Queen contiguity weight, which reflects adjacency relationships as a binary indi-
cator variable (0 or 1) expressing whether or not a polygon shares an edge or a ver-
tex with another polygon. These weights are symmetric, in which when a polygon a
neighbours to a polygon b, both wa,b = 1 and wba = 1. Another widely-adopted spa-
tial weight is the Rook weights. Rook weights are also a type of contiguity weight, but
consider polygons as neighbouring only when they share an edge. The Rook neigh-
bours of a polygon may be different from its Queen neighbours, depending on how
the observation and its surrounding polygons are configured. There are also many
distance-based approaches to determine spatial weights, such as KNN distance, ker-
nel weights, distance thresholds, etc.. Despite the differences, all the distance-based
approaches are defining neighbours between polygons if there are within a given
distance defined by a form of distance measurement. Such a spatial weight matrix
can be seen as a form of graph adjacency matrix, and the spatial relationships can be
represented as graphs.

In this thesis, undirected graphs are used to construct spatial and spatio-temporal
graphs connecting social media posts using distance-based approaches; directed
graphs are adopted to construct spatial knowledge graphs. The implementation
details will be introduced in Chapters 4, 5, and 6.

Graph convolution, in general, is defined as a filter moving over the nodes of
the graph, with the adjacency matrix determining the area captured by the filter. An
intuitive understanding of Graph Convolutional Network (GCN) is for each node in
the graph, and the graph convolution process will aggregate the information from
its connected neighbours. By propagating through the hidden layers, GCN is able to
produce useful feature representations of nodes in the graph, thus benefits further
downstream tasks, such as classification, link prediction or the generation of graph
embeddings (Wu et al., 2020b). GCN is a generalisation of CNNs to deal with graph
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structured data in the irregular spatial domain. The convolutional filter in GCNs
can be extended to be localised in the spectral domain of the objects’ features (Def-
ferrard et al., 2016; Henaff et al., 2015), which are suitable for modelling the complex
spatial patterns in geographical data that generally contain both Euclidean spatial
information and non-Euclidean feature information (Liu et al., 2015).

2.7.5 Knowledge Graph

FIGURE 2.5: Knowledge graph example.

The term Knowledge Graph (KG) denotes a collection of labelled and intercon-
nected descriptions of entities (namely triples). These entities can be real-world
objects, events, situations or abstract concepts, where their descriptions have a for-
mal structure that enables both human expertise and computer programs to process
them efficiently and unambiguously. According to Nickel et al. (2015), the majority
of KGs are constructed in a curated (e.g., WordNet), collaborative (e.g., Wikidata,
Freebase), or auto semi-structured (e.g., YAGO Hoffart et al. (2013)) fashion rather
than an automated unstructured approach (Mai et al., 2020). KG is commonly organ-
ised as a set of concepts, relations, and facts, which are associated by two kinds of
types entity, relation, entity and entity, attribute, attribute value (Zhang et al., 2008).
For example, Figure 2.5 shows a simple example of the knowledge graph, entities
such as "Italy", or "Leonardo Da Vinci", are represented as nodes in the graph, and
relationships such as "country_of_residence", are represented as edges. Entity de-
scriptions contribute to one another, forming a network, where each entity depicts a
part of the description of the network, related to it.

Taking geographic information into account, KG has played a vital play in an-
swering geographic research questions from various perspectives, such as geographic
knowledge graph completion (Qiu et al., 2019), geographic ontology alignment (Zhu
et al., 2016), geographic question answering (Mai et al., 2019; Mai et al., 2020), etc.. At
present, most geographic knowledge graphs are organised as universal knowledge
graphs, such as the common sense geographic knowledge base (CSGKB) (Zhang et
al., 2008) and CrowdGeoKG (Chen et al., 2017). Instead of traditional gazetteers,
CSGKB employs a data structure that connects the notions of geographic features,
geographic locations, spatial relationships and administrators for GIR tasks. Crowd-
GeoKG applies a crowdsourced geographic knowledge graph that derives various
types of spatial entities (OSMNode,OSMWay and OSMRelation) from OpenStreetMap
and enriches them with geo-entities (e.g., administrative regions) that are extracted
from Wikidata with richer knowledge contributed by volunteers. Knowledge graphs
with geographic information are more complicated than general graphs. Due to the
sparsity of information in knowledge graphs (e.g., missing triples), entities, rela-
tions, and attributes cannot easily and directly answer many geographic queries or
questions without spatial or non-spatial reasoning (Mai et al., 2020).
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However, how to encode geographic knowledge (i.e., locations) into a knowl-
edge graph and methodologies remains as a domain-specific challenge, and research
in this area is still in its first steps. Trisedya et al. (2019) encoded geographic coor-
dinates as a sequence of characters (string) and used a compositional function to
encode these coordinate strings for geographic entities alignment adopting TransE.
To integrating spatial distance relations between geographic entities, Mai et al. (2019)
and Qiu et al. (2019) borrowed the translation assumption from TransE. In TransE, if
a triple < h, r, t > exists, the entity embeddings h, t should be connected by the rela-
tional vector r, i.e., h + r ≈ t. For example, two facts < China, Capital, Beijing > and
< UK, Capital, London > will enjoy a relation that China−UK ≈ Beijing− London
in the embedding space. Using such a translation assumption, TransE predicts the
existence of a triple by measuring the distance between the head entity and the tail
entity after a translation enforced by the corresponding relation. Both Mai et al.
(2019) and Qiu et al. (2019) implemented such an assumption, and further intro-
duced sampling procedures to incorporate the distance between two entities into
the knowledge graph. The geographic distance between two entities in the graph
determines the frequency of sampling of a triple; thus, a triple has higher sampling
frequency closer in both geographic space and embedding space. Despite the nov-
elty of their work, the estimated entity similarities are based on some form of dis-
tance measures among entities with the designed data conversion process and ig-
nore their absolute positions or relative directions. That is, their frameworks do not
explicitly incorporate the absolute geo-locations and spatial distance between the
entities into the knowledge graphs, while the data conversion process can be unnec-
essarily expensive and leads to information loss. To address such an issue, Mai et al.
(2020) proposed a novel framework to directly encode entity locations into a high-
dimensional vector space, which conserves more abundant spatial information than
distance measures. Their work was the first KG embedding model that consolidates
location encoding into the model architecture instead of relying on some forms of
distance measure among entities.

The study of knowledge graphs in the task of geographic question answering
forms the basis of an interesting research discipline of GeoAI. The concepts of geo-
graphical knowledge graph will be adopted in this thesis in Chapter 6.

2.7.6 GeoAI

The scientific field of geographical artificial intelligence (GeoAI) (Li, 2020) has been
recently formed from combining innovations in spatial science with the rapid growth
of methods in AI (VoPham et al., 2018) and lies in its applications using machine
learning or deep learning techniques to address real-world problems. Section 2.6
has provided some discussions about how a recurrent network-based deep learn-
ing method is applied in geoparsing on social media messages (Wang et al., 2020b),
which can also be seen as an application in GeoAI. Apart from geoparsing, GeoAI
applications and systems are also widely researched within other geographical stud-
ies. For example, GeoAI opens up opportunities and applications in health and
healthcare, where location plays a pivotal role in both population and individual
health. Boulos et al. (2019) surveyed the GeoAI applications in health and healthcare
and summarised the benefits of those applications in disciplines within the domains
of public health, precision medicine, and IoT (Internet of Things)-powered "smart
healthy cities and regions".

Within the context of GeoAI, few studies have a focus on the analysis of UGC
and digital platforms. For instance, Chen et al. (2017) developed a convolutional
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neural network-based framework to extract text related to traffic information from
Sina Weibo, and indicate that the rich information embedded in online social media
data can help improve traffic prediction by using deep learning framework. Huang
and Carley (2017) proposed a convolutional neural network framework to predict
tweets locations, and the results of their framework tremendously outperform con-
ventional machine learning approaches (STACKING (Han et al., 2014)). Their re-
search can benefit more tweets to be accurately located by country, and city, of origin.
They demonstrate at the country level, the more tweets that come from the country,
the better the prediction their model can provide. However, inferring locations at
city level remains a challenging task as the results achieved in the paper are mixed,
for about half the tweets it is difficult to infer the locations. Huang et al. (2018) intro-
duced an end-to-end, fully supervised framework to report geo-located flood events
using Twitter posts. They adopted two convolutional neural network architectures
to extract representations from texts and images, and combine both representations
for filtering out flood-related tweets from a massive tweets pool. Their method is re-
ported having around 80% accuracy, which can significantly improve the traditional
selection process on Twitter data regarding disaster management, which is time-
and labour-consuming. Zhu and Liu (2018) proposed a graph convolutional neural
network-based approach to model spatial patterns with check-in data from a social
media platform (Sina Weibo), and suggested their framework can achieve satisfying
results in the prediction of intra-urban POI check-in patterns and can be modified
to be applied to other geographical applications such as spatial interpolation, site
selection and event detection.

To advance GeoAI research needs high-quality geospatial datasets. Many deep
neural networks need to be trained on a large set of well-labelled training data. It
has long been recognised in the field of deep learning that a trained model is only
as good as the quality of the training data. Therefore, data are "no longer the only
resources to be mined by computational tools but are becoming part of the tools"
(Janowicz et al., 2020, p. 630). However, sampling data for the training process may
share the same concerns towards big data studies, as mentioned in Section 2.5. Data
selected for training and addressing research questions may be subject to sampling
bias and can not be free from human discrimination. The increasingly abundant
data also leads to awareness of ethical issues when training deep learning models
to understand human activities, sentiments and experiences, which sometimes can
lead to severe issues in society (e.g., inequality, unfair democratic elections, etc.)
(O’neil, 2016). Bolukbasi et al. (2016) demonstrate an interesting example using word
embedding, a popular framework to represent text data as vectors used in many
machine learning and natural language processing tasks. Their studies identified
that even word embeddings trained on Google News articles exhibit female and
male gender stereotypes to a disturbing extent. For example, doctors are male and
nurses are female, women are sensitive and men are successful, etc.

Moreover, due to the multi-layer nonlinear structures of deep neural networks,
deep learning has been often criticised for being non-transparent and their predic-
tions not traceable by humans (Buhrmester et al., 2019). In other words, deep learn-
ing has been widely recognised as a "black box". The nature of being "black box" has
limited human’s understanding of the learning and inference process of deep neural
networks. Without explicitly knowing how models process the data inherently, it is
often questioned how much can we trust the output of deep learning models. As an
example of such trust issues of automated decision-making by the algorithms, the
European Union’s General Data Protection Regulation has restricted the use of AI
and automated decision-making algorithms to access people’s sensitive information
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(e.g., age, sex, ancestry, name or place of residence, etc.). If a result affects individ-
uals, they should be able to demand explanations of the algorithmic decision made
about them (Goodman and Flaxman, 2017). Further discussions on "deep learning
as a black box" issues will be addressed in Chapter 7.

2.8 Quantitative Urban Geography

The constant emergence and development of cities and urban regions bring signifi-
cant changes to their socio-demographic composition, which have been widely stud-
ied in the field of GIScience. Various approaches and indices have been adopted to
understand urban development. In this section, for the scope of this thesis, I will
briefly provide introductions to two different official spatial statistics: census data
and UK Index of Multiple Deprivation, and how they are incorporated into quantita-
tive studies to understand urban dynamics.

One approach in analysing urban dynamics is to observe change at the level of
individual neighbourhoods (Modai-Snir and Ham, 2018). Despite the risk that some
neighbourhood processes at a granular level cannot be observed through quantita-
tive data (Barton, 2016), there remains the challenge of defining a neighbourhood
in the first place (Reades et al., 2019). According to Knaap et al. (2019), there is no
precise definition of "neighbourhood in either spatial extent or social composition".
For the scope of this thesis, I take the definition by Galster (2001, p. 2112) as the
starting point to define the term neighbourhood in the context of my study: "the bun-
dle of spatially-based attributes associated with clusters of residences, sometimes
in conjunction with other land uses". As discussed by Reades et al. (2019, p. 923),
such a definition "does not establish neighbourhoods as discrete, bounded entities
as it does not directly provide the size of the neighbourhood, but it provides a basis
for defining neighbourhoods on different spatial scales through the ’bundling’ of at-
tributes". Following such a definition, neighbourhoods, in the context of this thesis
(Chapter 6 in particular) are the spatial units defined by Office for National Statis-
tics (ONS) (i.e., output areas, lower layer super output area) which underpin the the
operationalisation of the 2011 Output Area Classifications and 2015 & 2019 English
Index of Multiple Deprivation in the UK (Gale, 2014; Gale et al., 2016).

2.8.1 Census Data and Geodemographic Classification

Census data is a unique source that is collected periodically (e.g., every ten years in
the UK), which detailed socio-demographic statistics that underpin national policy-
making with population estimates and projections to help funding and plans. For
example, census data which show the population that work in different occupations
and industries can be used for designing new jobs and training policies or support-
ing investment decisions; information regarding ethnic groups can help with evalu-
ating equal opportunities policies.

A geodemographic classification is defined as a process grouping geographi-
cal neighbourhoods, or small areas, in terms of their socio-economic characteristics.
Such a process is generally achieved by applying a clustering algorithm (e.g., k-means
(Hartigan and Wong, 1979)) on a dataset of composite socio-demographic variables
collected from static data such as population census, which are not updated regu-
larly. Observing changes in the geodemographic classification of areas over time is
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a useful approach to analysing the spatial development of the socio-economic struc-
ture of towns and cities (Brown, 1991). The combination of various open geodemo-
graphic indicators enhances not only our understanding of the dynamics of urban
areas but also the assessment of policies from local and national governments. For
instance, Longley (2005) suggested that analysing the dynamics of geodemograph-
ics will assist decision-makers in understanding the geographies of public service
consumption. Batey and Brown (2007) proposed an assessment tool to examine pol-
icy initiatives focused on urban development. They suggested that geodemographic
classification is a flexible tool to provide useful information for urban planners to as-
sess the quality of urban policy initiatives. Although there are issues and concerns
within academia limiting the broader utility of geodemographic classifications, such
as the omission of classification uncertainty estimates, the ’black box’ nature of the
methods for scientific replication, etc. (see, Fisher and Tate, 2015; Longley, 2007), the
Output Area Classification (OAC2011) of the 2011 census data created by Gale et al.
(2016) has become an essential tool for researchers to understand socio-demographic
patterns at the urban, regional and national scales in the UK. By utilising census data
derived from open geodemographics, Liu and Cheng (2018) enhanced the interpre-
tation of the transportation patterns within cities, and further illustrated its potential
usefulness in public transport planning.

2.8.2 UK Index of Multiple Deprivation

According to the official document of the government report published in 2019 by
McLennan et al. (2019, p. 9), "the Index of Multiple Deprivation(IMD) is the official
measure of relative deprivation in England and is part of a suite of outputs that form
the Indices of Deprivation (IoD). It follows an established methodological frame-
work in broadly defining deprivation to encompass a wide range of an individual’s
living conditions. People may be considered to be living in poverty if they lack the
financial resources to meet their needs, whereas people can be regarded as deprived
if they lack any kind of resources, not just income".

Deprivation indices have been widely considered as another vital approach to
modelling urban development (Sloggett and Joshi, 1998) and the evolution of the
cities. Dickson and Young (1985) suggested that the study of the spatial distribution
of deprivation indices at the regional level can reshape regional development poli-
cies; hence it is necessary for local government to conduct much detailed analysis
and experiments before decision making. Pacione (1989) illustrated the significance
of having structural-level "people policies" and local-level "place-policies" on urban
planning of places within Scottish cities with high-level poverty and deprivation
through an urban deprivation index. Talbot (1991) suggested that indicators of ur-
ban deprivation are useful for identifying and catering for underprivileged areas,
such as health care planning within urban areas. The 2015 & 2019 English Indices
of Deprivation for Lower-layer Super Output Areas (LSOAs) across England were
published by Smith et al. (2015) and McLennan et al. (2019), which have been used
for a wide range of analysis, from health (Cox et al., 2018) to socio-economic studies
(Kontopantelis et al., 2018).

2.8.3 Urban Dynamics

For the first time in human history, the majority of population in the world lives
in cities (Ritchie and Roser, 2018). Metropolitan areas have become the immedi-
ate sphere that is described through human existence and experiences, and such a
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sphere is changing rapidly (Schneider-Sliwa, 2001). Low-income countries are sub-
ject to distinct urban population growth and consequently are increasingly challeng-
ing to manage. A typical example is China. In the late 1970s, China launched its
economic reforms, since then China has witnessed unprecedented economic growth
and urbanisation process. The velocity and complexity of China’s transition and ur-
banisation, in terms of the economic, social, and environmental improvements, have
and still are dramatically changing human experiences for the people who live in-
side the country (Wei and Ye, 2014). Since 2012, more than half of the population in
China have been living in cities. Such a rapid increase in urban population is putting
forward severe challenges for housing, food, jobs, social services, and environmental
sustainability. On the other hand, highly industrialised or developed countries are
likewise undergoing a historic change in their cities or metropolitan areas. Facing
the global trends in economics, society, and politics, urban regions in those highly
developed countries require new and extensive economic and local policies to meet
increasing intra-urban competition for investments and taxpayers (Smelser, Baltes,
et al., 2001). Therefore, the socio-spatial structure of cities and metropolitan areas
changes over time. Research targeting at urban evolution and dynamics are neces-
sary "to monitor trends of urban development, to provide basic information for the
optimisation of local strengths, to design urban development concepts which ade-
quately provide for local needs and demands, and for urban planning which equally
respects collective decisions, increased competition, modern urban structures, and
the individual ’feeling’ of the city" (Schneider-Sliwa, 2001, p. 16008).

Understanding the human dimension and spatial dynamics of cities from an ag-
gregate and demographic perspective using a collection of human-focused spatially-
referenced data has been widely facilitated by researchers within the field of quan-
titative urban geography (Manley and Dennett, 2019). Traditionally, many of those
data would have been collected as official spatial statistics (e.g., census, IMD) or
empirical observations and surveys, which has contributed to our understanding
of static demographic profiles of the city or creating snapshots of everyday human
activities and their interactions with urban areas. However, because the official spa-
tial statistics are commonly collected periodically while the socio-spatial structure
of cities and metropolitan areas are continuously changing, many studies have at-
tempted to investigate new forms of data to gain insights into the patterns and pro-
cesses exhibited by humans in cities in at a much finer temporal resolution. Sulis
et al. (2018) proposed a computational approach using smart cards used in public
transport to measure the spatio-temporal variations of urban vitality and diversity
in the city of London concerning the presence of people in different areas of Lon-
don and the spatial dynamics. They demonstrated that smart cards could provide a
high spatial and temporal resolution to observe meaningful urban dynamics in re-
lation to human activities. The smart card data were also adopted by Zhang et al.
(2019c) to explore the relationships between the city’s inhabitants’ travel patterns
and their socio-demographic profiles (e.g., age, working status). Their work explic-
itly explained why specific travel patterns are presented in the city, which is useful
for city planners and transport operators to forecast travel demands and provide
personalised transportation services. Manley and Dennett (2019) used a combina-
tion of mobile phone transactional data and a fine-grained building-use dataset to
derive useful information about urban spatial dynamics. The study focused on the
analysis of the city’s inhabitants and their activities from the mobile phone trans-
actional data and their relations to the physical features of the city and the mobile
phone usage in the urban context.

Recently, the use of machine learning in topics of interest to urban studies has
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proliferated. One of the typical examples is to use neural network-based statistical
modelling. Arribas-Bel et al. (2011) adapted a self-organising map algorithm which
taking advantage of its properties as a data-reduction as well as a clustering tech-
nique to addresses the issue of urban sprawl in Europe from a multidimensional
point of view. Their study identifies the most sprawled areas and characterising
them in terms of population size. In the paper, they categorise and extract the most
relevant six dimensions from the literature that are divided into two main categories:
urban morphology, which includes as variables the scattering of urban development,
the connectivity of the area, and the availability of open space; and internal compo-
sition, which focuses on how the socio-spatial structure is constructed in the area.
These are then calculated for a sample of the major European cities that uses several
sources to obtain the best possible dataset to measure urban sprawl. Being one of
the early research that adopted and adapted machine learning approaches to study
urban dynamics of the urban sprawl, their study pointed out research questions
and hypotheses within the discipline (e.g., how to study the importance of temporal
element in the urban dynamics modelling) which are still interesting to many re-
searchers (Zhang et al., 2013; Hu and Zhang, 2020). Another emerging field within
urban studies is to use machine learning models on visual content to explore ur-
ban dynamics. Naik et al. (2017) developed a computer vision method to measure
changes in the physical appearances of neighbourhoods from street-level imagery.
The method is developed in a relatively naive and straightforward way that it adopts
a support vector regression algorithm and takes two mid-level image features GIST
descriptors and texton maps (specific terminologies in computer vision, they can be
understood as vector features encoding the shapes and textures present in an im-
age) as input to calculate the perception of safety (so-called "Streetscore" in their pa-
per). They then correlate the measured changes with neighbourhood characteristics
to determine which characteristics predict neighbourhood improvement. Instead
of street-level images, remote sensing images are also can be adapted to study the
urban deprivation changes. Arribas-Bel et al. (2017) provided evidence on the use-
fulness of very high spatial resolution (VHR) imagery in gathering socio-economic
information in urban settlements. They used land-cover, spectral, structure and tex-
ture features extracted from a Google Earth image of Liverpool (UK) to evaluate
their potential to predict Living Environment Deprivation at a small statistical area
level (lower layer super output area). Their study proves that Random Forest is the
best model (compared to other models in the paper) in predicting the deprivation
level of the neighbourhoods.

Currently, after the "digital turn "(Ash et al., 2018b), the possibility of collecting
qualitative and social evidence with new data, such as UGC, has generated broad
interest in using it to better understand social synergies in the city context; as well as
motivating innovations in the development of citizen-centric approaches (Acedo et
al., 2018). The citizen-centric approaches base themselves on the human–space inter-
actions (Roche, 2016), which are mainly dependent on our capability to understand
the use of space and the corresponding place representations. Such innovations of
citizen-centric approaches have created a strong connection to the study of digital
geographies, which has the key objective to explore the interaction between human
and space through the online content production and the resulting production of
digitally coded urban space. With the help of rapid development of ICT-based big
data analytical research and tools, citizen-centric approaches conceptualise citizen
as senors (Goodchild, 2007) that produce an enormous amount of geographical data
with or without consent (See et al., 2016), and can evolve into a more cooperative
and sophisticate process to aggregate and measure real sensing in the human–urban
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interaction (Acedo et al., 2018) and the corresponding urban dynamics.

2.9 Towards Quantitative Digital Geographies

Spatial distribution of UGC is accepted by scholars as a valuable resource to ad-
vance research on specific urban aspects (Anselin and Williams, 2016; Arribas-Bel
et al., 2015). The representation and interpretation of data retrieved from social me-
dia provide a means by which to assess different urban dynamics and create socio-
demographics of the cities. Ballatore and De Sabbata (2018, 2019) studied the geo-
graphic distribution of Twitter, OSM objects, Foursquare venues and Wikipedia ar-
ticles in London (UK) (Ballatore and De Sabbata, 2018) and Los Angeles (California,
US) (Ballatore and De Sabbata, 2019). Exploratory spatial analysis and regression-
based models indicated that the four UGC platforms present distinct geographies
of place representations. They illustrated how population density, ethnicity, educa-
tion, and income are related to a high density of social media and VGI content in
both cities, although each platform has its own peculiarities and not all findings are
mirrored in the two cities.

The studies mentioned above demonstrate that the content production from digi-
tal platforms is grounded in the geography of their users and their digital infrastruc-
tures. The amount, quality, and type of digital information available in a geographic
area consistently shape and reshape place representations.

Understanding social practices in the context of specific events through the anal-
ysis of the content production of UGC has also been regarded as an essential re-
search objective. Bruns (2012) analysed hashtag (a type of metadata tag which en-
ables users to apply dynamic, user-generated tagging that helps other users easily
find messages with a specific theme or content) conversations in a Twitter message.
The author extracts public Twitter activity data around specific hashtags, and for
processing these data in order to analyse and visualise the reply (an act that allows
senders to direct public messages even to users whom they do not already follow)
networks existing between users as a static network, and to highlight the dynamic
structure of reply conversations over time. Similar research focus on hashtag ac-
tivity to social practices in the context of specific events were also conducted by
Bruns and Burgess (2011) and Wohn and Na (2011). These studies constitute a com-
prehensive understanding of the Twitter dynamics and of the broad range of social
interactions that produced from the platform, providing in-depth categorisations of
the events and of their Twitter-based characteristics. Although the above mentioned
three papers are not specifically within the study discipline of digital geographies,
it is still worth to mention here to provide a broader picture how can social media
activities and real-world events mutually impacted. The similar research objective
is brought into geography; thus, geographers can link Twitter activities to the local
events in the physical space to explore how they are associated, as well as detecting
and monitoring unusual events (e.g., disasters). Andrienko et al. (2013) described
a visual analysis approach for examining the frequently tweeted words and their
spatio-temporal patterns. They first adopt a spatio-temporal term usage cluster anal-
ysis to identify general patterns and topic terms to explore what people tweet about,
where, when, and how often. Then, the authors provide an in-depth analysis by
categorising the content keywords of the tweets and conduct visual analysis on the
distribution of keywords by identifying spatial clusters at the urban scale. Agarwal
et al. (2018) analysed the tweets spatially regarding a political event, the UK-EU ref-
erendum. They performed a geo-spatial sentiment analysis on tweets content as well
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as hashtags based on the location of the events compared to the distribution of the
geospatial tweets for that particular event on a global level. Both studies show that
the use of geotagged social media posted by ordinary citizens is a valuable source
providing insights about people and the space where they live in, as well as their
social connections (e.g., sentiments, opinions and activities) to the particular events
locally and globally.

2.10 Summary and Outlook

This chapter in each of the nine sections – Space and Place, The World Wide Web, User
Generated Content, Digital Geographies, Big Data, Geographic Information Retrieval, Deep
Learning in GIScience, Quantitative Urban Geography and Towards Quantitative Digital
Geographies – attend to the myriad ways that introducing different research concepts
which later will be expanded in each chapter of this thesis. The representation of
place is a central problem in GIScience (Purves et al., 2019) but how we understand
places is shifting because of the rapid development of the World Wide Web and
digital platforms. Traditional qualitative analysis within digital geographies often
struggles with tackling large datasets, and the volume of data produced daily on
digital platforms is enormous. Thus, quantitative analysis and summarisation are
frequently necessary steps in digital geographies. That creates a strong association
with GIScience, where data mining approaches have been applied to identify users’
opinions and online trends, to study the emergence of place from space through
content production (Graham et al., 2015a). However, existing research on the visual
content of geotagged UGC mostly focused on tags or meta-data (e.g., Hollenstein
and Purves, 2010; Gao et al., 2015; Xu et al., 2017b), while they heavily rely on users
tagging their posts accurately. However, information created on social media plat-
forms tend to be noisy, and images are commonly attached with multiple tags, in
which some of them may be irrelevant to the content, or no tags at all. The rise of
deep learning algorithms and techniques provides scholars useful tools to analyse
visual content of UGC explicitly, which inspires the study of this thesis to incorpo-
rate multi-media content towards understanding place representations with more
abundant information (images and text) from digital platforms.

Moreover, the use of distance to define the neighbourhood and its conceptual-
isation as graph representations of places and human activities has long been one
of the core approaches in geographic information analysis (Dacey, 1965; O’Sullivan
and Unwin, 2010; Mocnik, 2016). In recent years, as one of the sub-disciplines of
deep learning, graph neural networks have attracted increasing interests in the field
of computer science because of the great expressive power on the graph-structure
data (Zhou et al., 2018; Zhu and Liu, 2018), which have provided powerful models
that are potentially suitable for GIScience modelling on spatial interactions of places
and understanding place representations. As such, I adopt the use of graph concep-
tualisations of the spatial interactions of UGC and explore the use of graph neural
networks to understand places representations and their socio-economic character-
istics better.

In Chapter 4, I will introduce my proposed graph-based semi-supervised deep
learning (combination of CNN, RNN and GCN) framework to classify users’ activi-
ties using the images, text and spatial or spatio-temporal information of their social
media posts. In Chapter 5, I will introduce my proposed framework (a variant of
GCN) to estimate the geo-locations of social media posts using activity types and
their spatial topological structures. Ballatore and De Sabbata (2019) identified how
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the spatial distribution of UGC is related to population density, ethnicity, educa-
tion level, and income. Traditionally, such socio-economic characters are commonly
illustrated through official spatial statistics. The connection between the spatial dis-
tribution of UGC and local socio-economic structures indicate a potential possibility
that the digital place representation emerging from those platforms could be used as
a proxy to estimate socio-demographic dynamics, thus benefiting the understanding
of the place from the official governance perspectives. In Chapter 6, I will introduce a
spatial knowledge graph-based framework to predict socio-demographic changes at
the urban scale, taking into account London Output Area Classification, UK Indices
of Deprivation, and distributions of geotagged social media data and Wikipedia ar-
ticles in London.
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Chapter 3

Data and Methods

This chapter introduces the data adopted for case studies and mathematical details
of each deep learning approach employed in this thesis.

3.1 Data

The overview of the data adopted in this thesis is shown in Figure 3.1, and this
section will introduce the datasets in the following subsections.

3.1.1 Twitter Data

This thesis conducts case studies on Twitter, which is a micro-blogging platform
for providing individuals with ways of connecting with family and friends, and it
has over the time become a significant form of social communication on a global
scale. Twitter generates a vast amount of messages (which are also named as tweets)
per day with extremely heterogeneous contents ranging from primary sports events
coverage to natural disasters. Since late 2009, Twitter has allowed each tweet to be
geotagged with a specific latitude and longitude. Users can become citizen-sensors
(Goodchild, 2007) which capture information from where they are and spread real-
time geotagged data. As mentioned in Chapter 1, 0.85% of the Twitter feed output is
geotagged with coordinates (Sloan and Morgan, 2015), which is equal to roughly 4
million tweets a day, produced by a population only marginally different to the over-
all platform population (Ballatore and De Sabbata, 2018). The massive amount of
collectable geotagged information on Twitter opens the opportunities for scholars to
view online trends, collect human perspectives and understand digitally-mediated
place representations through the users’ activities carried out by their content pro-
duction. Despite the fact that in June 2019, Twitter decided to remove the ability for
users to add precise location information in their text-based posts (TwitterSupport,
2019), users can still share precise their locations through Twitter’s updated cam-
era or geotag their positions in the form of a hierarchy-level of Twitter Place (will be
introduced later in this subsection). Twitter remains as one of the major platforms
providing VGI data to support geographical studies.

The dataset in this thesis consists of all geotagged tweets posted within UK be-
tween January 8th, 2018 and December 31st, 2018, through an application program-
ming interfaces provided by Twitter, Inc. named Twitter APIs.

According to the official documents published on Twitter’s website (Twitter, 2021a):
APIs allow users to request and deliver information. This is done by allowing a soft-
ware application to call an address (also known as an endpoint) that corresponds with
a specific type of information a company provides (endpoints are generally unique
like phone numbers). Twitter allows access to parts of its service via APIs to allow
developers to build software that can integrate with Twitter, such as a solution that
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Twitter Data

Geolocated Tweets Placed Tweets

Geolocated Wikipedia

OAC/LOAC

2015&2019 IMD

Chapter 4
Chapter 5

Chapter 6

Analysis Chapters

FIGURE 3.1: A graphical illustration of different data in the case stud-
ies presented in each analysis chapter.
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helps a company respond to customer feedback on Twitter. Thanks to APIs’ flex-
ibility and ease of use, Twitter also has supported significant amount of scientific
research towards such a social media platform. The Twitter APIs return tweets a
data structure encoded using JavaScript Object Notation (JSON). JSON is a data for-
mat based on key-value pairs, with named attributes and associated values. These
attributes and their state are used to describe objects. Twitter serves each tweet as
JSON, which encapsulate core attributes that describe the object. Each Tweet has an
author, a message, a unique ID, a timestamp of when it was posted, and sometimes
geo-metadata shared by the user. Each Tweet also generates entity objects, which
include arrays of tweet contents such as hashtags, mentions, media (images, ani-
mated GIFs or videos), and links (metadata such as the fully unwound URL and the
webpage’s title and description).

In particular, regarding the geo-metadata of the tweets, tweets can be "geotagged"
with a location through the Twitter user-interface or when posting a Tweet using
the API. A tweet’s location can be a "point" location with a geo-coordinates pair, or
a Twitter Place with a "bounding box" that describes a larger area ranging from a
venue to an entire region where the tweet is generated. There are two "root-level"
JSON objects used to describe the location associated with a tweet: coordinates and
place as shown below:

LISTING 3.1: Two "root-level" JSON objects of a tweet’s geo-metadata.

{
" coordinates " : { } ,

" p lace " : { }
}

The place object is always present when a tweet is geotagged, while the coordinate
object is only present non-null when the tweet is geotagged with an exact location.
If an exact location is provided, the coordinate object will provide a [long, lat] array
with the geo-coordinates, and a Twitter Place that corresponds to that location will
be assigned. When a user decides to geotag a location to a tweet, they are presented
with a list of candidate Twitter Places which associate an object "place_type" presented
within the "place" object. The granularity of place_type must be one of the five types:
poi (point of interests, additionally sourced by Foursquare (Twitter, 2021b)), neigh-
bourhood, city, admin or country.

In this thesis, I used a dataset of geotagged tweets across the United Kingdom
between January 8th, 2018 and December 31st, 2018 using the official Twitter APIs.
Although there was a disruption in the data collection between September 27th and
October 3rd (five days are missing: 28-09-2018, 29-09-2018, 30-09-2018, 01-10-2018,
and 02-10-2018), and some minor disruptions in a few days throughout the year (in
each case a few minutes to a couple of hours are missing), the dataset is consisted
of 5,870,022 geotagged tweets. All the data are maintained in encrypted form in the
Enhanced Security Research Drive of the University of Leicester and will be deleted
after five years from collection. For the data that have been sampled for processing
as in Chapters 4 and 5 (see introduction about the sampling process in the corre-
sponding chapters), any post containing sensitive data has been excluded from the
study. In order to ensure privacy (Metcalf and Crawford, 2016), no post is included
in the dissertation, and ethical fabrication (Webb et al., 2017) is used to illustrate
some examples

It is worth mentioning that due to the popularity of Twitter, there exists a sig-
nificant amount of non-human postings (e.g., company account for advertising pur-
pose, or weather forecast stations for reporting weather every hour) on the platform.
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Therefore, I designed a 3-step process to filter non-human bots. Firstly, I looked at all
the users with more than 3,650 tweets (that is more than 10 tweets per day), and ex-
clude those users in the dataset if their accounts are non-human which only produce
advertisements or any other contents that are automatically generated. Secondly, I
aggregated tweets into each lower layer super output area (LSOA) and select those
areas that have more than 1825 tweets to count the number of tweets per user per
LSOA. Then, I analysed each of those users who has more than 730 tweets (2 tweets
per day) and exclude the users who are bots. It ends up with 4,565,424 tweets left as
the Twitter dataset used in this thesis. It is important to notice that despite I designed
a 3-step process to exclude as many bots as possible in the dataset, it is still impos-
sible to exclude every bot. The development of more complex Twitter bot detection
methods is beyond the scope of this thesis, and it is indeed one of the limitations
of this thesis which will be discussed in Chapter 7 under the section of Uncertainty.
With such a dataset, each case study samples different parts of data from this dataset,
and the details will be introduced in the following analysis chapters (Chapter 4, 5
and 6).

As tweets can be geotagged in forms of coordinates or Twitter Places, to clarify
different types of tweets which will be investigated in this thesis, I use two termi-
nologies to define the tweets:

• geolocated tweets: tweets that have longitude and latitude.

• placed tweets: as introduced in the previous subsection, a tweet’s location can
be a "point" location with a coordinates pair or a Twitter Place with a "bound-
ing box" that describes a larger area ranging from a venue to an entire region
where the tweet is attached to. I defined such tweets with no coordinates but
bounding boxes as placed tweets.

3.1.2 Wikipedia Data

The second VGI source in this thesis consists of 173,117 geolocated Wikipedia articles
located in England with all language editions collected in 2017 using the databases
available on Wikimedia Toolforge (Wikimedia, 2003).

The geolocated of Wikipedia articles include features such as monuments, no-
table buildings, parks, and head-quarters of organisations. Wikipedia only allows
for geotags in the form of points, and even large geographical entities are geotagged
to a point. For example, the article about the University of Leicester is associated
with a point that has precise latitude and longitude (N 52◦ 36’ 57.8196", W 1◦ 7’
45.3108"). The decision about where to locate entities depends on the combination
of the platform’s guidelines and the editors’ arbitrary choices. As a result, the same
entity can be tagged in different locations in different language editions. For in-
stance, at the time of writing, Manchester in the English Wikipedia is geotagged on
the Albert Square, whereas the Chinese Wikipedia geotags Manchester at the Gart-
side Garden which is approximately 1.1 miles away from the Albert Square. Such in-
consistencies of geolocations of Wikipedia articles might lead to uncertainties when
analysing place representations of the digital platforms. Although this is beyond the
scope of this thesis, it is also another limitation of this thesis which will be discussed
in Chapter 7 under the section of Uncertainty.
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3.1.3 Neighbourhood Statistics Geography

In the United Kingdom, the Office for National Statistics (ONS) maintains a series of
geo-codes (namely ONS codes) to describe a range of geographical areas of the UK,
to tabulate official statistical data such as the census. These codes include output
areas, super output areas referring to the Government Statistical Service of which ONS
is part.

Output areas (OAs) were initially produced to support the publication of 2001
Census outputs. They were designed based on postcode blocks after the census data
were available, to standardise population size, geographical shape, and social ho-
mogeneity (in terms of dwelling types and housing tenure) (Tait, 2012). The OA
is the lowest geographical level at which census estimates are provided, and each
OA contains at least 40 households and 100 persons with the target size being 125
households (ONS, 2016). The OAs created in 2001 were maintained as much as pos-
sible for supporting the publication of the 2011 Census (less than 3% were changed
according to ONS (2011)).

Super Output Areas (SOAs) are an assortment of geographical areas developed
to facilitate the calculation of the UK Indices of Multiple Deprivation 2004 and sub-
sequently for a range of additional Neighbourhood Statistics (NeSS). The creation of
SOAs aimed to generate a collection of areas with consistent size, whose boundaries
would be stable and potentially remain no changes, suitable for the publications of
statistical data such as the Indices of Deprivation. Each SOA is an aggregation of
adjacent OAs with similar social characteristics (Tait, 2012). Each lower layer super
output areas (LSOA) has a minimum population of 1000 with a mean size of 1500
and generally consist of between four and six contiguous OAs. Similarly, contiguous
LSOAs in groups are organised into Middle Layer Super Output Areas (MSOAs).

3.1.4 Geodemographic Classifications

Geodemographic classification based on census data is a commonly adopted ap-
proach within GIScience and has a longstanding history of being created in the
UK to understand socio-demographic characteristics. The Output area classification
(OAC2011) for the UK and the London output area classification (LOAC) of 2011 cen-
sus data created by Gale et al. (2016) and Longley and Singleton (2014) have become
important tools for researchers to understand socio-demographic patterns at both
the national scale and the urban scale in the UK. For the scope of this thesis, 8 super-
groups in England (Gale, 2014) and 8 super-groups within the Greater London (Lon-
gley and Singleton, 2014) as shown in Table 3.1 and Table 3.2 will later be adopted
in Chapter 6.

3.1.5 English Indices of Deprivation

English Indices of Deprivation (IMDs) are long-established datasets within England
to classify the relative deprivation (a measure of poverty) of 32,844 Lower-layer
Super Output Areas (LSOAs). Multiple components of deprivation of a place are
weighted with different strengths and compiled into a single score of deprivation.
The scores of places are divided into ten equal groups (or deciles) according to their
deprivation ranks. The use of IMDs in social analysis recognises that fact that de-
privation in a place has many interacting components, and aims to measure de-
privation from many perspectives rather than adopting a single number describing
the concept of deprivation. IMDs are widely considered as an improvement over
simpler measures of deprivation, for instance, low average household disposable
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TABLE 3.1: List of 8 super-groups from OAC2011 in England.

OAC2011 Super-groups Descriptions
Rural Residents The population of this super-group live in rural areas that are far less densely

populated compared with elsewhere in the country.
Cosmopolitans The majority of the population in this super-group live in densely populated

urban areas. They are more likely to live in flats and communal establishments,
and private renting is more prevalent than nationally.

Ethnicity Central The population of this group is predominately located in the denser central areas
of London, with other inner urban areas across the UK having smaller concen-
trations. All non-white ethnic groups have a higher representation than the UK
average especially people of mixed ethnicity or who are Black, with an above
average number of residents born in other EU countries.

Multicultural Metropolitans The population of this super-group is concentrated in larger urban conurbations
in the transitional areas between urban centres and suburbia.

Urbanites The population of this group are most likely to be located in urban areas in
southern England and in less dense concentrations in large urban areas else-
where in the UK.

Suburbanites The population of this super-group is most likely to be located on the outskirts
of urban areas.

Constrained City Dwellers This super-group has a lower proportion of people aged 5 to 14 and a higher
level aged 65 and over than nationally.

Hard-Pressed Living The population of this group is most likely to be found in urban surround-
ings, predominately in northern England and southern Wales. Households are
more likely to have non-dependent children and are more likely to live in semi-
detached or terraced properties, and to socially rent.

TABLE 3.2: List of 8 super-groups from LOAC in London.

LOAC Super-groups Descriptions
Intermediate Lifestyles Employment levels are average for London, and are split between full and

part-time working in a range of intermediate occupations (clerical, sales,
service).

High Density and High Rise Flats Concentrations of this super-group are found in densely populated areas
of flats.

Urban Elites This super-group comprises young professionals working in the science,
technology, finance and insurance sectors.

City Vibe There are many young, single professionals in this super-group, living in
Zone 2 of the London travel network.

London Life-Cycle Predominantly White in ethnic composition in this super-group. Residents
are highly qualified, employment rates are high, and employment is con-
centrated in the technical, scientific, finance, insurance and real estate in-
dustries.

Settled Asians Residents of this super-group identify themselves with their Asian origins,
although many are second or subsequent generation British residents.

Aging City Fringe Many of the residents in this super-group are over 45, and many are above
state pensionable age.

Multi-Ethnic Suburbs Residents of this super-group are drawn from a wide range of non-White
ethnic groups and White groups are less represented than average for Lon-
don.

income (Saunders, 2004). IMDs capture variables such as the advantage of access to
a good school and the disadvantage of exposure to high levels of air pollution to pro-
vide a complete picture regarding living conditions per household. Taking the latest
English Indices of Deprivation 2019 (McLennan et al., 2019) as an example, seven
domains of deprivation are considered and weighted as follows: Income (22.5%),
Employment (22.5%), Education (13.5%), Health (13.5%), Crime (9.3%), Barriers to Hous-
ing and Services (9.3%) and Living Environment (9.3%). Each of these domains has
multiple components. For example, according to McLennan et al. (2019), the Barriers
to Housing and Services considers seven components including levels of household
overcrowding, homelessness, housing affordability, and the distance by road to four
types of key amenity (post office, primary school, supermarket, and GP surgery).

In this thesis, I adopt data from 2015 IMD deciles and 2019 IMD deciles. The
deprivation deciles within the UK in both 2015 and 2019 are between 1 and 10. The
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FIGURE 3.2: A demonstration of the area unit difference between
LSOA and OA. The LSOA shown in the image contains 5 OAs (de-
noted by OA 1-5). Map boundaries source: Office for National Statis-

tics licensed under the Open Government Licence v.3.0.

smaller the number is, the worse deprivation it represents.

3.1.6 Scales

The output area classification and English Indices of Multiple Deprivation will be
adopted and combined in Chapter 6. However, it is important to notice that these
two datasets are organised at different area units — output area classification was
calculated on OA-level neighbourhoods, while English Indices of Deprivation (IMDs)
were calculated on LSOA-level neighbourhoods. The spatial extent of LSOAs is
larger than the OAs, for example, as shown in Figure 3.2. In Chapter 6, I will in-
troduce that the deprivation decile of an OA in this thesis is simply defined as the
decile of the LSOA that contains it. I am aware that this is in part problematic due
to uncertainties and local variation — aggregated value calculated at one area unit
(LSOA) might not necessarily apply equally to all parts of the area (OA). Detailing
the implications of this issue is beyond the scope of this dissertation, and it will be
considered part of the known unknowns of the framework presented in Chapter 6.
The issue will be discussed further in the concluding chapter and future studies

3.2 Neural Networks

In Chapter 2, I have provided a brief and high-level introduction on the types of neu-
ral networks (ANN, CNN, RNN and GCN) that are adopted in this thesis. To better
understand what deep learning techniques are and to have a more comprehensive
introduction on the methodologies and frameworks which are adopted in the fol-
lowing chapters, it is helpful to start with some basic concepts of neural network
models regarding their the technical components.

3.2.1 Linear Classifiers and Loss Function

To help ease the introduction in this section, I will explain the concepts using image
classification as an example. Assuming there is a training dataset of a type of data
such as images xi ∈ RD, and each image is associated with a label yi, where i =
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1, 2...N and yi = 1, 2...K. That is, there are N examples (each with a dimensionality
D) and K distinct categories. The objective is to define the score function f : RD →
RK that maps the raw image pixels to class scores. The simplest linear mapping
function is widely defined as:

yi = f (xi, W, b) = Wxi + b (3.1)

where I assume the image xi has all of its pixels flattened out to a single column
vector of shape [D × 1]. The matrix W (of size [K × D]), and the vector b (of size
[K × 1]) are the parameters of the function. The parameters in W are often called
the weights, and b is called the bias vector because it influences the output scores, but
without interacting with the actual data xi. It is important to highlight that the input
of this linear mapping function (xi, yi) is given and fixed, but the weight W and
the bias vector b are adjustable. Consequently, the objective of the function is to set
those parameters so that the predicted class scores are consistent with the ground
truth labels in the training data.

Before moving on, it is worth to mention a common simplifying trick to rep-
resenting the two parameters W, b as one. Such a trick combines the two sets of
parameters into a single matrix that holds both of them by extending the vector xi
with one additional dimension that always holds the constant one which is a default
bias dimension. With the extra dimension, the new linear mapping function will
simplify to a matrix multiply:

f (xi, W, b) = Wxi (3.2)

When a researcher uses an algorithmic classifier to classify such a dataset that
I mentioned above, there will naturally exist mismatch between the output labels
produced by the classifier and the ground truth labels. Thus, a loss function (or some-
times also referred to as the cost function or the objective) is defined to measure such
inconsistencies between the output labels and the ground truth labels. Intuitively,
the loss will be high if the classifier poorly classifies the training data, and it will
be low if the classifier performs well. Taking one of the most popular loss function
Multi-class Support Vector Machine (SVM) loss (Wang and Xue, 2014) as an exam-
ple, the SVM loss is designed so that the SVM would "enable" the correct class for
each image to a have a score higher than the incorrect classes by fixed margin 4.
Given the pixels of image xi and the label yi which specifies the index of the correct
class, the score function (1.1) takes the pixels and computes the vector f (xi, W, b) of
class scores (abbreviate to s). Thus, the SVM loss the i-th sample xi which has j-th
class label is formalised as:

Li = ∑
j 6=yi

max(0, sj − syi +4) (3.3)

the threshold at zero max(0,−) is often called the hinge loss. In reality, the issue of
overfitting happens when model learns the signal as well as noise in the training
data and would not perform well on new data on which model was not trained on.
To ameliorate such an issue, it is common to add a regularization penalty R(W) (e.g.,
L1 regularization and L2 regularization) in the loss function. Notice that R(W) is
not a function of the data; it is only based on the weights W. Therefore, the full
Multi-class SVM loss becomes:

L =
1
N ∑

i
Li + λR(W) (3.4)
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FIGURE 3.3: summary of the information flow for classifiers, loss func-
tions and optimization.

where N is the number of training examples, and λ is a hyperparameter. The loss
function lets us quantify the quality of any particular set of weights W. To find W
that minimises the loss function, I will introduce another important component in
the next section Optimization.

3.2.2 Optimisation

The loss function is used to quantify the quality of any particular set of weights W,
and the goal of optimisation is to find such a set of W which can minimise the loss
function. Intuitively, optimisation is to find a direction in the weight-space (a mathe-
matical conceptualised space of possible parameter values) that would improve the
weight vector W and produce a lower loss. Such a process can be done by calculating
the gradient of the loss function. The mathematical expression for such a calculation
is:

d f (x)
dx

= lim
h →0

f (x + h)− f (x)
h

(3.5)

The procedure of repeatedly evaluating the gradient and then performing a pa-
rameter update is called Gradient Descent which is currently by far the most common
and established way of optimising neural network loss functions. There are many
different methods (e.g., Stochastic Gradient Descent methods, Adaptive Gradient
methods, etc.) to perform Gradient Descent; their mathematical details are beyond
the scope of this thesis. For a more detailed tutorial of standard methods for ma-
chine learning (not just deep learning), see Curtis and Scheinberg (2017) and Bottou
et al. (2018).

Thus far, I have introduced three key components of a neural network model.
Figure 3.3 summarises the information flow for classifiers, loss functions and optimiza-
tion and how they interact with each other. The dataset of pairs of (x, y) is given
and fixed. The weights start as random values and can change. During the forward
pass, the classifier computes class scores, stored in vector f . The loss function con-
tains two components: The data loss computes the compatibility between the scores
f and the labels y. The regularisation loss is only a function of the weights. During
Gradient Descent, it computes the gradient on the weights (and optionally on data
if necessary) and use them to perform a parameter update during Gradient Descent.

3.2.3 Back-propagation and Neural Networks

Back-propagation is a recursive application of the chain rule that computes the gra-
dients of a given expression f (x), where x is a vector of inputs and the objective is
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to compute the gradient of f at x (∇ f (x)). Instead of providing complicated mathe-
matical background of the process, an intuitive understanding of back-propagation
is that given a classifier and a loss function, the back-propagation calculates the gra-
dient of the loss function concerning the classifier’s weights. It is a crucial process
in a multi-layer neural network, the "backwards" part of the name stems from the
fact that calculation of the gradient proceeds backwards through the network. The
gradient on the weights of the final layer is calculated first, and the gradient on the
weights of the first layer is calculated last. Partial computations of the gradient from
one layer are reused in the computation of the gradient for the previous layer. This
backwards flow of the error (refers to the mismatch between the model’s outputs
and ground truth labels) allows for efficient computation of the gradient at each
layer.

Before moving on, I will provide a general introduction to the neural networks
without using brain analogies. Recall the proposed image classification task and the
linear classifier that I introduced previously as f = Wx, where W was a weight ma-
trix (of size [K × D]) and x was an input column vector containing all pixel data of
the image (with shape [D× 1]). An example of a 2-layer neural network instead can
be defined as f = W2 max(0, W1x), where W1 could be a [N × D] matrix transform-
ing the image into a N-dimensional intermediate vector, and W1x can be seen as the
first layer of this 2-layer neural network. The function max(0,−) is a non-linearity
activation function that is applied element-wise. The activation function defines the
output of the first layer given an input or set of input. In other words, it decides
whether the learned feature of a layer will be passed on to the next layer and helps
to block information which the network considers as trivial. Finally, the matrix W2
would then be of size [K×N], so that the neural network again get K numbers out to
interpret the classification scores. The parameters W2, W1 are learned with Gradient
Descent, and their gradients are derived with back-propagation. Similarly, a 3-layer
neural network could analogously be defined as: f = W3 max(0, W2 max(0, W1x))
with W1, W2 and W3 are parameters to be learned.

As mentioned in Chapter 2, the discipline of neural networks is inspired by the
biological neural networks that constitute human brains. The basic computational
unit of the brain is a neuron. The human nervous system has approximately 86
billion neurons, and they are connected with approximately 1014 - 1015 synapses.
Figure 3.4(A) shows that each neuron receives input signals from its dendrites and
produces output signals along its (single) axon, and the axon eventually branches
out and connects via synapses to dendrites of other neurons. In the computational
model of a neuron in Figure 3.4(B), the signal x0 that travels along the axons interact
multiplicatively with the dendrites of the other neuron (w0x0) based on the synaptic
strength at that synapse w0. As can be seen from Figure 3.4(B), the mathematical
equation in the cell body looks similar to the linear classifier that I introduced ear-
lier. In fact, a neuron in a neural network model can be modelled as a single linear
classifier.

Therefore, as shown in Figure 3.5 neural networks are modelled as collections
of neurons that are connected in an acyclic graph. The representation of the in-
put data output by each layer is called the hidden representation of the data. Note
that regardless which type of neural networks, the basic concepts of neuron, back-
propagation, loss function and optimization are similar. With the concepts mentioned
above in mind, I will introduce the frameworks and methods in the rest of this chap-
ter.
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(A) Human nervous system (image by
Egm4313.s12, via Wikimedia Commons,

CC BY-SA 4.0).

(B) Mathematical model.

FIGURE 3.4: A cartoon drawing of a biological neuron (A) and its
mathematical model (B).

(A) A 2-layer Neural Network (one hidden
layer of 5 neurons (or units) and one output

layer with 1 neurons), and two inputs.

(B) A 3-layer neural network with three in-
puts, two hidden layers of 5 and 3 neurons

each and one output layer.

FIGURE 3.5: Artificial neural networks. Notice that in both cases
there are connections (synapses) between neurons across layers, but

not within a layer.

3.3 Multi-modal Autoencoder

To address the research question RQ1 mentioned in Chapter 1, I propose a multi-
modal autoencoder to extract the combined representations of images and text from
social media posts. In this section, I will introduce what autoencoders are and my
proposed multi-modal autoencoder.

The definition of an autoencoder is a type of neural network to learn compressed
data representations in an unsupervised manner (Kramer, 1991). It learns to copy its
input to its output and has an internal hidden layer to describe the representations
for the input. A typical neural network architecture for an autoencoder is shown in
Figure 3.6. It is constituted by an encoder which maps the input into a representa-
tion, and a decoder which maps the representation to a reconstruction of the original
input.

Despite the fact that autoencoders are often trained with a single layer encoder
and a single layer decoder, adding more layers symmetrically into both parts has
been evidenced to be able to produce better data representations compared to single-
layer autoencoders (Goodfellow et al., 2016). Figure 3.7 shows an autoencoder with
three fully connected layers, and autoencoders remain the flexibility to add more
layers or substitute the fully connected layers to other neural architectures (e.g., long
short-term memory neural network (LSTM) layers, convolutional network ((CNN))
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FIGURE 3.6: Schema of a basic autoencoder. x is the input, x’ is the
output, and z is the compressed representation

layers, etc.).

FIGURE 3.7: An autoencoder with 3 fully connected layers.

One of the primary uses of autoencoders is dimensionality reduction (Goodfel-
low et al., 2016). Comparing with principal component analysis (PCA) (Wold et
al., 1987), a traditional dimensionality reduction approach, the main advantage of
autoencoders is their non-linearity, which allow the model to learn more power-
ful generalisations, and reconstruct back the input with a significantly lower loss
of information (Hinton and Salakhutdinov, 2006). Therefore, the studies of autoen-
coder have massively benefited the research and applications in a broad spectrum
of domains, ranging from information retrieval (Salakhutdinov and Hinton, 2009) to
image processing (Cho, 2013; Guo et al., 2017).

The success of the autoencoders to compress data into lower dimensions have
attracted a growing interest within the field of common representation learning
(CRL), wherein different modalities of the data are represented in a common sub-
space (Chandar et al., 2016).
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Ngiam et al. (2011) proposed a multi-modal autoencoder (MAE) to learn a com-
mon representation by reconstructing two modalities. Given any modality, the model
learns to reconstruct itself and the other modality. Chandar et al. (2016) further de-
veloped an MAE based approach named Correlational Neural Networks (Corrent)
which integrated with a canonical correlation analysis (Hotelling, 1992) layer to en-
sure the learned representation can be highly correlated. This is particularly inter-
esting in my study, where I assume that text content and image content of a social
media post are correlated to each other. In other words, text and images are jointly
expressing the activities which users are doing—as such, finding a common repre-
sentation of a multi-media content of social media is essential for further analysis.
My proposed approach is based on Corrnet, which is able to learn joint representa-
tions by maximising correlation of two views when projected to common subspace.
As shown in Appendix A, the dense layers of the original Corrent are replaced with
Resnet-style convolution layers (Ledig et al., 2017) for learning image representa-
tions, and an LSTM layer for text representations learning. The objective is not only
to minimise the self-construction error, but also the cross-reconstruction error from
image and texts, and maximise the correlation between the hidden representations
of both parts. I achieved this by minimising the objective function introduced in the
original Corrnet paper (Chandar et al., 2016):

LZ =
N

∑
i=1

(L(zi, g(h(zi))) + L(zi, g(h(xi))) + L(zi, g(h(yi))))− λcorr(h(X), h(Y))

(3.6)

corr(h(X), h(Y)) = ∑N
i=1(h(xi − h(X))(h(yi − h(Y)))√

(∑N
i=1(h(xi − h(X))2(∑N

i=1(h(yi − h(Y))2
(3.7)

considering a dataset Z = {zi}N
i=1 where all data have inputs from two channels of

media text and images X and Y. Each data zi can be represented as zi = (xi, yi),
where xi ∈ X and yi ∈ Y. L is the squared error reconstruction error, and λ is the
scaling parameter. h(X) is the mean vector for the hidden representation h(xi) of
the text part input and h(Y) is the mean vector for the hidden representation h(yi)
of the image part input. h(z) = f (Wx + Vy + b), where W and V are two k × di
weight matrix and b is a k × 1 bias vector. Equation 3.6 is the objective function
of the proposed multi-modal autoencoder. The first term is the objective function
that allows learning meaningful hidden representations. The second term ensures
that both images and text output from the decoder can be reconstructed using only
text representations. Similarly, the third term ensures that both images and text out-
put from the decoder can be reconstructed using only image representations. The
fourth term ensures that the combined representations are highly correlated, and it
is defined in Equation 3.7.

Extracting representations from social media posts using my proposed multi-
modal autoencoder is a crucial fundamental stage for further analysis. The extracted
representations will be adopted for a semi-supervised classification task detailed in
Section 4.1.

3.4 Graph Convolutional Network

To address research question RQ2, I adopt a graph convolutional network (GCN) as
the method to classify users’ activities on social media platforms. In this section, I
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will introduce the concept of graph theory and the mathematical details of GCN.
Graphs are a kind of data structure which models a set of entities (represented as

nodes) and their relationships (represented as edges). Within the studies of machine
learning, the use of graphs has attracted a wide range of attention because of their
extraordinary expressive power. The graphs can be adopted to denote for a large
number of systems across various disciplines, including social science (e.g., social
networks Hamilton et al. (2017)), natural science (e.g., protein-protein interaction
networks Fout et al. (2017)), knowledge graph (e.g., Trouillon et al., 2016), etc..

Graph neural network (GNN) was first proposed in Scarselli et al. (2008), which
extended existing neural networks for processing the data represented in graph do-
mains. To better introduce GNN, all the notations in this subsection are following
the notations in Zhou et al. (2018). The target of a GNN is to learn a state embedding
hv ∈ Rm, hv is the hidden representation of node v which contains the information
of neighborhood for each node, and can be used to produce the outputs ov such as
nodes’ labels; Rm is m-dimensional Euclidean space. In GNN, the local transition
function f is an essential element that is shared among all nodes and updates the
node state according to the input neighbourhood. The hv and ov are defined as:

hv = f (xv, xco[v], hne[v], xne[v]) (3.8)

ov = g(hv, xv) (3.9)

where xv, xco[v], hne[v], xne[v] are features of node v, the features of its edges, the
states, and the features of the nodes in the neighborhood of v, respectively. g is
defined as a local output function which describes how the output is produced. With
the local transition function and local output function of a node in a graph, the global
transition function F and global output function G are defined as:

H = F(H, X) (3.10)

O = G(H, XN) (3.11)

where H, O, X and XN are the vectors constructed by stacking all the states, all
the outputs, all the features, and all the node features, respectively. The loss function
for such a GNN is defined as:

L =
p

∑
i=1

(ti − oi) (3.12)

and ti represents the ground-truth label of a target node. The learning algorithm
is based on a gradient descent strategy. The specific type of graph neural network
which will be introduced in the next subsection is one of the variants of GNN, which
is developed based on graph convolutions to gather information from each node’s
neighbours and specific updaters to update nodes’ hidden representations.

In this thesis, I adopt the graph structures constructed using social media posts
and use it to take advantage of recent advances in graph convolutional neural net-
works. I consider each social media post as a node in a graph network and de-
fine the edges linking the nodes based on a geographical neighbourhood (i.e., based
on the spatial distance between the location of the geotags attached to the posts)
to construct an adjacency matrix A. Several definitions of geographical neighbour-
hoods are taken into account, which will be detailed in Section 4.3.1. I then frame
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the problem of classifying each tweet in such a spatial graph as a graph-based semi-
supervised learning task, and a graph convolution network (GCN) (Kipf and Welling,
2016a) is adopted for efficient information propagation through the graph.

As already mentioned in Chapter 2, graph convolution, in general, is defined as
a filter moving over the nodes of the graph, with the adjacency matrix determining
the area captured by the filter. The graph convolution process will aggregate the in-
formation from a node’s connected neighbours. By propagating through the hidden
layers, GCN is able to produce useful feature representations of nodes in the graph,
thus benefits the further classification task.

In Kipf and Welling (2016a), they model a graph-based classification task as
f(X,A), where X is the extracted information from the multi-modal autoencoder for
each post, and A is the adjacency matrix for the graph. The model is expected to
produce a node-level output Z as:

Z = f (X, A) = softmax(H(L)) (3.13)

which satisfies the layer-wise propagation rule for GCN:

H(L+1) = σ(D̂−
1
2 ÂD̂−

1
2 H(L)W(L)) (3.14)

with Â = A + IN . IN is the identity matrix of A and W(L) denotes the trainable
weight matrix of the Lth layer of the neural network. D̂ii = ∑j Âij, and σ(·) repre-
sents a non-linear activation function using ReLu(·) = max(0, ·). H(L) is the activa-
tion matrix for the Lth layer; for example, H(0) = X and H(L) = ÂReLu(H(L−1))W(L).
The softmax activation in formula (3.3) is used for classifying nodes into their corre-
sponding categories. I calculate the cross-entropy error as the loss function over all
labeled nodes in the graph:

L = − ∑
l∈YL

F

∑
f=1
Yl f ln Zl f (3.15)

where YL is the set of nodes that have labels.

3.5 Variational Graph Autoencoder

In this section, I will introduce a variational graph autoencoder, which I adapt to
estimate the locations of social media posts using a link prediction process to address
research question RQ3.

Link prediction is defined as predicting the future or missing relationships from
nodes in a complex graph based on the observed graph structure and node at-
tributes (Martinčić-Ipšić et al., 2017). Kipf and Welling (2016b) proposed an unsuper-
vised learning model on graph-structured data based on a variational autoencoder
(Kingma and Welling, 2013; Rezende et al., 2014) named Variational Graph Autoen-
coder (VGAE). The model is composed of a graph convolutional network (GCN)
(Kipf and Welling, 2016a) as its encoder and an inner product decoder.

The inference model of the encoder is parameterized by a two-layer GCN:

q(Z|X, A) = ΠN
i=1q(zi|X, A), with q(zi|X, A) = N (zi|µi, diag(σ2

i )), (3.16)

where µ = GCNµ(X, A) is the matrix of mean vector µi and logσ = GCNσ(X, A). A
is introduced as an adjacency matrix of the graph; zi is the stochastic latent variables
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summarized in matrix Z, and node features are summarized in matrix X. The two-
layer GCN is defined as GCN(X, A) = ÂReLu(H(0))W(1), where H(0) = ÂXW(0);
W(i) denotes for the weight matrices. GCNµ(X, A) and GCNσ(X, A) share first-layer
parameters W(0). ReLu(·) = max(0, ·) and Â = D−

1
2 AD−

1
2 is the symmetrically

normalized adjacency matrix of A.
An inner product between latent variables is used to define the generative model

of the VGAE:

p(A|Z) = ΠN
i=1ΠN

j=1 p(Aij|zi, zj), with p(Aij = 1|zi, zj) = σ(zT
i , zj), (3.17)

where σ(·) is the logistic sigmoid function.
The learning process of the autoencoder is defined by optimizing the variational

lower bound L:

L = Eq(Z|X,A)[logp(A|Z)]− KL[q(Z|X, A)||p(Z)], (3.18)

KL[q(·)||p(·)] is the Kullback-Leibler divergence (Kullback and Leibler, 1951) be-
tween q(·) and p(·).

The results summarised in Kipf and Welling (2016b) demonstrate the ability of
VGAE on link prediction tasks using different state of the art citation networks as
benchmarks. In this thesis, VGAE model is adapted on geographically connected
social media spatial networks and estimates the potential locations of each new post
from users.

3.6 Complex Graph Embeddings of Knowledge Graph

To address the research question RQ4, I proposed a spatial knowledge graph to
model the socio-demographic changes at the urban scale using a link prediction pro-
cess. In this section, I will describe the method I adopt to perform link prediction on
the knowledge graph.

In this thesis, I adopt a state-of-art method ComplEx (Trouillon et al., 2016) to
predict relations for a spatial knowledge graph which later will be introduced in
Chapter 6. Consider R and E the set of relations and entities in a knowledge graph.
The knowledge graph aims to recover the matrices of scores Xr for all relations r ∈ R.
Given two entities s and o ∈ E , the probability that the fact r(s, o) exists is defined
as:

P(Yrso = 1) = σ(φ(r, s, o; θ)), (3.19)

where Y is the partially observed sign matrix, φ is a scoring function based on a
factorization of the observed relations, and θ denotes the parameters (embeddings of
entities and relations) of the model.The scoring function φ(r, s, o; θ) is further defined
as:

φ(r, s, o; θ) = Re(wr, es, ēo) = Re(
K

∑
k=1

wrkesk ēok)

=< Re(wr), Re(es), Re(eo) >

+ < Re(wr), Im(es), Im(eo) >

+ < Im(wr), Re(es), Im(eo) >

− < Im(wr), Im(es), Re(eo) >,

(3.20)
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where es and eo are embeddings of the entities s and o, and wr is the embedding
for the relation r. The objective function of this model is designed by minimising the
negative log-likelihood of the logistic model with L2 regularization on the parame-
ters θ:

L = min
θ

∑
r(s,o)∈ω

log(1 + exp(−Yrsoφ(s, r, o; θ))) + λ||θ||22 (3.21)

The results summarised in the original paper of this model (Trouillon et al., 2016)
demonstrate the model is powerful in link prediction tasks on knowledge graphs. In
this thesis, I adopt this model to predict socio-demographic patterns of IMD deciles
in the case studies in both England and Greater London.

3.7 Summary

In this chapter, I provided a brief introduction on the datasets used in this thesis,
including geotagged Twitter data and Wikipedia data, OAC and LOAC, 2015 and
2019 English Indices of Multiple Deprivation. In addition, I provide an in-depth
introduction to neural networks and their key components so that it benefits my
further explanations of the methodologies and frameworks that I develop and adopt
in this thesis. In the rest of this thesis, I will illustrate how each of the frameworks is
used to answer geographic questions in different case studies (Chapter 4, 5, and 6).
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Chapter 4

Classification Learning through a
Graph-Based Semi-supervised
Approach

Part of this work is presented in this chapter has been published as:

• Pengyuan Liu and Stefano De Sabbata, 2019. Learning Digital Geographies
through a Graph-Based Semi-supervised Approach. In 15th International Con-
ference of GeoComputation.

The extended journal version of this paper is published as:

• Pengyuan Liu and Stefano De Sabbata, 2021. A graph-based semi-supervised 
approach to classification learning in digital geographies1. Computers, Environ-
ment and Urban Systems, 86, p.101583. DOI: https://doi.org/10.1016/
j.compenvurbsys.2020.101583

.

4.1 Introduction

Understanding place representation is a central problem in GIScience (Purves et al.,
2019), and as discussed in Section 2.3, UGC represents a significant source of in-
formation about places. Traditionally, extensive surveys and long periods of ob-
servation were required to collect an adequate amount of data to investigate social
practices and study the associated urban representations. Nowadays, people regu-
larly use online digital platforms due to their convenience, efficiency, and significant
broadcasting power for sharing information. People often reveal their social prac-
tices or their intent to carry out social activities within their online communications
or posts.

Due to the potential of digital platforms for exploring social practices in space
and the narrative of places (Abernathy, 2016), social media platforms in general, and
Twitter in particular, have been at the centre of data-driven analysis in GIScience and
quantitative geography for about a decade (Miller and Goodchild, 2015a). Although
existing studies have advanced our abilities to understand the spatial patterns of
social media, they are primarily only focused on text content. However, text UGC
is not the only form of communication that users post on social media platforms.
Digital platforms have become increasingly visual over the past decade as visual
content has become more prevalent as content posted online (Gleason et al., 2019),

1Code to reproduce my experiments is available at: https://github.com/PengyuanLiu1993/PhD_
Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification

https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification
https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification
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which renders the analysis of visual data, an interesting area to explore. Despite the
growing popularity of visual content in social media, limited work has been done so
far on such content within the field of GIScience. The lack of visual content analysis
is a severe limitation, as image content is a key component of social media posts
– especially considering the rise of image-focused platforms such as Instagram or
Flickr. "A picture is worth thousand words" (Wang and Li, 2015, p. 1584), visual
content can also provide rich information regarding places, the use of space, and
people’s experiences of landscape.

Studies within digital geographies on the visual content of geolocated UGC mostly
focused on their tags or meta-data (e.g., Hollenstein and Purves, 2010; Gao et al.,
2015; Xu et al., 2017b), while they heavily rely on users tagging their posts accu-
rately. However, information created on social media platforms tend to be noisy,
and images are commonly attached with multiple tags, in which some of them may
be irrelevant to the content. One of the objectives of this chapter is to answer the
research question RQ1 proposed in Chapter 1:

• How can spatial or spatio-temporal distributions of UGC benefit our understanding of
places and their representations?

UGC enables scholars to understand place representations by describing their
activities and locales (Ballatore and De Sabbata, 2019). Time and geolocation are im-
portant features that UGC includes with their content. Information shared on digital
platforms indicate the patterns of users’ everyday life, which consistently augment
and reinforce the assumptions of local societies through time, and layer the dynamic
information across and over geographic space (Graham et al., 2015a). As discussed
in Chapter 2.3.2, the relationship between content and space and time on digital plat-
forms can help the studies go beyond "geotags" (Crampton et al., 2013). Based on the
conceptualisation of social media posts as "augmentations" (Ballatore and De Sab-
bata, 2019) of places as "time-space configurations" (Agnew and Livingstone, 2011),
the second objective of this Chapter is to test the hypothesis that the spatio-temporal
aspects of social media posts would benefit the content analysis and further inform
our understanding of digital representations of the city (Pereira et al., 2013) (RQ2
proposed in Chapter 1).

• How can spatial or spatio-temporal distributions of social media posts benefit the se-
mantic categorization of their contents?

In this chapter, I present and test an approach to the exploratory analysis of social
media content capable of classifying posts based not only on the textual component
but also taking into account their visual content. The latter is a crucial contribu-
tion of my approach, as only a handful of papers account for images when con-
ducting quantitative analyses of social media content (Gao et al., 2015; Xu et al.,
2017b; Huang et al., 2018). Furthermore, with a conceptualisation of posts as “aug-
mentations”(Graham et al., 2015a) of places, understood as “time-space configura-
tions”(Agnew and Livingstone, 2011), I go beyond the geotag (Crampton et al., 2013)
by developing graph convolutional networks that account for the relationships be-
tween each post and its spatio-temporal neighbours. To the best of my knowledge,
the proposed model is the first to account for all four aspects (text and images, as
well as geographical and temporal information) using a deep learning approach.

The novelties of this study are:

• this study devises a graph-based framework for understanding place represen-
tations through multimedia content (text and images, as well as geographical
and temporal information) from digital platforms;
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• this chapter highlights the importance of the spatial proximity and spatial-
temporal patterns of UGC and how they can aid the model to better classify
users’ spatial activities.

4.2 Case Study

This research is interested in understanding the digital representations (Graham et
al., 2013b) of the city through users’ spatial activities carried out by their related
geolocated social media posts. The case study includes a geographical analysis of
social media multimedia content regarding a certain set of topics (e.g., posts about
personal life, trending news, or entertainment) in London. In digital geographies
studies, it is common to qualitatively explore a sample of a few hundred tweets, and
conduct content and visual analysis by categorising the sampled tweets through a
relatively small number of "codes" (i.e., labels – see, e.g., Felt, 2016; Awcock, 2018).

In this scenario, the research objective in the Chapter is to develop an approach
that could learn from a small coded sample and apply it to a much larger dataset,
thus aiding research in digital geographies, bridging quantitative and qualitative.

The labelled dataset could then be used for further exploration of the specific
topics. Due to the fact that the manual labelling process of the Twitter data is chal-
lenging and time-consuming, for the scope of this thesis, I set myself a limit of three
working days to manually label a set of tweets randomly sampled from the dataset
introduced in Section 3.1, thus reaching a total of 701 tweets manually labeled as dis-
cussed below. I manually labeled the randomly sampled 701 tweets into 11 different
categories: Animals, Entertainment, Food, Nature, News, Personal, Places and attractions,
Social, Sports, Work and Not informative. The latter category includes advertisement
and other content that was difficult to interpret. The category Personal includes con-
tent related to personal daily activities such as shopping or selfies, whereas tweets
in the category Social are related to social activities (e.g., parities). The category Work
mostly contains tweets related to offices environment or the description of users’
work. As illustrated in Figure 4.1, the sampled dataset is unbalanced as certain cat-
egories are more represented than other, for instance, there are 166 tweets regarding
Places and attractions while only 8 tweets in the category Animals.

It is important to emphasise that the number of categories of activities is a de-
signing choice and I labelled social media only based on their text and image content
rather than labelling them based on their location or geographic content explicitly.
That is, the labels used in the case study are not geographical per se. The predefined
classification created is relatively generic, but still very subjective and expressing the
interests and understanding of the authors on the classified content. Other authors
might prefer to incorporate the category Work into Personal, or clearly differentiate
a diverse set of Sports (e.g., football or tennis). However, this is not an issue in the
scope of this experiment. The objective of my proposed approach is to provide a
framework to classify large volumes of social media posts that is unrealistic to pro-
cess manually, based on a set of labels tailored to a specific project or task. As such,
the preparation of the data fits the scenario.

Traditional classification tasks in computer science tend to use datasets created
using a top-down approach with a set of well-balanced categories as benchmarks,
which are optimised to test the effectiveness of new algorithms. Given the aim of
this approach, I decided to use a “real-life” dataset, retrieved from Twitter directly,
which is much noisier and could be difficult to categorise even for human assessors.
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FIGURE 4.1: Distribution of labeled tweets used for training and test-
ing. Map tiles by Stamen Design, under CC BY 3.0. Data by Open-

StreetMap, under ODbL.

Even for tweets within the same category, the information tends to be much fuzzier
compared to datasets used in traditional classification tasks.

As shown in Figure 4.1, the distribution of tweets in the dataset is heavily con-
centrated in the central area of the inner boroughs of London, while only a few
tweets are located in the suburban areas of the external boroughs. The impact of
this skewed geographical distribution on the creation of the spatial graph was one
of the reasons that led to testing the diverse set of approaches which will be dis-
cussed in Section 4.3. Most categories seem to follow this general pattern, and while
some expected clusters can be identified (e.g., Food in Soho, or Nature in Hyde Park),
there seems to be no clear-cut geographic clustering of the categories among the 701
sampled tweets.

4.3 Methodology

Places in geography are not isolated but are connected in many ways (Nystuen and
Dacey, 1961; Noronha and Goodchild, 1992), which could be both physical and so-
cial, using measures such as distance, adjacency, and spatial interaction (Zhu and
Liu, 2018). Conceptualising social media posts as “augmentations” (Ballatore and
De Sabbata, 2019) of places, the digital information is connected in many differ-
ent ways (i.e., linking posts using "following-follower" networks, –see, Sadilek et al.
(2012)). In recent years, graph neural networks have attracted increasing interests
in the field of computer science, as one of the sub-disciplines of deep learning. The
main reason behind such interest is because of the great expressive power on the
graph-structure data (Zhou et al., 2018), which have provided powerful models that
are potentially suitable for GIScience modelling on spatial interactions of places and
understanding place representations. This section introduces different approaches
to construct graphs using social media posts. The graphs are constructed not only
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based on the location information of each tweet but also using the temporal informa-
tion to explore whether knowing the temporal element of social media posts would
benefit my proposed framework to better understand users’ activities.

The framework is illustrated in Figure 4.2. First, a stacked multi-modal autoen-
coder model is used to extract dense representations from both texts and images
of tweets. Second, graph convolutional network (GCN) is applied based on the
graph constructed with geo-coordinates from the social media posts to do the semi-
supervised classification. That is, the relationship between features and labels is
learnt throughout the process and updated based on the information that neigh-
bours exchange with each other. As such, each node of the neural network learns
locally, focusing on one social media post. The neural network node works towards
understanding the relationship between content and assigned labels in a locally de-
fined subset, taking into account that particular post and all its spatial neighbours.
The knowledge acquired locally for each social media post at one layer is added to
the information available for that post at the following layer. Note that the introduc-
tion for multi-modal autoencoder and GCN has been provided in Chapter 3.

FIGURE 4.2: Methodology flowchart.

I then postulate that the local learning process described above should allow the
neural network to take better advantage of spatial clusters of information as well as
the temporal information. In turn, that approach should deliver better performance
in understanding labels that are spatio-temporally clustered, as it is commonly the
case in geolocated social media, which focus on spatio-temporal content. To the best
of my knowledge, by the time the work in this chapter is published, it is the first
to account for all four aspects (text, image, geolocation, and temporal information)
using a deep learning approach to classify users’ online activities.

4.3.1 Graph Construction

I tested a variety of graphs that were constructed using the tweets presented in the
case study. I classified the graphs based on whether they account for the absolute
positions of tweets and distances between the tweet pairs into three different cate-
gories: a-spatial graphs, semi-spatial graphs and spatial graphs.

A-spatial Graphs

A-spatial graphs do not take into account the absolute positions of the tweets and
distances between the pairs of nodes in the graph. I tested three different a-spatial
graphs in the experiments:
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(A) Random Path Graph. (B) Weighted Random Path Graph

(C) Cycle Graph (D) Complete Graph

(E) Minimum Spanning Tree

FIGURE 4.3: Different spatial graph structures

• Random Path Graph: A path graph is a graph that can be drawn so that all
of its vertices and edges lie on a single straight line (Gross and Yellen, 1999). I
randomly assign tweets in a line so that they are linked to each other one by
one, as shown in Figure 4.3(a). If two nodes are connected to each other Aij = 1
in its adjacency matrix, otherwise Aij = 0.

• Random Cycle Graph: A cycle graph is a graph containing a single cycle
through all nodes shown in Figure 4.3(d). It is randomly generated in the same
way as the random path graph, plus adding a link between the beginning and
the end nodes.

• Complete Graph: A complete graph is a graph in which each pair of graph
vertices is connected by an edge shown in Figure 4.3(c).

Note that although Random Path Graph, Cycle Graph and Complete Graph are con-
nected in the form that each tweet is connected to another, such graphs do not take
into account the absolute positions of the tweets and distances between the pairs of
nodes in the graph. For example, Random Path Graph is constructed by connecting
all nodes in the graph with a straight line, and it can start from any arbitrary node
as long as all the nodes can lie on the same line by the end of the graph construc-
tion. Thus, the absolute positions of tweets are not useful in such a case. Therefore,
such graphs can be seen as the nodes are connected without the spatial component,
whereby the spatial locations of tweets have no impact in those graph construction
processes.
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Semi-spatial Graphs

Semi-spatial graphs do not take into account the absolute positions of the tweets but
are constructed with the information of the distances between the pairs of nodes in
the graph. Following the experiment in the previous section, I tested three different
semi-spatial graphs in the experiments:

• Weighted Random Path Graph: Same structure as Path Graph shown in Figure
4.3(b), however, the weights for edges are defined by spatial interaction as:

Aij = 1/(1 + distance) (4.1)

where distance denotes for the spatial distance between tweets. However, as
two tweets may share same locations (i.e., the users posted them at the same
locations with same coordinates), the spatial distance can be 0. Therefore, 1 +
distance is to avoid such an error which may occur in the calculations. Because
GPS-enabled smartphones are typically accurate to within a 4.9 metres range
(Van Diggelen and Enge, 2015), the 1 meter added in this equation will unlikely
raise further uncertainties in the calculations and results.

• Weighted Random Circle Graph: Same structure as the cycle graph, however,
the weights for edges are defined by spatial interaction.

• Weighted Complete Graph: Same structure as the complete graph, but the
weights for edges are defined by spatial interaction.

Spatial Graphs

Spatial graphs take into account the absolute positions of the tweets as well as the
information of the distances between the pairs of nodes in the graph. I tested two
spatial graphs listed below:

• Minimum Spanning Tree (MST): I first generate a series of graphs based on
spatial adjacency using distances ranging from 2 kilometres to 15 kilometres.
I then calculate the minimum spanning tree for each one of those graphs to
further minimise the number of connections. In Figure 4.3 (e) is an example
of a minimum spanning tree calculated starting from the 9 kilometres spatial
adjacency. If two nodes are connected to each other Aij = 1 in its adjacency
matrix, otherwise Aij = 0.

• Weighted Minimum Spanning Tree (Weighted MST): Same structure as min-
imum spanning tree, but the weights for edges are defined by the same spatial
interaction defined in Equation (4.1).

4.3.2 Spatio-Temporal graph

The temporal component of social media post (Yang and Leskovec, 2011) is a key
aspect to move beyond the simple geotag (Crampton et al., 2013). The temporal evo-
lution of the social media trend has clear links to emerging events in the physical
world (Wang et al., 2016a), which leave “data shadows” behind them (Shelton et al.,
2014). Spatio-temporal analysis has been widely adopted in the study of digital ge-
ographies (Cheng and Wicks, 2014; Gomide et al., 2011; Lee et al., 2011), to identify
sociospatial patterns of online events (Crampton et al., 2013; Luo et al., 2016), or to
monitor and surveillance nature disasters (Wang et al., 2016b; Martín et al., 2017).
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To explore the usefulness of the temporal component of social media posts in better
understanding its relationship with the assigned labels, I tested two graphs based
on two different spatio-temporal distances and a weighted graph with distance in-
formation on the edges.

• Spatio-temporal neighbourhood (StN), Euclidean Distance: To be consistent
with spatial distance, I transform the time series information equivalent to the
spatial distance, and I define such process as temporal-spatial distance transfor-
mation. That is, the temporal differences between social media posts are mea-
sured in a defined spatial distance (see more details in Section 4.4.2). I define
the first spatio-temporal distance as:

STDist =
√

easting2
dist + northing2

dist + time_di f f erence2
dist (4.2)

where the distance is calculated using the British National Grid (Crossley, 1999);
"easting" and "northing" denotes to the longitude and latitude of each post;
time_di f f erencedist is the defined temporal-spatial distance transformation; for ex-
ample, time_di f f erencedist = 1 metre if the temporal difference between two
posts is 12 hours. An example of the constructed graph using Euclidean dis-
tance is shown in Figure 4.4(a). I ran a series of experiments using different
distances to equate time and space, and the results are presented in Section
4.4.

• Spatio-temporal neighbourhood (StN), temporally-weighted Euclidean Dis-
tance: Chang et al. (2007) defined a spatio-temporal similarity measure to com-
pute spatio-temporal relevance between two trajectories of moving objects on
road networks, which is known as spatio-temporal distance:

STDist = (SD + δ ∗ TD)/2 (4.3)

where δ is the spatio-temporal weight; SD and TD denote to spatial distance
and temporal distance, respectively. An example of using such distance can
be seen in Figure 4.4(b). As each entity in my dataset represents a point in
the space-time continuum, rather than a trajectory, I propose the following
definition of the distance between two points into:

STDist =
√

SD2/2 + (δ ∗ TD)2/2 (4.4)

where SD is defined as
√

easting2
dist + northing2

dist. It is a variation on the Eu-
clidean distance, but taking into account of an additional spatial weight δ de-
fined in formula (8) to define the impact of the temporal distance. In this paper,
I keep δ as 20 same in Chang et al. (2007), and the results are presented in Sec-
tion 4.4. Thus, I define such approach as Temporal weighted Euclidean Distance.
An example of the constructed graph using temporal weighted Euclidean dis-
tance is shown in Figure 4.4(c).

• Spatio-temporal neighbourhood (StN), distance and temporally weighted
Graph: Given the best results reported in Section 4.4 are achieved by using
the graph defined by Equation (4.4), I define this graph same as the temporally
weighted Euclidean Distance model, but the weights for edges are defined by
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(A) Spatio-Temporal Graph using Eu-
clidean Distance (9 km).

(B) Spatio-Temporal Graph using distance
defined in Chang et al. (2007) (9km)

(C) Spatio-Temporal Graph using Tempo-
ral weighted Euclidean Distance (9 km).

FIGURE 4.4: Different spatio-temporal graph structures

spatial-temporal interaction as:

Aij = 1/(1 + distanceST) (4.5)

where distanceST is the distance calculated by Equation (4.4).

4.3.3 Baseline methods

In order to test the capability of my proposed semi-supervised multimedia classifica-
tion framework, I compare it with eight baselines developed from various methods
focusing on text content and image content, as well as the spatial component of the
tweets:

A-spatial Baselines with Text and Images

I set up baselines which employ a traditional machine learning algorithm and two
neural network-based deep learning approaches to compare their performance with
my proposed graph-based semi-supervised classification framework.

• SVM: I adopt a traditional machine learning approach Support Vector Ma-
chine (SVM) (Cortes and Vapnik, 1995) on the extracted representations from
multi-modal autoencoder to classify tweets. Traditional machine learning meth-
ods such as SVM has a long-standing history being adopted for social me-
dia classification and spatial analysis within the field of geography (Guo and
Chen, 2014; Qi et al., 2019). Although in recent years, deep learning meth-
ods have proved to outperform such a traditional machine learning method
in various disciplines, SVM is still worth to be set up as a basic baseline in
comparison with the proposed GCN framework due to its popularity within
academic studies.

• Dense Neural Network (DNN): I adopt a 3-layer dense neural network (DNN)
on the extracted representations from multi-modal autoencoder to classify tweets.



72
Chapter 4. Classification Learning through a Graph-Based Semi-supervised

Approach

Due to its strong ability of generalisation, DNN as one type of deep learning
techniques has been widely adopted in various social media analytic studies
(Ghani et al., 2019). Thus, the 3-layer DNN is chosen as another baseline.

• Visual-textual Fused CNN (VTCNN): Inspired by Huang et al. (2018), I design
an end-to-end deep learning framework using two stacked CNN to extract
representations from images and text simultaneously, and concatenate them in
the middle layer of the framework for twitter classification. Huang et al. (2018)
can be seen as a direct comparison to my proposed framework, although such
a method is primarily a supervised training framework which usually requires
training data in a large size and to be well-labelled.

Note that the baseline VTCNN is the only end-to-end training framework among
all the baselines. For other baselines introduced in this section, representation ex-
traction (from images, text or both) and classification are two separated steps. It is
also important to highlight that these three baselines do not take into account the
locational information of the tweets, and they perform classification purely based
on the multimedia content (images and text) of tweets. Thus, they are set up as the
comparisons to my framework, which is performed on a-spatial graphs introduced in
Chapter 4.3.1.

A-spatial Baseline with Text Only

Doc2Vec + Label Propagation: I use Doc2Vec (Le and Mikolov, 2014) to extract text
representation and a traditional semi-supervised machine learning approach Label
Propagation (LP) (Zhu and Ghahramani, 2002) to classify tweets. Such a method
has been widely adopted on online content analysis, for example, sentiment analy-
sis (Mishra et al., 2019; Wadawadagi and Pagi, 2020). As a semi-supervised machine
learning approach, LP is used to assess the performance of the GCN framework,
which is also a semi-supervised learning framework. Such a framework targets on
classifying users’ activities using their text content; thus, it can be used for demon-
strating whether multimedia content analysis is superior to content analysis which
only targeting on the text.

A-spatial Baseline with Images Only

CNN autoencoder + Label Propagation: I use a CNN autoencoder (Mao et al., 2016)
which is the same structure as I adopted in the multi-modal autoencoder to extract
image representation and use LP approach to classify tweets.

Spatial Baselines with Text Only

Doc2Vec + GCN (MST): I use Doc2Vec to extract text representation and GCN on
a spatially constructed graph (MST) to classify tweets. This baseline is set up as a
direct comparison to the previous baseline (Doc2Vec + Label Propagation).

LSTM autoencoder + GCN (MST): I use an LSTM autoencoder to extract text rep-
resentation and GCN on a spatially constructed graph to classify tweets. Despite
the fact that the previous two baselines are designed for the purpose of showing
the classification results based on text, Doc2Vec is not considered as a deep learning
approach to extract text representation. As mentioned in Section 3.3, my proposed
multi-modal autoencoder contains an LSTM encoder extracting text representations
from UGC content. Thus, I further design such a baseline as one of the comparisons
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to assess whether multimedia content analysis is superior to content analysis which
only targeting on the text.

Spatial Baselines with Images Only

CNN autoencoder + GCN (MST): I use the CNN autoencoder to extract image rep-
resentation, and GCN on a spatially constructed graph (MST) to classify tweets. This
baseline and the previous baseline (CNN autoencoder + Label Propagation) are de-
signed to assess whether multimedia content analysis is superior to content analysis
which only targeting on images.

4.3.4 Model training

The text content of each tweet was pre-processed using tokenisation, stop words re-
moval and case folding. The resulting text was then vectorised using Word2Vec,
a publicly available word embeddings model trained with a 400 million Twitter
dataset2.

The image content of each tweet was converted to greyscale and re-sized them
into 158 × 158 uniform size images. After the extraction of the encoded features
using the encoder component of the autoencoder has been completed, I randomly
selected a certain amount of tweets (as discussed below) from the dataset as training
data for the GCN. The number of tweets in each category in the dataset is unbalanced
as shown in Figure 4.1. Therefore, a completely random sample of data as a training
dataset may lead to the consequence that some categories have no tweets included,
especially for categories such as Animals which only have 8 tweets. To guarantee
the model is trained on every category introduced in Section 4.2, I ensured that at
least four tweets from each category were selected in the training sample. For the
same reason, I evaluated the model based on both the classification accuracy and F1
score. The accuracy and F1 score are commonly used in deep learning and machine
learning studies to measure the performance of the models. Accuracy is measured
by a percentage of how many labels in the predefined dataset (manually labelled in
Section 4.2) are correctly classified by the model; F1 score is a measure of a weighted
average of the precision (the proportion of correct predictions among all predictions
of a certain class) and recall (the proportion of examples of a certain class that have
been predicted by the model as belonging to that class) of the model.

I trained a two-layer GCN model with 0.5 dropout rate for both layers, L2 reg-
ularisation factor for the first GCN layer and 8 as the number of hidden units. I
trained the GCN model for a maximum of 3000 epochs (training iterations) using
Adam (Kingma and Ba, 2014) with a learning rate of 0.01, and early stopping with
a window size of 300, that is the model stop training if the validation loss does not
decrease for 300 consecutive epochs. Trainable weights initialisation and feature vec-
tors normalisation remain the same as in Kipf and Welling (2016a). My framework is
designed in Keras (Chollet et al., 2015) with Tensorflow (Abadi et al., 2015) as back-
end and the training producer was performed using Nivida GPU Geforce GTX 1080
(NVIDIA et al., 2020).

Figure 4.5 illustrates the curve for the training accuracy by randomly sampling
the number of tweets as the training data varies from 50 to 600, incremented by
50. The test is performed using the Random Path Graph structure, and it shows
that the best number of samples is around 200. Once the size is over 200, there is a
slight drop in the performance of the GCN, and the accuracy tends to be stable. The

2https://github.com/loretoparisi/word2vec-twitter
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FIGURE 4.5: Variation of accuracy based on the number of training
data.

reason behind why the performance drops after the number of training data is more
than 200 is that the training data are becoming too unbalanced that the model could
properly handle, whereas when the number of tweets fewer than 200, the model is
struggling to perform the desired classifications without sufficient training samples.
The result demonstrates that my framework can achieve a reasonably good result
with only partially labelled data.

4.4 Results

4.4.1 Spatial graph

The experiments started with activity classification using GCN on the graph struc-
tures with no defined spatial interaction (see Chapter 4.3.1, Equation 4.1). As sum-
marised in Table 4.1, the results reveal that my best GCN approach successfully cat-
egorises each tweet into its corresponding category based on partially labelled data
with an accuracy of 72.57%. Figure 4.6 shows how the manually assigned labels com-
pare to the model output, and it illustrates how most of the errors are due to some
Food and most of Nature tweets being labelled as Personal by the model, many Sports
tweets being labelled as Places and attractions, and most Work tweets being labelled
as Not informative. Figure 4.7 is a visual comparison between corrected and incor-
rectly classified tweets. Both correctly and incorrectly predicted tweets are largely
clustered in central London and they are not easily separable to each other. The
incorrectly classified tweets seem not to follow any specific spatial patterns.

Those results are achieved on a training sample of 200 randomly selected tweets
and despite a fairly imbalanced and noisy (contains a considerable amount of infor-
mation that are challenging to interpret even for human researchers due to a variety
of reasons as mentioned in Section 1.1) dataset. The GCN seems to perform better on
a sparse – non necessarily simple, but less dense graph structure, as the best results
are obtained with a graph structure constructed by creating a weighted minimum
spanning tree using a 3 kilometres range, whereas the classification accuracy and
F1 score on the two complete graphs are much lower compared to the other spa-
tial graph structures. Clearly, choosing a suitable distance range for creating graph
structure is essential within the framework. The results show that finding a geo-
graphic graph that has an appropriate density of connections within a reasonable
distance range can significantly improve the performance of my graph-based semi-
supervised framework.
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Model input Representation Extractor Model Accuracy Micro-F1 Score

A-spatial with
Images and Text

Multi-modal Autoencoder SVM (no graph structure) 15.87% 9.13%
Multi-modal Autoencoder DNN (no graph structure) 11.20% 4.35%
(VTCNN itself) VTCNN (no graph structure) 16.00% 8.37%
Multi-modal Autoencoder GCN (Random Path Graph) 62.78% 56.87%
Multi-modal Autoencoder GCN (Cycle Graph) 68.63% 65.94%
Multi-modal Autoencoder GCN (Complete Graph) 23.75% 15.65%

A-spatial with Text Doc2Vec Label Propagation 18.31% 3.40%
A-spatial with Images CNN autoencoder Label Propagation 26.76% 4.20%

Spatial with Text
Doc2Vec GCN (MST (3 km)) 26.43% 24.32%
LSTM autoencoder GCN (MST (3 km)) 36.66% 35.95%

Spatial with Images CNN autoencoder GCN (MST (3 km)) 71.07% 70.51%

Semi-spatial with
Images and text

Multi-modal Autoencoder GCN (Weighted Random Path Graph ) 65.34% 63.15%
Multi-modal Autoencoder GCN (Weighted Cycle Graph) 68.83% 67.67%
Multi-modal Autoencoder GCN (Weight Complete Graph) 23.66% 18.15%

Spatial with
Images and text

Multi-modal Autoencoder GCN (MST (2 km)) 56.73% 51.89%
Multi-modal Autoencoder GCN (MST (3 km)) 72.57% 69.10%
Multi-modal Autoencoder GCN (MST (5 km)) 61.60% 57.83%
Multi-modal Autoencoder GCN (MST (8 km)) 55.55% 52.24%
Multi-modal Autoencoder GCN (MST (10 km)) 54.67% 48.67%
Multi-modal Autoencoder GCN (MST (15 km)) 51.64% 47.25%
Multi-modal Autoencoder GCN (Weighted MST (3 km)) 73.57% 72.89%

Spatio-temporal
with Images and
Text

Multi-modal Autoencoder GCN (StN (Euclidean, 2 km)) 67.33% 64.53%
Multi-modal Autoencoder GCN (StN (Euclidean, 3 km)) 70.28% 68.45%
Multi-modal Autoencoder GCN (StN (Euclidean, 4 km)) 69.58% 67.25%
Multi-modal Autoencoder GCN (StN (Euclidean, 5 km)) 69.15% 66.73%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 2 km)) 63.24% 60.24%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 3 km)) 66.57% 63.83%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 4 km)) 69.89% 65.27%
Multi-modal Autoencoder GCN (StN (as defined in Chang et al. (2007), 5 km)) 69.24% 67.51%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 2 km)) 69.58% 65.32%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 3 km)) 72.32% 69.68%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 4 km)) 78.98% 76.72%
Multi-modal Autoencoder GCN (StN (temporally-weighted, 5 km)) 74.56% 71.41%
Multi-modal Autoencoder GCN (StN (distance-temp.-weighted, 4 km)) 80.08% 78.65%

TABLE 4.1: Comparisons of different graph structures. (Best results
achieved.)

FIGURE 4.6: Comparing manually assigned labels and model (Mini-
mum Spanning Tree, 3 km) output.

As shown in the table, GCN on the spatial graph constructed using Minimum
Spanning Tree with 3 kilometres radius achieves the best results among other struc-
tures, I choose the same distance radius for constructing the weighted Minimum
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FIGURE 4.7: Visualisation between corrected and incorrectly classi-
fied tweets. Map tiles by Stamen Design, under CC BY 3.0. Data by

OpenStreetMap, under ODbL.

Spanning Tree. The results show an even better accuracy of 73.57%, and it illustrates
that knowing the local context (i.e., tweets posted nearby) can help my framework
to better understand the content.

Based on whether the models account for the absolute positions of tweets and
spatial distances between the pairs of nodes in the graph or not, I classified the
graphs into three major categories as introduced in Section 4.3.1 and shown in Table
4.1: a-spatial graphs, semi-spatial graphs and spatial graphs. It is evident that the more
abundant spatial information the model has, the higher performance the GCN can
achieve. GCN on weighted Minimum Spanning Tree is clearly higher than the re-
sults achieved by GCN on the semi-spatial graphs (weighted Random Path Graph,
weighted Cycle Graph and weighted Complete Graph), and the results achieved
by GCN on the a-spatial graphs (Random Path Graph, Cycle Graph and Complete
Graph).

It is also interesting to find that the results achieved by GCN are significantly
higher than the traditional supervised learning method SVM, that performed the
classification purely based on the extracted features from the stacked multi-modal
autoencoder and their corresponding categories, with no geographical knowledge.
As discussed above, the labelling process used in the case study does not take into
account geographical locations of tweets, but only based on the textual and im-
age content, that is the same information provided to the SVM. As shown in Table
4.1, my GCN framework outperforms this traditional supervised machine learning
method.

Moreover, as evident by further experiments, my proposed framework outper-
forms the two deep learning methods DNN and VTCNN. It is important to high-
light that these two frameworks were originally designed for supervised learning
tasks with large and well-defined training data. In the context of my task, those two
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frameworks are inevitably overfitted during the training phrase with only 200 train-
ing data points, which is considered as a relatively small and noisy sample. How-
ever, the problem of insufficient training samples is not an issue for GCN framework.

These findings are particularly interesting from a geographical perspective. The
GCN approaches on spatial graphs are clearly superior to the a-spatial and semi-
spatial models, and the Minimum Spanning Tree approach, which encodes the geog-
raphy of the tweets, is able to outperform the other approaches, which use random
or complete graphs. As the labels used are not geographical per se and have not been
assigned based on the tweet’s location, this seems to indicate that the geographies
of tweets can provide valuable insight into their content.

Additionally, following my experiment design in Section 4.3.3, Table 4.1 also
summarises the results of the baseline methods which only adopt text content and
image respectively rather than using combined representations for the classification.
As GCN with spatial graph constructed using the minimum spanning tree with 3
kilometres as radius achieves reasonably well classification, I implement the same
settings for GCN models in the baseline experiments. The result shows that the GCN
model outperforms the traditional machine learning semi-supervised approach La-
bel Propagation. Also, the classification solely relying on text content proves to be
unreliable with comparably low accuracy. Furthermore, although the classification
on image content achieves worse results compared to multimedia content, it pro-
duces a competitive classification output with relatively high accuracy and F1 score.

This is particularly interesting from a social science perspective, as it proves the
evidence that visual content offers richer complementary information than what the
accompanying text reveals (Borth et al., 2013), and the image content of tweets dom-
inates human judgment at the labelling stage.

4.4.2 Spatio-Temporal graph

With the spatial and temporal information of tweets encoded in the graph, GCN
achieves even better results. As mentioned in Section 4.3.2, to be consistent with
the spatial distance, I transform the time series information equivalent to the spa-
tial distance. In Table 4.1, I summarise the results of experiments on spatio-temporal
graphs using 10 meter = 12 hours. The choice of 12 hours can cover half day activities
of users in a day, and it aims to better capture the temporal “localities” of different
activities posted by the users. The topological structure using Minimum Spanning
Tree based on temporal weighted Euclidean distance with a radius as 4 kilometres
achieves the best results for both accuracy (78.98%) and F1 score (76.72%), which are
significantly higher than the results achieved by GCN on the graphs merely with
spatial information. A further performance improvement is obtained when apply-
ing the weighted minimum spanning tree using the same distance radius (80.08%
accuracy and 78.65% F1 score). The performance is superior compared with the re-
sults achieved by spatial graphs discussed above.

The findings also illustrate that despite the variation of the graphs constructed
using different types of spatio-temporal distance and distance radius, the results
achieved prove to be rather stable with higher accuracy and F1 score compared with
spatial graphs. These findings are interesting from spatio-temporal analysis perspec-
tive, as they illustrate that adding a temporal component of tweets can help the GCN
model to produce a better semantic categorisation of their multimedia contents.

I also designed further experiments using different temporal-spatial distance
transformations on the graphs, and explored their impact on classification accuracy.
As shown in Table 4.1, the best results for graphs constructed using Spatio-Temporal
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Transformations Spatio-temporal Euclidean Distance Temporal Weighted Euclidean Distance
1m = 12hr 60.53% 65.56%
10m = 6 hr 65.47% 72.08%
10m = 8 hr 68.23% 75.82%
10m = 12 hr 70.28% 80.08%
10m = 24 hr 68.85% 77.07%

TABLE 4.2: Comparisons between different temporal-spatial distance
transformations. (Best results achieved.)

Euclidean Distance and Temporal Weighted Euclidean Distance are achieved with a
radius equal to 3 and 4 kilometres. As such, I use 3 and 4 kilometres as default ra-
dius to construct graphs, respectively, for these two approaches. Table 4.2 shows the
results obtained with different temporal-spatial distance transformations including
1 meter = 12 hours, 10 meter = 6 hours, 10 meter = 8 hours, 10 meter = 12 hours and
10 meter = 24 hours. These tests allowed me to test different temporal “localities”
and how they compare against spatial “localities” in capturing events and spatio-
temporal patterns. The results indicate that 10 meter = 12 hours performs best in the
context of my dataset.

As shown in Table 4.1 and Table 4.2, GCN performs best when used in com-
bination with my proposed spatio-temporal weighted distance. As I discussed in
Section 4.3.3, the distance proposed by Chang et al. (2007) was originally devised for
analysing trajectory data rather than social media posts. Further extensive research
into such spatio-temporal modelling issues is clearly needed. Despite the fact that
there is a wide literature focusing on spatio-temporal analysis of social media data, I
argue my paper is the first which embeds spatio-temporal distance in deep learning
approach to achieve semantic understanding on the content analysis. How to best
model spatio-temporal distance in this context is an interesting research area that I
hope to explore further in my future work.

4.4.3 Framework Robustness

As mentioned in Section 4.2, the dataset used for the experiments presented in this
paper is noisier and more imbalanced than classic benchmarks used in traditional
classification tasks. It is therefore important to explore the effects of such imbalances
on the classification task, and evaluate the robustness of my framework against vari-
ations in training data.

Therefore, I designed an additional experiment using five different samples from
my datasets. Each sample has at least four tweets for each category, but the pro-
portion of tweets in the different categories is slightly adjusted. The experiment is
conducted using the best performing approach in Table 4.1, that is a weighted graph
constructed using the temporal weighted Euclidean distance with weighted mini-
mum spanning tree (4 km).

The results are shown in Figure 4.8. Although the model performance is slightly
affected by the variation in the sample, the classification results are reasonably con-
sistent and stable. The results illustrate the robustness of my proposed framework
on heavily imbalanced datasets such as “live” social media streams, and thus its
relevance for applications in digital geographies.
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FIGURE 4.8: Performance comparisons on different training data.

4.4.4 Results showcase

Figure 4.9 illustrates how a model trained for the case study above can be used to
classify a further sample of unlabeled data with the spatially constructed graph us-
ing the minimum spanning tree (3 km). As discussed above, the classification is
noisy and, for instance, the tweet in Figure 4.9a is classified as Not informative, as
the classifiers struggle to reconcile the location in a park, with a text that might in-
dicate a focus on an attraction and the image of a bicycle. At the same time, the
remaining three tweets showcased in Figure 4.9 seem to have been assigned a fairly
accurate label among those I defined for the case study and considering that the aim
of the tool is to allow users to defined their categories.

4.5 Discussion

In the sections above, I introduced a semi-supervised learning framework based on
geographic adjacency networks to categorise social media posts based on their tex-
tual and visual content, as well as spatial and temporal aspects. The results demon-
strate that taking into account the geography of each post is crucial to achieve a
semantic understanding of the content and enable classification. In particular, while
the labels used in the experiment were not assigned based on the location of social
media posts, spatially-enabled classifiers performed better than a-spatial ones. The
temporal component was also established as a key aspect in encapsulating the con-
cept of place, and taking into account spatio-temporal relationships between social
media post led to better classification. The results show that my framework can
produce good classification results with partially labelled data, even on noisy and
imbalanced data such as the one used for the case study presented above. Although
I used Twitter as my case study, my framework has the flexibility to be extended
to any other social media platform providing location-based services. As such, my
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FIGURE 4.9: Results of the prediction test on a further unlabeled sam-
ple. Map tiles by Stamen Design, under CC BY 3.0. Data by Open-

StreetMap, under ODbL.

approach has the potential to be developed into a flexible tool for the study of digital
geographies.

The majority of quantitative research on social media analysis in geography fo-
cuses on the text, whereas qualitative research maintains the importance of visual
content (Ash et al., 2018b). As such, I based my work on the assumption that in-
cluding the visual component of a post provides key information in understanding
its content. To test that assumption, I designed a set of experiments to compare
the classification resulting from including both text and images, only text and only
images, using my GCN model, as well as the semi-supervised approach Label Prop-
agation (Zhu and Ghahramani, 2002) as my baseline. The outcomes show that the
best results are provided by GCN on weighted Minimum Spanning Tree (3 km),
which takes into account the geographies of social media content (more on this be-
low), as well as text and image. That indicates that including both the textual and
media component improves the classification results compared to traditional text-
based social media analysis, confirming my assumption above. These results are
particularly important in a time where visual content such as images have become
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an integral and growing part of social media communication, as users shift from
text-based posts to multimedia content (Weller et al., 2014). By taking advantage
of recent developments in deep learning technologies, my research presented in this
chapter is a first step towards bridging the gap between text-based quantitative anal-
ysis and visual methodologies in digital geographies.

To explore how to best encode the spatial information of social media posts in
my model, I tested the effect of different graph structures on the performance of the
GCN. I implemented my proposed GCN model on different structures, from semi-
spatial graphs (e.g., weighted path graph and weighted complete graph) to complex
structures taking different approaches to encode the geographies of posts as network
links and distances. The results show that constructing a geographic graph taking
into account the distances between posts and with an appropriate density of con-
nections (e.g., Minimum Spanning Tree) can significantly improve the performance
of my graph-based semi-supervised framework compared to random or complete
graph structures. The performance of my model is clearly superior to the traditional
machine learning approach SVM (Cortes and Vapnik, 1995), which does not take
into account spatial graph structure, and classifies tweets based solely on the ex-
tracted feature representations. The comparison with the results obtained by GCN
on three a-spatial graphs (i.e., random path graph, cycle graph, and complete graph)
demonstrate that a graph-based deep neural network which takes into account the
geographies of social media posts provides not only better classification results com-
pared to traditional machine learning methods, but also better results compared to
itself on the graphs with no geographies encoded in. Furthermore, the outcomes
obtained by using different spatial graphs demonstrate that selecting an appropriate
spatial (topological) structure can significantly improve the classification results.

The results ultimately highlight the importance of understanding social media
content geographically. The geotag specifying the location in the space of a post is
not merely a point, but it is an integral part of the augmentations that bring the place
into being (Graham et al., 2015a). As such, taking into account the spatial relations
between posts via the convolution of content through the spatial graphs allows me
to go beyond the geotag (Crampton et al., 2013), and provides the GCN with key
contextual information, that is crucial in the semantic understanding of social media
content and thus the digital representations of the city (Ballatore and De Sabbata,
2019).

However, places do not merely exist in space, but they are “specific time-space
configurations made up of the intersection of many encounters between ‘actants’
(people and things)” (Agnew and Livingstone, 2011, p. 325). My experiments indi-
cate that the semantic categorisation of social media posts benefits significantly from
including not only the spatial but also the temporal aspects of social media content.
I experimented with graphs based on spatio-temporal distances which take the tem-
poral element of tweets into account during the construction of graph. I proposed
two distance calculation approaches, one based on a spatio-temporal Euclidean dis-
tance and one based on a temporal weighted Euclidean distance. The former simply
considers the temporal element as a third, separate dimension, whereas the latter
uses a mathematical weight to equate space and time, to control the impact of time
on distance. These versions of the GCN thus take into account not merely the spatial
neighbours of a tweet to understand the local context, but its spatio-temporal neigh-
bours. The results show that taking into account the temporal component improves
the quality of the categorisation and the stability of the model. The GCN model on
the graph constructed using temporal weighted Euclidean distance also achieves the
overall best results, which does not only illustrate the effectiveness of my distance
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calculation approach but also indicates that a social media analysis requires sophis-
ticated modelling of the temporal element. The GCN seems to successfully capture
the in-depth connections between similar events that might be spatially distant from
each other but temporally close, and vice versa.

As such, a GCN on a well-defined spatio-temporal graph achieves better results
through a deeper understanding of places as “time-space configurations” (Agnew
and Livingstone, 2011, p. 325) and social media posts as “intersection of many en-
counters between ‘actants’" (Agnew and Livingstone, 2011, p. 102), thus contextu-
alising each post within its spatio-temporal neighbours. To the best of my knowl-
edge, this is the first paper to embed a spatio-temporal distance into a deep learning
approach to achieve a semantic understanding of social media content. While my
approach in this paper has achieved reasonable performance, I suggest that further
research is necessary regarding this aspect.

Finally, I tested the robustness of my framework and evaluated whether data
variability (e.g., variations in the proportion of data for each category in training
data) might affect the classification results. The experiments demonstrate that my
framework is robust and can produce stable, consistent classifications. As such, I
argue that my proposed framework has the potential to be developed into a pow-
erful tool for the analysis of noisy and imbalanced social media datasets in digital
geographies.

4.6 Summary

In this chapter, I proposed a new GeoAI tool that aims at bridging qualitative and
quantitative approaches to understand place representations, which can learn a set
of arbitrary labels from a small, manually created sample of geo-located social me-
dia posts and apply the same labels on a larger set, based on textual and image
content, as well as the geographical and temporal aspects of the posts. The findings
in this chapter provide evidence that analysing spatial information of social media
posts is crucial for the semantic understanding and classification of their content.
Temporal analysis is another important aspect in digital geography studies and in
this research, the "space-time" relation (Thrift, 1983) can contribute to a better graph
representation of social media distribution, and benefit the understanding of the
content that users produced and posted online, and eventually help researchers to
understand the digital representation of the places. (Pereira et al., 2013).

However, as mentioned in Chapter 1, the understanding of the role played by
UGC in place representations has been so far limited by the fact that only a small per-
centage of social media posts are precisely geolocated Sloan and Morgan, 2015. So-
cial media platforms such as Twitter are increasingly moving towards using platform-
specific POIs for location information rather than allowing users to use precise geo-
coordinates. Regardless of the reasons behind why Twitter is adopting the policy
to restrict the use of precise geo-tagging services for users, it shows a trend of in-
creasing difficulty in collecting UGC with geo-coordinates, even for the academic
research purpose (Hu and Wang, 2020). Such a policy has created a significant chal-
lenge of modelling place with UGC, where the connection between physical space
and the interpretation of users’ lived experiences through the content analysis can
no longer be easily observed. Aiming to explore this issue, in the next chapter, I will
introduce my proposed framework that aims to estimate the locations of social me-
dia content, which benefits the understanding of digitally coded spaces and online
place representations.
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Chapter 5

Location Estimation of Social
Media Content through a
Graph-based Link Prediction

Part of this work presented in this chapter has been published as:

• Pengyuan Liu and Stefano De Sabbata, 2019. Location Estimation of Social
Media Content through a Graph-based Link Prediction. In 13th Workshop on
Geographic Information Retrieval.

The extended journal version of this paper is going to submitted to the Journal of
Spatial Information Science 1.

5.1 Introduction

The majority of digital platforms such as Twitter, Instagram, Flickr provide services
that allow users to explicitly attach location information to their posts. Based on the
concept that users of social media can be considered as sensors of places (Goodchild,
2007), research in GIScience has thereby focused on the emergence of places from the
lived experience of people in space through the analysis of how people live in places
based on their content production. Goodchild (2011) discusses the idea of formalis-
ing place in the digital world. He addresses the relationship between the informal
world of human discourse and the formal world of digitally represented geography
where place stands at the centre of such platial studies within GIScience. Such an
academic idea later encourages a wide range of studies towards embedding the dig-
italised human dynamics and their interaction (i.e., emotions, sentiments, place de-
scriptions) with space into GIScience research, such as place-based GIScience (Gao
et al., 2013) and pace–place (splatial) GIScience framework (Shaw and Sui, 2020).
Scholars accept the spatial distribution of UGC within digital geographies and GI-
Science as a valuable resource to advance research on specific urban aspects (Anselin
and Williams, 2016; Shelton et al., 2015; Arribas-Bel et al., 2015). The representation
and interpretation of data retrieved from social media provide means to assess dif-
ferent urban dynamics and create socio-demographics of the cities. In turn, such
information enables us to analyse everyday spatial processes and to gain knowl-
edge about places, especially with respect to collective human dynamics (Steiger et
al., 2016).

In the previous chapter, I introduced a framework to classify UGC based on their
images, text, as well as geographical and temporal information on digital platforms.

1Code to reproduce my experiments is available at: https://github.com/PengyuanLiu1993/PhD_
Thesis_Codes_PengyuanLiu/tree/master/GAE_Location_Estimation

https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GAE_Location_Estimation
https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GAE_Location_Estimation
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However, despite the availability of geotagging technology that allows users to share
location information online, research in digital geographies has been limited by the
fact that only a small percentage of social media posts are geolocated explicitly. Un-
derstanding spatial activities of precisely geotagged social media posts can only por-
trait limited number of users’ activities regarding the use of space. Although precise
geo-coordinates are no longer easy to access (Hu and Wang, 2020), Twitter remains
the ability for users to geotag their content using Twitter Place (in form of Twitter’s
pre-defined bounding boxes, see the introduction in Section 3.1), studies dealing
with the data aggregated in a given size of "district" (in the form of bounding boxes)
other than geolocations are facing the issues related to the Modifiable Areal Unit
Problem (MAUP) during the geographical analysis (Wong, 2004). Although this is-
sue is beyond the scope of this thesis, it sets forth future research directions when
analysing uncertainties and bias related to UGC studies. Further discussions and
research vision will be provided in Chapter 7.

This study is akin and complementary to the work aimed at estimating the loca-
tion of geotagged social media content using classic geographic information retrieval
approaches. The study is based on an understanding of the geographical concept of
place. Place (see Section 2.1) is a term in geography which refers to the "locales"
where human’s everyday activities take place (Agnew and Livingstone, 2011), the
following assumptions and two hypothesises are proposed in this chapter:

Assumption: users on social media platforms tend to geolocate content with
tags referring to places where the content belongs to. In other words, content
shared about a place will reflect the use of space and the activities carried out
there, and the same types of activities are more likely distributed in similar
places.

Hypothesis 1: the semantic content of social media posts (i.e., categorisation of
users’ activity types) can aid the process of estimating the location associated
with a social media post.

Hypothesis 2: the spatio-temporal patterns of social media posts can provide
an insight into the location estimation process.

This chapter investigates two different topological structures to estimate the loca-
tion of UGC: topological modelling which is used for geolocated tweets (with precise
coordinates), and hierarchical modelling for placed tweets (where a place is repre-
sented using a bounding box).

One of the novelties of this research is that it models the spatial structure of UGC
using bounding boxes hierarchically. As discussed above, after Twitter’s shift away
from geolocated tweets in favour of places and POIs, bounding boxes are becoming
a more prominent approach to encoding location in UGC. The bounding boxes not
only function as geographical containers which contain social media posts located
in (physical) spaces, but they are also associated with social practices illustrated
through UGC. As such, the bounding boxes in this study can be seen as representing
actual places that capture the "localities" of users’ everyday activities and augment
spatial experiences (Elwood and Leszczynski, 2013), and shape the representations
of urban structures at different scales.

As illustrated in Section 2.6, existing studies on location estimation focusing on
developing or applying GIR methods (e.g., geoparsing on placenames) on the text
content of social media posts (Huang and Carley, 2017; Wallgrün et al., 2018; Wang et
al., 2020b). However, such studies are limited when placenames are unclear, missing
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or vernacular in the text content. Although some studies have explored the use of vi-
sual content (e.g., Google Street View) to identify locations (Suresh et al., 2018; Sun et
al., 2018), those studies are task-specific (e.g., location estimation based on architec-
ture imagery (Doersch et al., 2015)) and not be generalisable to social media studies
where images are more diverse and can be posted without location-indicative objects
in it. Thus, it remains as a challenging task when estimating the location for a geo-
tagged social media post which has no location-indicative placenames or objects in
its text or image content. Existing research has identified that the location of a social
media post strongly relates to its user’s personal interests and activities (Chen et al.,
2013); thus, it is worth to explore if the use of labels of the activities can be a useful
tool for location estimation task. In Chapter 4, I proposed a framework to quantita-
tively label the activity types of users’ multimedia content. Following up the study
presented in Chapter 4, I propose an approach to estimate geolocations of tweets
based on a semantic understanding of tweets’ content (i.e., activity types labelled
by the framework in the previous chapter) and their spatio-topological structures,
which can be useful in the scenario where no placenames can be found in the text.

It is important to notice that my framework is not intended to predict the ex-
act locations of the content. Instead, it provides an approximate area of where the
content might be referred to. Despite being an approximation, this approach is still
relevant in the context of GIScience and digital geographies studies, for two reasons.
First, from GIScience and digital geographies perspectives, the quantitative analy-
sis and summarisation to study the emergence of place from space through content
production (Graham et al., 2015a) is considered as a necessary step in both disci-
plines. Such a step often takes into account the amount of similar UGC produced
by users about a geographical area in general rather than focusing on each individ-
ual content. Thus, the precise location of the content can be superfluous as long as
the framework can provide the estimation of the content’s location in a relatively
small geographic area. Second, as discussed above, although there is research in the
disciplines of geographic information retrieval and location-based service targeting
at predicting the precise locations of the content (Moncla et al., 2014a; Memon et
al., 2015), such methods require more explicit locational information in the content
which can be extracted and modelled (e.g., personal travel history, placenames in
the text content or hashtags). However, only 10% tweets include the reference to
the location in their text (MacEachren et al., 2011), the approaches mentioned above
potentially are not applicable to a large number of UGC regarding social practices of
users with no preliminary information of explicit placenames. The framework pre-
sented in this chapter can be seen as complementary to the GIR-based approaches,
it aims at providing approximate areas of the content where they are referring to
with the semantic understanding of the content (i.e., the labels) and their spatio-
temporal structures. The results indicate that my proposed framework can produce
reasonable estimations using information from manually assigned labels and the ge-
ographic information of social media at the urban scale, and can further help with
our understanding on the place representations based on the spatial distribution of
social media posts.

The novelties of this approach are:

• this approach is akin and complementary to the existing GIR-based text anal-
ysis, and it is specifically to address the issues of no placenames are explicitly
existed in the text content;

• this chapter discusses a graph-based framework for location estimation based
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on the semantic understanding of the content (i.e., the labels) and their spatio-
temporal topological structures;

• this chapter presents a novel approach to modelling place-related information
attached to UCG in the form of bounding boxes.

5.2 Data Labelling

This section introduces the data I adopt as case studies in this chapter. The case
studies consist of geolocated tweets and placed tweets.

5.2.1 Geolocated Tweets

Similar to Chapter 4, the case study proposed in this section analyses a specific set
of topics (e.g., posts about food, entertainment, or sports) geographically in London,
and I am interested in how geolocated social media posts reflect the digital repre-
sentations (Graham et al., 2013b) of the city. For the scope of this Chapter, I sample
1200 tweets from the dataset introduced in Section 3.1 in two randomly selected sub-
sequent months between July 1st and August 31st, 2018, and sort the tweets by the
time when they were posted.

Similar to Chapter 4, because the labelling process of the Twitter data is chal-
lenging and time-consuming, I set myself a limit of seven working days to manually
label a set of tweets randomly sampled from the dataset introduced in Section 3.1,
thus reaching a total of 1200 tweets manually labeled into 7 different categories:
Food, Transportation, Places and attractions, Sports, Social, Personal and Not informative
shown in Figure 5.1. The labelling process is the same as the process used in Chapter
4, where tweets have been labelled based on their text and attached images, rather
than their locations or geographic content explicitly. Not informative includes content
related to advertisement and other content which is difficult to interpret. The cate-
gory Personal includes content related to daily activities (e.g., shopping or selfies),
whereas tweets in the category Social are related to parties and other social activities.
Transportation includes tweets regarding public transportation (e.g., underground or
airport).

As discussed above, the labels of the tweets are not based on their locations or
geographic content. As in Chapter 4, the labelling process used in the case study
does not take into account geographical location of tweets. Thus, although the pre-
defined labels are relatively generic, they are still very subjective and reflect the in-
terests and understanding of the authors. Other authors might have the preference
to distinguish a diverse set of Transportation (ways of users using public transporta-
tion) (e.g., train stations or bus stops), or create a separate category for airports.
Nonetheless, this is not an issue in the scope of this thesis.

As discussed in the previous section, this study is akin and complementary to the
existing GIR-based location estimation or identification, where there are no explicit
placenames in the text that can be identified. I aim to use the semantic understand-
ing of their content to explore the digital coded space and place representations, and
to study how such representations associate with the spatial clustering of content
through space and time. The objective of this chapter is to provide a tool to estimate
the geolocations of new posts based on the previous content production in a place
and the spatial structures of the posts.
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FIGURE 5.1: Geolocated tweets. Map tiles by Stamen Design, under
CC BY 3.0. Data by OpenStreetMap, under ODbL.

5.2.2 Placed Tweets

FIGURE 5.2: Placed tweets. Map tiles by Stamen Design, under CC
BY 3.0. Data by OpenStreetMap, under ODbL.

The removal of the possibility of precise geolocation on Twitter has caused an
increased awareness of the growing difficulty understanding place representations
through geolocated users’ posts (Hu and Wang, 2020). As discussed in the previ-
ous section, Twitter Places in forms of bounding boxes representing places have be-
come an option which provides approximate areas indicating the locations of con-
tent. Thus, the dataset discussed above is adopted in this case study to test novel
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ways of modelling spatio-temporal structures using bounding boxes and estimating
the place where the content of a tweet relates to.

I randomly sampled an additional 824 tweets in the second half of July between
17th July 2018 and 31st July 2018 to create a similar case study as described in Sec-
tion 5.2.1. The tweets are placed tweets which have bounding boxes to indicate the
approximate areas where the tweets were posted. The sizes of bounding boxes are
defined by Twitter (see Section 3.1.1).The distribution of the tweets is shown in Fig-
ure 5.2. There are 78 bounding boxes in various sizes, and the largest bounding box
is the admin level of London and all other bounding boxes inside it represent inner
boroughs of London, smaller areas in London or points of interests (e.g., shops such
as Tesco Stores, tourist attractions such as Queen Elizabeth Olympic Park).

5.3 Methodology

My proposed methodology estimates the locations of UGC through a link predic-
tion algorithm testing a diverse set of spatio-topological structures. I investigate the
variational graph autoencoder introduced in Section 3.4.2 for link prediction tasks
on two types of graph constructions: the first one is a series of distance-based graph
structures, which will be detailed in Section 5.3.1; the second one is a series of hierar-
chical graph structure, which will be explained in Section 5.3.2. In this section, I also
propose a set of ranking schemes that will be used to assess the performance of the
two approaches. Each of the two datasets used to construct topological structures
is split into a graph construction set and a prediction set. The graph construction
set is used for constructing the spatio-topological structures, whereas the variational
graph autoencoder uses the knowledge learned from the graph construction set to
make predictions for the prediction set.

5.3.1 Topological Structure Construction

FIGURE 5.3: Topological structure example.

Similar to the spatial graph construction process introduced in Section 4.3.1,
I construct the distance-based topological structure based on a spatial adjacency
(O’Sullivan and Unwin, 2010). The graph is constructed loading a tweet after a tweet
in historical order based on the time when each tweet was posted. As such, the algo-
rithm learns the historical distribution of the geographies of the dataset, and this is
used for the estimation of locations for the new tweets. An edge is created between
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nodes (represent the tweets) that are within a predefined distance between one an-
other. A set of distances is tested, from 50 meters to 1000 meters (defined as Dist).
Figure 5.3 shows an example of the constructed topological structure. In the spatial
adjacency matrix, Aij = 1 if two nodes are connected to each other, and Aij = 0
otherwise.

When estimating the location of a new post, with no preliminary assumptions
about its location, I first randomly connect the node which represents the new post
to the graph and then using the variational graph autoencoder (VGAE) introduced
in Chapter 3 as a link prediction approach to predict its most likely connected node
in the graph to estimate the proximate area where the new post belongs to.

5.3.2 Hierarchical Modelling

Social media platforms are incredibly valuable as it enables scientific research to es-
tablish the connections between geographies and contextual data. As mentioned
in the previous sections, a larger number of geotagged social media posts are geo-
tagged with Twitter Places (in the form of bounding boxes) in their meta-data which
indicate the approximate areas where the posts are generated. As discussed above,
Twitter has decided to remove the ability to allow users to geolocate the content
of their posts using precise geolocation, and future research will have to focus on
the exploration of places represented by bounding boxes. The bounding boxes not
only function as geographical containers which contain social media posts located
in spaces but also can be seen as "locales" which associates with the social practices
of users and help scholars to explore place representations in space.

To address the problem, I design three different hierarchical modellings of places
using bounding boxes: a general hierarchical modelling (VGAE hierarchical struc-
ture), and two tree structures (VGAE tree structure and VGAE dense tree structure).

Hierarchical Structure

As introduced in Section 3.1.1, the types of bounding box in the Twitter data struc-
ture are organised in a hierarchical level where the granularity of geotags must be
one of the five types: poi, neighborhood, city, admin or country. The hierarchical graph
(VGAE hierarchical structure) is constructed as follows: if the bounding boxes of two
different tweets intersect, an edge is added between them. A simple example of the
graph construction is provided in Figure 5.4 where the node which represents the
admin level of London is linked to the other two nodes which represent Kensington
and Westminster respectively; there is also an edge between Kensington and West-
minster as their bounding boxes intersect. The graph constructed for the dataset
used in this case study is shown in Figure 5.5 (A), where the nodes which are dis-
tributed in the middle of the graph are the tweets with Twitter Place representing
admin, they represent bounding box of the Greater London. As the latter contains
all other smaller areas so that they are connected to all the other nodes in the graph.
Other clusters of nodes are tweets with Twitter Place types as city or lower levels,
and the graph clearly illustrates how tweets are distributed within different inner
boroughs of Greater London. Note that in this hierarchical modelling, each node in
the graph represents a bounding box of a tweet, the same as in the graphs discussed
in the previous chapter and section.
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(A) bounding boxes (London, Kensington and Westmin-
ster) in London. Map tiles by Stamen Design, under CC

BY 3.0. Data by OpenStreetMap, under ODbL.

(B) A simple graph constructed based on three bounding
boxes of their tweets.

FIGURE 5.4: An example of the graph construction for the VGAE hi-
erarchical structure.

Tree-structure Modeling

Inspired by the fact that tree structures have been heavily adopted to manage and
structure spatial data within GIScience (Ooi, 1987), I construct a tree-structure graph
to model the bounding boxes of tweets using the following steps:

1. create a graph with one node per tweet but no edges.

2. retrieve all the bounding boxes from the granularity level (Hollenstein and
Purves, 2010) of Greater London to the level of points of interests.

3. introduce additional nodes representing the places as retrieved in step (1),
rather than actual tweets.

4. add an edge between each actual tweet and the additional node representing
the bounding box associated with the place of the tweet when their bounding
boxes are the same.

An example of such a tree structure modelling is provided in Figure 5.6, I first model
the nodes which represent bounding boxes as a hierarchical tree structure. Note that
at this step, those nodes are simply representing the hierarchical level of bounding
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(A) Hierarchical graph structure. (B) Tree-structure structure.

(C) dense Tree-structure graph.

FIGURE 5.5: Hierarchical modelling.

boxes (not the tweets), and they are the additional nodes introduced at the step (2).
Secondly, I add links between those nodes and the nodes which represent tweets
which have the same bounding boxes at each of the hierarchy. The constructed tree
structure graph is shown in Figure 5.5 (B), and I consider such modelling of bound-
ing boxes as the baseline for the tree-structure graph (VGAE tree structure).

Dense Tree-structure Modeling

As discussed above, Twitter Places are organised in a hierarchical level, where one
bounding box may contain several smaller bounding boxes representing different
granularity levels. Starting from that hierarchical structure, I expand the tree mod-
elling into a dense structure, where a link is added between one bounding box and
its higher granularity level of the bounding box. I construct the graph following
similar steps :

1. create a graph with one node per tweet but no edges.

2. retrieve bounding boxes from the granularity level of Greater London to the
level of points of interests.

3. introduce additional nodes representing those bounding boxes as retrieved in
step (1), rather than actual tweets.

4. add an edge between each actual tweet and the additional node representing
the bounding box associated with the place of the tweet when their bounding
boxes are the same or overlapped.

An example of the graph construction can be seen in Figure 5.6 (C) which has a
similar structure as in Figure 5.6(B) but more links are presented between the nodes
which represent tweets. The major difference between VGAE tree structure baseline
and VGAE dense tree structure is at the step (3). Instead of simply adding links be-
tween the additional nodes and the nodes which represent tweets which have the
same bounding boxes at each of the hierarchy, VGAE dense tree structure also has
links that across the hierarchy. That is, if two bounding boxes are overlapped, an
edge is added. The constructed tree structure graph is shown in Figure 5.5 (C).
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(A) bounding boxes (London, Kensington, Westminster,
POI A and POI B) in London. Map tiles by Stamen Design,
under CC BY 3.0. Data by OpenStreetMap, under ODbL.

(B) An example of the graph construction for VGAE tree
structure.

(C) An example of the graph construction for the VGAE
dense tree structure.

FIGURE 5.6: Tree-structure modellings.

5.3.3 Evaluation Schemes

Location Ranking Schemes for Topological Modellings:

As discussed in Section 5.1, my framework is not intended to predict the exact co-
ordinates of the content. Instead, it provides approximate areas where the content
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might be located. With no preliminary information of that explicit locational infor-
mation, this framework targets to only provide approximate areas of the content
where they are generated from with the semantic understanding of the content (i.e.,
the labels) and their topological structures.

As a link prediction algorithm, when VGAE conducts location estimation for a
new node (representing a tweet), it generates the likelihoods (possibility) of how
likely it is for a link (or edge) between the new node and all other nodes in the graph
to existing. I define the predicted location as the location of the node in the graph
that has the highest possibility of linking with the new node (or Top-1 prediction).
The framework considers an estimation is correct when the distance between an
actual location of a post in the test dataset and the location of its Top-1 prediction
suggested by the VGAE are in a predefined distance (Range). Thus, the first location
estimation ranking scheme is defined as:

• Top-k Accuracy: for each new tweet that has a location to be estimated, the
algorithm will produce the possibilities for the links between this new tweet
and every existing tweets which are already in the graph. Top-K evaluation
is a widely used approach in Link Prediction tasks within Computer Science
(Yang et al., 2015). I select a couple of links (k = 1, 3, 5, 10) that have the high-
est probabilities produced by the link prediction algorithm. Then, I evaluate
the accuracy by investigating whether the distances between (most likely con-
nected) existing tweets (in the graph) that are associated with the chosen links
and the new tweet are within a certain distance (Range). If they are within a
defined distance, then I mark the location estimation is correct, otherwise, it’s
incorrect.

As introduced in Chapter 3, VGAE can perform link prediction with or without
taking into account the labels of the nodes. To analyse the level at which the se-
mantics of the tweet content (i.e., the labels) are driving the estimation, I define an
activity match ranking scheme. These values will explore the relationship between
the activity type of the predicted node and the activity type of its most likely con-
nected node as:

• Topicality rate: percentage of how many predicted nodes and their k most
likely connected nodes have the same activity types. That is, the Topicality rate
is to investigate whether the existing K (1, 3, 5, 10) tweets which are likely to
be connected to the new tweet and the new tweet have the same activity types.

Location Ranking Schemes for Hierarchical Modelling:

Since the placed tweets have no precise location, the location ranking scheme intro-
duced in the previous section is no longer relevant. The goal in this section is to
estimate the bounding box where a tweet is generated from. When estimating the
location of a new post, with no preliminary assumptions about its location, I first
randomly connect the node which represents the new post to the spatial graph con-
structed using the hierarchical modellings of previous tweets’ Twitter place types.
Then the framework predicts its most likely connected node in the graph to estimate
whether the new post’s bounding box and its mostly connected node’s bounding box
are the same or overlapped. Thus, I suggested a separate location ranking scheme
as followed:

• Top-k place accuracy: accuracy for the case in which the actual bounding box
of the tweet’s Twitter place and the bounding box of one of the top-k (k = 1,
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3, 5, 10) most likely connected node according to the prediction are same or
overlapped.

5.3.4 Baselines

To assess the capabilities of the proposed graph autoencoder framework, I set up a
series of baselines based on a diverse set of link prediction algorithms. The algo-
rithms designed for the baseline comparisons including a series of conventional ma-
chine learning approaches (Adamic-Adar index, Jaccard Coefficient and Spectral Cluster-
ing) and a neural network-based approach (Node2Vec). All the baseline methods take
the same graph structures defined in Section 5.3.1 as input, and I use the same Top-
K accuracy introduced in Chapter 5.3.3 for assessing location estimation qualities
produced by each approach. Detailed introduction is as followed:

• Activities Clustering: such a baseline firstly clusters the locations of the tweets
in each activity types into several clusters using K-means clustering algorithm
(MacQueen et al., 1967) and calculates the locations of the centres of the largest
clusters for each activity types. For a tweet with a specific activity type, this
baseline is a very simple operationalisation of hypothesis 1 and checks whether
the actual location of such a tweet and the centre of the largest cluster of its
activity type is within a specific distance range.

• Adamic-Adar index: this approach was originally introduced to predict links
in a social network by Adamic and Adar (2003). It refines the simple count-
ing of common neighbours by assigning the less-connected neighbours more
weight. This method performs predictions on the topological structure of the
graph with no knowledge of the labels of tweets.

• Jaccard Coefficient: a measure proposed by Jaccard (1901) to assess the simi-
larities between sets of data. It is measured by considering the number of com-
mon neighbours divided by the union of neighbours of both vertices. Similar
to Adamic-Adar index, it also performs predictions on the topological struc-
ture of the graph with no knowledge of the labels of tweets.

• Spectral Clustering: an approach developed based on graph theory, to identify
communities of nodes in a graph using the information of the edges that are
connecting them. It also performs link predictions on the topological structure
of the graph with no knowledge of the labels of tweets.

• Node2Vec: an algorithmic framework for representational learning on graphs
introduced by Grover and Leskovec (2016). Such an approach can perform
link prediction with or without the knowledge of the labels of tweets. For the
purpose of comparison, I enable the Node2Vec to take label information of the
tweets.

Activities Clustering is a simple operationalisation of hypothesis 1 and is the sim-
plest baseline adopted in this study to assess the performance of my proposed frame-
work. Such a baseline is designed based on the assumption that the content shared
about the place will reflect the use of space and the activities carried out there, and
the same types of activities are more likely distributed in similar places. Thus, given
a tweet and its activity type, without further modelling, this baseline assumes that
the tweet’s location is close to the centre of the cluster of the same activity types.

Adamic-Adar index and Jaccard Coefficient are two similar approaches focusing on
common neighbours in a topological structure between node pairs. That is, if two
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nodes share common neighbours, a link likely existed between such a node pair.
There are two reasons to include these two approaches in the baselines: first of
all, both methods have already been widely adopted in social media topological
studies (Rawashdeh and Ralescu, 2015), despite most of those topological structures
constructed focusing on social interactions between users (e.g., relations between
personal home pages), it would still be interesting to explore if such conventional
machine learning approaches are suitable for the link prediction tasks formalised
in this chapter on spatially constructed graphs. Secondly, these two approaches
focus on node-level information aggregation (i.e., common neighbours shared be-
tween nodes) but ignoring the impact of the observed graph structures. One of the
essential elements in my proposed VGAE framework is to estimate the location of
social media posts based on the spatial distribution of the content production from
previous posts. Thus, the comparison of the results between VGAE and these two
approaches is crucial to justify the use of such spatial distribution.

From this perspective, Spectral Clustering is a more sophisticated approach that
can perform link predictions with node-level aggregation as well as taking advan-
tage of observed graph structures. Spectral Clustering is chosen as it is a more ad-
vanced machine learning approach compared to Adamic-Adar index and Jaccard Co-
efficient, and also it is an approach which has been widely adopted in social media
network analysis (Gupta et al., 2012). I use these three approaches (Adamic-Adar in-
dex, Jaccard Coefficient and Spectral Clustering) conducting link predictions without
the labels of tweets in the comparisons to test my Hypothesis 2. That is, the spatio-
temporal structures of the tweets can provide an insight of the location estimation
task about where the next tweet will be without any other information.

Node2Vec is a state-of-the-art neural network-based approach to perform link pre-
diction task on graphs, and it is adopted in this chapter as one of the baselines com-
paring to VGAE which performs link prediction with the graph structure as well as
tweets’ labels. It is set up as a direct comparison to the proposed VGAE framework
in this chapter.

Through the comparisons between VGAE and all these four approaches (Adamic-
Adar index, Jaccard Coefficient, Spectral Clustering and Node2Vec), I aim to understand
at which level the observed graph structures and the information of labels can im-
pact the location estimation Top-k accuracy. Thus, the baseline comparisons can test
two of my research hypothesis that both the spatio-temporal structure of tweets and
their labels can aid the location estimation task of social media posts.

5.4 Model Training

The VGAE takes both the adjacency matrix of the spatial graph and labels of the
dataset as input. There exist 7 different categories as the labels, the labels are en-
coded using one-hot encoding approach, each dimension of the feature vector of
every label is (1, 7). For the baseline VGAE_no_label, I adopt the same approach as
described in Kipf and Welling (2016b), which dropped the dependence on the fea-
ture vector matrix X by replacing it with the identity matrix in the GCN (Kipf and
Welling, 2016a). The validation and test sets contain 5% and 10% of links from the
graph constructed based on the graph construction set. I initialise the weights as de-
scribed in Glorot and Bengio (2010), and train the VGAE network for 300 iterations
using Adam (Kingma and Ba, 2014) with a learning rate of 0.01. I keep a 32 dimen-
sion hidden layer and 16 dimension latent variables same as in Kipf and Welling
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(2016b). The model is designed in Tensorflow (Abadi et al., 2015), and the train-
ing procedure was performed using Nivida GPU Geforce GTX 1070 (NVIDIA et al.,
2020).

5.5 Results

5.5.1 Geolocated Tweets Estimation

Table 5.1 summarises the results on the location estimation task with geolocated
tweets. As defined in the previous section, Dist is the distance range used for con-
structing the topological structures. That is, the distance of any two tweets are within
a given Dist; they are connected in the spatially constructed graph. Range is used for
testing whether the distance between the actual location of a predicting tweet and
its most likely connected node in the constructed graph is within a certain distance
radius.

VGAE achieves 30% Top-1 accuracy in a graph with Dist as 50 meters when
tested with Range as 3000 meters. In other words, the results are interpreted as
the framework achieves 30% accuracy when the actual location of the tweet and
its mostly connected node in the graph are within 3 kilometres. That is, identifying
an area of about 28.27 square kilometres, considering that Greater London covers an
area of about 1,569 square kilometres. The results are significantly higher than the
results achieved by the simplest baseline Activities Clustering. Also, VGAE achieves
the best Top-k (k=3, 5, 10) results on the graph constructed with Dist as 100 meters
(Top-3 accuracy: 46.5%, Top-5 accuracy: 56.5% and Top-10: 62.5%). By increasing
the graph complexity (achieved by increasing the Dist when constructing the graph
so that more tweets are connected together), the estimation results do not improve.
In other words, The VGAE seems to perform better on a simple graph structure, and
the best results are obtained with a graph structure constructed using a 100-meter
distance as distance range, whereas the Top-k prediction accuracy drops as the Dist
increases.

In comparison, VGAE_no_label also achieves the best Top-k (k=3, 5, 10) results
on the graph constructed with Dist as 100 meters (Top-3 accuracy: 38.5%, Top-5 ac-
curacy: 46% and Top-10: 57%), whereas the best Top-1 accuracy (26.5% tested with
Range as 3 kilometers) is achieved on the graph constructed with Dist as 500 meters.
The results indicate that the VGAE_no_label can already produce reasonable estima-
tions based on the graph structures but not taking into account the labels of the
tweets. Such reasonable results achieved by VGAE_no_label confirms the research
hypothesis Hypothesis 2 raised in Section 5.1 that the spatio-temporal patterns of
the social media posts can provide an insight of the location estimation process even
without any further information. However, comparing the results obtained by using
VGAE_no_label and VGAE, it is clear that the VGAE, which includes the information
encoded in the labels outperforms the VGAE that has no semantic information. This
shows the semantic information which is encoded in the labels provide an advan-
tage in the location estimation task. These findings are particularly interesting from
a geographic and location-based services perspectives. As the labels used are not
determined by tweets’ geographical locations and have not been assigned based on
the tweets’ locations, it indicates that knowing the previous content produced in a
geographic area can help the proposed framework better estimating the geolocations
of the emerging activities. Thus, the comparisons confirm the Hypothesis 1 presented
in Section 5.1.
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Models Input Dist(m) Range(m) Top-1 (±2%) Top-3 (±2%) Top-5 (±2%) Top-10 (±5%)

Activities
Clustering

Geolocated
Tweets

- 1000 1.0 - - -
- 2000 3.0 - - -
- 3000 8.0 - - -

Spectral
Clustering

Topological
Structure

50 3000 24.0 38.5 48.0 51.5
100 3000 19.0 42.0 51.0 61.0
500 3000 24.5 28.0 30.5 36.5
1000 3000 20.5 24.5 27.0 31.0

Adamic-Adar
Topological
Structure

50 3000 3.0 3.0 3.0 3.0
100 3000 3.0 3.0 3.0 3.0
500 3000 4.0 4.5 4.5 4.5
1000 3000 10.0 10.5 10.5 10.5

Jaccard
Coefficient

Topological
Structure

50 3000 3.0 3.0 3.0 3.0
100 3000 3.5 3.5 3.5 3.5
500 3000 3.5 3.5 3.5 3.5
1000 3000 10.0 11.0 11.0 11.0

VGAE_no_label
Topological
Structure

50 1000 5.5 7.0 11.5 15.0
50 2000 10.0 26.0 35.0 47.5
50 3000 23.5 39.5 50.5 60.0
100 1000 5.0 10.0 14.0 18.0
100 2000 15.0 27.0 34.5 38.5
100 3000 25.5 38.5 46.0 57.0
500 1000 8.5 10.0 11.5 13.5
500 2000 11.5 17.0 19.5 24.5
500 3000 26.5 35.0 37.5 40.0
1000 1000 4.0 7.5 8.0 8.5
1000 2000 6.5 8.0 9.0 10.5
1000 3000 6.0 13.0 16.0 26.5

VGAE

Topological
Structure and
labels of activity
types

50 1000 6.0 8.5 12.0 16.0
50 2000 23.5 45.5 45.5 48.0
50 3000 30.0 45.5 55.5 62.0
100 1000 5.5 9.5 15.0 18.0
100 2000 28.0 31.0 34.5 40.5
100 3000 29.5 46.5 56.5 62.5
500 1000 5.0 10.0 12.5 14.0
500 2000 10.0 17.5 22.0 28.5
500 3000 28.0 32.5 35.5 43.0
1000 1000 4.0 7.5 8.0 9.5
1000 2000 4.0 10.0 10.5 12.5
1000 3000 8.5 14.0 18.0 28.5

Node2Vec_label

Topological
Structure and
labels of activity
types

50 3000 24.5 39.5 48.0 61.0
100 3000 26.0 41.5 47.5 59.5
500 3000 25.5 37.0 41.0 48.5
1000 3000 5.0 9.5 15.0 24.5

TABLE 5.1: Baseline comparisons.
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Table 5.1 also summarises the results obtained using the baseline methods. Con-
ventional machine learning link prediction methods Adamic-Adar and Jaccard Coef-
ficient achieve comparably low accuracy in all experiments (Top-k accuracy are all
below 11%). As introduced in the previous section, both Adamic-Adar and Jaccard
Coefficient perform link prediction based on common neighbours on nodes level ag-
gregation rather than properly encoding the graph structures in the algorithms. The
results show that these node-level similarity-based link prediction approaches with-
out taking into account labels of tweets are less effective in my proposed location
estimation task. Spectral clustering, which works by partitioning a graph into sub-
groups, where the nodes in one group are similar, and nodes in different groups are
dissimilar, achieves competitive results. For example, it achieves 24.5% Top-1 accu-
racy on the graph constructed with Dist as 50 meters, which is 1% higher than the
results achieved by VGAE_no_label on the same graph. All Top-k accuracy achieved
by Spectral clustering are close to the the results produced by VGAE_no_label. De-
spite there are differences in their mathematical details and implementations, both
Spectral clustering and VGAE_no_label make use of the spectrum (eigenvalues) of the
similarity matrix of the graph structure data. Thus, their results are mostly similar
to each other. The baseline comparisons conducted on Adamic-Adar, Jaccard Coef-
ficient, Spectral clustering and VGAE_no_label illustrate the fact that both the graph
structures and semantic understanding of the tweets (i.e., labels) are essential for the
frameworks.

Node2Vec, as a comparison in the baselines which perform link prediction taking
into account both nodes’ labels and graph structures. It generates nodes’ embed-
dings for the spatially constructed graphs through a mapping of nodes to a low-
dimensional space of features that maximises the likelihood of preserving network
neighbourhoods of nodes, and use the embeddings for the downstream link predic-
tion task. Comparing the results produced by Node2Vec_label and VGAE_no_label,
it clearly shows that Node2Vec_label outperforms the VGAE_no_label. For example,
the best results achieved by Node2Vec_label is on the graph with Dist as 100 meters
(26%), which is 0.5% higher than the VGAE_no_label. Such a comparison further jus-
tifies the Hypothesis 1 that the semantic information which is encoded in the labels
provide an advantage in the location estimation task. Comparing the estimation
accuracy produced by VGAE and Node2Vec_label, it demonstrates that the VGAE
framework is superior to the Node2Vec_label, in particular within the comparisons
on Top-1 accuracy.

Models Dist (m) Range (m) Top-k Accuracy Topicality_rate(%)

VGAE 50 1000
Top-1 66.67
Top-3 61.22
Top-5 62.34

VGAE_no_label 50 1000
Top-1 14.29
Top-3 29.41
Top-5 35.67

TABLE 5.2: Results of Topicality rate.

Looking at the differences between VGAE and VGAE_no_label in Table 5.1, it is
difficult to understand the impact of the semantic information encoded in the la-
bels has on the estimation. As introduced in Section 5.3.1, I propose a Topicality rate
to measure at which level the semantic understanding on the labels of tweets im-
pact the location estimation on the content. Table 5.2 shows significant differences
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Model Top-K place Accuracy (±5%)

VGAE_hierarchical_structure

Top-1 10.96
Top-3 24.20
Top-5 26.48
Top-10 38.36

VGAE_tree_structure

Top-1 15.53
Top-3 28.31
Top-5 35.62
Top-10 46.58

VGAE_dense_tree_structure

Top-1 30.14
Top-3 30.59
Top-5 42.47
Top-10 54.79

TABLE 5.3: Comparisons for Top-k place accuracy of hierarchical mod-
eling of bounding boxes.

between the Topicality rates produced by VGAE and VGAE_no_label, and it demon-
strates a strong association exists between labels of the predicted nodes and the la-
bels of its most likely connected node in the graph when conducting the location es-
timation using VGAE. Such an association enables the framework to provide a better
estimation. Comparing the results in Table 5.1 and Table 5.2, it further confirms my
hypothesis that the semantic understanding of social media posts can contribute to
the location estimation of the non-geographic tweets.

5.5.2 Tweets Hierarchical Modeling

As discussed in Section 5.3.3, I proposed various ranking schemes to assess the per-
formance of hierarchical modelling approaches. Table 5.3 summarizes the results
for Top-K place accuracy. It assesses whether the predicted tweet and its most likely
connected node have the same or overlapping bounding boxes. When estimating
the location of a non-geographic tweet, the possible area where the tweet might be
geotagged is contained within the bounding box of its most likely connected node.
VGAE_dense_tree_structure produces the best results among three hierarchical mod-
elling approaches (Top-1: 30.14%, Top-3: 30.59%, Top-5: 42.47% and Top-10: 54.79%).
In particular with the Top-1 place accuracy, VGAE_dense_tree_structure achieves a sig-
nificant performance improvement (over 15%) compared to VGAE_hierarchical_baseline
and VGAE_tree_structure_baseline.

It is important to notice that when estimating a location for a tweet, if the tweet’s
most likely connected node in the graph has Twitter Place as London, the Top-K place
accuracy will consider the estimation is correct regardless the actual geotag of the
predicted tweet because the bounding box of London always overlaps with smaller
bounding boxes. Although such an issue does not occur in my experiments pre-
sented above, this is potentially problematic if the framework is deployed. In the
future development, those tweets which have Twitter Place as London must be han-
dled separately, e.g., excluding them as a possible link for the predicted tweets.
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5.6 Discussion

Our understanding of the role played by UGC in place representations has been so
far limited by the fact that only a small percentage of social media posts are precisely
geolocated. In this chapter, I focused on harnessing the dynamics of overall content
production from multiple users in a single place to estimate the location of content
not explicitly labelled by the user. My study presented in this chapter can benefit
the understanding of places by exploring the number of users’ activities that could
be related to a place of interests (i.e., by estimating a location for content that has not
been explicitly geolocated by the users).

The representation and interpretation of data retrieved from social media pro-
vide means by which to assess different urban dynamics and has the potential to
contribute to the creation of socio-demographic analysis of the cities (Shelton et al.,
2015). In turn, such information enables us to analyse daily spatial processes and to
gain knowledge about places, especially with respect to collective human dynamics
(Steiger et al., 2016). Content shared about the place reflects the use of space and
the activities carried out, and similar activities are more likely distributed in similar
places (Chaniotakis and Antoniou, 2015; Lansley and Longley, 2016). Thus, know-
ing the activity of a post and the spatio-temporal structures of the previous content
production, it is theoretically possible to estimate where the post is generated from.
Motivated by such a research hypothesis, I propose a location estimation framework
based on two essential elements: first is the spatial distribution of the content pro-
duction of previous social media posts; second is the semantic understanding (i.e.,
labels of activity types) of the social media posts.

Existing studies on location estimation are focusing on developing or applying
geographic information retrieval (GIR) methods (e.g., geoparsing on placenames) on
the text content of social media posts. For example, NeuroTPR (Wang et al., 2020b)
achieves 82.1% accuracy on fully geo-annotated texts. However, only a small pro-
portion of tweets include references to geolocations in the text (MacEachren et al.,
2011), and the existing text-based studies are limited when placenames are unclear,
missing or vernacular in the text content. This study is akin and complementary to
the work aimed at geotagged social media content using classic geographic informa-
tion retrieval approaches. The novel aspect of my proposed framework is the VGAE
component which is capable of predicting the link between an unknown node (a
new social media post) and its most likely connected node in the graph (previous
posts). I investigate two main approaches to modelling the geolocations of social
media posts, spatial modelling and hierarchical modelling. For spatial modelling, I
measure the quality of the estimation based on whether the geolocation of the new
social media post is within a predefined distance from the location of the post rep-
resented by its most likely connected node. The results indicate that the spatio-
temporal structure of previous content can provide insightful information on the lo-
cation of new content, and using the semantic information about the content brings
a significant advantage. It confirms my proposed hypothesis that a semantic un-
derstanding of the content of social media posts (beyond their explicitly geographic
content, such as placenames) can aid the estimation of the location of a social media
post. Comparing VGAE with a series of baseline methods using spatial modelling
graphs, the results prove VGAE can better estimate the locations of social media
posts in my defined location estimation task.

Bounding boxes that are attached to social media posts not only function as geo-
graphical containers which contain the social media posts located in (physical)spaces.
Instead, they are also a host of associated social, economic, and political practices
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carried by users’ everyday spatial activities. In this chapter, I propose hierarchical
approaches to model the bounding boxes to measure the performance of the location
estimation. The results show that the hierarchical modelling of the places of social
media posts can provide reasonable estimations, especially when using the two ap-
proaches based on tree structures. Introducing additional nodes that represent the
hierarchy of bounding boxes in the tree structures enables the information regard-
ing tweets in the same place to be aggregated and re-distributed during the learn-
ing process, and thus benefiting the VGAE on the location estimation task. Dense
tree-structure modelling creates more links from top-level nodes to the bottom-level
nodes when one bounding box is overlapped within another bounding box, and an
edge will be added. During the learning process, the encoded semantic information
can be exchanged from top to bottom level of the tree structure, and hence aid VGAE
to perform a better estimation on the approximate locations of bounding boxes.

Although the performance achieved so far is reasonable considering the input
data are only the topological structures of tweets and labelled users’ activity types,
it is important to highlight that the current results of the estimations are proven to be
unstable. As can be seen from Table 5.1, for VGAE on topological structures, there
exits 2% variations for Top-1, 3, 5 accuracy and 5% variation for Top-10 accuracy. For
VGAE adopting hierarchical modelling of places, there are 5% variations for each re-
sult of the proposed models shown in Table 5.3. The results presented above are the
average accuracy after 20 runs of VGAE on each spatio-topological structure. That
is, I run each model 20 times and shows the averaged results concluded from those
20 experiments. Despite the variability of the accuracy, the results generally follow
the pattern presented in each table. For example, for the comparisons on Top-k place
accuracy, although there exists 5% variations in their results, VGAE dense tree struc-
ture proves to be always outperforming VGAE tree structure baseline; for geolocated
tweets, VGAE proves always outperforming other baselines and VGAE_no_label.

As illustrated in Chapter 2, starting from a conceptualisation of users as sensors
of places (Goodchild, 2007), GIScience research has thereby focused on questions re-
garding how corresponding spatio-temporal patterns from social media networks
and heterogeneous data streams can be aggregated to study the digitally coded
space (Dodge and Kitchin, 2005). By exchanging the social media activity types’
information at the node-level aggregation, and propagating through a spatially con-
structed graph with the GCN component of VGAE, VGAE takes advantage of util-
ising the semantic information encoded in the labels and exchanges the information
with other nodes in the graph during the learning process. As such, VGAE can pro-
duce a more precise estimation during link prediction stage, and thus benefit the
location estimation task. Although previous research has proven the association be-
tween the geographic location of social media posts and the social events (Gurevich
and Ghosh, 2014), and constructed a bridge between content and locations (Chen et
al., 2013), those studies are developed based on the enriched information collected
from social media platforms, such as using geoparsing on text content and metadata
to estimate the locations of users. My proposed approach instead only focuses on the
semantic categories of the users’ contents and the spatial distribution of the content
production from previous social media posts. I show that my approach can estimate
users’ locations without further analysis on more detailed text content and meta-
data. It is likely that combining advanced geoparsing approaches and the method
here presented, possibly coupled with a category classification process such as the
one presented in Chapter 4, could lead to high-quality location estimation of social
media posts. Such an assumption will be a part of my future research.

In conclusion, as already mentioned in Chapter 2, current studies on social media
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location prediction problems rely heavily on content analysis (Zheng et al., 2018),
which requires extensive research on placenames usage and identifying location-
indicative words (e.g., geoparsing methods introduced in Chapter 2). However, de-
spite the fact that such approaches have achieved high accuracy in the disciplines
such as disaster management (Wang et al., 2020b), they potentially ignore a large
amount of data which do not include a spatial element explicitly in the text when
studying social practices to understanding place representations. Thus, this work is
complementary to the existing GIR methods to estimate locations of tweets without
explicit placenames in the text. From GIScience and digital geographies perspec-
tives, the quantitative analysis and summarisation to study the emergence of place
from space through content production (Graham et al., 2015a) often takes into ac-
count the amount of similar UGC produced by users from a geographical area in
general rather than focusing on each individual content. Thus, the precise location
of the content can be trivial as long as the framework can provide the estimation of
the content’s location in a relatively small geographical area. My proposed method-
ology can estimate locations at urban scale with little information (labels of social
media activity types and spatial topological structure) required from the social me-
dia platforms to provide approximate areas where social media posts are generated
from.

It is important to highlight that both the spatio-temporal topological structure
of the graphs and labels of social media activity types play a vital role in my pro-
posed framework. The interaction between the two elements (i.e., the labels ag-
gregated and propagate through the topological structure) contributes to a better
estimation accuracy. Meanwhile, as the VGAE framework only takes labels of activ-
ities and spatio-temporal structures of the previous content production as the input,
the methodology requires no changes when it is adapted to other platforms such as
Facebook, Foursquare, Flickr, etc. My research shows the potential of applying deep
learning methods directly to digital geographies studies, and suggests that adopting
an appropriate combination of social media properties and deep learning techniques
to understand online places deserves further research.

5.7 Summary

This study has proposed a novel location estimation method based on the spatio-
temporal distribution of the content production from a social media platform, Twit-
ter, to estimate the future social media post distribution in a city. The proposed
GeoAI tool is akin and complementary to the work that estimates the location of
social media content using classical geoparsing-based geographic information re-
trieval approaches where location-indicative words are missing in the text. The
findings demonstrate that by knowing the content of a post and the spatio-temporal
structures of the previous content production distributed in the places, it is possible
to estimate where the post is generated from. In other words, knowing the repre-
sentations of the places in a given space and how the content about the places are
distributed, one can use my proposed VGAE-based framework to aggregate more
data at a high spatial resolution in the cities.

Traditionally, the study of place representation is often associated with vari-
ous official spatial statistics. Given the increasing popularity of digital content and
emerging tools to aggregate spatial data from digital platforms, the demographics of
the spatial distribution of UGC and how they are describing the social space (Wilken,
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2012) in urban areas have also played a significant role in understanding cities. Spa-
tial distribution of UGC, including social media, is accepted by scholars as a valuable
resource to advance research on specific urban aspects (Anselin and Williams, 2016;
Arribas-Bel et al., 2015). In next chapter, I will discuss how UGC can be used as a
proxy indicator of urban development and propose a novel spatially explicit GeoAI
tool that can use place representations described by UGC and official statistics to
predict urban deprivation changes.





105

Chapter 6

Urban Change Modelling with
Spatial Knowledge Graphs

Part of this work presented in this chapter is published as:

• Pengyuan Liu and Stefano De Sabbata, 2020. Modeling Urban Socio-demographic
Change using Knowledge Graph. In 28th Geographical Information Science Re-
search UK conference (GISRUK).

The extended journal version of this paper is going to be submitted to the Interna-
tional Journal of Geographical Information Science1.

6.1 Introduction

The study of the social, economical and spatial structure of cities and its evolution
over time has always been a key component of geographical analysis. Mapping ur-
ban change is fundamental to inform our understanding of cities and places. As
mentioned in Chapter 2, the socio-spatial structure of cities and metropolitan areas
changes over time facing the rapid development of urbanisation and the increas-
ing demands of understanding socio-economic structures of the society. One of the
common approaches in analysing these dynamics is to observe change at the level
of individual neighbourhoods (Modai-Snir and Ham, 2018). However, the major-
ity of socio-demographic data are commonly collected periodically. For example,
census data are collected every 10 years, but neighbourhoods are dynamic and may
undergo changes which might not be captured by decadal censuses (Gray et al.,
2018). The constant changes of neighbourhood’s socio-demographic profiles and
their spatial extent (Rey et al., 2011) interject levels of spatial uncertainty within clas-
sifications. Therefore, the socio-demographic classifications are unstable during the
development of cities (Singleton et al., 2016), and that can lead to potential uncer-
tainties when adopted to understand urban spaces (Gale and Longley, 2013; Fisher
and Tate, 2015).

Given the increasing popularity of digital content, the socio-demographics of the
spatial distribution of UGC (such as Twitter, Wikipedia etc.), and how they are de-
scribing the social space (Wilken, 2012) in urban areas have also played a significant
role in understanding cities. Spatial distribution of social media is accepted by schol-
ars as a valuable resource to advance research on specific urban aspects (Anselin and
Williams, 2016; Arribas-Bel et al., 2015). People live in or visit an area for a variety of
factors (e.g., economic, social, cultural) might produce data about that area. That is,

1Code to reproduce my experiments is available at: https://github.com/PengyuanLiu1993/PhD_
Thesis_Codes_PengyuanLiu/tree/master/SKG_Urban_Dynamics

https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/SKG_Urban_Dynamics
https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/SKG_Urban_Dynamics
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UGC produced in an area have associations to how city infrastructure is being de-
veloped and used (Mora et al., 2018). Therefore, the aggregated activities generated
from UGC platforms could indicate how social activities in a city are distributed, re-
vealing fine-grained spatial patterns evident in the social life of cities and informing
our understanding concerning how cities are developed (Bawa-Cavia, 2011; Abbar
et al., 2018). The representation and interpretation of data retrieved from social me-
dia provide a means by which to assess different urban dynamics, and understand
the underlying socio-demographies of the cities.

Two datasets that are adopted in this chapter are Twitter and Wikipedia, as in-
troduced in Chapter 3. Twitter has become an important source of content about
how people want to represent place and their interaction with the physical environ-
ment (Frias-Martinez and Frias-Martinez, 2014). Previous research on characteris-
ing urban change using Twitter data focused on analysing changes in the number of
tweets sent from a geographic location over time (Soliman et al., 2017). For exam-
ple, it has been observed that residential zones on the periphery of cities generate
more tweets in the evening, when people have returned to their homes, whereas ar-
eas of activity in the city centre are especially active during the day, when people
visit them to undertake activities such as work or shopping (Ciuccarelli et al., 2014).
The spatio-temporal pattern of tweets posted from different parts in the city indi-
cates the existence of the inherent link between the human urban activity patterns
and the underlying land use (Zhan et al., 2014), and can help to understand urban
structure and related socioeconomic performance (Shen and Karimi, 2016; Martí et
al., 2017; García-Palomares et al., 2018). Content posted on UGC platforms such as
Twitter can be seen as a signal of the emergence of “urban buzz” in cities or urban
districts which by definition are the “powerhouses of innovation, creativity, and un-
conventional lifestyles” (Arribas-Bel et al., 2016, p. 190). Similarly, Wikipedia editing
activities have also been used to investigate the geographies of content production.
For example, studies on participation and geographical distribution of Wikipedia ar-
ticles found spatial clusters in knowledge production which lead to a digital under-
representation of certain parts of the world (Graham et al., 2015a). Ballatore and De
Sabbata (2019) illustrate how the spatial distribution of Wikipedia and Twitter data is
related to population density, education level, and income, although every city and
platform has its own idiosyncrasies. That uneven distribution is both an issue and
an opportunity, which might indicate how the digital place representation emerging
from those platforms could be used as a proxy to estimate socio-demographic dy-
namics, thus benefiting the understanding of places and urban dynamics, such as
gentrification (Boy and Uitermark, 2016; Gibbons et al., 2018; Reades et al., 2019).

Many quantitative machine learning models, which have been widely adopted
in existing studies towards understanding urban dynamics, are a-spatial. Reades et
al. (2019) used a random forest approach to learn and then predict neighbourhood
changes, based on a score derived from census variables, and use visual analysis as
one of the tools to understand the model and the predictions. Similarly, Alejandro
and Palafox (2019) used a random forest approach to predict the likelihood of gentri-
fication, and use visual analysis to explore the results. However, urban development
can be a spatial process, whereby once an area gentrifies, neighbouring areas can be
affected by that gentrification process independently or in conjunction with other
factors. Reades et al. (2019) explicitly discuss how the addition of a spatial compo-
nent to their model would likely improve the output by accounting for edge effects.
More generally, many of the variables that are usually used to model urban changes
(from population age to house prices) are frequently spatially autocorrelated – that
is, similar values are found in neighbouring areas. Therefore, there is an opportunity
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for devising spatial models to better model urban development.
In this chapter, I explore the use of knowledge graphs to model urban socio-

demographic change using various sources of data and volunteered geographic in-
formation. Taking into account (London) Output Area Classification, UK Indices of
Deprivation, and the distribution of geotagged social media data and Wikipedia ar-
ticles at different geographic (inner-city borough-, urban- and nation-level) scales,
the results show that my proposed machine learning approach using a knowledge
graph not only successfully captures the changes of deprivation between the year of
2015 and 2019 in the city but also has the potential to be developed into a powerful
tool in modelling urban changes. It is worth noticing that the study provided in this
chapter does not account for the impact of population change on the model. For the
scope of this chapter, this study adopts OAs and LSOAs as the area units to aggre-
gate Twitter and Wikipedia, and OAs and LSOAs are designed to be consistent in
terms of their population size (an average population of about 310 residents for each
OA and an average population of 1500 people or 650 households for LSOA). This
chapter is investigating whether the content production of UGC platforms can be a
useful proxy of urban change. Further discussion on data at fine spatial and tempo-
ral granularity (e.g., population, property value, crime, etc..) that can be adopted for
this study will be provided in Chapter 7.

The novelties of this study are:

• this study combines official spatial statistics with place representations de-
scribed through UGC to understand and predict the dynamic changes of the
socio-economic characteristics of places;

• this chapter presents two different ways constructing spatial knowledge graphs
to predict socio-demographic changes (i.e., deprivation level) at different geo-
graphic scales;

• spatial neighbouring information of areas is a key aspect of the proposed spa-
tial knowledge graphs. The case studies will show that the encodings of spatial
information in the graphs are crucial in the task of socio-demographic predic-
tion.

The rest of this chapter is structured as followed: I will provide a detailed in-
troduction to the different datasets used in the different proposed case studies in
Section 6.2. Section 6.3 will introduce two different approaches to construct the
knowledge graph for the task of socio-demographic prediction. Then, Section 6.4
will present the experiment results concluded from different case studies. Finally, I
will provide a conclusion for this study in Section 6.5.

6.2 Study Area

As mentioned in Chapter 2, despite the risk that some neighbourhood processes at
a granular level cannot be observed through quantitative data (Barton, 2016), there
remains the challenge of defining a neighbourhood in the first place (Reades et al.,
2019). According to Knaap et al. (2019), there is no precise definition of "neighbour-
hood" in either spatial extent or social composition. For the scope of this thesis, I take
the definition by Galster (2001, p. 2112) as the starting point to define the term neigh-
bourhood in the context of this chapter as: "the bundle of spatially-based attributes as-
sociated with clusters of residences, sometimes in conjunction with other land uses".
As discussed by Reades et al. (2019, p. 923), such a definition "does not establish
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neighbourhoods as discrete, bounded entities as it does not directly provide the size
of the neighbourhood, but it provides a basis for defining neighbourhoods on differ-
ent spatial scales through the ’bundling’ of attributes". Following such a definition,
neighbourhoods, in the context of this chapter are the spatial units defined by ONS
(in particular, output areas and lower-layer super output areas) which underpin the
the operationalisation of the 2001 and 2011 Output Area Classifications in the UK
(Gale, 2014; Gale et al., 2016).

In this chapter, I present three case studies using knowledge graphs to model
urban socio-demographic change using various sources of data and volunteered ge-
ographic information, at three different scales from an inner-city borough level to
a national level: Kensington and Chelsea borough, Greater London and England.
The datasets applied to the case studies include the spatial distributions of two UGC
data (Twitter and Wikipedia), English Indices of Deprivation (IMD) deciles in 2015
and 2019, London Output Areas Classification (LOAC) for case studies at the urban
scale, and Output Areas Classification (OAC2011) in the UK at the national level of
the case study (IMD, LOAC and OAC2011 have been described in Chapter 3). In
the rest of this section, I will provide a detailed introduction to the datasets used
for each case study area and illustrate the socio-demographic patterns of the areas
carried out through each dataset.

6.2.1 Kensington and Chelsea

Kensington and Chelsea is an inner London borough located on the north bank of the
River Thames in the centre of London. It is a borough with some very wealthy areas,
as well as the highest average income in London. However, Kensington and Chelsea
is an area embodying “gross level[s] of economic inequality" (Shildrick, 2018, p. 784)
with the poorest and richest living in close spatial proximity. MacLeod (2018) iden-
tifies an astonishing landscape of inequality (in health, income, etc) across the bor-
ough, which renders Kensington and Chelsea an interesting case study to study ur-
ban change at a small scale. The study area includes 631 OAs within the Kensington
and Chelsea borough of London. In the 2011 LOAC, the borough’s OA are classi-
fied into five supergroups (Longley and Singleton, 2014): Intermediate Lifestyles, High
Density and High Rise Flats, Urban Elites, City Vibe, London Life-Cycle. As shown in Fig-
ure 6.1(D), the LOAC classifies the majority of OAs within Kensington and Chelsea
borough as Urban Elite, London Life-Cycle and High Density and High Rise Flats, which
indicates that this borough is well developed and highly densely populated.

As introduced in Chapter 3, the 2015 IMD (2015_dep) and 2019 IMD (2019_dep)
datasets ranks the 32,844 Lower-layer Super Output Areas (LSOAs) in England from
the most to the least deprived and include a classification based on the decile of
ranking, ranging from 1 (most deprived) to 10 (least deprived). In the case study area
of Kensington and Chelsea, the deprivation deciles were extracted from the national
deprivation ranks in both years of 2015 and 2019. The LSOA in this borough all
fall into the first 9 of the 10 deciles, and none in the tenth decile as shown in Figure
6.1 (A) and (B). Between 2015 and 2019, 35.05% of LSOAs in England moved from
one decile category to another (17.56% LSOAs had positive changes while 17.49%
of LSOAs had negative changes), and 48.81% of LSOAs in Kensington and Chelsea
changed as shown in Figure 6.1 (C) and Figure 6.2 (B) (46.12% of LSOA had positive
changes while 2.69% of LSOAs had negative changes). Note that LOAC and IMD
deciles are organised at different area units where LOAC was created at OA-level,
and IMD was created at LSOAs-level. The spatial extent of LSOAs is larger than the
OAs. In my model, the deprivation decile of an OA is simply defined as the decile of
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(A) Kensington and Chelsea 2015
deprivation indices map.

(B) Kensington and Chelsea 2019
deprivation indices map.

(C) Kensington and Chelsea depri-
vation changes between 2015 and

2019.

(D) Kensington and Chelsea Output
Area classifications.

(E) Kensington and Chelsea Twitter
distribution.

(F) Kensington and Chelsea
Wikipedia distribution.

FIGURE 6.1: Socio-demographics of Kensington and Chelsea. Map
boundaries source: Office for National Statistics licensed under the
Open Government Licence v.3.0. Contains OS data c© Crown copy-

right and database right 2021.

the LSOA that contains it. However, I am aware that this is in part problematic due
to uncertainties, and the local variation-aggregated value calculated at one area unit
(LSOA) might not necessarily apply equally to all parts of the area (OA). Detailing
the implications of this issue is beyond the scope of this dissertation, and it will be
considered part of the known unknowns of the models here presented. The issue
will be discussed further in the concluding chapter and future studies.
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(A) Comparisons between LOAC and 2015 & 2019 deprivation deciles (A-
Intermediate Lifestyles; B-High Density and High Rise Flats; D-Urban Elites; E-City

Vibe; F-London Life-Cycle).

(B) Comparisons between UGC distributions and 2015 & 2019 deprivation deciles.

FIGURE 6.2: Comparisons between deprivation deciles of Kensington
and Chelsea.

Geotagged UGC data from Twitter and Wikipedia were previously introduced
in Chapter 3. I calculated the count of the UGC data distribution within each OA in
Greater London. The reason behind using count rather than density of the UGC data
is due to the fact that OAs and LSOAs are statistical area units that have been devised
to be homogeneous and of smaller size in terms of population. Since the knowledge
graph approach adopted in this chapter and its baseline machine learning compar-
isons can be understood as labelling methods (will be introduced in Section 6.4.4),
the models require categorical data of the spatial distributions of UGC based on the
counts of data in each OA as input. As the count of the spatial distribution of two
UGC datasets are geographically uneven, I use Jenks natural breaks classification
method (Jenks, 1967) to generate a five-level classification for both UGC platforms:
high, medium high, medium, medium low and low.

The deprivation indices maps for the 2015 and 2019 IMD illustrate that despite
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the presence of areas with a high level of deprivation concentrating in the north part
of the borough, the overall deprivation within the borough is between deciles 5 and
9. The deprivation deciles in Kensington and Chelsea in both 2015 and 2019 are
positively global spatial autocorrelated (2015 deprivation deciles: Moran’s I=0.838,
p=0.001; 2019 deprivation deciles: Moran’s I=0.846, p=0.001). Both local spatial clus-
ters of deprivation deciles shown in Figure 6.3 (A) and (B) demonstrate that most
areas with highest deprivation levels are distributed in the north and east part of
the borough. The changes of deprivation levels can be seen in the Figure 6.1(C)
and Figure 6.3 (C), where a majority of positive changes occurred in the central part
of the borough, and few neighbourhoods are developing worse through the years.
The changes in deprivation levels are also positively global spatial autocorrelated
(Moran’s I=0.541, p=0.001).

Local Moran's I for 2015 IMD deciles


(A) Local Moran’s I for 2015 IMD deciles.

Local Moran'I for 2019 IMD deciles


(B) Local Moran’s I for 2019 IMD deciles.
Local Moran's I for the changes between 2015&2019 IMD


(C) Local Moran’s I for the changes between 2015 and
2019 IMD deciles.

FIGURE 6.3: Local Moran’s I for 2015 and 2019 IMD deciles in Kens-
ington and Chelsea. Map boundaries source: Office for National
Statistics licensed under the Open Government Licence v.3.0. Con-

tains OS data c© Crown copyright and database right 2021.

Comparing the deprivation maps with the map of LOAC classification as shown
in Figure 6.2(A), it is clear that there is some level of correlation between areas with
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high deprivation level and areas which are in categories City Vibe and High Density
and High Rise Flats – as one would expect. Thus, such a correlation between high
deprivation level and particular geodemographic categories seems to indicate that
LOAC can provide an insight into the deprivation changes. In Figure 6.1(C) and
6.1(D) illustrate how the overall distribution of Twitter and Wikipedia in the borough
is relatively low compared to the whole of London.

6.2.2 Greater London

(A) London 2015 deprivation indices map. (B) London 2019 deprivation indices map.

(C) London deprivation changes between 2015
and 2019.

(D) London Output Area classifications.

(E) London Twitter distribution. (F) London Wikipedia distribution.

FIGURE 6.4: Socio-demographics of London. Map boundaries source:
Office for National Statistics licensed under the Open Government
Licence v.3.0. Contains OS data c© Crown copyright and database

right 2021.

The second study area is conducted on the urban level, including 25,053 OAs
in Greater London. The purpose of this case study is to assess the scalability and
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FIGURE 6.5: Comparisons between deprivation deciles of London.

robustness of the proposed framework. In the 2011 LOAC for Greater London in
Figure 6.4(D), in addition to the supergroups mentioned in Kensington and Chelsea,
there are three more supergroups introduced in Longley and Singleton (2014): Ag-
ing City Fringe, Settled Asians and Multi-Ethnic Suburbs. In Kensington and Chelsea,
IMD deciles in 2015 and 2019 are both between 1 and 9; however, in Greater London,
IMD deciles are both between 1 and 10, as shown in Figure 6.4(A) and (B). Similar to
Kensington and Chelsea, the deprivation level in London in both 2015 and 2019 are
positively global spatial autocorrelated (2015 deprivation deciles: Moran’s I=0.829,
p=0.001; 2019 deprivation deciles: Moran’s I=0.819, p=0.001). The spatial clusters
in Figure 6.6 (A) and (B) show that areas in London which reported to have high
deprivation levels are clustered in the east of London and south bank of Thames
River. The changes of deprivation levels can be seen in the Figure 6.4(C), Figure
6.6 (C) and Figure 6.5, where a majority of positive changes occurred in the cen-
tral part of London, and neighbourhoods that are falling in the rankings through
the years are mostly distributed in the suburbs of London. The changes in de-
privation levels are also positively global spatial autocorrelated (Moran’s I=0.548,
p=0.001). Figure 6.4(E) and Figure 6.4(F) illustrate the overall spatial patterns of
Twitter and Wikipedia presented in London. Despite the fact that each data dataset
has its unique pattern distributed in the city, they share the same pattern that cen-
tral London has a large number of UGC (Pearson’s correlation test result: r=0.61,
p<0.01). A detailed discussion about such a statistically correlation will be presented
in Section 6.3.

6.2.3 England

As introduced above, the first two case studies on Kensington and Chelsea borough
and London are at the borough-level and urban-level. To further test the scalabil-
ity of the framework, I conduct a further case study on the national level of Eng-
land. Instead of using OAs, this study area adopts Lower Layer Super Output Areas
(LSOAs) as the studying neighbourhoods to reduce the computation costs (England
has 32,844 LSOAs). For each LSOA, following the two case studies above, I calcu-
lated the density of the two UGC data (Twitter and Wikipedia) distribution within
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Lcoal Moran's I for 2015 IMD deciles


(A) Local Moran’s I for 2015 IMD deciles.

Local Moran's I for 2019 IMD deciles


(B) Local Moran’s I for 2019 IMD deciles.

(C) Local Moran’s I for the changes between 2015 and 2019 IMD
deciles.

FIGURE 6.6: Local Moran’s I for 2015 and 2019 IMD deciles. Map
boundaries source: Office for National Statistics licensed under the
Open Government Licence v.3.0. Contains OS data c© Crown copy-

right and database right 2021.

each LSOA, and used Jenks natural breaks classification method (Jenks, 1967) to gen-
erate a five-level classification for both UGC platforms: high, medium high, medium,
medium low and low. As shown in Figure 6.7 (E) and (F), despite Wikipedia shows
the higher distribution patterns in rural areas across the country compared to the
spatial distribution of Twitter, two datasets are still sharing moderate similarities in
their distribution patterns (Pearson’s correlation test result: r=0.447, p<0.01).

Since this case study is conducted at the national level, LOAC can no longer
be used, as it only covers the Greater London area, as such, I choose the OAC2011
(Gale et al., 2016) as the socio-economic descriptors to substitute the LOAC in the
framework. The OAC2011 groups include Rural Residents, Cosmopolitans, Ethnicity
Central, Multicultural Metropolitans, Urbanites, Suburbanites, Constrained City Dwellers
and Hard-Pressed Living. As illustrated at the beginning of this subsection, this case
study is conducted on the LSOA-level neighbourhoods to reduce the computation
costs of testings for the proposed framework. However, OAC2011 is conducted on
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(A) England 2015 deprivation
indices map.

(B) England 2019 deprivation
indices map.

(C) England deprivation
changes between 2015 and

2019.

(D) England Output Area clas-
sifications.

(E) England Twitter distribu-
tion.

(F) England Wikipedia distri-
bution.

FIGURE 6.7: Socio-demographics of England. Map boundaries
source: Office for National Statistics licensed under the Open Gov-
ernment Licence v.3.0. Contains OS data c© Crown copyright and

database right 2021.

the OA level which is a smaller geographic level compared to LSOA; thus, it requires
a further summarisation and characterisation of the socio-economic characteristics
for LSOA based on the original classifications on the OAs. As such, I first aggre-
gate the counts of OAC2011 categories of in each LSOA, and then choose the most
frequent category as the socio-economic descriptor for the LSOA. For example, if
the majority of OAs within a LSOA are Ethnicity Central, the socio-economic de-
scriptor for such a LSOA is Ethnicity Central in the prepared dataset. If an LSOA
has two OAC2011 categories with the same counts, I randomly pick up one as the
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socio-economic descriptor for this LSOA. It is important to notice that, again, I am
aware that such a socio-economic descriptor chosen process might lead to uncer-
tainties at some level as LSOAs and OAs are two area units with different sizes.
These uncertainties will be considered in the final chapter. Figure 6.8 (B) shows the
comparisons between deprivation deciles in 2015 and 2019. As discussed in Section
6.2.1, 35.05% of LSOAs in England have their deciles changed (17.56% LSOAs have
positive changes, while 17.49% of LSOAs have negative changes).

As shown in Figure 6.7(C) and Figure 6.8 (A), the deprivation changes between
2015 and 2019 in England indicate that most urban areas are moving upwards in
the rankings, whereas the spatial distribution of the deprivation deciles changing
patterns in the rural areas in the country are showing the opposite. Statistically, the
overall deprivation deciles changes in England are positively spatial autocorrelated
(Moran’s I=0.111, p=0.001), which shows that if one neighbourhood’s deprivation
level is improved, so does its surrounding neighbourhoods.

This case study aims to explore the scalability of the framework. Such a goal is
achieved by assessing the prediction quality for the rest of the country when know-
ing the IMD deprivation patterns in a specific city. For this purpose, I select three
different cities or regions in particular as the known data for the framework (also
known as training data, see next section): Greater London, Leicester and the county
of Cumbria. Each one of the three cities or regions in the UK has its unique socio-
economic characteristics, and it is interesting to assess how knowing the unique
socio-economic patterns of a specific city can impact the socio-demographic predic-
tion for the rest of the country with my proposed framework. A brief introduction
is provided as followed:

• Greater London: London is a thriving and highly prosperous city with great
diversity. It is one of the richest cities in the world, with a growing economy,
but is also home to some of the poorest communities in the UK. Many socio-
economic patterns in London are unique and different from the rest of the UK.
For example, according to Economics (2016), poverty levels among London’s
population after taking account of housing costs are much higher than the UK
as a whole. Up to a third of all inner London residents and nearly a quarter
of outer London residents are in poverty, which is higher than for any other
UK region. Such economic diversities in London render the city unique in the
UK; thus it is chosen here specifically to assess the framework’s performance
by encoding the deprivation level in 2019 in London as the training data.

• Leicestershire and Rutland: Leicestershire is a landlocked county in the En-
glish Midlands, being within the East Midlands with 396 LSOAs. It takes its
name from the city of Leicester which is located at its centre and administered
separately from the rest of the county. Leicester is unique in the county and
even in the UK in terms of its ethnic diversity. Leicester residents have origins
from over 50 countries from across the globe, making the city one of the most
ethnically and culturally diverse places in the UK (55% population are from
black and minority ethnic backgrounds) (Jivraj and Finney, 2013). Leicester
is the 14th most deprived local authority of the 152 upper-tier authorities and
is therefore in the bottom decile nationally, whereas Leicestershire is ranked
136th most deprived of the 152 upper-tier local authorities (Information Policy
Team, 2017). Rutland is also a landlocked county in the East Midlands of Eng-
land, bounded to the west and north by Leicestershire. It is the smallest historic
county in England and the fourth smallest in the UK as a whole (23 LSOAs).
Rutland has a very low population density, at 98 people per square kilometre,
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(A) Local Moran’s I for the changes between 2015 and 2019 IMD deciles.

(B) Comparisons between deprivation deciles of England.

FIGURE 6.8: Comparisons between 2015 and 2019 deprivation
deciles. Map boundaries source: Office for National Statistics li-
censed under the Open Government Licence v.3.0. Contains OS data

c© Crown copyright and database right 2021.

compared to a national average of 413. Rutland is one of the most affluent
counties in England; of 152 Upper Tier Local Authorities, Rutland ranked 148
(The Scrutiny Commission, 2018). Rutland was a district within Leicestershire
for 23 years under the Local Government Act 1972, which took effect on 1 April
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1974 (Local Government Act, 1972); thus, even until recent time, two counties
are commonly jointly studied in various government reports (e.g., Leicester
and Leicestershire Economic Assessment (Leicester-Shire Rutland Statistics
Research, 2010)).

• Cumbria: Cumbria is a ceremonial and non-metropolitan county in North
West England. It is predominantly rural and contains the Lake District Na-
tional Park which is considered as one of England’s finest areas of natural
beauty, serving as an inspiration for artists, writers, and musicians; thus, it
attracts enormous tourists visiting every year. In 2018, Cumbria and the Lake
District received over 47 million visitors, made up of 40.4 million day-trippers
and 6.6 million overnight visitors (Tate, 2018). The county itself has at almost
7,000 square kilometres, it is the second-largest county, but with just under
500,000 people living here, it is also one of the sparsest populated counties
in the UK (Cumbria Vision, 2009). Cumbria’s average IMD score ranked as
83rd nationally with only 8.1% of LSOAs sat within IMD decile 1 (the most
deprived 10% of LSOAs nationally) (Cumbria Intelligence Observatory, 2019).
As a county predominantly rural and well-developed, Cumbria is also chosen
in this case study to be encoded as training data in the graph for assessing how
it impacts the prediction quality for the rest of the country.

6.3 Statistical Inference on IMD

Having presented the datasets in the previous section, the primary hypothesis is that
deprivation does not change considerably from one estimation (e.g., 2015) to the next
(e.g., 2019). That is, the urban change in the city is not dramatic. Therefore, IMD in
2015 can be a proxy indicator of how likely the IMD would be in 2019. Although in
this thesis, I chose IMD deciles to be the indicators of how deprivative an area is, one
may choose IMD scores (see Chapter 3) to perform the analysis. Regardless of the
choices, a high correlation between the IMD 2015 scores and the IMD 2019 scores is
expected, as well as the IMD 2015 deciles and the IMD 2019 deciles.

In studying gentrification processes, Reades et al. (2019) discussed how the model
output would be improved when including the spatial component, and they high-
lighted how social media such as Twitter could be a useful proxy to indicate the
neighbourhood change at the urban scale. Ballatore and De Sabbata (2018, 2019)
also argued that the content production of UGC is strongly related to the underlying
socio-demographics (e.g., education and wealth), which are commonly associated
with gentrification within cities. Therefore, the second hypothesis is that the change
of content produced on UGC platforms is another proxy for urban change.

The analysis in this subsection explores the two hypotheses mentioned above.
The study first examines the strength of the relationship between IMD scores in 2015
and 2019, and IMD deciles in 2015 and 2019. The scatter plots in Figure 6.9 illustrate
the linear relationship between the IMD Scores in 2015 and 2019, and between the
IMD Deciles 2015 and 2019. Then, to further test the hypothesises, I adopted statis-
tical modelling (both a-spatial model and spatial model) to explore the strength of
the relationship between IMD scores in 2015 and 2019, and IMD deciles in 2015 and
2019. Then, I used the data (normalised using inverse hyperbolic sin) from two UGC
platforms, Twitter and Wikipedia, as a proxy indicator of urban change to test the
second hypothesis.
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FIGURE 6.9: Case study: London

6.3.1 A-spatial model, Deprivation Scores and Deciles

The first study is to test the first hypothesis that IMD in 2015 can be a proxy indicator
of how likely the IMD would be in 2019. First, the hypothesis is tested with an a-
spatial regression model using deprivation scores (Score model), and the results are
shown in Figure B.1. Then I adopted the deciles (Deciles model) as in the same a-
spatial regression model, and the results are presented in Figure B.2.

As shown in the figures, both the intercept and the coefficient related to the 2015
IMD are highly significant. In addition, the R-square values are high, demonstrat-
ing a strong correlation between 2015 IMD and 2019 IMD in both deprivation scores
and deciles. Moreover, the Jarque-Bera test for both models is significant, indicat-
ing a high degree of non-normality of the residuals. For Score model which takes
deprivation scores as input, the Breusch-Pagan test and the Koenker-Bassett test
are significant, indicating that the residuals are heteroskedastic. However, for the
Deciles model with input data as deprivation deciles, both the Breusch-Pagan test
and the Koenker-Bassett test are not significant, indicating that the residuals are ho-
moscedastic. Therefore, Deciles model is proven to be more robust, which justifies
my choice of using deprivation deciles in the knowledge graph construction in this
chapter (see Section 6.4).

For both models, both the Lagrange Multiplier (lag) statistics and the Lagrange
Multiplier (error) statistic are significant, indicating the presence of spatial autocor-
relation in the data. Thus, a model which incorporates the spatial component may
provide a more robust prediction for the 2019 IMD using the 2015 IMD as a proxy.
Furthermore, because the Robust LM (lag) statistic is not significant, but the Ro-
bust LM (error) is significant for both models, a spatial error model can be a bet-
ter specification for the analysis. In the study below, I carried out a series of spa-
tial error models (maximum likelihood estimation) for both IMD scores and IMD
deciles. The models further explore incorporating two UGC variables (Twitter posts
and Wikipedia pages) as independent variables to predict the change of 2019 IMD.
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6.3.2 Spatial Models, Deprivation Scores and Deciles

The spatial lag regression model is adopted with both deprivation scores and deciles,
and the results are summarised in Figure B.3 and B.4. For both models, the spatially
autoregressive parameter (LAMBDA) and the Likelihood Ratio Test are significant,
confirming that neighbouring values positively affect the model. Similar to the pre-
vious section, the Breusch-Pagan test of the Scores model is significant, indicating that
the residuals are heteroskedastic. However, for the Deciles model, the Breusch-Pagan
test is not significant, meaning that the residuals are homoscedastic. The results
show that the Deciles model is more stable, which again justifies my choice of using
deprivation deciles in the knowledge graph construction in this chapter.

6.3.3 Combining User Generated Content

To test the second hypothesis that data from Twitter posts and Wikipedia pages can
be used as a proxy indicator of urban change, I present six models incorporating
the distribution patterns of Twitter and Wikipedia separately or together into the
spatial lag regression model. For the first model (Twitter-Score model), I combined
2015 IMD deprivation scores with the distribution pattern of Twitter in the spatial
lag regression model to predict 2019 IMD scores. The results are presented in Figure
B.5. Similar to Twitter-Score model, the second model (Wikipedia-Score Model) com-
bined 2015 IMD deprivation scores with the distribution pattern of Wikipedia pages
in the spatial lag regression model to predict 2019 IMD scores, and the results are
in Figure B.7. The third (Twitter-Decile model) and fourth model (Wikipedia-Decile
model) combined 2015 IMD deprivation deciles with Twitter and Wikipedia distri-
bution patterns separately to predict IMD 2019 deprivation deciles, and results are
presented in Figure B.6 and B.8. The fifth (UGC-Score model) and sixth model (UGC-
Decile model) combined both the distribution patterns of Twitter and Wikipedia with
IMD 2015 deprivation scores and deciles to predict IMD 2019 deprivation scores and
deciles separately, and results are shown in Figure B.9 and B.10.

The spatially autoregressive parameter (LAMBDA) and the Likelihood Ratio Test
are significant for all six models. Moreover, the UGC-related independent vari-
ables are all significant, except the Wikipedia-related variable when both Twitter
and Wikipedia are included in the model. Such an exception may be due to the co-
linearity existing in both datasets (Ballatore and De Sabbata, 2018) (see discussion in
the next paragraph). The two tables B.1 and B.2 summarise the pseudo R-squared,
Log-likelihood, and AIC values. In both cases, it is clear that the addition of UGC-
related independent variables marginally increases the pseudo R-squared value and
the Log-likelihood value while decreasing the AIC value. Thus, the results indi-
cate a marginally better fit of the model when including UGC-related variables and
neighbouring information of the study areas in London.

In conclusion, the results in this section indicate that in London, taking into ac-
count the neighbouring values of the IMD 2015 and UGC-related variables provide
a marginally better model for the inference of the IMD 2019 than taking into account
the IMD 2015 alone. The models using deciles seem to be marginally more robust,
which justifies adopting IMD deciles in this chapter rather than using IMD scores.
Such results also justify and support the use of ComplEx based on the labelling of
IMD deciles (see Section 6.4). Furthermore, the analysis demonstrates that the model
using the Twitter-related variable seems to provide a better fit than those using the
Wikipedia-related variables. The models using both the Twitter and Wikipedia-
related variables seem to provide the best fit but suffer from the co-linearity of the
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two (Ballatore and De Sabbata, 2018). However, the co-linearity is not an issue for
the adopted knowledge graph approach, the co-occurrence between entities and re-
lations of Twitter and Wikipedia captured by ComplEx is expected to lead to more
accurate predictions on the 2019 IMD deciles.

Such a statistical inference study contextualises the research hypothesis in the
study of urban change that UGC can be adopted as a proxy for modelling urban
dynamics. Thus, it further motivates the study presented in this chapter to develop
a more sophisticated model to predict urban change.

6.4 Methodologies

6.4.1 Spatial Knowledge Graph

In this chapter, I frame my proposed socio-demographic change modelling as a link
prediction task. Considering that the source data discussed in the section above
was not already encoded as a knowledge graph, to fully explore the potential of
the knowledge graph approach on the socio-demographic change modelling task,
I developed and tested two distinct to constructing spatial knowledge graphs for
modelling deprivation change.

SKG1

Following the common knowledge graph triples <subject, relation, object> defined
in databases such as DBpedia (Auer et al., 2007) and Wikidata (Vrandečić and Krötzsch,
2014), my first spatial knowledge graph (SKG1) is proposed as follows. The entities
of the spatial knowledge graph represent the OAs and socio-demographic represen-
tations described in each dataset. For example, as shown in Figure 6.10(A), if “Area1"
is classified as “Urban Elites" in the LOAC, a relation “has_LOAC_value" is created
between “Area1" and “urban_elites". As such, this triple in SKG1 is understood as
<Area1, has_LOAC_value, urban_elites>. In such a setting, when the link prediction
algorithm infers the 2019 deprivation decile for "Area2", it generate possibility scores
between entity “Area2" and all entities “has_decile_n"(n ranges from 1 to 10), and the
prediction framework chooses the entity with highest score as the predicted 2019
deprivation decile for "Area2".

SKG2

The design of SKG1 is consistent with most existing knowledge graph bases in which
places’ status in each data source is encoded as an entity in the graph. Such knowl-
edge graphs are mainly design for (geographic) information retrieval (e.g., Wikidata)
or (geographic) questions answering (e.g., CrowdGeoKG (Chen et al., 2017)), and
most often the entity description contains a classification of the entity with respect
to a class hierarchy. However, my proposed socio-demographic prediction is funda-
mentally different from the above-mentioned tasks, in which the framework is only
targeted on predicting one type of socio-economic changes (deprivation changes in
this study), and datasets have no distinct hierarchies. Thus, it can be assumed that
it requires no sophisticated capabilities for further modelling. As such, the design
choice on how to design the triplets in the knowledge graph can be more flexible.
As the source data discussed in the section above was not already encoded as a
knowledge graph, to fully explore the potential of knowledge graphs, another graph
design is introduced in Figure 6.10(B).
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The second spatial knowledge graph (SKG2) differs substantially from SKG1, and
the entities of the SKG2 represent the OAs and each class of the different datasets. If
"Area1" is classified as “Urban Elites" in the LOAC, a relation “urban_elites" is created
between "Area1" and "LOAC". Therefore, this triple in SKG2 is understood as <Area1,
is_urban_elites_in, LOAC>. Such a graph construction choice enable the link predic-
tion algorithm to directly predict the link’s label between “Area2" and “2019_dep.".
Therefore, the fundamental difference between two means of spatial knowledge
graph construction is that SKG2 formalises the task of deprivation prediction as a
link prediction task, while SKG1 considers the task as a node classification task as
shown in Figure 6.10.

(A) SKG1

(B) SKG2

FIGURE 6.10: Different spatial knowledge graph.

As mentioned in Chapter 2, despite existing research demonstrating that the ge-
ographical encoding in the knowledge graph has a significant performance increase
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when dealing with geographic questions, how to properly encode such geographic
knowledge (i.e., locations) remains as a domain-specific challenge and is still in the
exploratory stage (Wang et al., 2019b; Yan, 2019).

The spatial differences of the 2015 and 2019 deprivation deciles are spatially au-
tocorrelated in all case study areas as introduced in the previous section; thus, such
correlations indicate the fact that if one neighbourhood’s deprivation level improves,
its surrounding neighbourhoods might also improve. That seems to indicate that
spatial neighbouring information among areas can significantly benefit the predic-
tion of the deprivation changes. As such, there are relations that represent spatial
neighbouring information among areas, which are included in both graphs SKG1
and SKG2. For example, as shown in Figure 6.10(B), if “Area1" and “Area2" are
neighbours, a “neighbour" relation is created between two nodes representing the two
OAs. Such neighbouring information in GIScience can be described with various
spatial weight matrices, such as Rook and Queen contiguity-based spatial weights,
or distance-based spatial weights. For the scope of this study, the spatial structures
of the neighbourhoods in all case studies are decided by the Queen contiguity-based
spatial weight matrices. The Queen contiguity-based spatial weight matrix is one
of the most popular and simplest approaches in GIScience to determine the spatial
structure of areas, and two areas are the spatial neighbours if they share the same
boundary or a vertex. Explorations on other options which determine the spatial
structure of areas in the knowledge graph form the basis of future research objec-
tives in analysing boundary effects on the prediction qualities.

As discussed in the previous section, the results in Section 6.3.3 suggest that us-
ing both the Twitter and the Wikipedia-related variables seem can provide the best
insight of 2019 IMD prediction, but suffer from the co-linearity of the two. Therefore,
I add a relation between entities "Twitter_dist" and "Wikipedia_dist" as "correlation" in
SKG2, to capture the existence of a correlation between two data distribution and
enrich the information contained in the knowledge graph.

In addition, in my experiment, I randomly select n areas and their corresponding
2019 deprived deciles into training data as the known information for the model.
For the randomly selected “Areas", I compare their deciles between “2015_dep" and
“2019_dep", and further define a self-pointed relations to themselves from one of the
following as: “develop_better", “more_deprived" and “remain_same". For example in
Figure 6.10, “Area1" was in the first decile of the IMD 2015, but in the second decile
in 2019. Therefore, a self-pointed relation "less_deprived" is added in the graph.

For SKG1, ComplEx is to infer the highest probability score of the relation “2019_dep"
between each “Area" and 2019 IMD deciles, I choose the decile which has the high-
est probability score of “2019_dep" as the model prediction. For SKG2, ComplEx is
to infer the missing relations between each “Area" and “2019_dep", and I choose the
relation of deciles which has the highest probability score as the model prediction.

6.4.2 Evaluation

In this chapter, I adopt the state-of-art method ComplEx introduced in Section 3.5.2
to create graph embeddings for my proposed spatial graphs. It is important to high-
light that unlike a classification task, where algorithms provide a "predicted" cate-
gory which can be correct or not, the output of a link prediction algorithm is the
likelihood of relationships between nodes in the data. To assess the performance
of ComplEx on my proposed spatial knowledge graph, I design an independent as-
sessment on the graph on both SKG1 and SKG2 using the knowledge graphs for the
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case study area Kensington and Chelsea, and then I calculate Hit at N (H@n) (Bor-
des et al., 2013) as the proportion of correct predictions in top n relations suggested
(calculated by the probabilities of whether the link is existed between the nodes in
the graph) by the algorithm to evaluate the performance of ComplEx. During this
step, I evaluate the robustness of the spatial knowledge graph approach on the data,
which are randomly selected for omission and can contain any relations between dif-
ferent entities (LOAC, Twitter_dist, etc.). ComplEx achieves 76.0% (SKG1) and 72.3%
(SKG2) accuracy on H@1, which indicates that more than 70% of omitted relations
are correctly predicted as top preferences suggested by the algorithm. Therefore, in
my further urban changes modelling experiments, I consider one relation is correctly
predicted if the probability score of this relation generated by the algorithm is over
70%. I define confidence ratio as the percentage of correctly predicted relations over
all the edges in the test data. And confidence ratio will be adopted to evaluate the
performances for both SKG1 and SKG2.

6.4.3 Comparison Experiments

To evaluate which factors drive most in the process of inferring the dynamics of
urban deprivation level. I design a series of ablation studies (an ablation study stud-
ies the performance of an AI system by removing certain components, to understand
the contribution of the components to the overall system) using ComplEx with fewer
data encoded in the knowledge graphs as followed:

• no Spatial Neighbours, I keep all entities and relations except the "neighbour"
information between areas in both graphs;

• no UGC, I omit the information regarding Twitter and Wikipedia spatial dis-
tributions in both graphs;

• UGC and Spatial Neighbours, I omit the information regarding LOAC and
2015 IMD, but keeping the entities and relations regarding Twitter and Wikipedia
distributions, and spatial neighbours between areas.

• LOAC and Spatial Neighbours, I omit information about UGC data and 2015
IMD but keeping the entities and relations about LOAC and spatial neighbours
between areas.

• 2015 IMD and Neighbours, I omit information about LOAC and UGC distribu-
tion but keep the entities and relations about 2015 IMD, and spatial neighbours
between areas.

6.4.4 Baseline Comparisons

To test the capability of my proposed framework using knowledge graphs, I com-
pare the results with two conventional machine learning approaches and a baseline
that assume that the IMD deciles do not change between 2015 and 2019. The socio-
demographic categories from each dataset are encoded with One-Hot encoding which
is a commonly adopted method to quantify categorical data in the models:

• No Changes: This is the simplest baseline which assumes that the IMD deciles
do not change between 2015 and 2019. The primary analysis of the datasets
(IMD deciles in 2015 and 2019) shows 51% of OAs in Kensington and Chelsea,
and 65% of LSOAs in England do not change through the years. Thus, such an
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assumption is useful to be set up in comparison with my proposed framework
assessing if my framework can perform reasonable predictions.

• Random Forest: I adopt a traditional machine learning approach Random For-
est (Kam, 1995) as a classifier on randomly selected 300 of 631 OAs in Kens-
ington and Chelsea borough (the largest number chosen in the experiment for
knowledge graph approaches) as the training dataset to predict the labels for
2019 IMD deciles in the test dataset. Random Forest is a state-of-the-art ma-
chine learning approach, and it has been successfully applied to various socio-
demographic studies within geography as well sociology, such as urban socio-
economic deprivation analysis (Zhou et al., 2017; Niu et al., 2020), urban crime
studies (Bowen et al., 2018) and geo-political studies (Hao et al., 2019). There-
fore, it is appropriate to adopt such a state-of-the-art approach as one of the
baselines.

• Decision Tree: I adopt Decision Tree as another baseline comparison with the
same experimental data used in Random Forest. Decision Tree is another state-
of-the-art machine learning approach, and it has been successfully applied to
various socio-demographic studies within geography as well sociology, such
as urban planning (Venerandi et al., 2015), urban deprivation analysis (Akinyemi
and Elias, 2009) and geo-economic studies (Wu et al., 2020a). Therefore, it is
appropriate to adopt such a state-of-the-art approach as one of the baselines.

The baselines are conducted on the case study area of Kensington and Chelsea
borough. For Decision Tree and Random Forest, the deprivation prediction task is
formalised as a classification problem, in which two algorithms target on predict-
ing 2019 deprivation deciles for each OAs based on the spatial density of Twitter
and Wikipedia data (the same five-level classifications used for spatial knowledge
graphs), 2015 deprivation deciles and LOAC categories within the borough.

6.5 Results

6.5.1 Kensington and Chelsea Borough

No Changes Number of n SKG1 SKG2 Random Forest Decision Tree

51.00

10 63.23 54.68 - -
100 77.34 73.74 - -
200 85.10 84.79 58.25 61.08
300 90.70 91.13 57.48 60.76

TABLE 6.1: Summarized results (Confidence Ratio (%)).

Table 6.1 summarises the results of the experiments. ComplEx achieves a rea-
sonable confidence ratio at 63.23% (SKG1) and 54.68% (SKG2) when the framework
is trained on 10 OAs – for which the 2019 IMD decile is provided to the knowl-
edge graphs. As introduced in Section 6.3.3, the simplest comparison No Changes
achieves 51% accuracy, which assumes the deprivation level of OAs in Kensington
and Chelsea has no changes through the years. Both of SKG1 and SKG2 outperform
such a baseline even the knowledge graphs have only 10 OAs with 2019 depriva-
tion deciles, which illustrate the usability of my proposed framework in such a de-
privation prediction task. The more information the algorithm has, the higher the
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(A) Kensington and Chelsea model
output (SKG1).

(B) Kensington and Chelsea model
output (SKG2).

(C) Comparison between the 2019
deprivation deciles and model out-

put (SKG1).

(D) Comparison between the 2019
deprivation deciles and model out-

put (SKG2).

FIGURE 6.11: Maps of 2019 IMD deciles and model outputs. Map
boundaries source: Office for National Statistics licensed under the

Open Government Licence v.3.0

confidence ratio. When the model is trained on nearly half of areas (i.e., 300), the
outputs for both graphs are over 90% accurate, which are significantly higher than
the outputs produced by the machine learning baseline methods (Random Forest and
Decision Tree). A preliminary analysis of the results seems to indicate that the link
prediction algorithm has the ability to capture socio-demographic change based on
a spatially constructed knowledge graph with small samples of data. It is also in-
teresting to see that despite when the model trained on 10 OAs, ComplEx on SKG1
achieves much higher confidence ratio than SKG2, the performance differences are
smaller when more areas are included in the training data.

As described in the section above, I consider a decile is predicted incorrectly if
the probability generated by the model is below 70%. For deciles which are incor-
rectly predicted, I further explored the most likely deciles suggested by the model
with n=300. Comparing deciles in IMD 2019 and deciles suggested by the model
in Figure 6.11(C) and (D), it suggests that small differences are concentrated in the
southwest part of the borough. Figure 6.12 shows that for the deciles that are not
predicted correctly with n=300, the differences between the deciles suggested by
SKG2 and 2019 IMD deciles are mostly within the two deciles differences, but the
errors produced by SKG1 seem to be more random, but most errors are still shown
within three deciles. Therefore, it indicates that despite the fact that some of the
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(A) Comparisons between 2019 IMD deciles and SKG1 (90.70% Confidence Ra-
tio) and SKG2 (91.13% Confidence Ratio) output.

(B) Comparisons between 2019 IMD deciles and SKG1 output of incorrectly pre-
dicted deciles. Numbers in the squares denote for how many 2019 IMD deciles

are incorrectly predicted into other decile categories by SKG1.

(C) Comparisons between 2019 IMD deciles and SKG2 output of incorrectly pre-
dicted deciles. Numbers in the squares denote for how many 2019 IMD deciles

are incorrectly predicted into other decile categories by SKG2.

FIGURE 6.12: Comparisons between 2019 IMD deciles and model
output.
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deciles are predicted incorrectly, the difference between the deciles suggested by the
model and the real deciles is relatively small. However, the errors of the predictions
produced by both models present identifiable spatial clusters in Figure 6.13, which
which indicates that ComplEx and SKGs do not fully capture the spatialities of the
data, and further research may be required in my future studies (see discussion in
Section 7.4.3).

(A) Local Moran’s I on the comparison between
the 2019 deprivation deciles and SKG1 output.

(B) Local Moran’s I on the comparison between
the 2019 deprivation deciles and SKG2 output.

FIGURE 6.13: Local Moran’s I on the comparison between the 2019
deprivation deciles and model output. Maps of 2019 IMD deciles and
model outputs. Map boundaries source: Office for National Statistics

licensed under the Open Government Licence v.3.0.

TABLE 6.2: Summarized comparisons on confidence ratio (%).

Type of Comparisons SKG1(n=10) SKG1(n=100) SKG2(n=10) SKG2(n=100)
All information 63.32 77.34 54.68 73.74

No_UGC 59.75 72.43 50.00 68.63
No_Neighbours 45.32 61.98 41.84 59.34

UGC_Neighbours 28.71 40.82 25.20 36.05
LOAC_Neighbours 33.20 50.95 30.27 47.57

2015_dep_Neighbours 40.83 53.64 38.35 51.80

As discussed above, to evaluate which factors play a greater role in the pro-
cess of estimating changes in urban deprivation levels, I conducted further compar-
isons with simpler knowledge graphs and included information about the 2019 IMD
decile for 10, and 100 randomly selected OAs. The results are summarised in Table
6.2, which indicates that the less information the knowledge graph has, the lower is
the confidence ratio it can achieve. The table shows that spatial knowledge graphs
with information on UGC distribution and spatial neighbours have the lowest confi-
dence ratio. Additionally, the confidence ratios are higher when the graphs are only
lacking information about Twitter and Wikipedia. Therefore, it seems to indicate
that the distribution of UGC data has the least impact on inferring the dynamics of
urban deprivation changes. Still, when compared with the knowledge graphs that
encode all the data sources, the confidence ratios of the knowledge graphs which
have no spatial neighbour information are over 10% lower than the results shown in
Figure 6.2. It shows that having spatial information is crucial in the task of inferring
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the urban deprivation level. Comparing the results between LOAC_Neighbours and
2015_dep_Neighbours, it seems to indicate that knowing the historical deprivation
level has a more positive impact on inferring future deprivation deciles.

6.5.2 Results Showcase: Greater London

Number of n SKG1 SKG2
500 73.19 69.96

TABLE 6.3: Confidence Ratio for the experiment on the Greater Lon-
don (Confidence Ratio (%)).

A second case study conducted using SKG1 and SKG2 is summarised in Table 6.3.
Figure 6.14 and Figure 6.15 illustrate the results obtained using SKG1 on all the 25053
output areas in Greater London. The graph is constructed using the same approach
as the graph constructed for Kensington and Chelsea borough, although three fur-
ther LOAC classes are present (Aging City Fringe, Settled Asians and Multi-Ethnic Sub-
urbs). The spatial knowledge graph is provided with the information regarding 500
randomly selected OAs and their relations between "2019_dep". As shown in Table
6.3, ComplEx achieves nearly 70% confidence ratio in the experiment and the actual
2019 IMD deciles map (Figure 6.7(B)) and the map showing the deciles suggested by
the model (Figure 6.14(A)) present very similar patterns. Detailed visualisation of
the differences is presented in Figure 6.15 (A) and (B). Although some inaccuracies
are clearly visible – for example, some deciles in 3 incorrectly predicted as 4 in the
model output, also some deciles in 5 incorrectly predicted as 4 – the model clearly
provides a rather robust prediction. As shown in Figure 6.14 (B), similar to the re-
sults on Kensington and Chelsea, the errors of the predictions based on the model
SKG1 presents identifiable spatial clusters, which indicates that the model do not
fully capture the spatialities of the data.

Overall, the two case studies presented above indicate that the proposed frame-
work is able to provide an accurate prediction socio-demographic changes using
small data samples in a scalable and robust manner.

6.5.3 Results Showcase: England

The case studies on both Kensington and Chelsea borough and Greater London have
already demonstrated the scalability and robustness of my proposed knowledge
graphs. The experiments have illustrated that both SKG1 and SKG2 have a strong ca-
pability in predicting socio-economic changes at a relatively small geographic scale
(e.g., urban scale or inner-city areas). Note that there exists a significant change on
SKG2. As introduced in Chapter 2, the theoretical background and support for the
correlation between two UGC data are at the urban level in London (Ballatore and
De Sabbata, 2018). Although the Chi-Square test shows that the correlation between
the spatial distribution of Twitter and Wikipedia are still significant, the Pearson’s
correlation test r value is 0.447 which indicates a weak correlation existed between
two UGC dataset, and the correlation presented weaker comparing to the spatial dis-
tribution of two datasets in London (Pearson’s correlation test result: r=0.61, p<0.01).
Therefore, I drop the relation “correlation" in SKG2. For the case study in this subsec-
tion, I will demonstrate our framework is scalable by predicting the 2019 IMD deciles
at the national scale (England). The results are summarised in Table 6.4. By encod-
ing 2019 IMD deciles in Greater London, Leicester and Cumbria in the knowledge
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(A) SKG1 output for 2019 London deciles prediction.

(B) Comparisons between model output (SKG1, 73.19% Con-
fidence Ratio) and 2019 deprivation deciles.

(C) Local Moran’s I for the difference between 2019 IMD
deciles and SKG1 output.

FIGURE 6.14: Maps of 2019 IMD deciles and model output in Greater
London. Maps of 2019 IMD deciles and model outputs. Map bound-
aries source: Office for National Statistics licensed under the Open

Government Licence v.3.0
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(A) Comparisons between 2019 IMD deciles and SKG1 output for
Greater London (Experiment conducted with SKG1).

(B) Comparisons between 2019 IMD deciles and SKG1 output of incor-
rectly predicted deciles. Numbers in the squares denote for how many
2019 IMD deciles are incorrectly predicted into other decile categories

by SKG1.

FIGURE 6.15: Comparisons between 2019 IMD deciles and model
output for London.

graph as part of the training data respectively, the results produced by both SKG1
and SKG2 are both stable and reasonably accurate. The results indicate good scala-
bility of my framework. That seems to indicate that, as long as the framework has
information regarding IMD for one city, it can predict the socio-economic changes
for the rest of the country.

Interestingly, London does not provide a significant advantage despite having
approximately ten times the number of LSOAs for training compared to Cumbria
and the combination of Leicestershire and Rutland. That might be due to the fact



132 Chapter 6. Urban Change Modelling with Spatial Knowledge Graphs

City/region SKG1 SKG2
Greater London (4,836 LSOAs) 76.13 66.96

Leicestershire and Rutland (419 LSOAs) 77.56 68.01
Cumbria (321 LSOAs) 77.98 66.13

TABLE 6.4: Confidence Ratio for the experiment on England (Confi-
dence Ratio (%)).

that many socio-economic patterns in London are unique and different from the rest
of the UK. As such, London may do not represent the rest of England properly in a
more general socio-demographic and geographic sense. Adopting LSOAs in Cum-
bria as training data works best for SKG1 but worse for SKG2, this might because
most of Cumbria are rural and SKG1 is more capable of capturing the internal asso-
ciations between rural socio-demographics and deprivation conditions, thus benefit-
ing to the country-level predictions of deprivations. Using LSOAs in Leicestershire
and Rutland as training data seems to indicate the importance of having both ur-
ban and rural areas in the training data as both SKG1 and SKG2 achieve reasonable
performance.

6.6 Discussion

While a large part of research on socio-demographic classification focuses on static
representations of cities (Gale and Longley, 2013; Singleton et al., 2016), temporal
modelling and predictive geodemographic classification have attracted a growing
interest within the field of GIScience and quantitative geography. Most current re-
search in that field models focuses on the analysis of temporal differences using
cluster reassignments (Singleton et al., 2016; Gray et al., 2018). In this chapter, I
introduce a novel framework for modelling socio-demographic changes in urban
deprivation levels using a spatial knowledge graph and a link prediction process.
The results show that my proposed framework can provide robust predictions with
a small sample of data. As such, my approach is capable of modelling urban dynam-
ics for the study of predictive geodemographics. The key findings are summarised
as follows:

• Spatial neighbouring information of areas is a key aspect of the proposed spa-
tial knowledge graphs for the task of IMD prediction.

• The knowledge graph (SKG1) following the conventional knowledge graph
triples <subject, relation, object> defined in DBpedia and Wikidata achieves
better results in socio-demographic prediction.

• Despite the spatial distributions of UGC (Twitter and Wikipedia) have cor-
relations to the deprivation deciles and contribute to the prediction at some
level, and my results show that UGC is not the most important factor that
drives the prediction. In comparison, the results suggest that the underlying
socio-demographics (here represented by LOAC and OAC) in my case studies
contribute the most to a more accurate prediction.

• The knowledge approach proves to be scalable and robust when analysing
larger datasets in both urban- and nation-level.
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As introduced in Chapter 2, the term Knowledge Graph (KG) represents a collec-
tion of labelled and interlinked descriptions of entities (called triples) – real-world
objects, events, situations or abstract concepts, where such descriptions have a for-
mal structure that allows both people and computers to process them in an efficient
and unambiguous manner. Taking geographic information into account, KG has
played a vital plays in answering geographic research question from various per-
spectives, such as geographic knowledge graph completion (Qiu et al., 2019), geo-
graphic ontology alignment (Zhu et al., 2016), geographic question answering (Mai
et al., 2019; Mai et al., 2020), etc.. Nevertheless, how to encode geographic knowl-
edge (i.e., locations) into a knowledge graph remains as a domain-specific challenge
and is still in the exploratory stage (Wang et al., 2019b; Yan, 2019).

As discussed in Section 6.1, many machine learning models describing urban
change do not explicitly embed space in their models. However, the spatial dif-
ferences of the 2015 and 2019 deprivation deciles are spatially autocorrelated in all
case study areas. Such correlations indicate the fact that if one neighbourhood’s
deprivation level is improved, it is likely that its neighbours have also improved.
That seems to indicate that embedding spatial neighbouring information within the
model can significantly benefit the prediction of the deprivation changes. In this
study, the geographic information is encoded as the spatial adjacency of areas de-
fined by Queen contiguity-based spatial weights. The results presented in the abla-
tion studies strongly suggest the importance of such geographic components in the
graph and the developed knowledge graph-based framework, and they also sup-
port what Reades et al. (2019) suggested that the addition of a spatial component to
a quantitative urban analysis model would likely improve the output. Explorations
on other options which determine the spatial structures of areas in the knowledge
graphs form the basis of future research objectives in analysing boundary effects on
the prediction qualities (Reades et al., 2019).

This study focused on three case studies in the Kensington and Chelsea borough
of London and Greater London and England. For the first two case study areas, I
construct spatial knowledge graphs using various sources of official statistics data,
including London Output Area Classification and the UK Indices of Deprivation
2015, as well as and volunteered geographic information, incorporating the distribu-
tion of geotagged Twitter data and Wikipedia articles in the process. I demonstrate
that my proposed framework is able to predict socio-demographic changes with two
different spatial knowledge graph structures (SKG1 and SKG2), in particular the UK
Indices of Deprivation 2019, with a small sample of data. I show that the link predic-
tion algorithm on my proposed knowledge graph structures of data encoding can
make an accurate prediction for about 70% of the OAs when trained using 100 over
631 OAs in Kensington and Chelsea, and 500 over 25,053 OAs in Greater London. I
also illustrate how most errors are still within a reasonably small bracket and that the
more is consistent and robust in its prediction when changing the number of OAs
on which it is trained. The results suggest that a knowledge graph which follows a
more conventional knowledge graph defining strategies (SKG1) is a better design-
ing choice. Such an approach follows the common designs in conceptual modelling,
and the classifications of places in different datasets are represented as entities to
give additional manipulation capabilities to the modelling approach.

One of the novelties of this study mentioned at the beginning of this chapter
has been to combine official spatial statistics with place representations described
through UGC to understand and predict the dynamic changes of the socio-economic
characteristics of places. In the case studies, I adopt the spatial distributions of Twit-
ter and Wikipedia as two UGC datasets used in the graph. The ablation studies
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suggest that the spatial distribution of UGC data has the least impact on the process
of predicting deprivation levels, although their use still provides a very significant
advantage in making the prediction. Instead, the use of the LOAC (representing the
underlying socio-demographics of the area) has the most significant impact on the
deprivation level predictions. These results corroborate the findings from various
sociological studies which also demonstrate the potential of Local Authority geode-
mographic classifications as valuable alternative tools for targeted neighbourhood’s
socio-economic interventions in England (Petersen et al., 2011; Wami et al., 2019),
and the added information from UGC provides a valuable overall improvement of
the model.

My proposed framework in this chapter shows a great advantage when analysing
studying areas at various geographical scales, where the experiments demonstrate
its scalability and robustness regardless of the changes on the size and scale of the
studied areas. The results achieved by the framework on the scale of Greater London
and England strongly prove that the framework requires nearly no changes at all to
the settings of the algorithms as well the spatially constructed graphs in the task of
deprivation prediction. Thus, it has the potential to be developed into a powerful
tool within geography to studies socio-demographic changes in the urban or larger
geographical settings.

6.7 Summary

This chapter has proposed a novel GeoAI tool to predict urban change and high-
lighted two key findings. First of all, UGC is a useful proxy indicator of urban
change and can be associated with official statistics to predict the cities’ develop-
ment. Secondly, a model which incorporates the spatial component can better pre-
dict urban change. By proposing two different ways of constructing spatial knowl-
edge graphs, the results of the case studies indicate that my proposed framework is
preferable to those a-spatial machine learning models which are commonly adopted
in urban studies regarding both prediction accuracy and stability.

In next chapter, I will summarise the research findings in each analysis chap-
ter, discuss the current imitations and challenge and point out my future research
directions.
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Chapter 7

Discussion

7.1 Introduction

This chapter discusses and summarises the results obtained in the analysis chapters
(i.e., Chapters 4, 5 and 6), which study geotagged UGC through graph-based deep
learning and machine learning methods (GCN, VGAE and ComplEx) on place un-
derstanding, location estimation and dynamic urban change prediction. Each anal-
ysis chapter targets at the different research questions proposed in Chapter 1.

The key findings and contributions of this thesis can be summarised as followed:

• the spatio-temporal component of UGC provides insights into the semantic
interpretation of their content and benefit the understanding of places, the use
of space, and people’s experience of landscape;

• a combination of the geographic distribution of online participation and the
resulted coded space with various official spatial statistics can be used as a
signal in the process of socio-economic change in cities;

• Spatial is Special: spatial proximity is a key component in developing a viable
quantitative GeoAI model to address the questions in geography.

The information created and distributed through digital platforms is now a sig-
nificant source for scholars to understand the human cognition of intra-urban spatial
heterogeneity (Liu et al., 2020) and the reproduction of urban spaces (Shaw and Gra-
ham, 2017). The intersections between the "code" (Dodge and Kitchin, 2004) of digi-
tal platforms and space capture the "localities" of users’ everyday activities, augment
spatial experiences (Elwood and Leszczynski, 2013) and shape the representations
of places. This thesis provides tools and mathematical models that operationalise
a conceptualisation of users’ online multimedia posts (image and text) as "augmen-
tations" (Graham et al., 2015a) of places, understood as "time-space configurations
"(Agnew and Livingstone, 2011), to understand place representations carried out
through users’ spatial activities. Supporting the research assumption proposed by
Liu et al. (2020), this thesis also proves that a combination of UGC and classic socio-
demographic data provides complementary information of places; thus benefiting
the understanding of their local socio-economic characteristics.

Many machine learning and deep learning models currently adopted in GIScience
and quantitative geographies are a-spatial (e.g., Reades et al. (2019) and Alejandro
and Palafox (2019) in gentrification studies; Huang et al. (2018) in disaster man-
agement; clustering methods in Gale (2014) and Longley and Singleton (2014) for
geodemographic classifications). That is, models do not explicitly incorporate a spa-
tial component. In this thesis, I explore the use of a spatial component encoded as
graph structures and introduce various models that can be directly conducted on



136 Chapter 7. Discussion

the graph generalisations of the spatial data. This thesis highlights the importance
of incorporating a spatial component in the machine learning or deep learning mod-
els; thus, setting forth the future research directions and objectives to devise spatial
models. It is important to emphasise that in the research carried on in this thesis,
all the datasets that are used were example datasets, which were used to demon-
strate the feasibility of the frameworks. The aim was to create flexible frameworks
that one can easily modify and apply to answer specific research questions in the
broader field of geography.

Chapter 4 and 5 mainly focus on geotagged (geolocated and placed) multime-
dia UGC (text and image) analysis to answer research questions RQ1-3, meanwhile,
Chapter 6 utilises the spatial distribution of geotagged social media along with geo-
tagged Wikipedia data and official spatial statistics (i.e., English Indices of Multiple
Deprivation and London output area classification) to answer the research question
RQ4. This chapter highlights the key findings that emerged during this thesis, stress-
ing the contribution to the existing body of knowledge within GIScience, quantita-
tive geography and digital geographies. The chapter also highlights the summary
findings related to the various research questions, the limitations encountered in this
research, and finally, some areas of possible future work.

7.2 Answering Research Questions

In this subsection, I will provide a detailed summary of my research findings which
help answering research questions RQ1-4 proposed in Chapter 1.

7.2.1 Understanding Places through Users’ Spatial Activities

• RQ1: How can we combine information extracted from both text and images from
multimedia UGC to better understand places through users’ spatial activities in a
given geographical area?

• RQ2: How can spatial or spatio-temporal distributions of UGC benefit our under-
standing of places and their representations?

RQ1 and RQ2 are jointly answered in Chapter 4. Based on the experiments and
results presented in Chapter 4, I argue that by extracting combined representations
from images and text from social media posts using my proposed multi-modal au-
toencoder, together with properly encoded spatial or spatio-temporal information,
the proposed deep learning framework has the ability to categorise users’ spatial
activities despite the noisy and imbalanced dataset. The proposed framework con-
tributes to the studies of digital geographies with a useful tool that provides a quan-
titative mean to study users’ activities; thus, it can lead to a better understanding of
how users’ spatial experiences shape and augment the place representations when
studying with a huge volume of data which traditional qualitative methods are un-
able to handle.

By implementing a multi-modal autoencoder to extract combined representa-
tions from images and text on social media platforms, and a graph convolutional
network on spatially and spatio-temporally constructed graphs to categorise users’
spatial activities, I introduce a semi-supervised learning framework based on geo-
graphic adjacency networks to categorise users’ online activities based on their mul-
timedia content on the case study platform Twitter. Based on the literature, where
the majority of research regarding social media analysis in the field of GIScience
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and digital geographies focus on the text, I assume that adding in visual content
can provide a more comprehensive understanding on user’s online content. To test
my assumption, I design and present various experiments in Chapter 4. The results
show that my framework can produce good classification results with partially la-
belled data, even on noisy and imbalanced data such as the one used for the case
study presented in Chapter 4.

To explore how to understand social media posts as "time-space configurations"
(Agnew and Livingstone, 2011) and best encode spatial and spatio-temporal infor-
mation in the graph, I designed various topological structures on both spatially and
spatio-temporally constructed graphs. I test the spatial graphs constructed from a
diverse set of a-spatial, semi-spatial, spatial and spatio-temporal graphs. The results
presented in Chapter 4 show that a GCN model employing a spatially or spatio-
temporally constructed graph achieves reasonably good classification accuracy and
outperforms traditional machine learning approaches (SVM and Label Propagation)
and two state-of-art deep neural networks (DNN and VTCNN, see, Huang et al.,
2018).

The dataset presented in the proposed case study is directly downloaded from
Twitter; thus, the dataset is noisy and heavily imbalanced. Despite that complica-
tion, which is intrinsic in the usage scenario under consideration, acknowledging
that the tool aims to allow users to define their own categories, but uncommon com-
pared to computer science benchmarks, the classification results are still robust. As
illustrated through the fact that although model performance can be affected by the
variation of the tweets in each category in the training data, classification results
are generally consistent and stable. The results demonstrate the robustness of my
proposed framework on a heavily imbalanced dataset, which can be most useful for
studies with "live" datasets. The scalability of the framework is shown by presenting
how the model trained for the case study above can be used to classify a further sam-
ple of unlabeled data using a GCN model employing a spatial graph. As discussed
above, the dataset is noisy (see Section 4.2) and contains data which are challenging
for human annotators to assign labels; however, the framework seems to have been
assigned rather accurate labels among those defined for the case study.

7.2.2 Location Estimation

• RQ3: Can the users’ activity type of social media posts reflect the location of users and
further benefit the understanding of place?

RQ3 is answered in Chapter 5 which has proposed an approach to estimate ge-
olocations of tweets based on a semantic understanding of tweets’ content (i.e., ac-
tivity types labelled by the framework in the previous chapter) and their spatio-
topological structures. I demonstrate that the spatio-temporal patterns of the UGC
can provide an insight into the location estimation process, and knowing the activity
types of the social media posts in the graph can significantly increase the estimation
accuracy.

As discussed in Chapter 5, the understanding of the role played by social media
in exploring place representations has been so far limited by the fact that only a small
percentage of social media posts are geolocated. As such, the experiment presented
in Chapter 5 aimed to harness the dynamics of overall content production from mul-
tiple users in a single place to estimate the location of new non-geotagged content.
Most existing studies are aimed at estimating the location of content focusing on a
coarse level of prediction, and they mainly provide the predictions at the country
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level or city level (Lau et al., 2017) using text-based GIR methods (e.g., geoparsing).
My study is akin and complementary to GIR methodology where placenames are
not explicitly in the text and can benefit the understanding of places through users’
spatial activities and their spatio-temporal patterns that could be related to a place
of interest inside the city at the urban scale.

The proposed location estimation framework can be useful in a scenario where
no placenames can be found in the text. The experimental results indicate that dif-
ferent places attract different types of content and prove the assumption that social
media content is part of the social construction of the place, and certain places tend
to be associated with a certain type of content based on the roles that those places
have for the users of the platform. Therefore, this allows explore the hypothesis
proposed in Chapter 5 that the semantic understanding of social media posts can
contribute to the location estimation of non-geotagged content.

Geotagged social media data not only contains geolocated content (geotagged to
a specific coordinate point) but also has placed posts (geotagged with a placename
and an associated bounding box). Nowadays, accessing the geolocated social media
data is increasingly difficult due to the increasing awareness of privacy and ethi-
cal concerns, which leaves the modelling of data only with bounding boxes a vital
research objective to explore. Spatial modelling with bounding boxes are far less
intuitive comparing to the modellings using coordinates as there is no information
about the absolute locations of the content to construct the spatial graphs explicitly.
As such, I explored the use of bounding boxes with the proposed hierarchical mod-
elling, and each node in the graph represents a bounding box of a social media post.
The GAE-based framework based on the best hierarchical modelling choice which
is proposed in Chapter 5 can provide over 30% Top-1 location estimation accuracy
and over 50% Top-10 accuracy. The hierarchical modellings focus on the nature of
the hierarchy of the bounding boxes defined by the digital platform (Twitter in the
case study). This study sets forth the future research direction for new possibilities
of spatial modellings using UGC, considering the increasing difficulty of accessing
geolocated information of social media posts.

7.2.3 Dynamic Socio-demographic Prediction

• RQ4: How can the distribution of UGC benefit the modelling of urban socio-demographic
change and inform our understanding of places?

To answer RQ4, Chapter 6 explores the use of knowledge graphs to model ur-
ban socio-demographic change using various datasets including geodemographic
classifications (OAC and LOAC), UK Indices of Multiple Deprivation (IMD), and
distribution of geolocated Twitter data and Wikipedia articles in England with the
adopted machine learning algorithm (i.e., ComplEx). The results highlight that a
combination of the geographic distribution of online participation and the resulted
coded space with various official spatial statistics can be used as a signal in the pro-
cess of socio-economic change in cities.

The socio-demographic classification has a longstanding history in being used to
describe places using various spatial statistics at defined (physical) spaces. While the
majority of research on socio-demographic classification focuses on static represen-
tations of cities, temporal modelling and predictive geodemographic classification
have attracted a growing interest within the field of GIScience. In the study of gen-
trification and urban dynamics, most of the models currently discussed seem to be
fairly a-spatial (e.g., Reades et al., 2019; Alejandro and Palafox, 2019). However,
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urban development can be a spatial process, whereby once an area gentrifies, neigh-
bouring areas might be affected by that gentrification process independently or in
conjunction with other factors.

A key, novel aspect of my approach is the use of VGI data (Twitter and Wikipedia
articles) in modelling urban change. Compared to the conventional official spatial
statistics, VGI data are often huge in volume and high in velocity. Such characteris-
tics may enable VGI to capture the dynamics of neighbourhood change that are not
easily understood with decadal censuses. Ballatore and De Sabbata (2019) identified
a number of associations between the spatial distributions of VGI data and socio-
demographic characteristics of urban areas. Reades et al. (2019) also suggested VGI
can be a critical complementary benefiting the understanding of urban development.
On such basis, in Chapter 6, I start from the assumption that the spatial concentra-
tion of VGI data can help predict urban socio-demographic changes. That is, a high
concentration of VGI data correlate with less deprived areas.

Taking geographic information into account, the study area of knowledge graph
has played a vital play in answering geographic research questions from various
perspectives, such as geographic knowledge graph completion (Qiu et al., 2019),
geographic ontology alignment (Zhu et al., 2016), geographic question answering
(Mai et al., 2019; Mai et al., 2020), etc.. This study explores the use of knowledge
graphs encoding various geographic information (spatial neighbouring information,
geodemographics (OAC and LOAC), IMD and spatial patterns of VGI) in the task
of deprivation deciles prediction using three cases studies in the Kensington and
Chelsea borough of London, Greater London and England. I demonstrate that my
proposed framework can predict socio-demographic changes with a high accuracy
(over 70% accuracy with only 15% sample data) and also illustrate how most errors
are still within a reasonably small bracket and that the more is consistent and robust
in its prediction when changing the number of OAs. The experiment conducted
on Greater London and England demonstrates the robustness and scalability of the
proposed framework on a larger dataset. It shows that my proposed framework
has the potential to be developed into a useful tool predicting socio-demographic
changes within the study of GIScience.

Furthermore, I explore which factors have the most significant impact on the
process of inferring the dynamics of urban deprivation levels. As expected, I show
that the more information the knowledge graph has, the more accurate the predic-
tions are. The results suggest that spatial neighbouring information is crucial for my
proposed framework, which highlights the geographic nature of the phenomenon
under study, whereby urban development can be a spatial process, and many of the
variables usually are spatially autocorrelated. Once an area gentrifies, neighbouring
areas might be affected by that gentrification process independently or in conjunc-
tion with other factors. The study demonstrates the fact that spatial is special, where
the addition of a spatial component to the model would likely improve the output.

7.3 Conclusions

This section starts with answering the main research objective pursued in this dis-
sertation was proposed in Chapter 1:

• How can the use of content production of UGC inform our understanding of place
representations and socio-economic characteristics?
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This thesis has proposed and tested three GeoAI frameworks to answer the main
research question. Through the introduction of two graph convolutional neural
network-based frameworks which can incorporate the spatial as well as temporal
information of UGC, I demonstrate that by explicitly taking into account the spatio-
temporal relations between posts into the deep learning models, it allows us to go
beyond the geotag (Crampton et al., 2013) and better understand how users’ spa-
tial activities shape the place representations. Thus, this thesis suggests closer at-
tention to the spatio-temporal variations of the social and spatial processes carried
out by the UGC content production and emphasises the importance of developing
spatio-temporally-awareness frameworks or algorithms when quantitatively study-
ing place representations with UGC in the field of digital geographies and GIScience.
The studies on the knowledge graph-based framework investigate the possibilities
offered by UGC in the field of GIScience to study city development and highlight
that a combination of the use of UGC and conventional official spatial statistics can
be a useful approach in studying how online participation impact the understanding
of the urban dynamics and neighbourhood change.

This thesis makes four contributions in four different fields of geography: first of
all, from a GIScience perspective, it provides frameworks with higher classification
and prediction accuracy but requiring fewer sample data, thus, contributing to an
advanced framework to summarise spatial characteristics of places. Secondly, from
a digital geographies perspective, it shows that multimedia content provides rich
information regarding places, the use of space, and people’s experience of the land-
scape; thus, benefiting a better understanding of place representations. Thirdly, this
thesis illustrates that the spatial patterns of UGC can be adopted as a useful proxy
to understand urban development and neighbourhood change. Finally, this thesis
reinforces the concepts that Spatial is Special. Spatial processes are commonly spa-
tially autocorrelated while the mainstream of machine learning methods does not
explicitly incorporate the spatial or spatio-temporal component to address such a
speciality of spatial data. This thesis highlights the importance of explicitly incorpo-
rating spatial or spatio-temporal components in the models in geographical analysis
and devise various frameworks suitable for spatial analysis.

The quantitative spatial-explicit graph-based frameworks in this thesis contribute
to significant technological advancements to the study of digitally-mediated place
representations using UGC. As introduced in Chapter 4, given the increasing pop-
ularity of image-focused online platforms (e.g., Instagram, Flickr), visual content
can also provide rich information regarding places, the use of space, and people’s
experiences of landscape. This thesis bridges the gap between quantitative textual
processing and visual content analysis, which provides a tool to classify large vol-
umes of multimedia UGC that is unrealistic to process manually, based on a set of
predefined labels tailored to a specific project or task.

Furthermore, instead of merely focusing on content analysis of geotagged UGC
(e.g., Huang et al., 2018), the studies in this thesis demonstrate the importance of
understanding the content geographically as well as temporally. The experimental
results in the case studies reinforce the concept that spatial as well as temporal infor-
mation, are two essential components when studying place representations (Agnew
and Livingstone, 2011). As introduced in Chapter 2, given the fact that most studies
in digital geographies emphases in-depth, often ethnographic and more qualitative
research methods, this thesis opens up new research objectives towards quantitative
digital geographies by developing interdisciplinary methodologies working across
the quantitative and qualitative realms (Sui and DeLyser, 2012) to understand the
potential complementary value of the GeoAI approach to UGC studies.
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Another important implication of this thesis is its ability to underpin a novel
analysis of urban dynamics. The socio-spatial structure of cities and metropolitan ar-
eas changes over time facing the rapid development of urbanisation and the increas-
ing demands of understanding socio-economic structures of society. However, the
majority of socio-demographic data are commonly collected periodically (e.g., cen-
sus). UGC is an important new and fast-growing source of information, it not only
has become one of the proxies to study the digital representation of the cities based
on the digital social practices produced online but also drove our understanding of
the modern socio-spatial structures at the urban scale. As mentioned in Chapter 2
and Chapter 6, UGC can be considered as the proxy to understand the correlations
between the spatial patterns of UGC and the underlying city’s socio-demographics
at the urban scale, this thesis highlights that UGC data would be well served by
combining it with other data sources such as census and deprivation index to un-
derstand and predict the urban changes. Such an implication strongly supports and
justifies what Crampton et al. (2013) suggested that ancillary datasets would be es-
sential when utilising UGC and big data methods to study socio-spatial changes or
phenomenons.

By encoding space and time into deep learning and machine learning models,
the performances of the proposed models in this thesis are superior to the traditional
models that are a-spatial. The proposed models may have an essential impact on ge-
ographical studies such as Reades et al. (2019) which aims to use machine learning
to study urban changes or Huang et al. (2018) which targets to apply deep learning
methods for the multimedia content analysis of geotagged social media data. The in-
corporation of the spatio-temporal element may significantly improve the model ac-
curacy and contextualise the algorithms being suitable for the spatial analysis. This
thesis sets forth future research directions as well as highlighting the importance
of devising geographically-aware machine learning or deep learning tools within
quantitative geographical studies.

As a demonstration of the capabilities of UGC in the context of place representa-
tion and urban studies, this thesis can be a useful marker of the need for a rapproche-
ment across the "qualitative-quantitative divide" (DeLyser and Sui, 2013). This thesis
is not claiming to have fully explained or "solved" the problem of urban dynam-
ics and digital representations of the places, nor am I suggesting that the quantita-
tive approaches and models proposed supersedes the intensive, on-the-ground or
survey-based work undertaken by so many before.

In summary, this thesis opens a new "front" in geographical studies aiming to
understand the place and its representations, by bridging UGC and the development
of quantitative spatial-explicitly GeoAI methods. I hope that, in the development of
quantitative models and algorithms which incorporate UGC as an essential source
of information to understand place and urban dynamics, we are ultimately able to
identify ways that can benefit our understanding of the online socio-spatial process
in the urban context and its impact on the physical environment we are living in.

7.4 Limitations

This section has the purpose of discussing the limitations of the work presented in
this thesis, pointing out possible solutions to overcome them. My efforts to explore



142 Chapter 7. Discussion

place representations and their socio-economic characteristics consist of three differ-
ent graph-based frameworks: a GCN-based framework for understanding place rep-
resentations, a graph autoencoder framework for location estimation and a knowl-
edge graph urban change framework. The remainder of this section discusses the
issues I have identified while conducting this body of research, for each aspect of
my contributions summarised in the previous sections.

Before addressing the limitations regarding each analysis chapter, I will provide
an introduction to the general limitations rooted in the nature of this thesis, and they
will be

• Scale: scale is a missing point which was not explicitly discussed in Chapter 4
and 6 of this thesis. In geography, the scale has multiple referents as introduced
in Mason (2001): Cartographic scale refers to the depicted size of a feature on a
map relative to its actual size in the world. Analysis scale refers to the size of
the unit at which some problem is analysed, such as at the county or state
level. Phenomenon scale refers to the size at which human or physical earth
structures or processes exist, regardless of how they are studied or represented.
Analysis scale is the concerning point within the scope of this thesis, which
raises the challenge of the research and leads to uncertainties in data as well as
the results. Detailed discussions regarding the scale will be provided in Section
7.4.1 and Section 7.4.3.

• Modifiable Areal Unit Problem (MAUP): the MAUP is statistical bias that can sig-
nificantly impact the results of the hypothesis tests, and it was not explicitly
discussed in Chapter 5 and 6. MAUP affects results when spatial phenom-
ena in the form of point-based measures are aggregated into districts, and the
resulting summary values (e.g., totals, rates, proportions, densities) are influ-
enced by both the shape and scale of the aggregation unit (Wong, 2004). In this
thesis, MAUP is also an inevitable issue. For example, in Chapter 5, when un-
derstanding place representations using placed UGC, it inherently requires the
data aggregated in a given size of "district" (in the form of bounding boxes);
in Chapter 6, the spatial distributions of Twitter and Wikipedia are aggregated
into OAs and LSOAs. Future research will need to investigate such an issue in
the study and devise methods to mitigate its impact on the results.

• Uncertainties: the uncertainties in this thesis including quality of UGC, Twitter
bots, Wikipedia areas as points, uncertainties in the creation of OAC2011 and
LOAC classification and IMD, age of the data (e.g., census data for creating
LOAC and OAC2011 was published in 2011). Detailed discussions will be
presented in the following subsections.

• Machine learning or deep learning as black box: despite many of existing research
and the studies in this thesis have proven the utility of machine learning or
deep learning approaches in spatial analysis, other researchers are criticising
machine learning or deep learning for creating models that are black boxes that
produce results but do not explain phenomena, and sometimes can not really
be examined (Krishnan, 2019). Moreover, the uncertainties within the data can
propagate through the learning process of the models and further impact the
accuracy of the results (Xing and Sieber, 2018). The machine learning or deep
learning models developed and adopted in this thesis still in the face of such a
"black box" issue, which impact the confidence of models’ output and lead to
uncertainties on the results.



7.4. Limitations 143

• Labelling: this limitation is relevant to Chapter 4 and 5. The labelling process
of the UGC was done by me and on a small scale. A larger dataset could have
been created through crowdsourcing, e.g., with Amazon Mechanical Turk. Al-
though my proposed approaches still fit the case study scenario in digital ge-
ographies, and the experiments in the related chapters are the first test to focus
on evaluating the models. Broader tests will be done in the future.

7.4.1 Understanding Place Representations

As illustrated in the related chapter and experiments, despite the fact that I prove
that a graph which encodes locations, temporal information as well as distances be-
tween nodes can perform comparably the best results, such a framework still has no
universal graph structure because the choice on constructing a minimum spanning
tree remaining as a hyperparameter. Using 3 kilometres as the radius to construct
the spatial graph using the case study dataset achieved the best results among all
spatial graphs presented in Chapter 4, and the spatio-temporally constructed graph
with 4 kilometres as radius achieved the best results among all comparisons. How-
ever, the choice of the radius presented in this case study is task-specific. That is,
it requires further investigation into such a hyperparameter when the framework
applies to a new dataset. Depending on the scale of the study area, the choice of the
radius might change. It refers to the scale issue mentioned before, where the scale of
the study area raises research challenges to decide the hyperparameter in the model.
Thus, it over-complex the framework for the users by training on different structures
and choosing the best one.

Currently, the feature extraction from the multi-modal autoencoder and the graph-
based semi-supervised training are separated in two subsequent stages, which is not
a so-called "end-to-end" framework. Thus, this framework currently can not be de-
ployed as an off-the-shelf tool for digital geographies and social science researchers
to use independently. Thus, it requires further engineering to simplify the complex-
ity of the use of the framework.

7.4.2 Location Estimation

Despite the fact that the result achieved in the location estimation tasks is reasonable,
the variation of the estimation accuracy is between 2% to 5% every time running the
model due to the model’s automatic hyper-parameter optimisation process. This is
often because each time the stochastic deep learning algorithm is run on the same
data, it learns a slightly different model. Therefore, the model may make slightly
different predictions, and when evaluated based on error or accuracy, may have a
slightly different performance. Thus, the results produced by the framework are not
stable enough. Moreover, the location estimation accuracy achieved by the frame-
work is relatively low. To achieve good results, the framework would need to be
combined with complementary approaches in the field of geographic information
retrieval using geoparsing or text analysis on the content.

7.4.3 Urban Change

One of the major limitations in the studies presented in Chapter 6 is the uncertainties
regarding the data quality in each dataset. As discussed in Section 3.1, although I
designed a 2-step process to exclude as many bots as possible in the dataset, it is still
impossible to identify every bot. In future research, it requires a more sophisticated
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process to exclude the bots in the social media posts more accurately; for example,
by applying machine learning approaches (Efthimion et al., 2018).

As discussed in Ballatore and De Sabbata (2018) and Chapter 3 of this thesis, geo-
tagged Wikipedia areas are in the form of points pinpointed in the map whereas the
decision about where to locate entities is a combination of the platform guidelines
and the editors’ arbitrary choices. As a result, the same entity can be pinpointed in
different locations in different language editions. Such inconsistencies of geoloca-
tions of Wikipedia articles might lead to uncertainties when analysing urban change
and place representations. Thus, further investigation is needed to reduce the impact
of the uncertainties within the geolocated Wikipedia data.

Uncertainties are also rooted in the nature of the creation of geodemographic
classifications and IMD, regarding OAC2011 and LOAC adopted in this thesis. As
discussed in Slingsby et al. (2011), population profiles of geographical areas may
share many or few characteristics with multiple categories, yet each is assigned
to one category. Such phenomena result in heterogeneity within these categories,
which varies by category and geographical region. Differences in the share of the
population classified into each of the categories at a local level affects the discrim-
inating potential of the classifiers. Although efforts (e.g., Fisher and Tate, 2015)
are made to mitigate these problems, they cannot be eliminated. Also, the census
data was published in 2011, and the OAC2011 and LOAC were published in 2014;
thus, it is questionable whether the geodemographic classifications adopted in this
thesis can capture the latest geographical phenomena. IMD also has practical is-
sues concerning the data quality of deprivation index creation. Clelland and Hill
(2019) pointed out that area-based deprivation measures risk missing out a signif-
icant number of people who experience deprivation but do not live in "deprived"
areas because IMD approach fails to give much weight to deprivation which is not
geographically concentrated. That is, rural areas are inherently less likely to feature
amongst those ranked as most deprived.

Another important limitation in this study is relevant to the scale issues of "down-
scaling" and "upscaling" (Aoyama et al., 2010). In Chapter 6, I illustrated how I
downscale the IMD deciles from LSOA-level to OA-level area. However, the aggre-
gated value calculated at one area unit (LSOA) might not necessarily apply equally
to all parts of the area (OA), which can lead to uncertainties in the model’s output.
In my future research, I will adopt the data which for the creation of IMD and create
similar IMD deciles at OA-level areas to mitigate such an issue. Also, I demonstrated
in Chapter 6 how I upscale OAC2011 categories from OA-level to LSOA-level areas.
Such an approach I adopted was relatively naive that ignores the impact of informa-
tion loss that may markedly under-represent or over-represent spatial variations in
an area (Lloyd, 2016). Thus, as suggested by Aoyama et al. (2010), I will adopt more
sophisticated methods such as statistical analysis to help with the upscaling of the
OAC2011 categories in my future research.

In my current implementation of the spatial knowledge graphs, the information
regarding geolocated UGC that encoded in the graph is only taking into account
their spatial distribution and counts in each area. More sophisticated modelling
can be adopted for the construction of graphs, such as UGC content analysis, social
network analysis, etc.

As discussed in Section 6.5, the errors produced by the framework present spa-
tial clusters, which indicates that the ComplEx and proposed SKGs do not fully cap-
ture the full spatialities of the data. Such an issue may be the key aspect to further
improve the performance of the proposed method. Further modelling about how
to better incorporate the correlation between datasets and spatial autocorrelation
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within each dataset will be a fundamental research objective that will enhance the
model performance and help the method to produce more robust results.

The knowledge graph represented here lacks what are known to be the socio-
demographic correlates of urban neighbourhoods. OAC2011 and LOAC and IMD
adopted in this thesis are effectively proxy variables rather than measures directly
linked to urban change (e.g., number of people displaced). Typical urban socio-
spatial models have many more "layers" (nodes here) of data that are often available
at fine spatial and temporal granularity, like cars, bikes, pedestrian traffic, property
values, crimes, etc.. By including complimentary descriptors based on these data,
the performance of the framework is expected to be increased.

While some of these limitations have a manageable solution (e.g., encoding com-
plementary information in the knowledge graph), others present more profound
challenges, approachable via more extensive research efforts, such as performing
exclusive explorations on the possibilities for graph representations of social me-
dia posts. My contributions to place representation understanding within digital
geographies should be considered as promising starting points to provide practical
quantitative tools in real-world applications, enabling a more effective usage of the
information generated through UGC and VGI. The next section outlines my plans
for future work, pointing out directions that I deem promising.

7.5 Outlook

This thesis contributes to the discipline of digital geographies, GIScience and GeoAI
by providing researchers novel deep learning methodologies and frameworks to
quantitatively and efficiently study the digitally coded space and place represen-
tations with geotagged UGC data and to understand and predict socio-economic
changes within areas combining UGC with survey-based (e.g., census) official spa-
tial statistics. Advancing this research area may have positive outcomes for a num-
ber of advanced "real-world" geographic applications and studies, for which the in-
terpolations of UGC are key.

Although my studies mainly adopt Twitter for case studies, it is important to
mention that the adopted and developed approaches can apply to any other crowd-
sourced datasets, in which content generation can be considered as a social creation
process interacting with the use of space. These contributions not only constitute se-
mantic support for social media studies but also can be extended in several promis-
ing directions. Among many other possible directions for future research, I identify
the following as particularly important:

• In the scope of my research proposed in this thesis, each social media post are
only labelled into one category of user’s behaviour. However, social media
posts could be classified into multiple categories. For example, a social media
post regarding Food might also be classified into Social when the post is taken
during a party. As such, there exist potential uncertainties in the semantic
understanding of users’ activities by forcing a "one-to-one" match between the
social media post and defined categories. In my future research, I am interested
in exploring a fuzzy logic classification, where multiple labels can be attached
to each tweet. This approach would be well suited with case studies such as
the one presented above in the field of digital geographies, where frequently
more than one label can be attached to a single piece of text or image during
qualitative content analysis. Such a fuzzy logic approach has the potential to
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mitigate the issue caused by human labelling process as one social media posts
can be labelled from different perspectives.

• The location estimation framework is currently based on just the semantic la-
bels of each social media post. Although those labels are categorised on mul-
timedia content in the case study, they are not directly using the features ex-
tracted from multimedia content. Future research will aim to expand the graph
autoencoder model presented in this thesis, substituting the labels with con-
tent features extracted through the multi-modal autoencoder also proposed in
this thesis, to achieve a more sophisticated and automated understanding of
the semantic content of social media posts.

• The graph representation for placed social media posts in Chapter 5 can be
benefited by encoding other soico-spatial information in the graph, such as
following-followers network as mentioned in Liu and Huang (2016); or to en-
code the survey-based data to help with understanding the places by explor-
ing spatial clusters of activities, and further benefiting the location estimation
accuracy.

• As mentioned in the previous section, in my current implementation of the
spatial knowledge graphs, I used OAC2011 and LOAC and IMD in this the-
sis. They are effectively proxy variables rather than measures directly linked
to urban change (e.g., number of people displaced). In my future research, I
will aim to work directly with socio-demographic variables to model urban
changes.

Among all above-mentioned research goals, improving the location estimation
framework will stand at the centre of my future research. As mentioned in this the-
sis, accessing the geolocated UGC content is now increasingly difficult. A better
location estimation framework will be crucial in understanding the place represen-
tations through users’ lived experiences using my activity classification framework,
as well as benefiting the predictions of my knowledge graph framework on dynamic
urban changes.
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Appendix A

Showcase of Multi-modal
Autoencoder

The proposed multi-modal autoencoder was published as:

• Pengyuan Liu and Stefano De Sabbata, 2019. Learning Digital Geographies
through a Correlationbased Autoencoder. In GeoAI and Deep Learning Sym-
posium: Geo-Text Data and Location-based Social Media, American Association of
Geographers Annual Meeting 20191.

The overview of the proposed multi-modal autoencoder is shown in Figure A.1.
To illustrate the usefulness of the proposed multi-modal autoencoder, I evaluate the
model on a dataset extracted of social media posts collected through the Twitter
API between 7th May, 2018 and 20th May, 2018 in the British Isles. I select tweets
containing images, texts, and exact coordinates, and limit the amount of tweets per
account to 10, obtaining a dataset of 2876 tweets.

Based on the assumption that there is correlation between the contents of the
posts (image and text) and their corresponding geolocations, I perform kernel canonical-
correlation analysis (CCA) on the created dense, numeric representation from each
tweet and its corresponding geo-location. I first employed principal component
analysis (PCA) to reduce the dimension of the extracted representations from 399424
to 98 with 98.2% information preserved, and then t-Distributed Stochastic Neighbor
Embedding (t-SNE) to reduce the dimension from 98 to 2. The Kernel CCA algo-
rithm is thus used to create new 2-dimensional representations. Finally, agglomera-
tive hierarchical clustering algorithm is used to cluster the newly created represen-
tations as 42 different clusters.

A preliminary analysis of the results in this paper seems to indicate that the pro-
posed model with an additional correlation analysis with geo-location information
has the ability to capture both content similarities of images and texts and geograph-
ical closeness.

1Code to reproduce this framework is available at: https://github.com/PengyuanLiu1993/
PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification/Multi-Modal%
20Autoencoder

https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification/Multi-Modal%20Autoencoder
https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification/Multi-Modal%20Autoencoder
https://github.com/PengyuanLiu1993/PhD_Thesis_Codes_PengyuanLiu/tree/master/GCN_Activities_Classification/Multi-Modal%20Autoencoder
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FIGURE A.1: Proposed Multi-modal autoencoder.
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Appendix B

Urban Change and User Generated
Content

FIGURE B.1: The a-spatial regression model using IMD 2015 depriva-
tion scores to predict IMD 2019 deprivation scores.
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FIGURE B.2: The a-spatial regression model using IMD 2015 depriva-
tion deciles to predict IMD 2019 deprivation deciles.

Model (Spatial Error) Pseudo R-square Log likelihood AIC
Scores 0.959893 -10856.98 21718.00

Scores + Twitter 0.960059 -10838.95 21683.90
Scores + Wikipedia 0.959908 -10853.23 21712.50

Scores + Twitter + Wikipedia 0.960062 -10838.87 21685.70

TABLE B.1: Spatial lag models on IMD scores.

Model (Spatial Error) Pseudo R-square Log likelihood AIC
Deciles 0.940131 -4582.98 9169.96

Deciles + Twitter 0.940423 -4563.29 9132.58
Deciles + Wikipedia 0.940196 -4576.52 9159.05

Deciles + Twitter + Wikipedia 0.940421 -4563.24 9134.48

TABLE B.2: Spatial lag models on IMD deciles.
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FIGURE B.3: Spatial lag regression model using IMD 2015 depriva-
tion scores to predict IMD 2019 deprivation scores.

FIGURE B.4: Spatial lag regression model using IMD 2015 depriva-
tion deciles to predict IMD 2019 deprivation deciles.
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FIGURE B.5: Spatial lag regression model Using IMD 2015 depriva-
tion scores in combination of Twitter distribution patterns to predict

IMD 2019 deprivation scores.

FIGURE B.6: Spatial lag regression model Using IMD 2015 depriva-
tion deciles in combination of Twitter distribution patterns to predict

IMD 2019 deprivation deciles.
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FIGURE B.7: Spatial lag regression model Using IMD 2015 depriva-
tion scores in combination of Wikipedia distribution patterns to pre-

dict IMD 2019 deprivation scores.

FIGURE B.8: Spatial lag regression model Using IMD 2015 depriva-
tion deciles in combination of Wikipedia distribution patterns to pre-

dict IMD 2019 deprivation deciles.
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FIGURE B.9: Spatial lag regression model using IMD 2015 depriva-
tion scores in combination of Twitter and Wikipedia distribution pat-

terns to predict IMD 2019 deprivation scores.

FIGURE B.10: Spatial lag regression model using IMD 2015 depri-
vation deciles in combination of Twitter and Wikipedia distribution

patterns to predict IMD 2019 deprivation deciles.
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