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Abstract

In the Internet of Things (IoT), the traditional architecture aims to process

the data in the cloud. This creates several challenges such as high com-

munication latency between the end devices and the cloud while making

the network busy by sending all the raw data continuously. In this thesis,

we propose an alternative architecture for the IoT which processes part of

the data in the fog to avoid all raw data to be sent to the cloud. How-

ever, the cloud processes intensive data analytics. We conduct a trade-off

analysis to show the advantages of applying data fusion closer to the data

source and then processing the intensive data analytics algorithms in the

cloud. We explore the effectiveness of the available architectures includ-

ing centralised, decentralised, and distributed architecture to propose the

most effective data analytics architecture for the IoT. The trade-off analysis

shows the effectiveness of various service decomposition strategies leading

to an understanding the various balances between Fog and IoT processing

and their effectiveness in data communications reduction and result accu-

racy allowing achievements of 70% data communication reduction while still

achieving approximately 90% accuracy. We propose a service distribution

strategy called Most Efficient IoT Node (MEIN), which aims to distribute

the services to either cloud nodes or fog nodes based on their capabilities

while maintaining the usage of resource in IoT architecture. This strategy

selects the best nodes and distributes the services on nodes based on the

demands of services and capabilities of nodes.
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Chapter 1

Introduction

Recently, the IoT has become one of the most trending topics among re-

searchers in academia and business. The Cluster of European Research

Projects on the Internet of Things (CERP-IoT) defined the IoT as allowing

“people and things to be connected Anytime, Anyplace, with Anything and

Anyone, ideally using Any network and Any service” [98]. The IoT has

extended the Internet’s vision by connecting physical objects in our envi-

ronment to the internet. The vision of IoT includes cyber-physical function-

alities, data gathering, data analytics, volatility, and heterogeneity. In the

IoT, the objects can be any objects that can have an internet connection,

also can collect and share data over the network without the intervention

of human that allows us to produce insights and get useful information.

Sensors embedded in many everyday physical objects around us play

a key role in the IoT. These sensor embedded objects include vast sensing

capabilities [70] and can then send the data through the network to decision

points typically in the cloud. After collecting the data, there is a need to

analyse them to gain insights to help, automate and speed up decision

making [75]. In other words, the idea is to enrich the objects in our daily
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life with sensors that collect relevant information about the state of these

objects. Our aim is to analyse all this local data near to the data source,

then only communicate relevant insights to the cloud. In a data driven

economy, the data and insights are considered as the main goods [67].

The IoT devices have been created with limited computational capa-

bilities and constraints which are part of their characteristics. In addition

to the constraints of devices, the services have constraints which make the

process of distributing the services to the devices difficult. This allows the

approaches that are built-in software engineering area to focus on the cloud

platforms that have significantly more capabilities than the IoT devices.

Cloud computing uses remote servers that are available on the Internet for

several purposes including data storing, management and processing. This

is an effective way to have extremely high computation power from various

sources and provide the fastest service to the users. However, in some cases,

the data needs to be processed and analysed locally to have increased pri-

vacy, fast responses to the users and to have reduced usage of network and

storage resources.

There are several projections regarding the amount of internet-connected

devices and how the IoT will affect on the internet and economy during

the next decade from business and academia. For example, Cisco projects

that “there will be 29.3 billion networked devices by 2023, up from 18.4

billion in 2018 ” [7]. Besides, the number of M2M connected devices will be

increased from 6.1 billion in 2018 to 14.7 billion by 2023. However, Gartner

expects that the amount of internet-connected will be around 20 billion

devices by 2020 [48]. Furthermore, the IoT will have a financial impact

on the worldwide economy between $3 to $11 trillion by 2025 as estimated
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by McKinsey Global Institute [58]. It is clear that these projections are

educated guesses in numbers, but all of them point at the effect of IoT on

the internet and the economy.

Hypothesis of this thesis is that there is a need for distributing data

processing over the network by pushing the data processing near to the

data source to find the best place for services to process them. In this re-

gard, fog computing has been proposed to collect, process and analyse the

sensors’ data locally in the IoT devices. Fog computing can be considered

as a distributed cloud computing that is deployed on the edge of the net-

work, but with limited capabilities. Moving the data processing near to

the data source is challenging, but also, determining which services should

be distributed to which devices need to be considered as one of the main

challenges.

There has been a recent interest in moving away from centralised data

processing centres to a more distributed fog computing paradigm to bring

computing to the edge of the network, closer to user devices [16, 19, 46].

Fog computing is defined as a hierarchically distributed computing paradigm

that bridges cloud data centres and IoT devices [23]. The combination of

IoT devices and fog computing enables smart environments that can respond

to real-time events by combining services offered by multiple heterogeneous

devices. IoT based on fog computing and distributed data processing is

still under research and different challenges remain open. Though there

have been advances in fog computing with proposals for reference archi-

tectures [38], practical realisations need to tackle the challenge of resource

management [102]. A recent study [102] identifies that local resource man-

agement has to consider the following problems: Provisioning the fog nodes
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to execute the workloads that are distributed from the cloud, resource man-

agement of fog nodes and deployment of workloads to fog nodes.

The IoT data life cycle starts from producing data, collecting sensors, fil-

tering, fusing and pre-processing, to storage and archiving, finally to query-

ing and analysis [12]. In the IoT system, there are different nodes in the

network including IoT nodes, fog nodes and cloud nodes. There are two

levels in the network namely fog level and cloud level, the fog level has IoT

nodes and fog nodes which are constrained devices and the cloud level has

an unlimited number of devices with high computational power. A device

can be considered as a constrained device when the characteristics of the

device have constraints on ROM, RAM, processing power and energy [24].

All of these require knowledge and an awareness of the resources available

on fog devices as well as constraints related to the services that run on

such nodes. Existing approaches do not focus on service constraints or the

data computation capabilities of local devices [103]. Moreover, the range of

possible data computation capabilities in the IoT devices also needs to be

taken into account when distributing service processes among the nodes.

So, in this IoT data processing, we are going to focus on the distribution

of computation across the entire space. For example, the fog level should be

responsible for collecting, filtering, fusing and pre-processing the data. In

addition, based on IoT and fog nodes’ capabilities analysing and processing

the IoT data will be done. Otherwise, the final data analytics is performed

globally based on the data resulting from the local preprocessing of local

data. This means that data analytics can be done at both levels of fog and

cloud. These levels play an important role in different stages.

The remainder of this chapter will discuss research problems and chal-
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lenges, contributions followed by the thesis statement. Then, it will give an

overview of the whole remaining parts of the thesis.

1.1 Research problems and challenges

As we mentioned earlier, the (IoT) objects will produce a significant amount

of data when they are connected to the internet and communicate over the

network. In a centralised architecture, the aim is to process the data in

a single point of decisions possible in the cloud. As a result, a significant

amount of data needs to be communicated to the cloud. This architecture

creates a number of challenges such as high data communication over the

network. This means that there is a need to have an alternative architecture

to counter these weaknesses.

Constraint awareness is an important aspect of the design of the IoT

architecture as it will connect a large number of devices with varying com-

putational capabilities, storage, battery power and Internet connectivity.

Further, there will be a variety of services with different requirements (e.g.

resource requirements, data requirements, latency requirements). These

services will run on IoT nodes which are constrained devices, and services

will use bandwidth. This means there is a strong relationship between the

services and nodes in the IoT. The main challenge is to determine which

services should be run on either fog devices, the cloud devices or both fog

and cloud devices in a given IoT architecture, by considering both overall

efficiency and feasibility.

Besides, the management of resources at the edge of a network is crucial

for evaluating the potential of fog computing. Proposing an efficient archi-

tecture for the IoT brings several challenges. Personal data store [73] is an
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example of where addressing these challenges becomes a necessity.

As the IoT system becomes big and complex, the deployment of services

in a distributed architecture will be complex which will require a way to

decompose the big size services into smaller services, then distribute the

services to the node/s effectively, which will lead to finding the ideal ar-

chitecture. This can lead to many challenges, we are going to address the

following research challenges (RC) and answer the following research ques-

tions.

RC1. Most of the research and existing work in the field of the IoT relies

on cloud computing, because of the offered power in terms of processing

and storage. The common way to process the data is to send all data to the

cloud and return results after analysis. In addition to the significant power

available in the cloud, the processing in the cloud means that as complete

a collection of data is available to analysis as can be obtained.

However, processing all streaming raw data in the cloud negatively af-

fects several aspects, such as increased network traffic, latency (to get ac-

tions back to the user), energy consumption and privacy. As the IoT grows

the need to tackle these issues grows. This means that there is a need to

explore the possible architectures, then apply experiments in the architec-

tures to check which architecture is the most efficient. Then, we need to use

the best architecture to evaluate and validate the architecture’s efficiency.

The following issues are the key issues to address:

1) How to process data in the IoT in an efficient way?

• Where to process the data in the network?

• How to move the computation near to the edge of the network?
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• How to evaluate the efficiency of an architecture?

• How to handle large data that will be sent over the network?

RC2. Exploring different architectures is important to check the efficiency

of each architecture. This can be a challenging process, because finding the

most effective architecture needs a trade-off analysis to demonstrate the

advantages and disadvantages of each architecture. Moreover, IoT devices

have limited capabilities, which means that not every device is capable of

processing all the services. Thus, there is a need to decompose services

into smaller services, then distribute them among the IoT devices, also we

cannot ignore the power of the cloud in cases where IoT devices cannot

handle the services.

Hence, we need to explore and demonstrate the effectiveness of service

decomposition and distribution by applying experiments and using different

types of datasets. After applying experiments, the results will indicate the

efficient and inefficient architecture with the given configuration and setup.

It is not possible to say that one of the architectures is the best for all types

of data and applications. The following issues are the key issues to address:

2) How to identify the most effective data analytics architecture

for the IoT?

• What are the strategies to use while exploring the architectures?

• What aspects can affect the architecture’s efficiency?

• How to select an effective architecture?

• How to evaluate and validate the effectiveness of an architecture?
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RC3. The IoT and fog nodes are constrained devices because of their

limitations in processing power. Therefore, it is not possible to process

large workloads on fog nodes. Moreover, it is difficult to make a decision

about the amount of computation load that can be assigned to a fog node.

Also, distributing the intelligence across the fog nodes is challenging

since most of the neural network, artificial intelligence and machine learn-

ing algorithms require high processing power. Therefore, we need to know

and have full knowledge of the nodes and services. Then we need to do

optimisation in the process of distribution of services on the nodes while

maintaining the resource usage in an efficient way. The following issues are

the key issues to address:

3) How to distribute services to the nodes according to their re-

sources?

• What are the capabilities of nodes and the requirements of services?

• How to distribute the services to the nodes in the network?

• How important is service distribution strategy and optimising the re-

source usage?

• How to evaluate the efficiency of the distribution strategy?

The research challenges RC1 and RC2 are the architectural approaches,

and the use of RC1, which is the use of the concept of understanding what

to keep on the IoT device and what to ship out is all aimed to create the

partitioning process. In other words, the idea is to understand where to

process the data in the network. Then, in RC2, understanding whether

to send the big services or to decompose them into smaller services before
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sending them. This is the key outcome of the work, RC1 and RC2 contribute

towards the partitioning process. Then, RC3 is the use of the concept

of mapping the services to the nodes in the network. The three research

challenges RC1, RC2 and RC3 are integrated challenges to this particular

outcome.

1.2 Methodology

In order to address these challenges, we use experimental methodology to

explore and evaluate possible solutions for the challenges. We start with

understanding the balance between processing data in one place and dis-

tributing them while considering the accuracy and performance. After that

evaluating that balance by running experiments several times and the results

that indicate what went good. After getting the insights from experimental

approach, we decide to design the new architecture that will allow us to do

this. We propose an architecture and understand which data we need to

keep and process in the IoT nodes and what to distribute to other nodes

(fog and cloud) in the network. Then, evaluating the accuracy, data com-

munication and the performance show that the proposed approach is good

with the given dataset and setting. Also, we compared the proposal archi-

tecture with other architectures to validate the architecture’s performance.

We realised that there are big size services that are not difficult to process

them with constrained devices and distributing them costs high data com-

munication. Therefore, we propose the strategy where we can decompose

the big services into smaller services by using the same architecture and

approach that made earlier and distribute the services to the other nodes

by experimenting. This partitioning process is important as IoT and fog
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devices are constrained devices, this will let them process the small services

effectively. Then, we propose a service distribution strategy to map the ser-

vices based on their technical requirements with the nodes based on their

capabilities. In this part we have used assumptions and data about services

and resources. Also, we use an optimisation method to optimise the use of

nodes capabilities.

1.2.1 Optimisation problem and the criteria for the

success

Our problem is multi criteria optimisation problem and the objective func-

tion is multi objective function as we want to minimise data communication

(min-data), minimise execution time (min-exec), maximise privacy (max-

privacy), minimise energy usage (min-energy), maximise usage of nodes

(max-node) and maximise number of distributed services to fog nodes (max-

number). These are also can be considered as the success criteria for the

proposed approach.

Objective Function

minimize/maximize fm(x)

m = {min−data,min−exec,max−privacy,max−node,max−number}

f is the objective function, m is the set of objectives and x is a vector

of variables.

The elements of objectivesm are explained as follows. Firstly, min−data

means that minimising the cost of the data communication over the net-

work. Secondly, min−exec means that minimising the execution time of
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processing the services over the network. Thirdly, max−privacy means that

maximising privacy by processing the data as much as possible locally to

have control of the data. Fourthly, max−node means that maximise the

usage of nodes by using as much as possible the full capabilities of nodes.

Finally, max−number means that maximise the number of distributed ser-

vices to fog nodes as much as possible.

In later chapters the experiments are designed to compare different sce-

narios against that objective function and different set up experiments will

allow us to see what works best.

There are set of approaches that can be used to solve the optimization

problems as follow. Bin Packing is “NP-hard [40] and heuristics have been

developed to approximate the minimum number of bins” [51]. Another “NP-

hard, knapsack is “to fill a given multi-dimensional capacity-limited knap-

sack with a subset of items in order to get the maximum benefit associated

with the profit of each selected item” [39]. Additionally, genetic algorithm

(GA) is “a search technique; it is based on Darwin’s theory of evolution and

selection of biological systems” [78]. The Bin Packing approach will be used

in chapter 5.

1.3 Thesis statement

The high increase in data generated from various sources and the demand

for processing and managing these data in an efficient and effective way is

a significant challenge in the Internet of Things. We propose an efficient

approach to process these data closer to the source where feasible. In ad-

dition, we determine a strategy for distributing services to nodes based on

the capabilities of nodes and the technical requirements of services.
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1.4 Research scope and contribution

The overall aim of my research is proposing an efficient data analytics ar-

chitecture to process the data with less bandwidth usage, faster response

time, optimised resource usage and identify an ideal way to process the data

in large scale. Also, evaluating and testing the proposed approach by using

real experiments and possibly simulation is one of the objectives. The main

research contributions (C) of this thesis are:

C1. In response to the first research challenge, we propose an efficient

architecture for the IoT which moves the computation near to the fog side

of the network. Then, we preprocess and fuse the data in WISDM dataset

[55] locally, finally we apply five machine learning algorithms on the data

that is preprocessed locally. Additionally, we evaluate the architecture by

comparing it with the traditional centralised architecture and decentralised

architecture to validate the efficiency of the proposed architecture (Chapter

3).

C2. To address the second research challenge, we explore the effectiveness

and ineffectiveness of the architectures to find the most effective one among

them. Then, we conduct a range of experiments on four architectures to see

how different types of data modalities including numerical, text and images

using different Machine Learning algorithms, perform in each architecture

to highlight the efficiency of architecture and the importance of efficiently

selecting which services should run on which node (Chapter 4).

C3. To address the third research challenge, we explore to which nodes

services can be best distributed to the right nodes while maintaining the
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usage of resources in the IoT architecture. Also, we propose a distribution

strategy called Most Efficient IoT Node (MEIN) for distributing the services

on the nodes based on their capabilities. Also, it will be used for optimising

the usage of resources. We will use the bin packing algorithm as a baseline,

then we extended this algorithm in a way to fit in Fog and IoT environment.

This strategy selects the best nodes and distributes the services on nodes

based on the demands of services and capabilities of nodes. We conduct a

range of experiments to find the most efficient combination of capabilities for

fog nodes which will allow us to distribute the services as much as possible

to the fog nodes (Chapter 5).

In summary, (C1) we start by proposing an architecture and understand

which data we need to keep in the IoT nodes and what to distribute to

other nodes in the network. After understanding the architecture, (C2) we

decompose the services into smaller services and the dataset to smaller data,

the partitioning process is important as IoT and fog devices are constrained

devices, this will let them process the small services effectively. Then, (C3)

we distribute the services to the nodes based on the services demand and

the node capabilities, which is the mapping and optimisation process.

1.5 Thesis overview and summary

This chapter has discussed the introduction of the thesis by providing a gen-

eral review of contributions. Also, we presented the research challenges for

the IoT data analytics architecture that aims to move the computation near

to the data source. We have provided a thesis statement that concentrated

on efficient data processing in fog computing within IoT environments.

The rest of this thesis is organised as follows:
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• In chapter 2, we discuss the details of the background and related

works of this project. We provide an overview of the Internet of

Things, IoT architectures and Fog Computing. Then, we present data

analytics in the Internet of Things and an overview of data fusion.

Also, providing the available data analytics architectures. Followed

by summarising the main related works in the area of Fog Computing

in the Internet of Things. Then, we discuss the evaluation of the IoT

system and listing the available datasets.

• In chapter 3, we introduce the proposal of efficient data analytics

architecture for the Internet of Things. We evaluate the proposed ar-

chitecture by using a publicly available dataset and five data analytics

techniques and how feasible the IoT devices are when processing these

techniques.

• In chapter 4, we explore four different architectures for the Internet

of Things to select the most effective architecture. Also, we explore

service decomposition strategy in a distributed architecture for the

Internet of Things. Then, we evaluate the four architectures by us-

ing three types of datasets and apply trade-off analysis to show the

efficiency of each architecture.

• In chapter 5, we explore the importance of distributing services to the

nodes in an optimised way. Then, we propose a distribution strategy

that can distribute the services to the nodes based on their capabili-

ties, also the strategy keeps the resources usage optimised and main-

tained. We evaluate the strategy by conducting 15 experiments on

randomly generated data to show the efficiency of the strategy.
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• In chapter 6, we discuss and evaluate the key elements in this work

by presenting the observation about the results of real testbed from

the experiments introduced in chapter 3 and 4, highlight the insights

from the comparison between the proposed architecture and other

architectures in a more detailed manner.

• In chapter 7, we summarise this thesis and highlight the main con-

tributions and conclusions. We outline a number of potential future

research topics.

15



Chapter 2

Research background and related

work

2.1 The Internet of Things

Recently, the IoT has become one of the most popular topics in both

academia and business. It is accepted that there is no single standard defi-

nition for the IoT until now. In the IoT, the vision of the internet has been

expanded to add all disconnected things to the network. As we mentioned

earlier in the Introduction, the IoT will connect the human with objects at

any time and place by communicating over the network. This means that

the IoT will have heterogeneous data which will make the IoT project more

complex to manage and to process data that are produced from various

sources.

Moreover, the IoT can be considered as "a global infrastructure for the

information society, enabling advanced services by interconnecting (physical

and virtual) things based on existing and evolving interoperable information

and communication technologies" [85]. The IoT bundles different technolo-
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gies namely sensors, actuators, cloud computing, modelling of data, storage,

semantic, data analytics, communication and computation. These technolo-

gies are coupled together based on the needs of the IoT. The IoT is designed

to be a smart world in which smart things can communicate autonomously.

The IoT has characteristics like connectivity, sensing, energy, interop-

erability, dynamism, autonomous, intelligence, privacy and security that

are extracted from the description supplied by CERP-IoT [91]. All these

characteristics are relevant for the successful execution of tasks by the IoT.

Autonomy is an important IoT characteristic because it is important to

reduce user intervention as much as possible. Automating the configuration

of all parts of the system is needed to accomplish the aim. Engineering the

IoT software is a difficult task because the IoT data are generated by various

sources. Therefore, there is a need to follow the common aspects when

dealing with heterogeneity like configuring the hardware and networking

related things. Also, translating the message from a source to a different

source using standard formats such as JSON and XML is important in this

context. There are several IoT platforms that provide cloud services such

as Xively, Thingworx, OpenIoT and Carriots.

The life-cycle of IoT data starts with producing data and then moves

to data aggregation, then transferring the data before optional filtering and

processing followed by data storing and archiving, finally, making analysis

on the data to get useful insights. [26]. Considering the overall IoT, we

always have devices at the edge as well as in the network and the cloud in

a central position. Data processing can be at the in-network (so edge and

devices in the network) and the cloud level [12, 100] – and these levels play

a role in the various stages.
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Advances in the sensing and data processing capabilities of devices, cou-

pled with that of communication networks are leading to the maturity of

the Internet of Things (IoT) paradigm. A number of application domains,

such as smart healthcare, smart homes and buildings, now rely on devices as

varied as user smartphones, sensor network gateways and network routers

for their realisation. Most of these applications use devices for sensing and

data pre-processing tasks such as aggregation and filtering, with the major-

ity of the data analysis done in centralised cloud infrastructures [102]. One

of the main cloud providers is Microsoft with its Azure Stack [106] which

offers a hybrid cloud that allows companies to transfer benefits from their

servers while keeping the management of servers for new types of cloud

(hybrid cloud). In addition, they provide gateway devices in the cloud and

data analytics. Similarly, IBM has an online web analytics system with

IBM Digital Analytics. This service provides tracking and analysing of be-

haviours from visitors. The data analytics uses high power servers inside

IBM. The IBM PureData system promises fast data analytics and ware-

house that combine warehouse, data centres and analytics [33]. With the

predicted increase in the number of devices (28 billion connected devices

by 2021 [116], [3]), which can participate in existing and emergent applica-

tions, geographically centralised cloud data centres will find it difficult to

support the highly distributed IoT devices without suffering a loss in quality

of service. The resultant massive flow and exchange of data from a large

number of connected devices impacts on electricity costs and carbon emis-

sions [54], with achieving energy efficiency a serious challenge. As typical

IoT applications being highly context-dependent, the resultant short but

high-frequency data communication pattern from participating devices will
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pose a challenge to the bandwidth of the communication and cloud frame-

works [79]. The existing computing and communication infrastructure is

likely to cause an unacceptably high latency in service delivery and network

congestion [57], as recent studies showing that cloud servers geographically

situated far from user devices affects latency more negatively than those

geographically closer [102]. The IoT applications that collect sensitive data

such as users’ private information or location face the challenging decision

of whether to store it locally or communicate it to the cloud, since securing

the data will incur overheads and subsequently affect performance [9].

Sustainability is also important for the IoT applications when deploying

real-world systems because of factors such as computation strategy, energy

consumption, computation workload and data distribution strategy. The

authors of [72] discussed ten crucial characteristics including data analyt-

ics, security and privacy, context awareness, mobility and other features to

develop sustainable fog computing architectures. A sustainable system aims

to optimise trade-offs when selecting the computation strategy, energy con-

sumption and data communication usage. Thus, the proposed infrastructure

can help develop sustainable computing architectures as it can enable han-

dling of more computation workload at the network edge by distributing

the data computation efficiently.

2.2 Architectures

The Internet Architecture Board (IAB) described the most common 3 com-

munication patterns for smart objects in the IoT [94] that depend on the

individual characteristics of the smart objects. These characteristics of de-

vices bring constraints when using software architecture in the Internet of
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Things. For example, when the system requires big data analytics func-

tion which cannot be handled by IoT devices because of the computational

constraints, then the system should ask for the processing from much more

powerful devices than the constrained devices. The communication patterns

that are discussed in IAB addressed the interoperability and connectivity

aspects. We will discuss these 3 communication patterns now.

Device-to-Device. The devices are connected to each other directly as

shown in Figure 2.1 This architecture usually does not require an internet

connection as the devices are connected to each other in a proximity based

way such devices that are installed in the same building or the same area.

The network technologies that are used in this architecture are cheap in

terms of communication cost and they can be RFID, WIFI, Bluetooth,

Zigbee and Z-wave.

This pattern can be either a client/server model or decentralization ar-

chitecture model. In the client/server model, the server will be the single

point for having the major services and data analytics. However, the client

will be computers that are connected to the server which means they are

highly dependent on the server for services and resources. The drawback

is that it has a single controlling unit: if it breaks down the whole system

breaks down.

In a decentralised architecture, there is no single point for data analytics

and decision making. This means that each device has its capabilities to

make a decision and process the data when it is possible depending on the

characteristics of the device. Then, the system behaviour will be aggregated

from the individual device’s decisions. This architecture does not have a

single controlling unit which means if a node is down, then other nodes will
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carry on processing the services.

Figure 2.1: Device-to-Device architecture

Device-to-Cloud. In this architecture, the devices will be connected di-

rectly to the cloud via an internet based connection by using standard proto-

col including IP protocols and transports like TCP or UDP, also constrained

protocols like COAP as presented in Figure 2.2. The IoT devices have a

direct connection to the cloud for accessing the services and data. We ob-

serve a software and data analytics architecture approach for the Internet

of Things as follows in a new paragraph:

The traditional cloud computing architecture which is placing all the

main functionalities in one single control point which is a cloud platform that

provides services. In this architecture, the devices send raw data to the cloud

which has unlimited capabilities to collect, process and store data from many

services and applications. This means that the cloud computing platform

has full control of all the data. There are advantages and disadvantages

of this architecture as every architecture has. The advantages of using

device-to-cloud computing architecture are as follows. Firstly, it is easy

to reach and get the required service without requiring specific hardware

requirements and the availability of the service provider. Secondly, the

maintenance of the application is easy as the cloud is a single point of control
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Figure 2.2: Device-to-Cloud architecture

and centralised, the system will do maintenance on one side and it will be

done by all sides. Thirdly, the powerful super computing devices that reside

in the cloud are capable of doing data analytics easily and efficiently. These

powerful devices are too expensive to install at many different locations.

However, the architecture has several disadvantages in terms of process-

ing the data as follows. The first drawback is that all raw data will be sent

to the cloud from the IoT devices which introduce several issues such as

increasing the cost of data communication over the network. This from a

user perspective is losing the control of data raises privacy concerns like who

will see the data and will the data be kept forever and how safe is the data.

Also, unused and unnecessary data will be transmitted with raw data which

will consume storage and slow the data preprocessing stage by eliminating

them. For example, in a car parking area, one of the parking slots is free

for approximately 20 hours and the system will send the information of free

slot is available for 20 hours to the cloud, which consumes the network by
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sending the same data.

Figure 2.3: Device-Gateway-Cloud architecture

Device-Gateway-Cloud. The main purpose of this architecture is to

provide an internet connections to IoT devices which are not embedded or

have internet connection. Figure 2.3 shows the connections among the IoT

devices, gateway and the cloud.

The devices of the gateway can be either personal computer, mobile

phone or laptop. The role of the gateway can shape the architecture. The

gateway might only transfer data from device to cloud which is like in the

device-to-cloud architecture or it may have additional functionalities. Gate-

way indeed supports the IoT devices, but from an IoT solution perspective

if the gateway is used only for transferring the data between the IoT de-

vices and the cloud, then it might come up with the conclusion that which

architecture should be chosen device to cloud or device to gateway to cloud.

It is not an easy question to answer as it depends on the solution and IoT
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environments. For example, if some of the IoT devices do not have direct

internet connection, then obviously the gateway will be helpful.

2.3 Fog Computing

Cisco is the earliest company that introduced the term fog computing [23].

Since then, many researchers have defined fog computing from various per-

spectives. One of the general definitions was was given in [110], Fog Com-

puting is "a geographically distributed computing architecture with a resource

pool which consists of one or more ubiquitously connected heterogeneous de-

vices (including edge devices) at the edge of the network and not exclusively

seamlessly backed by cloud services, to collaboratively provide elastic com-

putation, storage and communication (and many other new services and

tasks) in isolated environments to a large scale of clients in proximity".

Another definition by the authors of [95] of fog computing is “a scenario

where a huge number of heterogeneous (wireless and sometimes autonomous)

ubiquitous and decentralised devices communicate and potentially cooperate

among them and with the network to perform storage and processing tasks

without the intervention of third parties. These tasks can be for support-

ing basic network functions or new services and applications that run in a

sandboxed environment. Users leasing part of their devices to host these

services get incentives for doing so”. Also, fog computing has been defined

by the Open Fog Consortium [32] as "a system-level horizontal architecture

that distributes resources and services of computing, storage, control and

networking anywhere along the continuum from Cloud to Things". Further-

more, a definition by [23] "Fog computing is a highly virtualized platform

that provides compute, storage, and networking services between IoT devices
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and traditional cloud computing data centres, typically, but not exclusively

located at the edge of network".

In this thesis, we consider Fog computing as an expansion of cloud com-

puting located closer to the IoT data source. Fog computing stands between

end devices and the cloud and it brings most of the services like data pro-

cessing, services of network and storage as shown in Figure 2.4. The fog

devices can be distributed to any place in the network and it can be any

type of device that has computing power, internet connection and storage

[92, 97]. The characteristics of fog computing are extracted from the follow-

ing papers [14, 110] namely awareness of location, low latency, distributed

geographically, scalability, mobility, real time response, heterogeneity, in-

teroperability, and data analytics.

Figure 2.4: Fog computing

Fog computing brings some of the services of the cloud service provider

near to the data source. The fog devices have limited computational power,
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storage and services and they are located in the middle of the IoT devices

and the cloud. The major aim of fog computing is to reduce the latency for

real-time applications in the IoT [88]. The fog computing architecture has

six layers namely from the top to the bottom "transport, security, temporary

storage, pre-processing, monitoring, physical and virtualisation layer" [8, 63,

65].

Fog computing is an infrastructure that involves distributed computing

techniques that allow for remote control of different application services.

There are a number of application services that are controlled remotely in

the cloud.

Fog computing has a data plane that permits services to be located near

to the data source contrary to servers in centres of data [4]. IoT concept

can be supported by fog computing by connecting the devices to each other

devices that are used by people like mobile and wearable devices.

Fog computing can help to analyse the data and produce insights from

the data near to the data source. In addition, the fog computing takes

applications, elements of data and computational power near to the data

source possibly to the edge of the network where it is far from the cloud.

2.3.1 Fog and Edge Computing

Much of the literature mentions both fog computing and edge computing

interchangeably [9, 31, 43], with some papers stating that edge is a synonym

of fog computing [111]. Additionally, the author of [5] stated "The term Fog

computing or Edge Computing means that rather than hosting and working

from a centralised cloud, Fog systems operate on network ends. It is a

term for placing some processes and resources at the edge of the cloud,
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instead of establishing channels for cloud storage and utilisation". Both fog

and edge paradigms agree on the concept of moving the computation as

much possible from a centralised level to distributed or decentralised levels.

However, authors of [64] stated that they differ in terms of the radio access

network, with fog computing involving Wireless LAN (WLAN) or cellular

networks, but edge computing is usually cellular.

2.4 IoT Data Analytics

Connecting all smart objects directly to the internet has become unfeasible

by the sheer amount of such objects and the amount of data that they

collect.

All the sensors that are distributed over the world will generate a huge

number of data that will be gathered, processed and analysed to produce

insights and useful information. As a result of improvement in the technol-

ogy of sensors, they are more powerful, inexpensive and smaller [74]. The

emergence of the IoT concept is after the emergence of sensor technology,

but the use of sensors has been limited. The IoT has extended the use

of sensors by several processes including data gathering, data transmission

and data processing.

Processing IoT data means to add value to the raw data by extracting

important aspects and creating meaningful information – an essential ele-

ment of the IoT [107], [18] identifies five steps to follow when processing IoT

data, namely data collection, data pre-processing, transformation of data,

mining and evaluation. Considering that "data fusion and mining present

an efficient way to manipulate, integrate, manage and preserve mass data

collected from various things" [109]. Data Fusion is a useful method to get
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richer knowledge about the environment and generate more precise data by

aggregating and integrating sensor data. In IoT, data fusion will be vital

because there will be many sensors that are available. Due to the many

different sources that exist to give the same information. In addition, data

filtering is a beneficial method to avoid the great number of data that are

going to be transmitted over the network via filtering the sensor data. The

five steps (Collection, Collation, Evaluation, Decide, and Act) are important

to reach the goal of data fusion.

• The Collection step: "collects raw data from sensors and other IoT

data sources (Social media, smart city infrastructure, mobile devices

etc.)" [101].

• The Collation step: "analyse, compare and correlate the collected

data" [101].

• The Evaluation step: "fuses the data in order to understand and pro-

vide a full view of the environment" [101].

• The Decide step: "decides the actions that need to be taken" [101].

• The Act step : "simply applies the actions decided at the previous step.

The Act step includes actuator control as well as sensor calibration and

re-configuration" [101].

Data fusion: Data Fusion is defined as "the theory, techniques and tools

which are used for combining sensor data, or data derived from sensory

data, into a common representational format" [60].

We are specifically interested in data fusion, which fits into the area of

data pre-processing and transformation and allows us to reduce the volume
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of data but increase its value. Data fusion is referred to by other ’synonyms’

such as information fusion, decision fusion, data combination, multi-sensor

data fusion, sensor fusion and data aggregation. While there is no general

agreement on these terms, there are some differences that can be observed:

in some cases data fusion is applied on raw sensor data while information

fusion is used to determine analysed data, meaning that the latter has a

higher semantic grade than data fusion[27]. Similarly, data fusion and data

aggregation are utilised mutually, however, they are diverse in some points.

Similarly, data fusion techniques are used to integrate data from a variety

of sources to produce more meaningful and effective inferences and associ-

ations, whereas data aggregation can be considered as a sub component of

data fusion which summarises the sensor data to remove data redundancy

[10]. The most common definitions by researchers are as follows:

• Data fusion is defined by the Joint Directors of Laboratories (JDL)

workshop [105] as "a multi-level process dealing with the association,

correlation, combination of data and information from single and mul-

tiple sources to achieve refined position, identify estimates and com-

plete and timely assessments of situations, threats and their signifi-

cance."

• Hall and Llinas [44] say that "data fusion techniques combine data

from multiple sensors and related information from associated databases

to achieve improved accuracy and more specific inferences than could

be achieved by the use of a single sensor alone".

Informally, our working definition of data fusion is that it aggregates and

integrates all sensor data to allow obtaining accurate and meaningful data

while eliminating redundant and uninformative data. Data fusion can be
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classified depending on a variety of attributes as shown in Figure 2.5 [30].

These attributes are discussed in detail in [10] and generally capture the

idea that there are different dimensions such as the abstraction level or the

relation between the data items from one or multiple sensors.

Figure 2.5: Data fusion classification

[27] has divided the data fusion techniques into several criteria as follows.

• Classification based on relations among data inputs, as proposed by

[37]. They can be determined as complementary, redundant and co-

operative data.

• Classification based on the data input and output as proposed by

Dasarathy [34]. Dasarathy’s data fusion classification system for-

malises the attributes just discussed and can be considered as one

of the most common approaches [34]. Dasarathy’s classification fo-

cuses on details of input and output based on the abstraction level.

The classification contains five classes as follows [27]):

Data In-Data Out (DAI-DAO) is the primary method of data fu-

sion in the classification model. It processes the raw data that is

30



collected directly from sensors resulting in more accurate data.

In addition, image and signal processing algorithms can be used

at this stage.

Data In-Feature Out (DAI-FEO) processes the raw data to pro-

duce features which can depict a structure about the environ-

ment.

Feature In-Feature Out (FEI-FEO) processes a collection of fea-

tures to get more effective feature results.

Feature In-Decision out (FEI-DEO) processes the features to ac-

quire a collection of decisions.

Decision In-Decision Out (DEI-DEO) processes the decisions to

extract more efficient decisions.

• Classification based on "an abstraction level of the employed data in-

cluding raw measurement, signals and characteristics or decisions".

Furthermore, [27] mentioned that Another data fusion classification

based on abstraction level can be considered which contains "low level

fusion, medium level fusion, high level fusion and multiple level fu-

sion".

• Classification based on various levels of data fusion. In addition, the

are five processing levels in the process of data fusion [105] including

"Source preprocessing, object refinement, situation assessment, threat

assessment and process refinement". This classification is described

in detail in [27].

• Classification based on the architecture types.
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Features are defined as the single measurements that are used to create

the training model. In other words, they are the columns of data that are

created for the training set [45]. In addition, data fusion can provide the

required knowledge that is essential in a decision-making process, therefore,

the amount of the available knowledge/data can affect the final decision at

any stage. Many techniques use symbolic information and the data fusion

process to determine the uncertainties and restrictions that are part of /

effect the decision-making process [27]. In other words, the decision can be

captured depending on the knowledge of the events that are collected from

variety of sources by fusing them.

Data fusion is an active area in research and business. There are several

data fusion techniques that focus on reducing the consumption of energy in

[10, 36]. They have used a variety of methods including fuzzy set theory and

neural networks. They succeeded in terms of removing redundancies while

fusing the data. However, they did not focus on the resource constraints of

devices that embed the sensors. In contrast, they assume that these devices

work efficiently without a need to pay attention to their limitations. More

importantly, these mechanisms send all the data to centralised computation

systems, which affects the data communication cost, privacy and energy as

well. As we could see in our experiments in chapter ??, sending the raw

data to the cloud is not efficient in terms of data communication over the

network. This means that the effectiveness of data processing depends on

the selected architecture which will be discussed below.
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2.4.1 Data analytics architectures

Understanding what data fusion can achieve, one also needs to consider the

architectural aspect of where data fusion should be done within the overall

architecture of the IoT. The author of [27] considers three options including

a centralised, decentralised or distributed architecture as follows:

• Centralised architecture: all the collected data from sensors will be

sent to the cloud for the processing which means that everything is

held in one single server. It is known that the cloud is capable of

processing very large amounts of data effectively. However, in real

time scenarios, data consumption over the network will be high, which

will make the cloud not sufficient for an effective fusion of the data.

This architecture is also very problematic if the data consists of images

such as earth observation imagery. The reason is that there will be

more delays in terms of data arrival time and this will impact badly on

the output of data. Additionally, privacy will be one of the main issues

because this architecture receives all the raw data without applying

any reduction or aggregation previously. Finally, energy consumption

has been important in the IoT because transferring raw data all time

from devices using any network such as 3G and WIFI will consume

significant amounts of energy.

• Decentralised architecture: there are several nodes in the network and

each of them has their specific computation capabilities, so there is

no single server like a centralised system. Every node applies data

aggregation autonomously to its local data and data received from

peers. One of the major limitations of this architecture is the high
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communication cost between peers. In this case, if we increase the

number of nodes, then there might be a lack of scalability.

• Distributed architecture: sensor readings are processed at the source

level before applying data aggregation in a specific node that is capable

of data fusion. This can overcome various issues of the centralised ar-

chitecture and can reduce communication costs over the decentralised

architecture.

It is not possible to say that one of these architectures is the best, as it

often depends on specific requirements and technology. Both decentralised

and distributed architectures are quite similar to each other in many ways.

However, they differ in terms of the place for pre-processing the data. In

decentralised architectures the whole data aggregation happens in every

node which produces comprehensive output. Whereas, in distributed archi-

tectures the raw data is firstly pre-processed at source to extract features,

and then these features are fused. The main advantages of the distributed

architecture over the centralised one are reducing the processing and com-

munication costs because it pre-processes the data in a distributed manner

before fusing data [27].

It is generally accepted that increasing accuracy and reducing energy

usage are major aspects of data fusion [30], so any architecture that is

presented needs to consider these aspects.

As there are obvious trade-offs between the different architectures it

seems desirable to formulate solutions which combine the different ideas in

ways that reduce the disadvantages and benefit from the advantages of each.

Our method presented below attempts to achieve this.

There are two types of data processing the first one is in-network side
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data processing and the second one is cloud side data processing [101]. It is

expected that the number of sensors that are distributed will be increased

as well as the number of internet-connected devices over the next decade.

When there are multiple data sources and there is a need to integrate

them, then collecting and analysing data in a centralised way is important.

In the IoT, optimising the cost and performance requires an examination of

connectivity, infrastructure and data analytics [76].

In IoT, the number of internet-connected devices increases which means

that a significant amount of data will be produced that leads to IoT big

data. Many of these data will be produced by video cameras that are

becoming much more popular among people [81]. In 2013 in the UK, there

was approximately a surveillance camera for nearly 11 people [22]. For

this reason, data processing including data fusion and filtering have become

an interesting topic in the research area. big data was defined in 2010

by Apache Hadoop as "datasets which could not be captured, managed, and

processed by general computers within an acceptable scope". Big data is not a

new term in computer science [113], it has been created by big technological

companies like Yahoo, Microsoft and Google. Recently, big data concept

has become the most challenging issue in computer science, particularly

in the IoT. Despite the popularity of big data, there are many challenges

that people in both academia and industry face such as privacy, scalability,

heterogeneity and timeliness of data [96]. In addition, there 3 characteristics

of big data including volume variety and velocity [113].

• Volume: "Volume relates to the size of the data such as terabytes

(TB), petabytes (PB), zettabytes (ZB), etc" [113].

• Variety: "Variety means the types of data. In addition, different
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sources can produce big data such as sensors, devices, social networks,

the web, mobile phones, etc. There- fore, data could be web logs, RFID

sensor readings, unstructured social networking data, streamed video

and audio, and so on" [113].

• Velocity: "This means how frequently the data is generated, for ex-

ample, every millisecond, second, minute, hour, day, week, month,

or year. Processing frequency may also differ with user requirements.

Some data needs to be processed in real-time and some may only be

processed when needed. Typically, we can identify three main cate-

gories: occasional, frequent, and real-time" [113].

This big data will be valuable when it becomes understandable to make a

decision. This means there is a necessity to process large data to extract

meaningful information for creating insights [96]. To have insight from

processing data there are two main phases including big data management

(collecting, data analysis preparation and saving) and big data analytics

(analysis on data and obtaining reasoning) [96].

It can be noted that there is a need for IoT middleware solutions to help

with solving these problems. According to [89], an IoT middleware can

have capabilities namely context-aware, interoperability, control data vol-

umes, device management, security and privacy. In addition, a recent study

by [80] stated that IoT middleware should provide "data management ser-

vices to applications, including data acquisition, data processing (including

preprocessing), and data storage. Preprocessing may include data filtering,

data compression, and data aggregation". Several most common projects

are discussed in [35]. Most of these projects are focused on REST, OWL,

Web services and SOA which are web technologies.
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Most of the research until now focused on processing the data on the

cloud. There is no doubt that the cloud has an important role in enabling

the IoT since it has high power processing and storage [114]. However, one

of the challenges that the cloud faces the accumulation of data that comes

from many heterogeneous data particularly from cameras data [84]. It is no-

table that most of the use cases in the IoT such as smart transportation and

smart cities are distributed naturally. This means a fourth characteristic

namely geo-distribution should be added to big data’s three characteris-

tics (Volume, Velocity and Variety) [20]. Therefore, a smart distributed

IoT platform is required that can manage a distributed system at the edge

[22]. More importantly, data processing could be improved by using data

management IoT middleware in in-network level (edge and fog computing).

Edge analytics in real time on data can help with improving the time and

value of the collected data. This view is supported by [13] who writes that

moving the computation and storage close to data producing sources at the

edge level of networks. Edge analytics can be supported by fog computing

which can analyse, process and minimise data volume before sending to the

cloud, therefore there will be less delay and bandwidth usage [110]. Data

fusion is an active area in research and business particularly with a view

to optimised data analytics. There are several data fusion techniques that

focus on reducing the consumption of energy in [11, 36]. They have used a

variety of methods including fuzzy set theory and neural networks. They

succeeded in terms of removing redundancies while fusing the data. How-

ever, they did not focus on the resource constraints of devices that embed

the sensors. In contrast, they assume that these devices work efficiently

without a need to pay attention to their limitations. More importantly,
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these mechanisms send all the data to centralised computation systems,

which affects the data communication cost, privacy and energy as well. As

we could see in our experiments sending the raw data to the cloud is not

efficient in terms of data communication over the network.

As discussed earlier the IoT devices will generate a great number of data

which will create problems from several perspectives such as consuming

the network with sending raw data to the cloud. In addition, energy is

another factor that we need to consider while sending data to the cloud for

processing. Moreover, the privacy and quality of data or accuracy are crucial

to control private data and produce valuable information. It is true that

relying more on local analytics or more on the cloud can cause problems.

In this regard, the balance could be significant in terms of energy and data

consumption, privacy and quality of data. The present study is motivated

by the need to take into consideration the data processing locally before

being sent to the cloud. There are many advantages of this approach such

as it reduces the data transmission cost over the network, reduces energy

consumption and increases privacy by processing and storing data locally.

2.5 Analysis of existing approaches for Fog Com-

puting

This section reviews the current state of the art from the two aspects rele-

vant to the problem definition: First, we review various computation distri-

bution strategies employed in fog computing and the associated architecture

implementations. Second, service decomposition as has been researched in

the wider web services paradigm.
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The architectural aspect related to the location of the data processing is

important. Data processing can be applied in various architectures including

centralised, decentralised and distributed.

In recent years, there has been an increase in the amount of literature

on distributed architecture in the IoT. One of the attempted proposals is by

[93]; they proposed distributed architecture for fog computing for analysing

big data in a smart city. They distribute the smartness to the devices in

edge and computation at every layer which executes applications that have

latency awareness. A fog computing based face resolution framework is

proposed in [47] which obtains the information by analysing a facial im-

age. There are several features of this framework, including reduced data

communication over the network and the response time of resolution, also

efficiently solving the issues with bandwidth. A proposal in the distributed

analysis by [112] which is a model that combines processing power which is

at network level including edge and data centres to process and analyse the

data from the collection point to a destination. Furthermore, in [86], per-

sonal modal training method has been proposed in which the data process-

ing, particularly machine learning is applied to private data in devices that

have constraints and raspberry pi was used to test the feasibility of the IoT

device in the implementation of such methods. Authors of [102] proposed a

framework for managing edge nodes which is called Edge NODE Resource

Management (ENORM). In addition, they proposed several techniques that

provision edge node resources. They used an online game called PokeMon

Go-like to check the feasibility of their framework. Their results show that

by using ENROM the application latency is reduced between 20 - 80%. In

[57] the authors proposed an approach (latency aware) to place application
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modules on fog nodes to make sure that the service delivery satisfies the

deadline for diverse applications. They modelled and evaluated their policy

in Fog environment that is simulated in iFogSim [42]. In resource allocation

for fog computing, authors of [68] proposed an effective resource allocation

approach depending on Priced Timed Petri Nets (PTPN) for fog comput-

ing influenced by online shopping sales. Furthermore, users can select the

required resources dynamically from already allocated resources. Also, they

showed an algorithm that predicts the cost of time and price for finishing

jobs relies on PTPN structure.

Table 2.1 shows a summary of the related work on fog computing, which

are reviewed along with the following aspects:

• Data Modality: Format and modality of the data being used for im-

plementation and validation.

• Fog Node: Types of fog nodes that are considered (user phones, low

power embedded devices, general purpose computers, high-performance

computers etc.)

• Fog node functionality: Functions that the fog nodes perform such

as data sensing and pre-processing tasks, computation offloaded from

the cloud.

• Distribution Strategy: Strategies used to distribute services, workload

or computation to fog nodes from other nodes or the cloud.

• Application: Context aspects considered in the computation/service

distribution.

It can be seen that several data modalities and formats are used, ranging

over numerical, text and image data. Different types of devices are used
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as fog devices to perform different functions. The distribution strategy

used is typically tied to the application scope and focus, ranging from data

analysis parallelization and computation offloading to different optimisation

strategies.

In web service composition, there is one proposal that focuses on au-

tonomous web service composition by taking care of service constraints au-

tomatically [103]. It is important to be aware of the constraints on services,

but in the IoT, there are nodes which have various constraints. This means

that there is a need to have a constraint awareness approach for both ser-

vices and nodes. In addition, [90] investigated the service composition’s

requirements and the way to obtain a composite service using the transport

domain as an example. They provided several scenario based approaches to

service composition and discussed these. Additionally, authors of [28] pro-

posed a comprehensive device collaboration model which has four layers,

namely device, device-oriented web service (doWS), resource and process.

This model shows the possibility of integration between devices and web

services, and also the devices can be considered as active actors because

the data is not sent immediately to servers. The authors of [99] proposed

a service based model in requirements decomposition. Their model process

starts with user requirements which are defined as goals, service discovery

and discovered services employed to check the feasibility of the preceding

decomposition. They decomposed the requirements of three web service

composition cases to validate their approach. Another proposal in service

decomposition domain by [21] who proposed a greedy algorithm that de-

composes interface into interfaces depending on cohesion. This approach

mainly focused on improving the cohesion and it was successful in that
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regard, but aspects like coupling between interfaces are not considered .

Furthermore, authors of [52] proposed quality of service aware and en-

ergy centred service selection algorithm for service composition in the Inter-

net of Things. The idea of the algorithm is that it is possible to save energy

by decreasing the degree of quality of service while maintaining the expec-

tation of the user. The algorithm has two phases, the first one performs

pre-selecting the services by proposing a quality of service degree which

meets the user’s needs. In the second phase, in order to select the best

option among selected services, a relative dominance relation is used for the

process of service composition. Additionally, [81] proposed a method to per-

form data fusion via a service composition model of DOHA (Dynamic Open

Home-Automation) which is SOA-based middleware in a distributed man-

ner. Every service is liable to get data from outer services using composite

processes to control, fuse or create new information. In the implementa-

tion, they used DPWS (Device Profile Web Service) which is a framework

that develops lightweight service for constrained devices. This framework

put restrictions on web service specifications that allow the web services

to run on resource-constrained devices, for example, the size of messages.

In [15] authors investigated the possibility of building complex services in

the IoT environment. They showed the SYNAISTHISI IoT platform that

is able to combine services, devices and people with systems. The services

in this platform are enriched semantically using ontologies. They developed

a context ontology model for smart meeting spaces and presented the way

that the developer can create a service that defines the number of people

inside an intelligent room. Authors of [87] examined the problems of mi-

croservices granularity and how it affects the latency. They simulated the

43



deployment of microservices with two approaches including microservices in

one container and microservices divided into several containers. They ob-

served a slight increase in latency for several containers over single container

deployments.

Our review of the existing literature shows that most of the proposed

models, approaches and architectures do not take into account the resource

constraints of the IoT devices. We acknowledge that many works have been

done on data processing in resources constraint devices, although none of

them have proposed service decomposition as a viable solution. The propos-

als in the service computing domain usually do not focus on the deployment

of services on nodes by considering the constraints of devices; instead mostly

focusing on the quality of services and constraint requirements of services.

However, in the case of IoT systems, there will be many constrained devices

distributed across the network. This means it is important to decompose

the resource-heavy services into smaller micro-linked services which can be

distributed to and handled by constrained devices.

2.6 Evaluating IoT Systems

The Internet of Things aims to digitalise everyday physical objects by con-

necting them to the internet. As a result, cyber-physical environments of

multiple sizes emerge, imposing new requirements on applications and soft-

ware systems in regards to heterogeneity and volatility. A challenging stage

in the engineering of these systems is the validation. The validation of

such systems is complex because of three key differential characteristics of

the IoT environments: The heterogeneity, volatility and the size variety.

In order to validate software solutions, researchers use one or a variety of
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techniques including real-world and simulations.

Validation in real-world testbeds is always preferred as it enables the

replication of the cyber-physical conditions that are present in production

environments. For example, the testbed used in [5] incorporates a ZigBee

network with workstations, coordinators, readers and up to 200 objects

with active RFID tags. The major drawback of this type of setting is the

cost. Despite the low cost of hardware platforms for IoT devices, not all

researchers have access to a real testbed with a sufficient number of IoT de-

vices. Besides, the configuration, management and running of the platforms,

supporting these testbeds, is also time consuming. Therefore, usually, the

real-world settings are constrained and scenarios lack some or all of the key

differential characteristics of IoT, namely: Heterogeneity, volatility and size

variety. In the last years, a number of IoT experimental research facilities

with support for medium/large numbers of devices have appeared, offering

an infrastructure for evaluating solutions atop of the offered services. These

platforms offer services that reduce the effort required to evaluate a particu-

lar solution, however, the price is that application developers must conform

to a particular development and operation model. e.g. IoT devices are

merely data feeders and cloud infrastructure concentrates data storage and

processing. In case of evaluating decentralised architectures that require

edge processing the usefulness of these platforms is reduced. This is a prob-

lem since the IoT research agenda includes the development of decentralised

solutions that should run in a combination of fog/edge and cloud contexts,

therefore environments for evaluating these solutions are required. Besides,

simulations enable validation under multiple conditions, defining a model

that offers a partial representation of the real-world. One of the most com-
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mon uses of simulations is to validate systems’ scalability to medium/large

number of IoT devices, however other characteristics of heterogeneity of IoT

devices and volatility.

2.7 Datasets

To evaluate a system, there is a need to either build a personal dataset

or use the existing publicly available datasets to apply the experiments

of the proposed solutions. We have selected a number of public datasets

that are different in terms of data types including sensors data, numerical

data, text data and image data. In IoT environments, there will be devices

that collect video and image data like drones and surveillance cameras.

Additionally, there will be devices that collect data from sensors either in

numerical or text format. The datasets that we have used in this research

are representative datasets for IoT environments. We have selected different

types of data modalities to explore how an IoT approach will handle each

type of datasets. The collected data will be analyzed by using different data

analytics techniques which will indicate the trade-offs among the datasets

in IoT environments.

The datasets that are used in this research are as follows:

• The WISDM dataset [55] is a set of accelerometer data on mobiles

(particularly Android-based) from 36 users who are doing 6 activities

(walking, jogging, climbing upstairs, descending downstairs, sitting

and standing). These users carried their mobiles while they were

performing these activities for a fixed time. We divided the data

into 10 second chunks. In addition, 43 features are created depending

on 200 readings, where each reading has three acceleration values (x,
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y and z), within the specified chunks. The transformed data contain

5418 accelerometer traces from the 36 users, with average 150.50 traces

per user and a standard deviation of 44.73.

• The dataset is called Twenty Newsgroups [56] is a dataset of nearly

20,000 newsgroup files. This dataset is collected for a different pur-

pose, but it has become a standard dataset for text analysis in ma-

chine learning environments. In addition, the data are divided into 20

newsgroups and each group has a different topic.

• Dogs vs. Cats dataset [49] which was a competition from Kaggle,

it is a collection of pictures of both dogs and cats. In addition, the

purpose is to have the classification of cat and dog, so we can know

if the picture has a dog or cat. The dataset is divided into two parts

including training and testing data. The total number of images in

the dataset is 25000 which is equal to 570 MB.

2.8 Summary

This chapter discussed the concepts of the background including the IoT,

architectures, fog computing, data analytics used in this research. We re-

viewed existing approaches in the field of IoT and fog computing, also data

analytics architectures. Besides, evaluating an IoT system is one the topics

that are covered in this chapter, as evaluation of a system is important to

reach effective results. Finally, a number of publicly available datasets are

presented and explained, and some of the discussed datasets will be used in

the later experiments.
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Chapter 3

An Alternative Architecture to

Data Analytics for The IoT

3.1 Introduction

In this chapter, we develop a method in which fog level and cloud level

processing can work together to build an effective IoT data analytics in order

to overcome their respective weaknesses and to use their specific strengths.

Specifically, we will collect raw data locally and extract features by applying

data fusion techniques on the data of resource constrained devices to reduce

the data and then send the extracted features to the cloud for processing.

We will evaluate the accuracy and data consumption over the network and

thus show that it is feasible to increase privacy and maintain accuracy while

reducing data communication demands.

The rest of this chapter is organised as follows: section 2 identifies the

challenges and requirements, followed by the main contribution in section 3.

Then, we describe the solution space in section 4 while section 5 evaluates

our solution. Before concluding the chapter, we present the results of the
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experiment and the evaluation.

Parts of this chapter have been published in [16].

3.2 Contribution

We propose a hybrid approach that moves some processing off the cloud

and leads to savings in data transfer and changes to accuracy. In the pro-

posed work, we are fusing and filtering data close to the source and then

send meaningful higher level data rather than raw data to the cloud. As

fewer details are being transmitted some privacy protection is already tak-

ing place – however further work in studying the privacy angle needs to be

undertaken.

This data fusion technique will directly influence the collation and eval-

uation steps and hence the crucial question arising is: How can we fuse

sensors data locally without harming the accuracy of the overall decision?

A secondary question is considering the feasibility of distributing the pro-

cessing considering that many network and edge devices have less processing

power.

The novel contributions of this chapter are:

• Choosing the location of processing the data in the network is im-

portant to maintain the usage of the network and the efficiency of

data processing. Therefore, we propose an efficient approach, which

moves the computation as much as possible to the fog/ edge side of

the network.

• Moving part of the data processing near to the data source is crucial

as the IoT devices are constrained and processing some of the services
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might require high computational power based on the experiments. As

a result, we explore the feasibility of applying data fusion techniques

via resource constrained devices, like the Raspberry Pi 3 Model B.

• We note that applying data fusion on data in IoT devices near to the

data source is important when dealing with large data, so fusing the

large data before sending it to the cloud can maintain the network

usage by sending only more meaningful data.

• We extensively evaluate the approach using the WISDM dataset [55]

and five popular data analytics techniques. Also, we evaluate the

efficiency of our proposed architecture with the efficiency of the tra-

ditional centralised architecture.

3.3 A hybrid approach for data analytics for

the IoT

3.3.1 Overview

We propose a hybrid approach that moves the computation as much as pos-

sible from the cloud to the fog/edge level. The overview of this approach is

demonstrated in Figure 3.1. We begin with applying data fusion techniques

on sensors data to minimise the number of data points and extract features

in the IoT devices. Then, we extract features from this data and send it

to the edge/fog node. This step is important because it is widely accepted

that raw time-series data cannot be efficiently analysed by algorithms for

classification. After that, the features will be sent to the cloud for training

purposes and to create inferences.
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We used an experimental approach because it is about getting insights

and understanding whether to place the data on IoT, fog or Cloud resources

with executing the data multiple times on each of these approaches. We

have used benchmarking to make data communication and performance

comparisons based on latency and execution times that are used in the

evaluation of the three approaches fog, cloud and hybrid.

Objective Function

minimize/maximize fm(x)

m = { min−data, min−exec, max−privacy }

f is the objective function, m is the set of objectives and x is a vector

of variables.

Smart 
Thermostat

Smart 
Activity 
Monitor

Smart 
Coffee 

Machine

Machine Learning Model  Feature Extraction Model

CloudFogSensors

Figure 3.1: Distributed processing in the Internet of Things

3.3.2 Architecture

The architecture of our proposed solution consists of two main parts: First,

the cloud level has the responsibility of data training and inference creation.

Second, the fog level aggregates the sensor data to reduce data transmission

cost over the network. The aim is reduce the data communication over the

network, reduce Execution time, increase privacy and maintain accuracy as

much as possible by analysing and processing data locally.
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The communication between the nodes or peers can be undertaken in

different ways as usual (such as WIFI, 3G and any other solutions). Figure

3.1 shows the architecture of the system. The distributed processing archi-

tecture contains three types of node including the IoT Devices, fog, and the

cloud as follows:

• A sensor node is at the lowest level of the system and is typically

embedded in physical objects. Sensor nodes are small and cheap in

terms of price to make the process of deploying sensors to objects easy

and inexpensive. It senses real-world inputs such as motion detection,

temperature and so on. These sensor nodes are connected to Fog

nodes via wireless or wired communication.

• A fog node resides next to the sensors or along the communication

path to the cloud and collects sensors data (or data received from a

’downstream’ fog node) and applies data fusion techniques to extract

features. For our architecture they form the main component. Ob-

viously a fog node has less power and a less global data view than

a cloud node and hence it can apply less sophisticated data aggre-

gation algorithms. It sends the transformed and fused data to the

cloud for further processing and storage if required (ideally the fog

node can make the ultimate decision). In an investigation into energy

limitation, the authors of [25] found that these devices have restricted

energy for particular tasks.

• Cloud nodes reside in the cloud and provide the final processing

mechanism, obtaining the transformed data from fog nodes. They

mainly apply machine learning algorithms and store the data. It is
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clear that the processing power and storage capability of the cloud

is high. This power can be used even more effectively by using the

presented approach. According to [25], there is "no direct quantitative

limitations to available energy" in the devices which are in the cloud

as they are Mains-powered.

3.3.3 Activity recognition using accelerometer traces

To validate our architecture we have used the WISDM [55] data set which

is a set of accelerometer data on mobiles (particularly Android based) from

36 users who are doing 6 activities (walking, jogging, climbing upstairs,

descending downstairs, sitting and standing). These users carried their

mobiles while they were performing these activities for a fixed time.

We divided the data into 10 seconds chunks because we realised that

this duration example ensured enough time for capturing the recurrences

of movements in the six activities that we mentioned earlier. However,

for determination of the optimum value of duration we did not do experi-

ments, but we have done comparison of the results among 10 seconds, 20

seconds and 30 seconds, then the we found that the 10 second duration was

marginally better than others. Also, we have checked with other researchers

in [59, 69, 104] and 10 second actually turned out to be probably the best

on balance. It is what other researchers are using, so it is almost the most

common in this domain. In addition, 43 features are created depending on

200 readings within the specified chunks. The transformed data contains

5418 accelerometer traces from the 36 users, with an average 150.50 traces

per user and a standard deviation of 44.73.

We conducted 3 sets of experiments: Firstly, we apply analytical algo-
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rithms to the transformed data in the cloud to calculate the accuracy of

each algorithm and the execution time as a baseline. Secondly, we apply

analytical algorithms to the transformed data in a fog gateway to calculate

the execution time and to check the feasibility of the resource constraint

devices while processing the data. Finally, we apply data aggregation algo-

rithms on the raw data to extract features. The final approach minimises

the data as much possible in the fog then sends the transformed data to the

cloud for analysis. We measure the accuracy and execution time as well as

the data amount sent to the cloud.

We hypothesise that a similar accuracy can be achieved with the third

approach without increasing processing time and with significantly reducing

network data transmissions.

3.3.4 Assumptions

• In our experiments, we assumed that fog computing nodes have hard

constraint on energy, CPU, memory, and storage, however, cloud

nodes have soft constraints on energy, CPU, memory, and storage.

In other words, fog nodes have limited capabilities, but cloud nodes

have unlimited capabilities. Also, the fog nodes can be battery pow-

ered, but the cloud nodes are mains-powered.

• The technical requirements of services are identified using experimen-

tal method

• The communication among fog nodes will be wireless connection, but

the communication between fog nodes and cloud nodes will be 3G, 4g,

or LTE. In the experiments we have used fixed upload speed 1 Mbps

to mimic the real-world environment.
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• The speed of processing a data by a fog or cloud nodes relies on the

data size and the types of nodes’ configuration. This means that

powerful nodes in terms of configuration will be able to process the

low size data quicker.

Limitations

• Resources of nodes like energy or battery, memory, CPU and storage,

and their usage and allocation were designed to mimic the real existing

nodes, but in a simplified way.

• The cloud nodes are considered as unlimited nodes with unlimited

capabilities and the energy costs are not considered. The reason is that

real-world configurations are complicated when considering various

factors, which goes out of the scope of this project and to simplify the

algorithms.

Engineering process

• The process starts with preparing the raw datasets to make it ready

for further analysis. In this step, the features will be extracted to

apply the classification algorithms.

• The capabilities of fog and cloud nodes are preconfigured, and the

capabilities of fog nodes are less powerful when compare it with the

cloud.

• The technical requirements of classification algorithms and other ser-

vices are identified using an experimental approach (benchmarking),
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depending on the requirements the data is distributed to the appro-

priate nodes in terms of having the required capabilities to process the

services. Also, the capabilities of fog nodes are adjusted after some

iterations of the evaluation to fulfil the requirements of the algorithms.

• The feature extraction, data distribution and machine learning algo-

rithms are installed on both fog and cloud nodes to handle the data

in both sides.

• Set up a number of different scenarios, and compare them to the re-

sults that are gained from them. We look at how the data would

process in different architectures with a view to finding out what per-

formance gains can make. Then there was accuracy that we want to

see what the impact besides on the accuracy of the insights.

3.3.5 Experimental set up

As mentioned earlier it is not possible to apply classification algorithms on

raw data which is time series data. Therefore, there is a need to transform

raw data into features [55]. In our experiment, we used a Raspberry Pi 3

model as an example of a low power fog gateway. The used Raspberry Pi

has 1GB RAM and runs Raspbian Jessie with Pixel installed as an operating

system. In addition, to simulate the cloud device we used a 16GB RAM

Linux System. We used the Weka tool on both sides and we adjusted the

heap size in both cloud and fog. In the fog the heap size was 650 MB, in

the cloud we allowed 8GB RAM for our experiment. Moreover, we used

the same data aggregation methods that were used to extract features in

[55] to allow for comparability. We run data aggregation methods in the
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Raspberry Pi to generate meaningful features depending on 200 readings

where each has x,y and z acceleration information.

When we used the statistical measurements that are used in [55] we

created 43 features including the average of each axis, the standard deviation

of each axis, the average absolute difference of each axis, average resultant

acceleration for all axis, the time between peaks of each axis and binned

distribution for every axis (10 equal sized bins and totally 30 bins).

After the data is prepared we applied five classification methods from

the Weka data mining and machine learning tools. The methods include

decision tree (J48), logistic regression, multilayer perceptron, and naive

Bayesian. Throughout our experiment we have used 10 fold cross validation.

3.3.6 Results

Figure 3.2 (a) shows the accuracy results of the 5 analysis algorithms that

we applied on the transformed data. It is clear from the results that the

multilayer perceptron has the highest accuracy percentage.

Figure 3.2 (b) shows the data communication time over the network from

fog (Raspberry Pi) to the cloud. There are two bars visible: one for raw

data and the other for transformed data. While applying this experiment

the upload speed of the internet was 1 Mbps. It is clear that the fog only

device has no data communication cost because the processing happens in

the device and no communication to the cloud has to take place, therefore,

there is no visible bar in the figure for fog. However, in the cloud approach

the amount of raw data communication over the network from fog to cloud is

high, whereas in the hybrid approach the transformed data communication

over the network from fog to cloud is low. This is not a surprising result
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that confirms that we can save significantly on data communications by

aggregating and pre-processing data early in the chain.

(a) (b)

(c) (d)

Figure 3.2: Data processing results (a - d)

Figure 3.2 (c) illustrates the execution time of the 5 analytics algorithms

in both the cloud and fog device. The results show us that two algorithms

(logistic regression and multilayer perceptron) have significant differences

between the two sides. Obviously, the IoT device takes more time than the

cloud to execute analytics algorithms because of its resource constraints.

Figure 3.2 (d) demonstrates the total processing time for the three ar-

chitectures. There are three measurements for each architecture including

the execution time of analytics (ML) algorithms, the execution time of the

data transformation process and the data communication time between lo-

cal device and cloud. This graph needs a bit more explanation as the results
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are more interesting, so the details are as follows:

• Fog (Raspberry PI): The data transformation process is conducted

locally and it is clear that the processing time is higher than in the

cloud. The analytics algorithms have been processed locally and they

took much more time than cloud because of the processing power.

However, data communication (the time to send data to the cloud)

is very low as only aggregated data is being sent for storage. So, the

overall processing time is in the middle of the measured approaches.

• Cloud: Data Communication is the time that the raw data takes from

the IoT device to the cloud, which is clearly high as all raw data is

being transmitted. The data transformation process was done in the

cloud and due to the available resource ran quickly. Also, the analytics

algorithms have been processed in the cloud and they took much less

time than the fog because of the processing power. However, overall,

due to the significant amount of transmission time of the cloud is the

slowest in the given setting.

• Hybrid: Here the data transformation process is done locally (in the

fog) on the Raspberry Pi, with the usual observation. Data Commu-

nication is the time the transformed data takes from the IoT device

to cloud which as before is low. Finally, the analytics algorithms have

been processed in the cloud on the transformed data they took much

less time than locally because of the processing power. Overall by

combining the various strengths this leads to a good execution time.

As follows from Figure 3.2 (d) the main difference between the fog and

hybrid approach is that they differ in terms of the place for applying the
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machine learning algorithms on the transformed data. In the fog approach

the whole processing (data fusion and machine learning algorithms) happens

in the node itself which can be considered as decentralised architecture.

Whereas, in the hybrid approach the raw data is firstly fused in the fog

node to extract features, and then these features are sent to the cloud as

input for the machine learning algorithms. The major benefit of the hybrid

approach over the fog one is using the power of the cloud for the processing

of the processing intensive machine learning algorithms. Therefore, this

step helps in reducing the processing time as a contributor to the overall

data processing time.

3.3.7 Approach Based on Preferences

The users can identify preferences like energy consumption, data commu-

nication, execution time, accuracy, privacy and total processing time. As

we mentioned earlier that there are three approaches namely fog, cloud and

hybrid. The approach selection can be varied based on the users’ prefer-

ences. The following examples of selections are made based on the results

that are obtained from the experiments.

(Cloud approach) If the user prefers to reduce energy, execution time

and have full accuracy of data, then the raw data will be transferred to the

cloud. As the execution time will be less due to the powerful devices located

in the cloud, which can reduce as well as the use of energy. However, the

energy costs can be more when comparing to the battery-powered fog nodes

as running servers can cost more.

(Fog approach) If the user prefers to increase privacy, then data will be

processed locally. As the data will be processed locally, the user will have
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full control of the data and data will not be shared with anyone outside

the local network. This results in no data communication costs over the

network as well.

(Hybrid approach )If the user prefers to reduce the data communication

over the network, total processing time (Execution time and data commu-

nication), also maintain privacy and accuracy, the data will be processed in

fog and cloud.

Based on the user’s kind of preference, the user might actually end up

with a different approach. So if the user wants to reduce energy on the

local devices, then that will push towards a cloud approach rather than

other approaches. Also, if the user is very interested in privacy, and doesn’t

want the data to go very far, then obviously this pushes towards processing

more in the fog, even at the expense of energy and loss of accuracy or

whatever other criteria that might not be quite so optimal. Whereas if the

user is happy to push the data to the cloud, but the user wants to protect

the local devices, then maybe almost moving the user towards more of a

cloud approach. The default approach is hybrid, but based on the user

preference it is possible to shift into one of the other approaches.

3.4 Summary

We have presented a hybrid approach in which data is fused in the fog before

being sent to the cloud to reduce data communication over the network. The

results show that this architecture is successful in terms of reducing data

communication cost over the network without significantly reducing the ac-

curacy of later decision making. We presented the proposed approach and

its relevant methods. In addition, we used the WISDM dataset [55] to val-
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Figure 3.3: Accuracy Comparison

idate our architecture. We did a comparison between the accuracy of raw

data and the transformed data as shown in Figure 3.3. In the comparison,

we have used Naive Bayes and decision tree algorithms. The results of the

comparison show that good accuracy was obtained with the decision tree

algorithm in both raw and transformed data, but there was a little loss in

the accuracy with transformed data. However, the accuracy of transformed

data in Naive Bayes was better than the raw data. It is clear that there is

a trade-off between speed and accuracy. Our approach is still performing

well with both algorithms in both raw and transformed data. The decision

of choosing whether accuracy or speed depends on the context, preferences

and field. If the preference is to have a fast response without significantly

affecting the accuracy, then our approach using the fog is a good choice.

However, if the preference is to have a more accurate response without giv-

ing attention to the speed, then the fog can be considered as an extra node

in the network. In our context the speed was more important than the
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accuracy, as our aim was to reduce the data communication over the net-

work without significantly reducing the accuracy. Based on the objective

function, we wanted to minimise data communication (min-data), minimise

execution time (min-exec), maximise privacy (max-privacy). It is clear from

the results that data communication is minimised, execution time is min-

imised, also the privacy is maximised by doing the processing as much as

possible locally.
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Chapter 4

Exploring the effectiveness of

service decomposition in Fog

Computing architecture

4.1 Introduction

In this chapter, we propose to decompose services to create linked-microservices

(LMS). Linked-microservices are services that run on multiple nodes but

closely linked to their linked-partners. Linked-microservices allow distribut-

ing the computation across different computing nodes in the IoT architec-

ture. Using four different types of architectures namely cloud, fog, hy-

brid and fog+cloud, we explore and demonstrate the effectiveness of ser-

vice decomposition by applying four experiments to three different types

of datasets. Evaluation of the four architectures shows that decomposing

services into nodes reduce the data consumption over the network by 10%

- 70%. Overall, these results indicate that the importance of decomposing

services in the context of fog computing for enhancing the quality of service.
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The combination of IoT devices and fog computing enables smart envi-

ronments that can respond to real-time events by combining services offered

by multiple, heterogeneous devices. This can be achieved by decomposing

the services into linked-microservices which can distribute the data process-

ing as close as possible to the data source. Microservices are defined as

independent, tiny autonomous services which function together to complete

a task [66]. It is worth noting that if the microservices are linked to each

other, then the distribution of processes among fog nodes will be admissi-

ble in an IoT architecture. In other words, moving the computation from

centralised approaches to more distributed ones will be possible, leading to

a reduction in data communication cost over the network and reduced data

frequency between fog devices and the cloud [50, 102]. Most of such mi-

croservices can implement typical machine learning (ML) tasks that can deal

with the volatility and heterogeneity of data produced in the IoT environ-

ments. Data processing using ML techniques in typical IoT-fog applications

consists of well-defined steps such as feature extraction, pre-processing and

applying relevant algorithms.

Thus, in this chapter, we focus on the research problem of arriving at

the best service computation distribution strategy that is cognisant of node

constraints and can deliver a reduction in data communication cost for dif-

ferent types of data modalities. For this, we conduct a range of experiments

to see how the traditional machine learning algorithms perform in the fog

computing domain to highlight the importance of efficiently selecting which

services should run on which node.

We have used fog and edge computing interchangeably because of their

similarity in moving the computation from centralised clouds to the edge
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of the network. The proposed linked-microservices decomposition strategy

can be extended and applied to a range of edge devices, such as switches

and routers if their device and data computation capability information can

be obtained, as has been demonstrated in [108].

Our objective is to demonstrate the practical validation of the proposed

approach. Our evaluation strategy is similar to the work that has been done

in [83].

We have used several machine learning algorithms including Naive Bayes,

Logic Regression, K Nearest Neighbours (KNN), Decision Trees, Multi-layer

perceptron (MLP) and Support Vector Machine (SVM) to explore and test

which algorithm is the best fit for the given data modality. Based on the

results, there is no single optimum technique for all types of datasets. Ev-

ery algorithm has different training time, with some requiring less time or

less storage such as Naive Bayes, KNN and Decision trees. However, in

terms of executing the persistent features and multi-dimensional datasets,

the SVM and MLP algorithms can perform them effectively. The authors

of [53] have reviewed many machine learning algorithms and they stated

that it is not possible for an algorithm to perform better than others for all

given datasets. This chapter has surveyed the well known techniques with

the focus being to find the key concepts. Therefore, our selection of machine

learning algorithms was based on their efficiency in different datasets and

being well known techniques.

4.2 Contributions

The range of fog nodes and data modalities (i.e. numerical, text and image)

considered in our experiments are drawn from representative IoT-enabled
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fog computing applications such as crowd surveillance [61, 62], service pro-

vision for massive ad-hoc crowds (e.g. 10 million Hajj pilgrims [79]), opti-

mised computation distribution [102], augmented brain-computer interac-

tion game [42], a visitor-identification system in smart homes [57] etc. The

main contributions of this chapter are as follows:

• Identifying the most efficient architecture among the IoT architectures

can be done by exploring some strategies and possibly applying them

to identify the efficiency of the architecture. Therefore, we explore

the importance of decomposing services into linked-microservices in a

distributed architecture in fog computing domain for enhancing the

QoS and meeting the low latency requirements of IoT-fog applications.

• The efficiency of data analytics architecture in the IoT can be affected

when processing machine learning algorithms. As a result, we explore

how different machine learning problems can be efficiently dealt with

using service decomposition.

• Selecting the most effective data analytics architecture is a challeng-

ing task as it requires to apply trade-off analysis to present and eval-

uate the effectiveness and ineffectiveness of each architecture. Con-

sequently, we propose an efficient approach, which decomposes the

services and deploys them as close as possible to the edge of the net-

work. We conduct a trade-off analysis to demonstrate the usefulness

of different service decomposition strategies, with the evaluation of

the four possible strategies showing that decomposing service com-

putation over the fog nodes reduces the data consumption over the

network by 10% (for text data) - 70% (for numerical data). This re-

duction in the data flow in turn implies less energy and bandwidth
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costs for the network, while also enabling reduced overheads for se-

curing the condensed data features.

• We use different types of data modalities including numerical, text

and images using different ML algorithms, since these are the most

common modalities of IoT data sources, as shown from our analysis

of a variety of IoT-fog applications above. Thus, we believe that this

is generalizable for most of the cases in this problem domain.

In this chapter our objective is to show that splitting the services or

decomposing the services into microservices should help in executing the

services effectively, we propose as our future work to build a systematic

way to divide the workload. For example, we tried different decomposition

techniques and the results were different for each decomposition technique

depending on the specific use case; for different kinds of datasets the results

will be different based on the results that we have achieved.

The remainder of this chapter is organised as follows: First, we present a

motivating scenario that is representative of the problem domain, second, we

present our methodology through the different datasets and ML algorithms

considered for the experiments. Third, we show and evaluate the outcomes

of the experiments, finally the conclusion is drawn.

Parts of this chapter have been published in [17].

4.2.1 The process of splitting services

We have two decomposition one is decomposing is based on the data, so

data decomposition by splitting the dataset. The second way is decompos-

ing by functional decomposition, which can lead to smaller services. The

Assumptions and the process that are considered in 3.3.4 are used in this
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chapter, but in this chapter, we have added a process of splitting services

as follows The process of splitting services:

• Splitting services into smaller services are undertaken experimentally.

This is a partitioning of data and partitioning of functions.

• To explain the process, assume there is an activity recognition service,

and this service is compact has smaller services (functions) such as

finding the average, standard deviation and so on. In our process, we

spilt this compact service into separated smaller services.

• The services are converted to executable format, which helps to make

the process of distribution and running the services in different nodes

easy.

4.3 Problem analysis

IoT devices have constraints on resources like RAM, CPU and storage. The

services that execute on these devices have restrictions expressed in terms

of the same resources. Additionally, service execution and distribution need

to take into account the data computation capabilities (i.e. in terms of

the installed library support) of the devices. Therefore, we need to model

the data about services to get knowledge about their restrictions before

distributing them across the nodes. For example, the image recognition

service needs at least 500MB to be executed, so the IoT device’s capability

should be powerful enough to execute this service. Therefore, if the device

has a limitation in processing power, then it is not possible to execute the

service on it. In this case, service decomposition is an important aspect of

the IoT architecture due to the involvement of devices with limited hardware
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capabilities and varying data computation availability, which cannot handle

resource intensive tasks.

In addition, decomposing services into linked-microservices is an impor-

tant aspect in terms of service composition in the IoT architecture. This is

crucial for the effective distribution of services to the nodes in the IoT. The

main challenge is to determine which services should be executed on which

node in a given IoT architecture, by considering both overall efficiency and

feasibility. This is similar to the Job shop problem which is one of the most

known problems in combinatorial problems [41]. Basically, the idea of the

’Job shop’ problem, is that there is a group of machines with varying levels

of computational power (i.e., given a specific job, j, it could be the case that

there are two machines that complete j in different amounts of time, with

the quicker one having higher computational power).

The problem then asks for an algorithm which produces an optimal

assignment of jobs to machines, such that the overall amount of time it takes

for all jobs to be completed is minimal. The following scenario illustrates

the problem by using a real use case. The scenario is drawn from a recent

UAV (Unmanned Aerial Vehicle) crowd surveillance study [61], which looked

at energy efficiency achieved by offloading the facial recognition operation

to a Mobile Edge-Computing node rather than processing it locally on the

UAV (using a Raspberry-Pi for computation). We extend this in our case to

include multiple fog nodes (devices) with varying hardware and computation

abilities. The scenario demonstrates the significance of deploying the right

service on the right node.
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4.4 Motivating scenario: An event in a city

We will present a motivating scenario about an event in a city. There is

a major event in a city where people are taking videos and photos. The

law enforcement agencies are interested in re-utilising the captured images

to identify criminals (or persons of interest) among the crowds in order to

anticipate crimes. In Figure 4.1, there are four types of Nodes (Ni) including

mobile phones (N1), drones (N2), streetlights (N3) and cloud (N4). Every

node has a different combination of resources (CPU, RAM, energy, storage

and network bandwidth) and each node can execute several different services

(Si). Each service requires a specific combination of resources to be executed

on a given node. Additionally, the facial recognition service comprises a

variety of linked-microservices corresponding to ML tasks, including facial

feature extraction, data fusion, data filtering and face detection algorithms.

(N1) (N2) (N3) (N4)
S1

Image 
Recognition

S2

Text 
Recognition

S3

Machine 
Learning

S4

N={CPU, RAM, Storage, Energy, Bandwidth} S={CPU, RAM, Storage, Energy, Bandwidth}

Services (S)Nodes (N)

Mobile Drone CloudLight

Activity 
Recognition

S1
S1

S3

S2

S1 S2 S3

S2

N2:1...n

N3:1...n

S3S2

N1:1

N1:2

S2 S3

N1:n

S1

S3

S2

S4

Figure 4.1: Scenario: An event in a city
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The event goers are taking photos and videos of the event primarily for their

pleasure, not for helping the law enforcement agencies. However, they may

like to help the law enforcement agencies to maintain safety as long as the

primary function of their devices in this scenario is not compromised. The

system should ask the users for their consent to use their data and devices

to avoid ethical issues, so permission is required from the users before using

their devices.

The sustainability comes from better energy consumption, less commu-

nication means longer duration and more devices can be connected together.

The overall architecture should not consume too much energy or communi-

cation bandwidth from users’ devices. The simplest case of service distribu-

tion will send all the raw data to the cloud from individual user devices even

though it consumes a lot of network bandwidth. However, if we can do the

data transformation in a smartphone, then it consumes less bandwidth and

sends only processed data to the cloud. The services associated with face

recognition ML tasks are deployed dynamically in smartphones. It is crucial

to consider which responsibilities should be assigned to smartphones.

In addition, the nearest lamp or drone will have more computing power

than the phones and can handle the more computation intensive tasks than

user devices. This reduces the communication cost in two ways: First, the

images will be transformed into feature vectors in the mobile, and secondly,

further processing will be applied to data when they are sent to the lamps or

drones which are temporarily deployed because of the event and connected

with the mobiles via Bluetooth which is cheap in terms of communication.

Then the transformed data will be sent to the cloud via 3G for further

analysis.
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This scenario introduces a number of challenges since it involves deploy-

ing dynamically composed services during an event in the city. The event

happens on a particular day and people are likely to move around while

taking photos which introduces unpredictability in their location. The ser-

vice orchestrator needs to be aware of the resources available on the users’

phones when sending a request for service computation to them. It is cru-

cial to consider how to compose services like sending data to the drones as

mediator. Additionally, what services should be deployed to the drone and

mobile is also an important aspect. This scenario illustrates the problems

involved in service provisioning on fog nodes (taking into account varying

hardware and data processing capabilities) and deploying the service taking

into account data communication costs.

There can be different criteria or preferences to have the optimal archi-

tecture for certain scenario or application. The chosen criteria or preference

might influence the choice of architecture as this multi criteria optimisa-

tion problem. As we mentioned earlier in 3.3.7 regarding the preferences

of users can influence selecting the approach to be followed. It is similar

here, but there are more criteria like we may have constraints because of

legal requirements, or ethical considerations that has certain aspects that

we cannot collect and process certain data which forces us to use differ-

ent architecture. These are constraints that restrict the approaches that

we select. Based on criteria being chosen we might end up with a differ-

ent architecture. Involving this multi criteria problem is important as it

is not possible to optimise everything in one approach, so there are some

architectures can be optimised for accuracy and others can be optimised for

performance.
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4.5 Methodology

As we discussed in Chapter 2, there are clear trade-offs among the three ar-

chitectures (centralised, decentralised and distributed). It is possible to find

solutions that can maximise the advantages and minimise the disadvantages

of each architecture. Our proposed method endeavours to fulfil this, which

is presented below. We propose an efficient approach which aims to move

the computation from the cloud to the fog as much as possible.

The goal is to process a service S effectively. We begin with decomposing

services into a set of linked-microservices MS to distribute them among

nodes in our architecture. A good illustration of this is shown in Figure 4.2,

there are three services namely activity s1, image s2 and text s3 recognition.

These services will be decomposed into linked-microservices (MS) before

the distribution process.

Figure 4.2: Service decomposition

Then, the distribution process will distribute the micro services depend-
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ing on the constraints on services and nodes of the nodes. Then we apply

data processing techniques to sensors’ data to extract features and reduce

the number of data points in the fog node (FN). This phase is significant

because it is not possible to analyse raw time-series data by algorithms of

classification effectively. Then, the cloud will receive the extracted features

for creating inferences and training purposes. Therefore, to get the results

we compose both the fog node and the cloud node to process the service.

We conduct experiments for each of the above architectures in order to

explore how the hybrid data analytics architecture would be beneficial in a

variety of ways.

We use three types of datasets namely numerical, text and image. The

details of each dataset including dataset description, algorithms and process

will be discussed below. Each dataset has its description and algorithms.

However, they have a common process in terms of decomposing the services

and distributing the computation over the nodes. It is worth discussing the

similarities before discussing the details of each experiment.

Objective Function

minimize/maximize fm(x)

m = { min−data, min−exec, max−privacy }

f is the objective function, m is the set of objectives and x is a vector

of variables.

4.6 Process of three types of experiments

We conducted 4 sets of experiments under each of the three types of ex-

periments which are Numerical, Text and Image data. The process of the
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experiments is shown in Figure 4.3. The explanation of the four experiments

related to all types of datasets are below:

First experiment. We sent all raw data to the cloud and data trans-

formation methods are applied to the raw data to extract features. Then,

we applied Machine learning to the altered data based on the extracted

features in the cloud as shown in Figure 4.3 (Cloud). We calculate the ac-

curacy of each algorithm, the amount of data that is sent to the cloud and

the execution time.

Second experiment. We applied data transformation methods to the

raw data to create features. Then, we applied analytical algorithms to the

modified data based on the extracted features in the fog as shown in Figure

4.3 (Fog). We check how feasible is the resource constraint device when

processing the data and we measure the time of the execution.

Third experiment. We applied the feature extraction methods to the

raw data to extract features in the fog. By applying this the data is min-

imised as much as possible in the fog, then the transformed data will be

sent to the cloud for further analysis as shown in Figure 4.3 (Hybrid). We

calculate the accuracy of each algorithm, the amount of data that is sent to

the cloud and the time of execution.

Fourth experiment. This is similar to the third experiment in terms of

applying data aggregation algorithms to the raw data in order to extract

features in the fog. However, in this approach, we applied the feature ex-

traction on part of the raw data in fog and the remaining in the cloud. We

divided the dataset into two parts randomly, where 70% of the data will
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be used in fog and the remaining 30% will be sent to the cloud. In this

experiment, the statistical measurements in the Fog are presented as S1.1,

S2.1, S3.1, S4.1, S5.1 and S6.1, which are applied on 70% of the raw data.

However, in the Cloud, the statistical measurements are presented as

S1.2, S2.2, S3.2, S4.2, S5.2 and S6.2, which are applied on 30% of the raw

data. In numerical data, in the first part, we applied fusion methods on

the 70% of the raw data which is 768746 rows that is equal to 35 MB (70%

of the file size) in the fog. Then, we sent the transformed data which is

equal to 0.84 MB and remaining raw data (30% of the data) which is equal

to 15 MB to the cloud for data transformation and then analysis as shown

in Figure 4.3 (Fog+Cloud). In text data, the first part has 14 newsgroups

S1 Sn

ML

Result
S1 Sn

ML

S1 Sn ML

Sensors Fog Cloud Sensors Fog Cloud

Sensors Fog Cloud Sensors Fog Cloud

(Cloud) (Fog)

(Hybrid) (Fog+Cloud)

ML

S1.1 Sn.1 S1.2 Sn.2

... ...

... ... ...

S = Statistical Measurements as Services, ML = Machine Learning Algorithms
as Services
(Cloud) = all the services are processed in the cloud, (Fog) = all the services
are processed in the fog, (Hybrid) = the statistical measurement and machine
learning services are distributed into fog and cloud respectively, (Fog+Cloud) =
70% of statistical measurements services processed in the fog and the rest with
machine learning services are processed in the cloud.

Figure 4.3: Process of three experiments.
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which are 70% of the data and it will be processed in the fog. The second

part has 6 newsgroups which are 30% of the data and it will be transferred

to the cloud. Then, we sent the transformed data and remaining raw data

to the cloud for further data transformation and analysis as shown in Figure

4.3 (Fog+Cloud).

In image data, the first part is training data which has nearly 70% of all

images and equals to 17185 images (392 MB file size) and it will be processed

in the fog. The second part is testing data which have nearly 30% of all

images and equals to 7815 images (178 MB file size) and it will be sent to

the cloud. Then, we sent the transformed data and remaining raw data

to the cloud for further analysis as shown in Figure 4.3 (Fog+Cloud). In

this experiment, we calculate the accuracy of each algorithm, the amount

of data that is sent to the cloud and the time of execution.

4.7 Experiment 1: Numerical data with 6 mea-

surements

4.7.1 Dataset description

The dataset that is used is called WISDM [55] that has been discussed

earlier in Chapter 2.

4.7.2 Algorithms

We have used six statistical measurements that are used in [55]. There are 43

features that are created including the mean (S1), standard deviation (S2),

the average absolute difference (S3), the time between peaks (S4) of every

78



axis, average resultant acceleration of all axis (S5) and binned distribution

for each axis (10 equal sized bins and total 30 bins) (S6). After preprocessing

the data, five methods of classification (ML) are applied including Naive

Bayesian (NB), Logistic Regression (LR), K-Nearest Neighbours (KNN),

Decision Tree (DT) and Multilayer Perceptron (MP).

4.8 Experiment 2: Text data

4.8.1 Dataset description

The dataset that is used is called Twenty Newsgroups [56] which has been

discussed earlier in Chapter 2.

4.8.2 Algorithms

To apply analytical algorithms to text data, it is important to convert the

text into a numerical feature vector. To extract features, first, we will

use Tokenizing text with scikit-learn (S1) which has text pre-processing

and filtering. Second, from occurrences to frequencies (S2) which counts

the occurrences and divides the available occurrences of every word by the

whole words of the file. These features have a specific name which is term

frequencies (tf). Also, downscaling (tf-idf: Term Frequency time inverse

document frequency) the weights for words that appear in most of the files

have less knowledgeable information than the words that appear in very

small parts of the file. After extracting features from data, it is possible

to apply the classifier (ML) to give a prediction of the category in the

post. The first classifier is naive Bayes classifier in scikit-learn which has a

variety of the classifiers and the most suitable is a multinomial variant for
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this dataset. The second classifier is a support vector machine (SVM) which

can be considered one of the most used algorithms in text classification.

4.9 Experiment 3: Image data

4.9.1 Dataset description

The dataset that is used is called Dogs vs Ċats dataset1 which has been

discussed earlier in Chapter 2.

4.9.2 Algorithms

To apply machine learning algorithms, we need to convert the images into

a feature vector. We are going to use two methods that take input and

produce feature vectors as output. First, the image_to_feature_vector

(S1) function that takes the image as input and changes the size of the im-

age to stable height and width and the intensity level of RGB is converted

into a single set of numerical data. Second, extract_color_histogram (S2)

function gets an image as input and produces the histogram of colour to

describe the image colour classification. Then, we use the k-nearest neigh-

bours algorithm (k-NN) (ML) classifier to give a prediction of the category

as either dog or cat.

While doing all the three experiments, we expected that we can achieve

a similar accuracy with the hybrid approach while maintaining the process-

ing time and with considerably minimising data communication over the

network.

1https://www.kaggle.com/c/dogs-vs-cats
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4.10 Experimental set up and results

As discussed earlier, creating features from raw data such as numerical data,

text data and image data, helps in the process of applying analytical algo-

rithms on them. In our experiments, we have used a Raspberry Pi 3 model

as the resource-constrained device. The device specification is 1GB RAM,

with Raspbian Jessie as the operating system. These experiments can be

performed on smartphones as well, but in our experiments we preferred

Raspberry pi as it has similar specifications to smartphones, and is much

cheaper than smartphones, with the cost also being a factor in IoT environ-

ments. Some papers have obtained and processed data on smartphones, as

in [29, 86, 102]. Furthermore, a Linux based System which has 16GB RAM

is used to mimic the device of the cloud. For data aggregation, segmentation

and feature extraction, we have used Java and python libraries.

We used python 2.7.12 and 3.5.2 and the Weka 3.8 tool for machine

learning (classification methods). For the numerical experiments, the Weka

tool is used and the heap size is adjusted in both cloud and fog. In the

cloud environment, the size of the heap was set to 8GB, whereas in the fog,

the size was 650MB RAM for the numerical data experiment. However, the

remaining experiments were done in python. While conducting these experi-

ments, the internet upload speed was 1 Mbps. We used several packages and

libraries in python for image analysis including NumPy, Argparse, OpenCV

packages, Scikit-learn library and imutils library. In addition, Scikit-learn

library and NumPy packages are used for text analysis.
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4.10.1 Experiment 1: Numerical - 6 measurements

It is clear from results that the multilayer perception has the highest accu-

racy percentage. The results show us that two algorithms (logistic regres-

sion and multilayer perceptron) have significant differences between the two

sides.

(a) (b)

(c) (d)

NB = Naive Bayes, LR = Logistic Regression, KNN = K Nearest Neighbours,

DT = Decision Tree J48, MP = Multilayer Perceptron

ML = Machine Learning, DT = Data Transformation, DC = Data Com-
munication

Summary: (a) Shows the accuracy results of the analysis algorithms that we
applied to the transformed data. (b) Shows the data communication time
over the network from fog to the cloud. (c) Illustrates the execution time of
the analytics algorithms in both the cloud and fog device. (d) Demonstrates
the total processing time for the four architectures.

Figure 4.4: Experiment 1: Numerical - 6 measurements
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(a) (b)

(c) (d)
SVM = Support Vector Machine, NB = Naive Bayes

ML = Machine Learning, DT = Data Transformation, DC = Data Com-
munication

Figure 4.5: Experiment 2: Text data

4.10.2 Experiment 2: Text data

It is clear from the results that the support vector machine has a higher

accuracy percentage than Naive Bayes. There are two bars visible in Figure

4.5. Experiment 2: Text Data (b): one for the raw data and the other for

the transformed data. The results show us that the two algorithms (Support

Vector Machine and Naive Bayes) have significant differences between the

two sides.

4.10.3 Experiment 3: Image data

It is clear from the results that applying the K-NN classifier on extract_-

color_histogram has a higher accuracy percentage than Image_to_fea-

ture_vector. There are two bars visible in Figure 4.6. Experiment 3:
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Image Data. (b): One for raw data and the other for transformed data. It is

clear from the results that applying K-NN classifier Image_to_feature_vec-

tor significantly takes more time to execute than extract_color_histogram.

However, comparing between cloud and fog there is no big difference in

execution as in data communication.

(a) (b)

(c) (d)

KNN = K Nearest Neighbours, FV = Image to Feature Vector, CH = Extract

Color Vector

ML = Machine Learning, DT = Data Transformation, DC = Data Com-
munication

Figure 4.6: Experiment 3: Image data

4.10.4 The results of the three experiments

It is clear that the fog only device has no data communication cost because

the processing happened in the device and no communication to the cloud

took place. However, in the cloud approach, the raw data communication

over the network from fog to the cloud is higher than other approaches.

On the other hand, in the hybrid approach, the transformed data commu-
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nication over the network from fog to the cloud is lower than both cloud

and fog+cloud approaches. This is not a surprising result confirms that

we can save significantly on data communications by pre-processing data

early in the chain. Obviously, the fog takes more time than the cloud to

execute classification algorithms because of its resource constraints. In total

processing time graph, there are three measurements for each architecture

including the execution time of analytics (ML) algorithms, the execution

time of the data transformation process and the data communication time

between the local device and the cloud as shown in Figure 4.4, 4.5 and 4.6.

The total processing time graph in Figure 4.4, 4.5 and 4.6 needs a bit more

explanation as the results are more interesting, so the details are as follows:

Fog. The data transformation process is conducted locally and it is clear

that the processing time is higher than in the cloud. The analytics algo-

rithms have been processed locally and they took much more time than

cloud because of the processing power. However, data communication (the

time to send data to the cloud) is very low as only aggregated data is being

sent for storage. So, the overall processing time of Fog approach in Ex-

periments 4.10.1 and 4.10.3 is in the middle of the measured approaches.

However, the overall processing time in Experiment 4.10.2 shows that fog

is the slowest approach in the given setting.

Cloud. Data Communication is the time that the raw data takes from the

IoT device to the cloud, which is higher as all raw data is being transmitted.

The data transformation process was done in the cloud and due to the

available resource runs quickly. Also, the analytics algorithms have been

processed in the cloud and they took much less time than the fog because
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of the processing power. However, in Experiments 4.10.1 and 4.10.3 the

overall due to the significant amount of transmission time the cloud is the

slowest approach in the given setting. However, in Experiment 4.10.2 the

overall cloud is in the middle of the measured approaches.

Hybrid. Here the data transformation process is done locally (in the fog)

on the Raspberry Pi, with the usual observation. Data Communication is

the time the transformed data takes from the IoT device to the cloud which

as before is low. Finally, the analytics algorithms have been processed in the

cloud on the transformed data; they took much less time than locally be-

cause of the processing power. Overall by combining the various strengths,

this leads to a good execution time.

Fog + Cloud. This is similar to the hybrid approach in terms of the data

transformation process is done locally (in the fog). However, as mentioned

earlier, the data are divided into two parts: 70% of the data which is trans-

formed locally and the other 30% in the cloud. Data Communication is

the time the transformed data and remaining raw data take from the IoT

device to cloud which is lower than cloud and higher than both fog and

hybrid approaches. Finally, the analytics algorithms have been processed

in the cloud after data transformation is applied to the remaining data to

have all data transformed. The machine learning algorithms took much less

time than locally because of the processing power. So, overall processing

time is in the middle of the measured approaches.
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4.10.5 Lessons learnt and take away messages

The accuracy and execution time is the same as in Figure 3.2, but data

communication and total processing time is differed from Figure 3.2 because

we have added a new approach called fog+cloud. So we have used the

same dataset and the same approaches in 3.2 and we added the fog+cloud

approach where we split the dataset to see how effective will be the data

decomposition in terms of total processing time when compared with other

approaches.

Based on the result, in numerical and image data there was a notable

difference in total processing time among the four architectures, however,

in text data there was no significant difference. One of the reasons can be

that in the tokenization process the text will be replaced with something

else that will not affect the size of the data significantly. Another reason for

this might be the data transformation algorithms that are used. However,

the idea is not just to reduce the size of data, but also to create meaningful

data to get more insights. We have used three types of datasets including

numerical, text and image. These datasets are publicly available, but they

are not taken from an industrial application due to unavailability of public

IoT industrial application datasets to conduct our experiments. However,

the types of data in the used datasets are quite similar to industrial data in

terms of numerical, text and image data. The survey in [71] has reviewed

over 100 Internet of Things solutions and divided them in the industry

marketplace into five classes including smart home, smart wearable, smart

environment, smart city and smart enterprise. The datasets that we have

used in our experiments fall into some of these classes in terms of data types

(numeric, text and image).
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For completeness, while working with the image dataset, one of the diffi-

culties faced was installing imutils2 library and OpenCV3 library for python.

Also, we used Linux based system for our experiments because we faced is-

sues with installing libraries/packages and adapting the environments for

the experiments while using other operating systems. Additionally, the ac-

curacy of the image dataset might be a bit low, but it is possible to increase

the accuracy by using different methods than KNN such as Convolutional

Neural Networks (CNN). Similarly, in both datasets including numerical and

text, higher accuracy can be obtained either by tuning the machine learning

algorithms or by using different algorithms such as CNN. In addition, the

data transformation methods can be utilised or different methods can be

used to create features with more insights. These issues can be important

aspects of data analytics by finding answers regarding how to increase the

accuracy, but it is important to use lightweight solutions to avoid having

high execution time. However, in this work, we focused on exploring the

most effective fog computing architectures for the IoT.

4.11 Summary

This chapter presents an efficient approach where the raw data is prepro-

cessed in the fog node before being transmitted to the cloud to minimise the

data communication over the network. Three types of datasets are used for

the experiments including numerical data, text data and image data. Fur-

thermore, we conducted 4 experiments, including 4 architectures namely

cloud, fog, hybrid and fog + cloud for each dataset to explore which one

2https://pypi.python.org/pypi/imutils
3https://opencv.org/
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is the most effective for the Internet of Things. The results show that the

hybrid approach is efficient in terms of minimising the cost of data com-

munication over the network while maintaining accuracy. However, fog +

cloud approach could be useful to employ in situations where fog device has

limited processing capability and cannot perform all the required process-

ing. In such situations, fog + cloud approach would perform better than

the cloud only approach. In addition, we used the WISDM dataset [55], 20

Newsgroups dataset [56] and Kaggle dogs vs cats dataset [49] to validate

our architecture. The feature extraction service demonstrates the value of

partitioning process because the feature extraction obviously looks at the

whole dataset that’s coming in from a user, and then identify some sort of

key elements that you do want to pass to your data analytics. So in that

step, we can actually reduce the data volume significantly. So that is some-

thing we do want to distribute, we want to move it as close as possible to

the user. Whereas maybe some elements of the actual data analysis we do

not want to move as close as to the user because we need the much wider

insight of data from all your users. Also, anything that sort of very time

critical, we might want to do quite close to the user as well where feasible

because then we are cutting out on that chain of going to the cloud and

coming back. Based on the objective function, we wanted to minimise data

communication (min-data), minimise execution time (min-exec), maximise

privacy (max-privacy). It is clear from the results that data communication

is minimised, execution time is minimised, also the privacy is maximised by

doing the processing as much as possible locally.
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Chapter 5

Service distribution strategy for

the IoT

5.1 Introduction

The IoT and cloud computing are the most effective technologies that im-

pact the lives of most people in diverse manners. It is not possible to ignore

their good impact on our lives, but the shortcomings of both technologies

exist. They are inexpensive and convenient, but the services of the cloud

make extremely high data transfer rates in the network which makes the

process of data transfer much expensive because the network requires to

upgrade the bandwidth. Besides, the physical distance between the devices

and the servers make a frequent delay issue in traditional cloud architecture.

Fog computing can be proposed to tackle these challenges as a model that

distribute the data processing in the network. Also, fog computing can be

seen as the middle layer between the IoT devices and the cloud. The fog

computing is located at the edge of the network close to the IoT devices.

This makes the management of devices easy with a small number of devices,
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but the number of connected devices has been increased which will increase

the difficulty of managing the devices.

Moreover, the IoT devices have limited capabilities and constraints that

also a big challenge when distributing the services among the devices as the

services have constraints. The problems that can arise are an inefficient use

of resources, slow data processing, and data communication issues. There-

fore, it is important to optimise the usage of resources and the usage of the

network to avoid the shortcomings. In this chapter, we propose a distribu-

tion strategy called "MEIN" Most Efficient IoT Node, it uses a list of all

the IoT devices present in the network. This strategy allows defining the

best order to use devices to execute the different services. We have used the

best-fit algorithm in the bin packing problem. Bin Packing is "NP-hard [40]

and heuristics have been developed to approximate the minimum number of

bins" [51]. In addition, the author stated that the following algorithms best-

fit, next-fit and first-fit are the most classic ones. Furthermore, the author

has described the best-fit algorithm as "best-fit maintains a list of current

bins ordered by sizes and upon arrival of item x, puts it in the current fullest

bin in which it fits, opening a new bin for x if this fails".

The criterion to sort the list of devices is physical capabilities of devices

like battery, memory and storage. Thus, all devices capabilities are stored

in a list for each physical aspect.

The main contributions of this chapter are as follows:

• In IoT environments, the nodes have different processing power capa-

bilities as IoT nodes are constrained, but cloud nodes are powerful.

Moreover, the services require different processing power to run on a

node. Therefore, we need to identify the capabilities of the IoT nodes
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and cloud nodes, also, identifying the technical requirements of the

services is important to distribute the services to the nodes efficiently.

• Service distribution strategy is important when distributing services

to the nodes in the IoT is a challenging task as there are different types

of devices and different capabilities of nodes. Therefore, we propose a

distribution strategy called Most Efficient IoT Node (MEIN), it uses a

list of all the IoT devices present in the network. This strategy allows

defining the best order to use devices to execute the different services.

We use the best-fit algorithm in the bin packing problem as a base-

line. The criterion to sort the list of devices is physical capabilities of

devices like CPU, memory and storage. Thus, all devices capabilities

are stored in a list for each physical aspect. We conduct a trade-

off analysis to demonstrate the efficiency of the service distribution

strategy.

• In IoT environments, the number of services and devices will be large,

so there is a need to distribute the services and optimise resource usage

efficiently. As a result, we explore the importance of distributing the

services into the nodes and optimising the resource usage in a fog

computing architecture for quality of service improvements, meeting

the optimised resources usage requirements of IoT-fog applications.

• We evaluate the MEIN strategy by using the randomly generated

dataset, also, we create 15 combinations of capabilities for fog nodes

to explore how efficient is the proposed distribution strategy and ex-

plore the most effective combination of capabilities for fog nodes to

handle most of the services.
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In this chapter, our aim is to demonstrate that distributing the IoT

services to the right nodes should help in distributing and executing the

IoT services efficiently and in an optimised way.

The remainder of this chapter is organised as follows: First, presents

a problem analysis and motivating scenario that is representative of the

problem domain, second, presents our methodology through the proposed

distribution strategy. In addition, experimental setup and results are pre-

sented, finally, the summary of the chapter is drawn.

5.2 Problem analysis

As a result of the increased number of connected IoT devices to the inter-

net, the number of services has increased and companies started deploying

more services for various purposes. These IoT devices have constraints

on resources like RAM, CPU and storage and shortage in battery power.

Moreover, every service that is deployed has a similar restriction expressed

in terms of the same resources. Additionally, in the execution and distri-

bution of service, it is important to take into account the data processing

capabilities of the IoT devices. Hence, we need to model the data of services

to get the information and the knowledge regarding their limitations before

distributing them to the IoT nodes.

For example, the image and video analysis service requires more compu-

tational power than text and number analysis and some of the video analysis

services need more computational power because of their size and the used

algorithms which mean that the capability of the IoT devices should be

powerful enough to execute these services. Thus, the IoT devices have lim-

itations in computational power which are not possible to execute these
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services on them. In this regard, optimisation in service distribution is a

significant aspect of the IoT architecture because of resource-constrained

devices in terms of the hardware that lead them to handle tasks that are

not intensive. In the IoT environment, many services are distributed on

IoT nodes in the network for different purposes. Also, some of the nodes

are not used because of their low power capabilities to process a service

which means some nodes are there for data processing, but they are ignored

because of their power limitation. This can be worse when we consider bil-

lions of services that are going to be distributed to billions of nodes and

processed by them.

This means there are wasting of resource usage in the network which

might delay the processing time of the services. Resource wastage means

that the resources are either not used or partially used due to their con-

straints, and they remain in the network without usage that means wasting

the available resources. The main challenge is to determine which services

should be distributed on which node in a given IoT architecture, by consid-

ering both overall efficiency and feasibility. This is similar to the bin packing

problem which is one of the most known problems in bin distribution. Ba-

sically, the idea of bin packing problem is Minimising the number of Bins.

The problem includes a number of items with various weights between 0

and 1 and bins with a fixed capacity. The idea is to allocate items to a bin

but the number of used bins should be minimised and it can be that items

have fewer weights than the capacity of the bin. Then, the problem asks

for an algorithm which produces an optimal allocation of items to bins in

the optimised way and minimising the number of used bins.

We suggest that in the longer-term there is a need to optimise the dis-
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tribution of the services to maintain the use of services and the traffic on

the network, also to process the services in an acceptable time.

5.3 Motivating scenario

Badr is a tourist in the centre of London with his wife and two children.

He would like to visit most of the famous places in London including Lon-

don Eye, Big Ben and River Thames. However, before starting the tour he

is willing to go to a restaurant to buy food, and then continue the tour.

Therefore, he needs a City Map, weather forecast as the weather in Lon-

don is usually rainy and Audio Translation as he is not a native English

speaker, also some useful information regarding London City like the best

restaurant, cafe and attractions. London city offers an official website and

mobile application for information searching and useful services for tourists.

In Figure 5.1, there is an IoT environment in the city including various IoT

devices and embedded devices.

Additionally, there are five IoT Nodes (Ni) including smart shop (N1),

smart mail post box (N2), smart light (N3), smart telephone cabinet (N4)

and drone (N5). Every Node has a different configuration (RAM, Storage)

and the nodes can compute a number of services (Si). Similarly, the ser-

vices also have a different configuration of requirements which are similar

to the nodes’ configuration. There are six types of configuration for nodes

as explained in Table 5.1. Similarly, there are six types of configuration

for services as explained in Table 5.2. Every configuration type has a dif-

ferent combination of RAM and storage. For example, configuration Type

C (1) (1024, 8) in nodes means it has 1024 MB RAM and 8GB Storage.

There are two types of devices in terms of services’ requirements includ-
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ing pre-packaged devices and configurable devices. Pre-packaged devices

(Fog computing) have packages of services such as City Map, Navigation,

weather forecast, audio translation and city Information.

Table 5.1: The capabilities of nodes

Name Values Units

RAM 1024, 2048, 4096, 8192, 16, 32 MB

Storage 8, 16, 32, 64, 128, 256 GB

Configuration Type of Nodes Capabilities (C) A combination of: (RAM, Storage) Respectively. C (1) (1024, 8)

C (2) (2048, 16)

C (3) (40.96, 32)

C (4) (8192, 64)

C (5) (16, 128)

C (6) (32, 256)

Table 5.2: The technical requirements of services

Name Values Units

RAM 256, 512, 1024, 2048, 4096, 8192 MB

Storage 2, 4, 8, 16, 32, 64 GB

Configuration Type of Service Requirements (R) A combination of: (RAM, Storage) Respectively. R (1) (256, 2)

R (2) (512, 4)

R (3) (1024, 8)

R (4) (2048, 16)

R (5) (4096, 32)

R (6) (8192, 64)

Whereas, configurable devices (smart light, smart shop, smart mail post

box and smart telephone cabinet) means whenever the user needs a service,

the user asks the system to install it. Fog computing devices get instruction

and download the services to distribute them to available nodes, then the

devices process the services to send the result to the user. The system

selects the type of device based on device capabilities (RAM and storage).

Badr’s mobile in the morning was a full battery, empty storage and internet
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connection was good. Badr wants to go to the London Eye from Oxford

street. He needs a map, audio translation and weather status.

Figure 5.1: Scenario: A tourist in London city

Then, the devices that are distributed will give the required service to

Badr when he sends a request. However, whenever the IoT nodes cannot

process the services, then the services will be distributed to the cloud for

processing. In the evening, Badr’s mobile has less battery, less storage and
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less internet connection, and he needs to go back to the hotel. The system

will get the instructions and distribute the required services to the available

nodes for processing, then the results will be sent to the user. The overall

architecture should consume less communication bandwidth or energy while

distributing services othen nodes. The easiest case of service distribution is

distributing all the services to the cloud nodes from individual user devices

even though it consumes a lot of network bandwidth. However, if we can

distribute services to IoT nodes, then it consumes less bandwidth as there

will be no communication over the network with the cloud. The users’

devices are connected with the drone via Bluetooth which is cheap in terms

of communication.

This scenario introduces a number of challenges since it involves dis-

tributing services on nodes in a busy large city. London City is a very

crowded city full of tourists and people are likely to move around while

they are on the tour which introduces unpredictability in their location.

The service distributor needs to be aware of the available resources and their

capabilities when distributing service to them. It is important to consider

which services should be deployed to the drone. This scenario illustrates

the problems involved in service distribution on nodes (taking into account

varying hardware and data processing capabilities) and taking into account

data communication costs and resource usage.

5.3.1 Assumptions

• In our experiments, we assumed that fog computing nodes have low

capability nodes on memory, and storage when comparing with cloud

nodes. We have generated random data for the experiments. The
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generated data has 120 services with different technical requirements

ranging between R1 and R6. Similarly, we have generated data for

the fog nodes with various capabilities ranging between C1 and C4

cloud nodes capabilities ranging between C1 and C6.

• Also, for our experiments we have used the services that are used in

Chapters 3 and 4 and the process of using them is as follows: We

have used services (Si) namely data transformation (S1), decision tree

(S2), Naïve Bayes (S3) and logistic regression (S4) as services that

need to be distributed to the nodes either fog or cloud nodes based

on the services demand and the capabilities of the nodes. To obtain

the technical requirements of the services, we have run the services

and observe the technical requirements of each service and take note

of the required memory to be run on nodes. Then, we will apply

mapping process based on the service requirements that are obtained

from observations.

• The technical requirements of services and the capabilities of the nodes

are known.

• The speed of processing a data by a fog or cloud nodes relies on the

data size and the types of nodes’ configuration. This means that

powerful nodes in terms of configuration will be able to process the

low size data quicker.

• The connectivity between nodes are not considered in our experiments

as it is out of the scope of these experiments.
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Limitations

• Capabilities of nodes like memory and storage were designed to mimic

the real existing nodes, but in a simplified way. In addition, the

cloud nodes are considered as powerful nodes. The reason is that

real-world configurations are complicated when considering various

factors, which goes out of the scope of this project and to simplify the

algorithms.

• In some of the experiments, we have used a generated data while con-

sidering the constraints of real-world like IoT nodes hardware power

because of the absence of the data that are taken from real world.

process

• The process starts with generating the dataset for both the service

requirements and nodes capabilities to make them ready for the map-

ping process, which is saved in CSV documents.

• The capabilities of fog and cloud nodes are preconfigured, and the

capabilities of fog nodes are less powerful when compare it with the

cloud.

• We use the service distribution strategy to map between service de-

mands and the capabilities of the nodes.

• The services will be distributed either to fog or cloud nodes based on

the requirements of the services and the capabilities of the nodes.
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5.4 Methodology

5.4.1 Most Efficient IoT Node (MEIN)

We propose a distribution strategy called "MEIN" Most Efficient IoT Node;

it uses a list of all the IoT devices present in the network. This strategy

allows defining the order to use devices to execute the different services. We

have used the bin packing problem as a baseline as it is one of the most

common optimisation problems. The criterion to sort the list of devices

is physical capabilities of devices like CPU, RAM and storage. Thus, all

devices capabilities are stored in a list for each physical aspect.

The main goal is to distribute the services in an efficient and optimised

way by expressing the goal in the following ways:

The services are stored in the cloud because of the unlimited power and

storage of Cloud Node (CN). We begin with deploying services from the

Cloud Node to Fog Node (FN) to prepack the services for users’ request.

Then, the Fog Node will distribute the services either to the IoT Nodes

(IoTN) or to cloud node based on the capabilities of nodes and the compu-

tational requirements of the services. Therefore, to get the results we need

to use the three nodes including Cloud Node, Fog Node and IoT Node to

process the service in an efficient way.

The IoT nodes have limited computational capabilities as they are con-

strained devices which makes the process of distributing services to these

devices much more difficult than distributing the services to cloud nodes

because of the computational power differences between the IoT nodes and

the cloud nodes. Also, the services need computational requirements to run

on IoT nodes such as RAM and storage. We will take the configuration of
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nodes C(1) (1 GB RAM, 8 GB storage) as a baseline that is given earlier

in the motivating scenarios as parameters for nodes’ configurations. For ex-

ample, if a service requires 256 MB RAM and 2 GB storage, then it means

that it requires the quarter of the baseline configuration.

Objective Function

minimize/maximize fm(x)

m = { min−data, max−node, max−number }

f is the objective function, m is the set of objectives and x is a vector

of variables.

Example 1. Services: {S1R1, S2R1, S3R1, S4R2, S5R2, S6R3, S7R3, S8R4,

S9R5, S10R5, S11R6};

Number of fog nodes = 4;

Fog nodes’ capabilities = {FNC1, FNC2, FNC3, FNC4};

Number of Cloud nodes = 6;

Cloud nodes’ capabilities = {CNC1, CNC2, CNC3, CNC4, CNC5, CNC6};

Fog Node 1: Capability: C1

Service 1 - Requirement: R1

Service 2 - Requirement: R1

Service 3 - Requirement: R1

75% of the capability of node 1 is used

Fog Node 2: Capability: C2

Service 4 - Requirement: R2
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Service 5 - Requirement: R2

Service 6 - Requirement: R3

100% of the capability of node 2 is used

Fog Node 3: Capability: C3

Service 7 - Requirement: R3

Service 8 - Requirement: R4

75% of the capability of node 3 is used

Fog Node 4: Capability: C4

Service 9 - Requirement: R5

Service 10 - Requirement: R5

100% of the capability of node 4 is used

Transferred services to the cloud: {Service 11};

Cloud nodes are required to run the following services

[Service 11 - Requirement: R6 ]

Cloud Node 4: Capability: C4

Service 11 - Requirement: R6

100% of the capability of node 4 is used

MEIN distribution strategy is used to distribute a part of or all the

services to a constant number of IoT nodes based on their capabilities or

to an unlimited number of cloud nodes, with different capabilities with the

distribution strategy. Also, the distribution strategy is for maximising the

usage of node.
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Maximising the usage of node. This part of the strategy distributes

the service to the node that is the first lowest capability node among the

free nodes. The strategy searches the complete list of nodes’ capabilities

to find the smallest node whose capability is greater than or equal to the

requirement of service.

Algorithm 1 maximising the usage of node
Input: NodeCap, ServiceReq, DistID
Output: Distributed services to fog nodes and cloud nodes

1: for i = 0 to DistID length do
2: DistID[i] = −1
3: end for
4: for i = 0 to ServiceReq length do
5: bestID = −1
6: for j = 0 to NodeCap length do
7: if NodeCap[j] >= ServiceReq[i] then
8: if bestID = −1 then
9: bestID = j

10: else if NodeCap[bestID] > bestID[j] then
11: bestID = j
12: end if
13: end if
14: if bestID!= −1 then if (bestIdx != -1)
15: DistID[i] = bestID
16: NodeCap[bestID]-= ServiceReq[i]
17: end if
18: end for
19: end for

In Algorithm 1, we give the code of maximising the usage of node while

distributing the services to the nodes based on their capabilities. Firstly,

we need to input services requirements and nodes capabilities. Then, we

initialise all the nodes to become free. After that, we pick each service

and find the minimum node capability that could have the current ser-

vice. In other words, find Min(NodeCap[1], NodeCap[2],. . .NodeCap[n])

→Service[current], if a node is found then allocate the node to the current
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service. However, If a node could not be found then leave that service and

continue checking the more services.

Distributing services with maximum technical requirements This

approach is based on Multiple knapsack problem which will be used to com-

pare with the previous approach to check which one meets the criteria of

maximising the usage of fog nodes while maintaining the unused capabili-

ties to minimum. Given a set of services S containing the computational

requirements of ‘R’ distinct services, and a set of IoT Nodes (IoTN) that

can withstand IoTN1, IoTN2, ...., IoTNn capabilities, the solution is to

find the sum of the largest subset of the services ‘S’, that can be distributed

to the IoT nodes. Algorithm 2 illustrates a solution that recursively tries

all the ways of distributing services to fill the nodes and select the one that

can handle the maximum service requirement. Then, determining the states

of meinDP, that we built our algorithm upon. This can be be represented

in states like (NoServices, remainNode1, ....,remainNoden), ‘NoServices’

is the index, remainNode1 is the remaining capability of first node, and

remainNoden is the remaining capability of n node. In this solution, we

tried to solve the problem by using multidimensional dynamic programming.

Example 2. Services: {R1, R1, R1, R2, R2, R3, R3, R4, R5, R5, R6};

Number of IoT nodes = 4;

IoT nodes’ capabilities = {C1, C2, C3, C4};

Number of Cloud nodes = 6;

Cloud nodes’ capabilities = {C1, C2, C3, C4, C5, C6};

Fog Node 1: Capability: C1
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Algorithm 2 Distributing a subset of the services that have maximum
technical requirements

Input: NodeCap, ServiceReq, NoServices, remainNode, meinDP
Output: Distributed services on fog nodes and cloud nodes

1: maxService(ServiceReq,NoServices, remainNode1, remainNoden, i)
2: if i == NoServices then
3: return 0;
4: end if
5: if meinDP [i][remainNode1][remainNoden]! = −1 then
6: return meinDP [i][remainNode1][remainNoden]
7: end if
8: DistS1 DistS2 DistSn

9: DistNone
10: if remainNode1 >= ServiceReq[i] then
11: DistS1 = ServiceReq[i] +maxService(ServiceReq,NoServices,
12: remainNode1 − ServiceReq[i], remainNoden, i+ 1);
13: end if
14: if remainNoden >= ServiceReq[i] then
15: DistSn = ServiceReq[i] +maxService(ServiceReq,NoServices,
16: remainNode1, remainNoden − ServiceReq[i], i+ 1);
17: end if
18: DistNone = maxService(ServiceReq,NoServices,
19: remainNode1, remainNoden, i+ 1);
20: meinDP [i][remainNode1][remainNoden] = Math.max(DistNone,
21: Math.max(remainNode1, remainNoden));

Service 4 - Requirement: R2

Service 5 - Requirement: R2

100% of the capability of node 1 is used

Fog Node 2: Capability: C2

Service 8 - Requirement: R4

100% of the capability of node 2 is used

Fog Node 3: Capability: C3

Service 10 - Requirement: R5

100% of the capability of node 3 is used
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Fog Node 4: Capability: C4

Service 11 - Requirement: R6

100% of the capability of node 4 is used

Transferred services to the cloud: {Service 1, Service 2, Service 3, Ser-

vice 6, Service 7, Service 9};

Cloud nodes are required to run the following services

[Service 1: Requirement R1, Service 2: Requirement R1 , Service 3:

Requirement R1 , Service 6: Requirement R3, Service 7: Requirement R3,

Service 9: Requirement R5]

Cloud Node 6: Capability: C6

Service 1 - Requirement R1

Service 2- Requirement R1

Service 3 - Requirement R1

Service 6 - Requirement R3

Service 7 - Requirement R3

Service 9 - Requirement R5

21.1% of the capability of node 6 is used

In the above solutions, we are not decomposing the services into mi-

croservices instead we distribute service to one of the nodes either IoT node

or Cloud node as a whole based on their capabilities.

5.4.2 Architecture

The architecture of our proposal has been divided into two main parts in-

cluding Cloud computing and IoT Environments. First, the cloud comput-

ing side has the ability to handle all the data and services and deploy the
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required service to the IoT environment. Second, the IoT environment part

includes two sub parts, Fog Computing and the IoT Nodes. Fog computing

is responsible to distribute the services to the nodes in an efficient and op-

timised way by maintaining the resources usage in a way that all available

resources should be used. The IoT nodes are IoT smart devices that will

get the services from fog computing and serve the users by providing the

available services. The aim is to optimise the use of available resources in

an efficient way, save energy, reduce the data transmission traffic over the

network by distributing the data locally as much as possible. The commu-

nications among the cloud computing, Fog computing and IoT nodes can be

undertaken in different ways as is typical (such as WIFI, 3G and Bluetooth).

Figure 5.2 shows the architecture of the system. The architecture includes

three types of the node including IoT devices, fog, and cloud computing as

follows:

• The IoT node is at the edge of the network of the system and it is

typically embedded in physical everyday objects. IoT nodes are small-

sized and cheap in terms of price to make the process of deploying IoT

devices to objects easy and inexpensive. It delivers services to users

when they are required. These nodes are connected to the Fog nodes

via Bluetooth which is considered an inexpensive network connection

as mentioned earlier. The IoT environment should be helpful in many

ways including energy saving, less cost, optimised use of resources and

reducing the data transmission cost over the network.

• The Fog node resides next to the IoT nodes in the IoT Environment

or along the communication path to the cloud and collects services

(or data received from an upstream Cloud node) and applies data
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distribution strategy to distribute the services to the nodes in the IoT

environment in an optimised way. For our proposal the fog computing

form as the main node. Obviously, a fog node has less power and a

less global data view than a cloud node and hence it can store fewer

data and distribute limited services. In an investigation into energy

limitation, the authors of [25] found that these devices have restricted

energy for particular tasks.

Figure 5.2: The distribution process

• The Cloud node resides in the cloud and process services that come
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from fog nodes. It is clear that the processing power and storage capa-

bility of the cloud is higher than fog node and IoT node. This power

can be used even more effectively by using the presented approach.

According to [25], there is no energy limitation in the devices which

are in the cloud.

5.5 Experimental setup and results

We have conducted 15 experiments to find the most effective configuration

setup of fog nodes to distribute the services as much as possible in fog

nodes. Every experiment has a different configuration of capabilities of fog

nodes as shown in Table 5.3. This table shows the each experiment name

in the first column and the capabilities of fog nodes in the second column.

In experiments 1 to 15, we have used different capabilities (C1, C2, C3

and C4) for fog nodes (40 fog nodes) to distribute 120 services to these

fog nodes as much as possible. The distribution of capabilities in different

ways and different amounts, with either more specialised nodes for a very

generic ones (running all capabilities). In addition to the 15 experiments, we

have conducted two experiments with the second approach in 5.4.1 and the

capabilities of the nodes are the same as Experiment 12 (meinC1C2C3C4).

110



Table 5.3: Capabilities setup of fog nodes

5.5.1 Experiments

The aim of the experiments was primarily to evaluate the feasibility of

MEIN distribution strategy in the IoT environment. We will have 2 groups

of devices, the first group of devices with limited power belong to the fog.

The second group of devices with unlimited computational power belong

to the cloud. Firstly, the strategy will check which group of devices can

handle the services by checking the services computational requirements and

the capabilities of the devices in both groups (Fog and Cloud). Then the

strategy will select the best group that can efficiently process the services.

Generally, the cloud has unlimited power and the best choice based on the

capabilities but as our intention is to distribute the services as much as

possible near to the data source which is the reason to do a checking point

before applying the strategy. After that, the strategy will distribute the

services to the devices in the selected groups based on their capabilities and

the services computational requirements efficiently.
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In the cloud, the devices (Cloud Nodes) can be extendable as whenever

it is required we can add a node to handle the services possibly by adding

a big set of devices for the cloud. We use unlimited power devices which do

not necessarily have to be unlimited but we can have an unlimited number of

devices that can handle all the services which mean we can add a device with

the best configuration or multiple devices with the different configurations

in the cloud which reflects the reality of cloud computing.

However, in the fog, the devices with limited capabilities, so when the

services cannot be handled by the fog we transfer them to the cloud. The

transferring step should be done earlier in the process before selecting the

fog or cloud, so we have a device like a switch in the fog that allows us to

switch to cloud or fog nodes based on the capabilities of each group. In the

switch device, we check whether the services can be handled in fog or cloud.

5.5.2 Data description

We have generated random data for the experiments with the distribution

strategy. The generated data has 120 services with different technical re-

quirements ranging between R1 and R6. Similarly, we have generated data

for the fog nodes with various capabilities ranging between C1 and C4 cloud

nodes capabilities ranging between C1 and C6.

5.5.3 Results

In this section, we will discuss the results of the distribution strategy. As

we mentioned earlier, the strategy will firstly distribute the services to the

fog nodes based on their capabilities, then, distribute the undistributed

services in the fog to the cloud nodes. In both levels, we have applied the
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same distribution strategy. Every bar chart has one bar called the number

of processed services in a node. In addition, there is a table in the graph

that shows the capabilities of the nodes (C1 to C4), the identity of each

fog nodes (FN1 to FN40) and the technical requirements of each service

(R1 to R6). In fog nodes distribution strategy, there are 40 fog nodes that

are ranging from capability C1 to C4 and they are sorted in the graphs

from C1 to C4. However, there are 20 cloud nodes that are ranging from

C3 to C6, but the cloud nodes can be extended when it is required. In

the experiments, we tried to distribute the minimal service requirements to

the nodes in a way to use the capabilities of the nodes with the services

that need minimum technical requirements while maintaining the usage of

nodes to maximising the usage of node. There are two bar charts namely

fog nodes and cloud nodes for each experiment. Both charts belong to the

same strategy, but the aim is to show the distribution strategy process in

both levels, the fog and cloud.

Experiment 1 (MEINAllC1): Figure 5.3 shows that in this experi-

ment the fog nodes FN 1 to F35 were given the capability of C1 = (1024

MB RAM and 8 GB storage) which means that every fog node can process

4 services with technical requirement R1 = (256 MB RAM and 2 GB stor-

age), 2 services with the technical requirement, R2 = (512 MB RAM and 4

GB storage) or 1 service with technical requirement R3 = (1024 MB RAM

and 8 GB storage). In other words, every fog node can handle four services

because every service requires a quarter of the technical requirement of the

fog node, so all the capabilities of the nodes can be used and there are no

wastage. There are 60 services that have been distributed to 35 fog nodes

and the remaining 60 services that could not be distributed to fog nodes
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and they are transferred to the cloud nodes.

Figure 5.3: Experiment 1. Fog nodes

Similarly, Figure 5.4 shows the 60 distributed services to the cloud nodes

using the same strategy. In the cloud, 20 cloud nodes are used out of 20

nodes because the services require the full power of the cloud as the fog

nodes could not handle most of the services because of the limited power

of fog nodes. Moreover, the cloud node CN 8 handled two different service

requirements to maximise the usage of node. For example, CN 8 with the

capability of C4 that handled three services with service requirements of R4

and R5, in other words, S1 (2048 MB, 16 GB), S2 (2048 MB, 16 GB), S3

(4096 MB, 32 GB) -> CN 8 (8192 MB, 64 GB).

Figure 5.4: Experiment 1. Cloud nodes
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Experiment 2 (MEINAllC2): Figure 5.5 shows that in this experi-

ment the fog nodes FN 1 to F38 were given the capability of C2 = (2048

MB RAM and 16 GB storage). As shown in Figure 5.5 that the fog nodes

FN 3 and FN 8 handled two different service requirements to maximise the

usage of nodes. For example, FN 3 with the capability of C2 that handled

6 services with service requirements of R1 and R2, in other words, S1 (256

MB, 2 GB), S2 (256 MB, 2 GB), S3 (256 MB, 2 GB), S4 (256 MB, 2 GB), S5

(512 MB, 4 GB), S5 (512 MB, 4 GB) -> FN 3 (2048 MB, 16 GB). There are

80 services that have been distributed to 38 fog nodes and the remaining 40

services that could not be distributed to fog nodes and they are transferred

to the cloud nodes.

Figure 5.5: Experiment 2. Fog nodes

Similarly, Figure 5.6 shows the 40 distributed services to the cloud nodes

using the same strategy. In the cloud, 19 cloud nodes are used out of 20

nodes because the services require the full power of the cloud as the fog

nodes could not handle all of the services because of the limited power of

fog nodes. Moreover, the cloud node CN 12 handled two different service

requirements to maximise the usage of nodes. For example, CN 12 with the

capability of C5 that handled two services with service requirements of R5
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and R6, in other words, S1 (4096 MB, 32 GB), S2 (8192 MB, 64 GB), ->

CN 12 (16384 MB, 128 GB).

Figure 5.6: Experiment 2. Cloud nodes

Experiment 3 (MEINAllC3): Figure 5.7 shows that in this experi-

ment the fog nodes FN 1 to F39 were given the capability of C3 = (4096 MB

RAM and 32 GB storage). As shown in Figure 5.7 that the fog node FN 2

handled two different service requirements to maximise the usage of nodes.

For example, FN 2 with the capability of C3 that handled 10 services with

service requirements of R1 and R2, in other words, S1 (256 MB, 2 GB), S2

(256 MB, 2 GB), S3 (256 MB, 2 GB), S4 (256 MB, 2 GB), S5 (256 MB, 2

GB), S6 (512 MB, 4 GB), S7 (512 MB, 4 GB), S8 (512 MB, 4 GB), S9 (512

MB, 4 GB) ), S10 (512 MB, 4 GB) -> FN 2 (4096 MB, 32 GB). There are

100 services that have been distributed to 39 fog nodes and the remaining

20 services that could not be distributed to fog nodes are transferred to the

cloud nodes.

116



Figure 5.7: Experiment 3. Fog nodes

Similarly, Figure 5.8 shows the 20 distributed services to the cloud nodes

using the same strategy. In the cloud, 12 cloud nodes are used out of 20

nodes because the services did not require the remaining nodes as they are

powerful in terms of processing power to handle the available services.

Figure 5.8: Experiment 3. Cloud nodes

Experiment 4 (MEINAllC4): Figure 5.9 shows that in this experi-
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ment the fog nodes FN 1 to F40 were given the capability of C4 = (8192 MB

RAM and 64 GB storage). As shown in Figure 5.9 that the fog node FN

1, FN 5 and FN 10 handled two different service requirements to maximise

the usage of nodes. There are 120 services that have been distributed to

40 fog nodes. This means that all the services have been distributed to the

fog nodes because the capabilities of the fog nodes were powerful enough to

handle the available services and no services have been transferred to the

cloud.

Figure 5.9: Experiment 4. Fog nodes

Experiment 5 (MEINC1C2): Figure 5.10 shows that in this exper-

iment the fog nodes FN 1 to 20 were given the capability of C1 = (1024 GB

RAM and 8 GB storage) and the fog nodes FN 21 to 40 have the capability

of C1 = (2048 GB RAM and 16 GB storage). There are 72 services out

of 120 services have been distributed to 40 fog nodes and the remaining 48

services that are not distributed to the fog nodes are transferred to cloud

nodes.
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Figure 5.10: Experiment 5. Fog nodes

Similarly, Figure 5.11 shows the 48 distributed services to the cloud

nodes using the same strategy. In the cloud, 19 cloud nodes are used out of

20 nodes because the services require the full power of the cloud as the fog

nodes could not handle all of the services because of the limited power of

fog nodes. Moreover, the cloud node CN 13 handled two different service

requirements to maximise the usage of nodes. For example, CN 13 with the

capability of C5 that handled two services with service requirements of R5

and R6, in other words, S1 (4096 MB, 32 GB), S2 (8192 MB, 64 GB) ->

CN 13 (16384 MB, 128 GB).
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Figure 5.11: Experiment 5. Cloud nodes

Experiment 6 (MEINC1C2C3): Figure 5.12 shows that in this

experiment the fog nodes FN 1 to 13 were given the capability of C1 =

(1024 GB RAM and 8 GB storage), the fog nodes FN 14 to 26 have the

capability of C1 = (2048 GB RAM and 16 GB storage) and the fog nodes FN

27 to 40 have the capability of C3 = (4096 GB RAM and 32 GB storage).

There are 85 services out of 120 services have been distributed to 40 fog

nodes and the remaining 35 services that are not distributed to the fog

nodes are transferred to cloud nodes.

Figure 5.12: Experiment 6. Fog nodes
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Similarly, Figure 5.13 shows the 35 distributed services to the cloud

nodes using the same strategy. In the cloud, 18 cloud nodes are used out

of 20 nodes because the services require the full power of the cloud as the

fog nodes could not handle all of the services because of the limited power

of fog nodes.

Figure 5.13: Experiment 6. Cloud nodes

Experiment 7 (MEINC1C2C4): Figure 5.14 shows that in this

experiment the fog nodes FN 1 to 13 were given the capability of C1 =

(1024 GB RAM and 8 GB storage), the fog nodes FN 14 to 26 have the

capability of C2 = (2048 GB RAM and 16 GB storage) and the fog nodes FN

27 to 40 have the capability of C4 = (8192 GB RAM and 64 GB storage).

There are 99 services out of 120 services have been distributed to 40 fog

nodes and the remaining 21 services that are not distributed to the fog

nodes are transferred to cloud nodes.
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Figure 5.14: Experiment 7. Fog nodes

Similarly, Figure 5.15 shows the 21 distributed services to the cloud

nodes using the same strategy. In the cloud, 13 cloud nodes are used out of

20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power to handle the available services.

Figure 5.15: Experiment 7. Cloud nodes
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Experiment 8 (MEINC1C3): Figure 5.16 shows that in this exper-

iment the fog nodes FN 1 to 20 were given the capability of C1 = (1024 GB

RAM and 8 GB storage) and the fog nodes FN 21 to 40 have the capability

of C3 = (4096 GB RAM and 32 GB storage). There are 86 services out

of 120 services have been distributed to 40 fog nodes and the remaining 34

services that are not distributed to the fog nodes are transferred to cloud

nodes.

Figure 5.16: Experiment 8. Fog nodes

Similarly, Figure 5.17 shows the 34 distributed services to the cloud

nodes using the same strategy. In the cloud, 18 cloud nodes are used out

of 20 nodes because the services require the full power of the cloud as the

fog nodes could not handle all of the services because of the limited power

of fog nodes.
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Figure 5.17: Experiment 8. Cloud nodes

Experiment 9 (MEINC1C3C4): Figure 5.18 shows that in this

experiment the fog nodes FN 1 to 13 were given the capability of C1 =

(1024 GB RAM and 8 GB storage), the fog nodes FN 14 to 26 have the

capability of C3 = (4096 GB RAM and 32 GB storage) and the fog nodes

FN 27 to 40 have the capability of C4 = (8192 GB RAM and 64 GB storage).

There are 102 services out of 120 services have been distributed to 40 fog

nodes and the remaining 18 services that are not distributed to the fog

nodes are transferred to cloud nodes.

Figure 5.18: Experiment 9. Fog nodes

Similarly, Figure 5.19 shows the 18 distributed services to the cloud

nodes using the same strategy. In the cloud, 11 cloud nodes are used out of
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20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power to handle the available services.

Figure 5.19: Experiment 9. Cloud nodes

Experiment 10 (MEINC1C4): Figure 5.20 shows that in this ex-

periment the fog nodes FN 1 to 20 were given the capability of C1 = (1024

GB RAM and 8 GB storage) and the fog nodes FN 21 to 40 have the capa-

bility of C4 = (8192 GB RAM and 64 GB storage). There are 103 services

out of 120 services have been distributed to 40 fog nodes and the remaining

17 services that are not distributed to the fog nodes are transferred to cloud

nodes.

Figure 5.20: Experiment 10. Fog nodes

Similarly, Figure 5.21 shows the 17 distributed services to the cloud
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nodes using the same strategy. In the cloud, 11 cloud nodes are used out

of 20 nodes because the services require the full power of the cloud as the

fog nodes could not handle all of the services because of the limited power

of fog nodes.

Figure 5.21: Experiment 10. Cloud nodes

Experiment 11 (MEINC2C3): Figure 5.22 shows that in this ex-

periment the fog nodes FN 1 to 20 were given the capability of C2 = (2048

GB RAM and 16 GB storage) and the fog nodes FN 21 to 40 have the ca-

pability of C3 = (4096 GB RAM and 32 GB storage). There are 91 services

out of 120 services have been distributed to 40 fog nodes and the remaining

29 services that are not distributed to the fog nodes are transferred to cloud

nodes.

Figure 5.22: Experiment 11. Fog nodes
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Similarly, Figure 5.23 shows the 29 distributed services to the cloud

nodes using the same strategy. In the cloud, 17 cloud nodes are used out

of 20 nodes because the services require the full power of the cloud as the

fog nodes could not handle all of the services because of the limited power

of fog nodes.

Figure 5.23: Experiment 11. Cloud nodes

Experiment 12 (MEINC2C3C4): Figure 5.24 shows that in this

experiment the fog nodes FN 1 to 13 were given the capability of C2 = (2048

GB RAM and 16 GB storage), the fog nodes FN 14 to 26 have the capability

of C3 = (4096 GB RAM and 32 GB storage) and the fog nodes FN 27 to

40 have the capability of C4 = (8192 GB RAM and 64 GB storage). There

are 104 services out of 120 services have been distributed to 40 fog nodes

and the remaining 16 services that are not distributed to the fog nodes are

transferred to cloud nodes.
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Figure 5.24: Experiment 12. Fog nodes

Similarly, Figure 5.25 shows the 16 distributed services to the cloud

nodes using the same strategy. In the cloud, 11 cloud nodes are used out of

20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power to handle the available services.

Figure 5.25: Experiment 12. Cloud nodes

Experiment 13 (MEINC2C4): Figure 5.26 shows that in this ex-

periment the fog nodes FN 1 to 20 were given the capability of C2 = (2048

GB RAM and 16 GB storage) and the fog nodes FN 21 to 40 have the capa-

bility of C4 = (8192 GB RAM and 64 GB storage). There are 105 services
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out of 120 services have been distributed to 40 fog nodes and the remaining

15 services that are not distributed to the fog nodes are transferred to cloud

nodes.

Figure 5.26: Experiment 13. Fog nodes

Similarly, Figure 5.27 shows the 15 distributed services to the cloud

nodes using the same strategy. In the cloud, 10 cloud nodes are used out of

20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power to handle the available services.

Figure 5.27: Experiment 13. Cloud nodes
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Experiment 14 (MEINC3C4): Figure 5.28 shows that in this ex-

periment the fog nodes FN 1 to 20 were given the capability of C3 = (4096

GB RAM and 32 GB storage) and the fog nodes FN 21 to 40 have the capa-

bility of C4 = (8192 GB RAM and 64 GB storage). There are 110 services

out of 120 services have been distributed to 40 fog nodes and the remaining

10 services that are not distributed to the fog nodes are transferred to cloud

nodes.

Figure 5.28: Experiment 14. Fog nodes

Similarly, Figure 5.29 shows the 10 distributed services to the cloud

nodes using the same strategy. In the cloud, 8 cloud nodes are used out of

20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power to handle the available services.

Figure 5.29: Experiment 14. Cloud nodes
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Experiment 15 (MEINC1C2C3C4) Figure 5.30 shows that in this

experiment the fog nodes FN 1 to 10 were given the capability of C1 = (1024

GB RAM and 8 GB storage) that process the 20 services with technical

requirement R1 = (256 MB RAM and 2 GB storage). In other words, every

fog node can handle 4 services because every service requires a quarter of

the technical requirement of the fog node, so all the capabilities of the nodes

are used and there are no wastages. Additionally, fog nodes FN 11 to 20

have the capability of C2 = (2048 GB RAM and 16 GB storage), fog nodes

FN 21 to 30 have the capability of C3 = (4096 GB RAM and 32 GB storage)

and fog nodes FN 31 to 40 have the capability of C4 = (8192 GB RAM and

64 GB storage).

Figure 5.30: Experiment 15. Fog nodes

However, the fog nodes FN 13 and FN 22 handled two different service

requirements to maximise the usage of nodes. For example, FN 13 with the

capability of C2 that handled three services with service requirements of R2

and R3, in other words, S1 (512 MB, 4 GB), S2 (512 MB, 4 GB), S3 (1024

MB, 8 GB) -> FN13 (2048 MB, 16 GB). There are 98 services have been

distributed to forty fog nodes and the 22 services that are not processed

distributed to the cloud nodes for processing.
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Similarly, Figure 5.31 shows the 22 distributed services to the cloud

nodes using the same strategy. In the cloud, 14 cloud nodes are used out of

20 nodes because the services did not require the remaining nodes as they

are powerful in terms of processing power.

Figure 5.31: Experiment 15. Cloud nodes

Experiment 16: distributing the services with maximum technical

requirements There are two bar charts namely MEIN Maximising – fog

node and MEIN Maximising – cloud node. Both charts in Figure 5.32

and Figure 5.33 belong to the same strategy, but to show the distribution

strategy process in both levels, the fog and cloud.

In this experiment, we tried to distribute the services with maximum

service requirements to the nodes as much as possible in a way to use the

capabilities of the nodes with the services that need maximum technical re-

quirements while maintaining the usage of nodes. It is clear from the Figure

5.32 that fog nodes FN 1 to 10 have the capability of C1 = (1024 GB RAM

and 8 GB storage) that processed the 10 services with technical requirement

of R1 = (1024 GB RAM and 8 GB storage). In other words, every fog node

can handle one service because every service requires technical requirement
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that matches the fog nodes’ capabilities.
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Figure 5.32: Experiment 16. Fog nodes

However, the fog nodes FN 33, FN 34 and FN 37 handled two different

service requirements to fulfil the capabilities of nodes. For example, FN 33

with the capability of C4 that handled three services with service require-

ments of R4 and R5, in other words, S1 (2048 MB, 16 GB), S2 (2048 MB,

16 GB), S3 (4096 MB, 32 GB) − > FN 33 (8192 MB, 64 GB). There are

51 services have been distributed to forty fog nodes and the 69 services that

are not process distributed to the cloud nodes for processing. Similarly,

the Figure 5.33 shows the 69 distributed services to the cloud nodes using

the same strategy. In the cloud, 20 cloud nodes are used out of 20 nodes

even though the services did not require the remaining nodes as they are

powerful in terms of processing power.
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Figure 5.33: Experiment 16. Cloud nodes

It is clear from the results that the first strategy 5.30 and 5.31 could

consume slightly more data communication over the network than the sec-

ond strategy 5.32 and 5.33, as in the first, we minimised the wastage of

the nodes usage by distributing the small service requirements to the IoT

nodes. However, in the second, we distributed the services with the max-

imum service requirements that can fit into the IoT nodes, as a result the

remaining services that are not distributed to the IoT nodes are distributed

to the cloud with mostly low service requirements service as much as pos-

sible. In the first strategy: Minimising the wastage of node usage, as the

goal of the strategy was to minimise the wastage of nodes usage, most of

the services (98 services out of 120 services) with minimum service require-

ments are distributed to the IoT nodes. However, in the second strategy:

distributing the services with maximum technical requirements, the aim

was to distribute the services with highest service requirements which re-

sult that nearly half of the services (51 services out of 120 services) are
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distributed to the IoT nodes. It is clear that the IoT devices are limited

with the power of processing and the number of devices when compared

with the cloud computing, therefore there is need to optimise the usage of

fog and IoT nodes to minimise the waste of resources and efficiently use of

devices in the IoT environments. The results of the two experiments show

that the resources are used effectively in the fog nodes. In the first strategy,

most of the services are distributed to the IoT nodes while minimising the

wastage of the usage of the node. Similarly, in the second strategy, nearly

half of the services with maximum service requirements distributed to the

IoT nodes while using most of the capabilities of the resources. On the other

hand, the first experiment was good in terms of optimising the usage of the

devices in the cloud where 14 out of 20 devices are used which means that

only required number of devices are used, so they are minimised in terms

of resources usage and number of devices. However, the second experiment

was not good in terms of optimising the usage of nodes in the cloud as all

the cloud nodes are used, but there was wastage of nodes capabilities. In

addition, this experiment used all the nodes power which can effectively

fast.

It is clear from Figure 5.34 that Experiment 4 (MEINAllC4) handled

all services due to having powerful fog nodes with the capability of C4.

However, Experiment 1 (MEINAllC1) handled half of the services which is

considered as the worst number of services that are distributed to fog nodes

due to having the lowest capabilities of fog nodes, but this combination of

capabilities can be considered as the cheapest one among other combina-

tions. Surprisingly, Experiments 3, 7, 9, 10, 15 have a small difference in the

number of distributed services to fog nodes which might need extra atten-
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tion to the cost of the nodes when selecting the most effective among them.

Based on the results that the average number of distributed services to the

fog nodes are between 90 and 100 services with the given combinations of

fog nodes capabilities in the experiments.

Figure 5.34: Number of processed services

Table 5.4 shows the usage of nodes after distributing the services to the

fog nodes based on their capabilities. It can be seen that the usage of nodes

capabilities is sensibly maximised. In particular the experiments 1, 3 and

9 do not show the usage of nodes capability. The capabilities of fog nodes

have been calculated according of Table 5.1, 5.2 and 5.3.
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Table 5.4: The usage of fog node capability

5.6 Summary

We presented two service distribution strategies in which services are dis-

tributed to both IoT nodes and cloud nodes and the resources are used in

an optimised way. The first distribution strategy is based on the best-fit

algorithm from the bin packing problem in order to maximise the usage

of node and the second one is based on multiple knapsack problem to dis-

tribute a subset of the services that have maximum technical requirements.

The results show that our distribution strategies are successful in terms of

distributing the services to the nodes in the IoT environments in an op-

timised way and the data communication over the network is reduced by

distributing the services as much as possible to the IoT nodes. Bin pack-

ing is one solution among solutions, with given context the results show

that it is good optimization, but there are other optimization solutions. To

solve this type of optimization problem, bin packing is the most obvious

one to use as we are trying to, not necessarily to build a new optimization

algorithm here, but actually, we wanted to solve a different problem as bin

packing is to reduce the number of bins, but in best fits you reduce the
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number of bins, but the idea is to try to keep the smallest left over. So we

tried to take it from that concept. So we want to use all the capabilities

and to use the available resources or the available devices to the maximum.

We used Java simulation approach to focus on the key things and on the

criteria, we were interested in that we want to measure without being dis-

tracted by various other aspects because a lot of other aspects would be

part of the simulation.. It possible to do the simulation with other tools

like ifogsim [42] by just integrating our algorithms there and also adding

some of the networking aspect which can be found in ifogsim in which we

are not doing it as we are not modelling a wider network. Based on the

objective function, we wanted to minimise data communication (min-data),

maximise usage of nodes (max-node) and maximise number of distributed

services to fog nodes (max-number). It is clear from the results that data

communication is minimised, usage of node is maximised, also the number

of distributed services to fog nodes is maximised.
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Chapter 6

Evaluation and discussion

In this chapter, we will evaluate and discuss the results and experiments

of Chapter 3, 4 and 5 as follows. The evaluation of the three chapters will

discuss and evaluate the results by giving the most important observations.

In addition, it will outline some of the limitations that will be presented in

this chapter. In the following subsections, we will discuss and evaluate each

chapter’s (Chapter 3, 4 and 5) experiments’ results.

6.1 The proposed hybrid architecture

The initial results of Chapter 3 show us that the proposed approach is good

enough for the chosen dataset and analytical methods. It is clear from the

results that data communication is efficient and provides significant gains.

Observation 1: Data communication over the network. It is

accepted that when the size of data is large the data communication will be

more expensive. The raw data was around 1 million rows which are equal

to approximately 50 MB. However, after aggregating data into features by

using data aggregation algorithms, the number of rows became 5418 rows
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and the size became 1.2 MB. This means that very significant savings to

data transmission and storage can be made by early aggregation. This

observation will gradually gain in importance as the number and quality of

sensors increases rapidly and thus the rate and resolution at which data will

be delivered grow quickly. By fusing the data locally before sending it to the

cloud, we are not only reducing the data we are also determining which data

is meaningful and only send that. This will reduce the energy consumption

of fog and sensor devices which typically gain internet connectivity through

3, 4 or 5G, thus batteries in the devices will last longer.

Observation 2: Accuracy. Aggregated data leads to less accuracy in

the results compared to working with raw data. All presented approaches

are effected in the same way. Overall, the loss of accuracy is not drastic: the

lowest bar is 75% with the highest being around 93% as shown in Figure 3.2.

Clearly the used analysis method has an impact with trade-offs such as the

used local processing power as well as methods optimised for this localised

setting being factors that can influence the accuracy. The right balance will

be in terms of privacy, accuracy, resource cost, energy consumption and

data transmission will need to be identified and our future work will further

this area.

Out of these experiments and observations we can conclude that one

important aspect for future work is a development that combines the ideas

of distributed data aggregation with analysis methods that can also be

distributed effectively and be run in low power environments. The fact that

they can operate on smaller data sets will help, but somehow the methods

need to contain a core part based on global understanding.

Aside, for completeness we like to note that we initially attempted to

140



conduct the experiments with a Raspberry Pi model b with 512MB RAM,

however this was not capable of applying some of the Weka toolbox analysis

algorithms because of the RAM constraint. Hence, we used a slightly more

powerful version as reported above.

6.2 Selecting the most effective architecture

The three approaches Fog, Hybrid and Fog+Cloud approaches have simi-

larities in most cases. Whereas, the main difference between the approaches

lies in the location where the ML/data transformation takes place. In the

hybrid approach, the data transformation processing is done in the fog node,

and then the transformed data are transmitted from the fog to the cloud

which then applies classification algorithms to the preprocessed data. How-

ever, in the fog approach, the data transformation and machine learning

process have been done at the fog node itself. The hybrid approach has an

advantage over the fog approach in that it is utilising the cloud’s process-

ing power for applying more sophisticated algorithms that require further

processing power such as machine learning algorithms. Thus, this phase is

important for minimising the processing time which has an effect on the to-

tal processing time. The results in Chapter 4 demonstrate that the proposed

approach is perfect for the given datasets and algorithms. As it can be seen

that the results show data communication over the network is effective and

gives considerable gains.
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Summary of results

Experiment 1: Numerical - 6 measurements

The results show that the highest percentage of accuracy achieved is in mul-

tilayer perceptron. In addition, both algorithms logistic regression and mul-

tilayer perceptron have important diversity between the two sides. Clearly,

in the execution time, the cloud takes less time than the fog to perform

ML algorithms because of its unlimited power. The total processing time

graph has three calculations for every architecture including the ML algo-

rithms’ execution time, the data transformation’s execution time and the

time of data communication between the cloud and fog as shown in Figure

4.4. Experiment 1: Numerical - 6 Measurements. (d). This graph’s results

have been summarised in Table 6.1.

Experiment 2: Text data

The results show that the highest accuracy is obtained by the support vector

machine. There are two bars visible in Figure 4.3 Experiment 2: Text data

(b): one for the transformed data and the other for the raw data. It is

obvious that in the fog only device, the processing happens locally, therefore

there is no data communication cost over the network. However, in terms of

data communication from fog to cloud, the cloud approach was the highest

as all raw data are sent. On the other hand, in the hybrid approach, the

data communication from fog to the cloud is lower than both cloud and

fog+cloud approaches as only the transformed data are transmitted. This

result emphasises that it is possible to reduce data communications by pre-

processing the data early in the network. The results show us that the two
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algorithms (Support Vector Machine and Naive Bayes) have considerable

diversity between the two sides. It is clear that the cloud takes less time

than the fog to execute ML algorithms because of its unlimited power. The

Total Processing Time graph has three calculations for every architecture

including the ML algorithms’ execution time, the data transformation’s

execution time and the time of data communication between the cloud and

fog as shown in Figure 4.5 Experiment 2: Text Data (d). This graph’s

results have been summarised in Table 6.1.

Experiment 3: Image data

The results show that applying K-NN classifier on extract_color_histogram

has a higher accuracy percentage than Image_to_feature_vector. There are

two bars visible in Figure 4.6. Experiment 3: Image data. (b): one for the

transformed data and the other for the raw data. It is obvious that in the

fog only device, the processing happens locally, therefore there is no data

communication cost over the network. However, the cloud approach was the

highest in terms of data communication from fog to cloud as all raw data are

transmitted. On the other hand, the hybrid approach was lower than both

cloud and fog+cloud approaches in terms of data communication from fog to

the cloud as only transformed data are transmitted. This result emphasises

that it is possible to reduce data communications by pre-processing the

data earlier in the network. It is clear from the results that applying K-NN

classifier Image_to_feature_vector significantly takes more time to execute

than extract_color_histogram. However, comparing between cloud and fog

there is no big difference in execution as in data communication. Obviously,

the cloud takes less time than the fog to execute classification algorithms due
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to its unlimited processing power as shown in Figure 4.6. Experiment 3:

Image Data. (c). The Total Processing Time graph has three calculations

for every architecture including the ML algorithms’ execution time, the

data transformation’s execution time and the time of data communication

between the cloud and fog as shown in Figure 4.6. Experiment 3: Image

Data. (d). This graph’s results have been summarised in Table 6.1.

The first observation: Data communication over the network. It

is widely accepted that when we increase the data size, the data communi-

cation over the network will be higher and costly.

Experiment 1: Numerical data In this experiment, there were approx-

imately 1 million rows of raw data that are collected from mobile phones

which nearly equal to 50MB in terms of data size. On the contrary, after we

applied data fusion algorithms on the raw data we extracted features, and

the rows of data are reduced to 5418 rows which equal 1.2 MB data size.

Experiment 2: Text data In this experiment the raw data were around

20000 newsgroups file which equals to 22.4 MB. After extracting features,

the size is decreased but not significantly when we used the method to

convert text into a numerical feature vector. Maybe we do not have large

savings, but we created features which will allow us to do more analysis.
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Table 6.1: Total processing time of the three experiments

ML = Machine Learning, DT = Data Transformation, DC = Data Com-
munication

Experiment 3: Image data In this experiment, the raw data were

around 570 MB. However, after extracting features from images, the size

became 170 MB. This shows that extracting the features from images in

network level can help with significant savings.

According to the experiments, significant savings can be achieved in data

communication over the network by applying data transformation earlier in

the network. This observation will be more important when the quality

and number of sensors rise significantly and therefore the resolution and

rate of data will be growing quickly. By applying data fusion to the data

in the fog/edge node near to the data source before they are sent to the

cloud, we will reduce the data and send only meaningful data. By doing

this, the energy consumption in fog devices will be reduced, these devices

obtain their internet connection through networks like 3G, 4G or even 5G,
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therefore the devices’ batteries will be lasting longer too.

The second observation: Accuracy of each algorithm. In the

results, transformed data can be seen as less accurate than working with

the raw data.

Experiment 1: Numerical data Overall, the accuracy loss is between

7 - 25% which is not excessive: the lowest level of accuracy is 75%, however,

the highest level accuracy is approximately 93% as shown in Figure 4.4.

Experiment 2: Text data Overall, the accuracy loss is between 17 -

25% which is not extreme: the lowest level of accuracy is 77.3%, however,

the highest level accuracy is approximately 82.3% as shown in Figure 4.5.

Experiment 3: Image Data Overall, the accuracy loss is around 40%

which is greater than both previous experiments, but not significant: the

lowest level of accuracy is 54.9%, however, the highest level accuracy is

approximately 57.34% as shown in Figure 4.6.

Clearly, the analytical algorithm that is used as an influence with trade-

offs. For example, the algorithms are optimised for this localised setting as

well as the used local processing power that can impact on the accuracy. The

correct balance in terms of data transmission, privacy, energy consumption,

accuracy and resource cost will need to be identified and our future work will

further this area. The results show that the traditional architecture which

is based on sending all the data from data source to a single server point

has limitations. This is particularly evident when using large data volume

with restrictions on time. The experiments show how data communication

over the network can be very expensive while sending large data volume
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without applying any transformation in advance. Additionally, it shows

how effective our hybrid approach is in this regard.

6.3 The service distribution strategy

The initial results of Chapter 5 indicate that the proposed distribution strat-

egy is good enough for the given setup and configuration. It is clear from

the results that services are distributed in an efficient way and the usage of

nodes is maximised.

Observation 1: Number of distributed services to the fog

As we mentioned earlier that our primary intention is that distributing

the services as much as possible nearer to the data while maintaining the

optimisation of resource usage, data communication of the network and bal-

ancing the service distribution in the IoT system. The number of distributed

services depend on several aspects including the strategy, capabilities and

service requirements.

We have conducted 15 experiments to explore the most effective combi-

nation of fog nodes capabilities that can handle as much as possible services.

As expected having more powerful fog nodes can help us to distribute more

services to fog nodes as shown in Figure 5.34. However, if we have powerful

fog nodes, then it will be costly for designing IoT systems which are against

the characteristics of IoT. In our experiments, the goal of the strategy was

to maximise the usage of nodes, most of the services with minimum service

requirements are distributed to the IoT nodes.

Observation 2: resources usage

The IoT devices are limited with the power of processing and the number

of devices when compared with the cloud computing, therefore there is a
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need to optimise the usage of fog and IoT nodes to maximise the usage of

resources and efficient use of devices in the IoT environments. The results

of the two experiments show that the resources are used effectively in the

fog nodes. In our experiments, most of the services are distributed to the

IoT nodes while maximising the usage of nodes.

In addition, the experiments were good in terms of optimising the usage

of the devices in the cloud which means that only a required number of

devices are used, so they are minimised in terms of resource usage and a

number of devices.

Observation 3: data communication over the network

It is clear from the results that some of the experiments could consume

more data communication over the network, as in our experiments, we max-

imised the usage of nodes by distributing the small service requirements to

the fog nodes and remaining services that are not distributed to the fog

nodes are distributed to the cloud with mostly high service requirements

which means high data communication over the network. However, we can

address the issue of high communication over the network by selecting the

powerful combination of fog nodes to distribute most or all the services to

the fog nodes which can eliminate the communication over the network and

reduce the cost of data communication.

The combinations of fog nodes capabilities that are used in our experi-

ments can help us when selecting a combination which depends on several

factors such as technical specification of fog nodes including the RAM and

storage and the technical requirements of services. We can use the distribu-

tion strategy based on the services requirements and the capabilities of the

nodes and select which one fits on service distribution either to fog nodes
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or cloud nodes.

6.4 Threats to validity

In this subsection, we identify the main threats to the validity of our research

project including the scenarios, experimental setup and experiments.

Scenario. We have introduced a motivating scenario that is simpler

than a whole IoT system which is not exactly the same as an IoT scenario,

but this small scenario is showing the problem and it is not very complicated

because it should be easy to read and understandable, but when applying

to an IoT system it will be more sophisticated.

Experimental setup of the experiments. The sample size that we

used in our experiments might not be big enough as the real IoT system

as the amount of internet-connected devices has been increasing. It is not

possible to mimic the devices in the IoT system due to the lack of resources.

We addressed this threat by conducting a number of experiments using

simulation.

Experiment. We did some real experiments, but we could not make

all experiments in real setup due to the lack of resources and the cost of

having all elements of the IoT system. We addressed this threat by using

simulated experiments as it was not easy to apply the real experiments as

mentioned earlier.
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6.5 Experimental approach and generalisabil-

ity

The experimental approach allows us to use tools and to show things. But,

it is difficult to generalise. However, in our case there is enough generality,

we have use datasets, butt here isn’t anything in our approach that is very

particularly geared to these datasets. So if we had access to a different

datasets, then our approach would probably still be fine. So in our approach,

we do not have a specific shape or structure that the data should be in to

work with our approach. We have used our experiments on some randomly

chosen datasets, and if we had different data we probably would have come

to exactly the same insights.

6.6 Summary

This chapter has presented the evaluation of Chapter 3 (The proposed archi-

tecture), Chapter 4 (Selecting the most effective architecture) and Chapter 5

(The service distribution strategy). The most important observations from

the results of experiments have been discussed. In the observations, we

focused on several metrics namely data communication over the network,

resource usage, number of distributed services, the accuracy of machine

learning algorithms. In addition, threats to the validity of our research are

identified.
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Chapter 7

Conclusion and future work

In conclusion, this thesis presented an efficient data analytics architecture

for the Internet of Things based on fog computing. Overall research chal-

lenges were as follows; (1) Processing the data in the IoT efficiently while

maintaining the load over the network, (2) selecting the most effective data

analytics architecture in the context of IoT and finding efficient strategies

while processing the data over the network, (3) exploring the best place in

the network for services and then distributing them to the right nodes based

on their capabilities while optimising the usage of resources.

In this chapter, we will present the contributions of our research by

addressing the stated research challenges. Then, we will discuss several

possibilities of future directions.
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7.1 Research contributions

7.1.1 An efficient architecture for the IoT

We presented an efficient approach for data analytics architecture where

data fusion and data pre-processing have been done near to the source

of data particularly in the fog and machine learning algorithms are done

in the cloud to reduce data communication over the network. Therefore,

the raw data will not be transmitted instead more meaningful data will

be transmitted over the network to the cloud for further analysis while

maintaining the latency. The results show that our architecture was good

with the given setup and datasets in terms of reducing the data traffic over

the network while maintaining the accuracy level of later decision making.

We presented the proposed approach and its relevant methods. In addition,

we used the WISDM dataset [55] to validate our architecture.

7.1.2 Exploring the most efficient architecture for the

IoT

We explored four different architectures namely cloud, fog, hybrid and fog

+ cloud to find the most effective architecture and we presented an efficient

strategy where the data processing happened near to the source of data

especially in the fog before being transmitted to the cloud to minimise the

communication of data over the network. In our experiments, we have used

three types of datasets namely numerical data, text data and image data.

Besides, we conducted 4 experiments for each dataset to explore which ar-

chitecture is the most efficient for the IoT. The results indicate that our

proposed architecture which is called the hybrid architecture is successful
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in terms of reducing data traffic over the network without significantly re-

ducing the accuracy of later decision making. The datasets that are used in

the experiments are WISDM dataset [55], 20 Newsgroups dataset [56] and

Kaggle dogs vs cats dataset [49] to validate our architecture.

7.1.3 Distributing the services in the IoT

We presented a service distribution strategy where the IoT services are dis-

tributed to fog nodes and cloud nodes based on their capabilities. In the

strategy, we have used the bin packing algorithm particularly best-fit algo-

rithm as a baseline. We have used a distribution strategy to maximise the

usage of nodes. We have created 15 combinations of fog nodes capabilities

and conducted an experiment for each of the combinations. The results

of 15 experiments showed that the distribution strategy is good in terms

of distributing the services to the right nodes in an optimised way. We

presented the proposed distribution strategy and its relevant methods and

algorithms. In addition, we have used java programming to simulate the

distribution strategy to evaluate the proposed strategy.

7.2 Future work

We present below several research challenges that we believe to overcome

for practical realisations of fog computing in the IoT domain. Future work

will concentrate on these challenges
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7.2.1 Provisioning

The first challenge is the provisioning of edge nodes for executing workloads

that are offloaded by other fog nodes [115] or from cloud servers [102]. The

reduced hardware and processing configurations, heterogeneity of available

resources across the range of possible edge nodes and the "lack of standard

protocols for initialising services on a potential edge node" [102] add to the

complexity. However, harnessing the capabilities of the diverse resources

can contribute to extending the boundaries of a cloud system and provide

additional revenue models for network providers, by offering incremental

data processing as it moves from the source to its destination [112].

Moreover, matching service execution requirements to the fog nodes’

available configurations is also key, necessitating composition or decompo-

sition. For example, consider a service which needs a device configuration

of a quad-core processor, 2 GB RAM and 4 GB Storage. Executing this

service on most fog nodes is not possible due to their limited processing

power. Therefore, there is a need to decompose this service into smaller

services in a systematic way, which comes with its own challenges. Simi-

larly, for service composition, it is not possible to provide a composition of

two services with high resource demands on fog nodes.

7.2.2 Resource management

The second challenge is resource management in the fog nodes. Due to

their limited computation power, distributing the workloads to edge nodes

is challenging because this needs to be done dynamically with the given

limited configuration of resources. Therefore, managing resources like bat-

tery consumption, CPU usage, RAM usage, storage usage and bandwidth
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are difficult in an environment that changes dynamically and unexpectedly

which makes the process of resource allocation difficult as well.

7.2.3 Describing nodes

The third challenge is discovering and describing node capabilities, made

especially difficult due to the heterogeneous and volatile nature of the IoT,

making it difficult to capture and model data about offered services which

have to be done dynamically. While there exist some efforts for a stan-

dardised terminology for constrained devices, such as the RFC 7228 [24],

there is a need to describe their capabilities dynamically which is challeng-

ing and impossible to do manually. Analogously, there is a need to capture

and model the data about the services (e.g. RAM usage, CPU usage and

others) to orchestrate and allocate them to the right nodes.

7.2.4 Decomposition and composition

The fourth challenge is decomposition; as we have shown in this thesis,

decomposition plays an important role in increasing the quality of service,

but decomposing the IoT services dynamically and in an automated way is

challenging in fog nodes due to the resource constraints and the dynamic

of the IoT. In addition, decomposing the services into linked-microservices

is challenging because it is difficult to create services that are distributed

to different nodes and linked to their linked-partners. Similarly, in the

composition process, this will be challenging because identifying linked-

microservices which are distributed across the network and then composing

them is a sophisticated process in an IoT environment. Additionally, this

has to be achieved without affecting the quality of service and data, while

155



using constrained devices.

7.2.5 Fog node storage

The fog nodes have limited storage capability than the cloud nodes, there

is a need to give attention to the duration of the data that will be stored in

the edge of the network in the fog node before deleting or sending it to the

cloud. There is a need to find a strategy to tackle storage limitations in an

efficient and automated way as there is unlimited data stream flow.

7.2.6 Energy consumption

Both fog devices and IoT devices are limited with computational power

and storage and they are mostly battery powered which means the energy

usage should be used efficiently. In our work, we focused on reducing the

communication over the network and using the processing power to process

the data, but we did not focus on the battery usage aspect. Therefore, there

is a need to have trade-off analysis between the usage of network and usage

of battery when processing the services to maintain the usage of both the

network and battery.

7.2.7 Hierarchical fog nodes

In hierarchical fog node overlays, data processing will be done in several

stages. This will be helpful when moving the computation away from the

centralised cloud. If we hypothesise that there are two levels of fog in the

network, then we can process some parts of the data in the first level and

the other parts can be processed in the second level which will eliminate
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the necessity using the cloud for further processing and giving fast repose

to time-related applications.
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