
The Convective instability of non-Newtonian of
boundary-layer flow over rough rotating-disk



Department of Engineering, University of Leicester

PhD Thesis

This report is submitted in fulfilment of requirements for
the degree of Doctor of Philosophy in Mechanical Engineering
and Applied Mathematics.



Department of Engineering, University of Leicester 2021

The Convective instability of non-Newtonian of

boundary-layer flow over rough rotating-disk

Aishah Alqarni



Abstract

This thesis considers the local linear convective stability behaviour of non-
Newtonian boundary-layer flows over rotating disks and the effects of surface
roughness. A non-Newtonian fluid is modelled via the Carreau model, which
represents a type of generalised Newtonian fluid. Using the Carreau model for
a range of shear-thinning and shear-thickening fluids, we determine, for the
first time, steady-flow profiles under the partial-slip model for surface rough-
ness. The partial-slip approach of Miklavčič & Wang [1] is modified in such
a way that the viscosity is no longer constant and depends on the shear rate.
The non-linear ordinary differential equations are reduced via the introduction
of a suitable similarity solution. The stability equations are solved to obtain
the disturbance eigenfunctions and to plot curves showing neutral stability
using the Chebyshev collocation method. The stability of a non-Newtonian
boundary-layer flows is investigated with different boundary conditions: the
no-slip boundary conditions and the partial-slip. Thereby the neutral curves
for the convective instabilities associated with the boundary-layer flow due to
a rotating disk can be determined over a broad range of parameter values.
The subsequent linear stability analyses of these flows indicate that isotropic
and azimuthally anisotropic surface roughness leads to the stabilisation of both
shear-thinning and -thickening fluids. This is evident in the behaviour of the
critical Reynolds number and growth rates of both Type I (inviscid cross flow)
and Type II (viscous streamline curvature) modes of instability. The underly-
ing physical mechanisms are clarified using an integral energy equation.
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Chapter 1

Introduction

Problems of hydrodynamic stability have been used to investigate the transi-
tion mechanisms of three-dimensional boundary layers. The problems are an
important subject in fluid mechanics, because they help in the understanding
prediction, and control of the associated phenomena required in the fields of
mechanical engineering. The underlying principle of stability analysis imposes
small perturbations on a mean flow. If the disturbances decay, the flow at that
point is stable. However, if they grow as time progresses, the flow is unsta-
ble. Such an unstable disturbance can affect flow in two ways referred to as
convective and absolute instabilities (see Figure 1.1). Indeed, there are many
experimental and theoretical reports of flow phenomena in the literature. They
provide an excellent basis for understanding linear stability, including the neu-
tral curve for the upper and lower branches, stationary and travelling modes
(for more details, see Schmid & Henningson [5], Drazin [6] and Huerre [7], [8]).

The pioneering study of the steady incompressible flow was induced by the
rotation of a smooth, infinite plane with a fixed angular velocity was performed
by Kármán [9]. He revealed that the accurate solution for the Navier-Stokes
equations was a constant incompressible flow brought by rotating infinite plane
at a uniform angular speed. Later, Cochran [10] produced the first accurate
numerical result for von Kármán’s equations that solved the mean flow in
the laminar region. Therefore, by introducing an appropriate similarity solu-
tion, the governing partial differential equations (PDEs) for the aforementioned
boundary layer flows can be transformed to a set of coupled ordinary differen-
tial equations (ODEs).

The lack of a radial pressure gradient near the disk is a characteristic of
the boundary-layer flow. It helps the centrifugal forces to balance; therefore,
the fluid comes out in the radial direction. As for the disk which behaves as
a centrifugal fan, it moves the outgoing fluid replaced by an axial flow at an



2 Chapter 1. Introduction

Figure 1.1: A sketch of various disturbances (i) stable, (ii) convectively unstable, and
(iii) absolutely unstable. Reproduced from Griffiths’ thesis [2].

angle to the surface. According to Batchelor [11], this sort of flow is indeed
a restricting case of various flows that have similarity solution. During these
flows, each fluid along with the infinite plane rotates infinitely with different
angular speeds. However, as Bödewadt [12] later identified the restricting case
for times when the infinite plane was motionless although the fluid rotated
infinitely at a steady angular speed.

Gregory, Stuart & Walker [3] aimed to understand the flow of the boundary
layer on the swept wing and examined the steadiness of the Kármán boundary
layer for the first time. Since flows are subject to reciprocal flow instabilities,
show flexural speed profiles. On the other hand, the rotating disk drawback
is easy to examine because it provides an explicit answer to the Navier-Stokes
equations, adding that it is complicated to model by experimentation. Also,
the researchers investigated the spiral states of instability and observed them
as rotational vortices. By using clay-porcelain techniques, Gregory and Walker
made an experiment to observe the laminar-turbulent transition. This helped
them to measure the normal-radius vector angle and the tangent-vortices that
were around 13.

Theoretically speaking, Stuart proposed a linear stability analysis of a high
Reynolds number that flowed and tended to be turbulent. He predicted the
wave angle of the disturbances which was in agreement with the outcomes of
Gregory and Walker’s experiments. Based on studies by Gregory et al. [3],
Figure 1.2 shows what happens when the radius of the disk increases; i.e spiral
vortices, laminar flow, and advanced turbulent flow occur. It is obvious that
such experiments, which are performed solely through visualization, only show
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Figure 1.2: Visualization of the flow rotating disk using china-clay record, reproduced
from Gregory et al. [3], to observe the transition from laminar to turbulent flow.

standing waves and disturbances that are immobilized in line with the disk’s
movement. Nevertheless, because the rotating disk boundary-layer is at risk
of moving wave disturbances, experiments have been performed to analyse the
instabilities of this matter (see Lingwood [13]). Similar to the von Karman’s
boundary-layer studies by Gregory et al. [3], it is argued that at low Reynolds
number (Re = ⌦Re

2
⌫), the fluid tends to be smooth, and the flow occurs in

circular wave shapes at low Reynolds number. Therefore, when the Reynolds
number increases, its velocity governs, thereby allowing more spiral vortices
to emerge and exist along with circular wave shapes. In other words, the
higher the Reynolds number, the fewer these circular waves become until they
vanish. As a result, spiral vortices turn into the flows dominant behaviour.
This condition is a somehow chaotic and turbulent, and, as a result, it becomes
difficult to distinguish spiral structures.

Moreover, the study of stationary disturbances with the rotating disk bound-
ary layer was numerically conducted by Malik for the first time [14]. He calcu-
lated the neutral stability curves by a sixth-order system of linear disturbance
equations. He also employed a parallel-flow approximation, to focus attention
on the flow’s local stability behavior. Similar to the previous research studies,
there are two types of distinct neutral branches, namely an upper-branch re-
ferred to as type I and a lower-branch, referred to as type II. These numerical
results were confirmed by the linear asymptotic analysis of Hall [15]. He re-
trieved Type I resolution proposed by Gregory [3] and modified later by Gajjar
[16]). As Hall argues, there is an extra short-wavelength mode whose structure
is proved by the balance between the Coriolis and the viscous forces. This
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mode directly relates to Type II branch.

To expand the theory of the rotating disk, a rotating BEK boundary-layer
flows system was considered by Lingwood & Garrett [17]. This class includes a
family of rotating flows such as Bödewadt, Ekman and von Kármán’s bound-
ary layer. Their result indicates that a high Rossby number (a number that
has no dimension to determine variations in differential rotation) leads to a
high instability of flows ( flows in both the absolute and convective senses).
Moreover, the beginning of absolute and convective non-stability modes occur
around the same time with a small Reynolds number in Bödewadt’s boundary-
layer. Figure 1.1 displays schematic sketches of various types of behaviours for
disturbances(i) stable, (ii) convectively unstable and (iii) absolutely unstable.
For case (i), the disturbances dissipate so that the fluid is damped and stable
at certain point, whilst for (ii) the disturbances are convected away form the
source. For the absolute instability, i.e. case (iii) the localised disturbances
propagate, both down and up streams. The convective and absolute instabili-
ties are related to a disturbances growth in time and space respectively.

Further research interests have addressed transition and the stability of the
boundary-layer on cones and rotating spheres. Indeed, the inherent association
with spinning projectile applications has been an incentive to advance this
investigation and learn more about the delay of laminar-turbulent transition
within such systems. Regarding the boundary layer of the rotating sphere,
Garrett & Peake [18] state that the cross-flow mode prevails for latitudes below
✓ = 66�. As for higher latitudes, the streamline curvature mode is marked as
dangerous.

For broad cones, the instability mechanism appears as co-rotating vortices,
and for slender cones, counter-rotating vortices are detected, Garrett, Hussain
& Stephen [19] conducted a study to examine the stability of the boundary layer
on a rotating cone. This cross-flow study resonates with experimental data for
cones with a half-angle of more than forty. Yet, for the cones that are half-
angle less than forty, another formula with an emphasis on centrifugal effects
is needed, Hussain, Garrett & Stephen [20]. Therefore, there is a favourable
agreement with experimental data again, this time for cones with a half-angle
less than forty.
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1.1 Non-Newtonian boundary-layer flows

The non-Newtonian flow is essentially an importation in the nature and it has
many applications in engineering. The behaviour of the fluid can be affected
by many different characteristics. Is important to mention that the viscosity
determine the behaviour of the fluid. Therefore, the fluid can be divided into
two sections: Newtonian and non-Newtonian fluids. For the Newtonian flow
the viscosity independent from the shear rate i.e (the viscosity is constant).
Moreover, in the Newtonian fluid the relation between the strain and the shear
stress is linear. A non-Newtonian fluid has different properties from Newto-
nian fluids. Most commonly the viscosity of non-Newtonian fluid may change
with shear rate and it is not independent of the share rate itself. Roughly
non-Newtonian fluids can be classified into three types according to the re-
lationship between the shear stress and shear rate : time-independent which
including (purely viscous, inelastic or generalised Newtonian fluids),viscoelastic
and time-dependent fluids. Depending on how the apparent viscosity changes
with shear rate the flow behaviour of non-Newtonian flow is characterized as
follows: shear-thickening, shear shear-thinning and a Generalised Newtonian
fluids. Shear-thinning characterised by apparent viscosity which gradually de-
creases with increasing shear rate. Conversely, shear-thickening the apparent
viscosity of this fluid increases with increasing shear rate.

There are many research studies on generalised Newtonian flow due to
rotating disks. As for the von Kármán’s similarity to include the power law
governing viscosity relation, Mitschka [21] amended the von Kármán rotating
disk-flow. In this case, a boundary-layer estimation is required to provide
definite generalised Navier-Stokes equations along with the base flow. The
main flow resolutions for shear-thickening and shear-thinning power-law fluids
are presented by Ulbrecht & Mitschka [22] and Andersson et al. [23]. Although
the authors did not match the boundary layer solutions with the external flow,
Denier & Hewitt [24] proposed modified solutions for each of these cases. In
addition to solving this problem, they showed that the structure of solutions
shear-thickening and shear-thinning fluids were fundamentally different.

Recently, the base flows for various generalised Newtonian models have
been derived by Griffiths [25]. This work is extended by the same author to
generate the neutral curve of convective instability utilising asymptotic and
numerical methods. He also improved power law studies to include different
models such as the Bingham [26] and Carreau [27] models of non-Newtonian
fluids. As Griffith argues, the von Kármán similarity solution can be applied
when the Carreau model is used instead of power-law and Bingham models. In
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addition, Griffiths et al.[28] carried out an asymptotic stability analysis of the
shear-thinning boundary-layer flow over a rotating disk for various generalised
Newtonian models. Interestingly, they identified an agreement between the
results of asymptotic analysis and numerical solutions.

1.2 Rough rotating disk

The impact of roughness on the boundary-layer flow, however, has been found
to represent a greater importance. This is because roughness is beneficial
to the stability of the flow and helps to control and reduce drag Carpenter
[29]. Besides, many studies have found that carefully applied drag reduction
on rough surfaces can delay the transition to turbulence for most technological
applications. Therefore, studies in this area could be clearly beneficial (Carrillo
et al. [30]; Fransson et al. [31]).

However, less attention is given to non-Newtonian flow and its interaction
with roughness. For this reason, this project aims to study the effect of a
distributed roughness on the incompressible rotating disk boundary-layer. It
intends to examine how a distributed roughness can impact the points of initial
instability, the transition location, and the behaviour of the stationary vortices.
The study uses the Chebyshev method to carry out a linear stability analysis.
The numerical method is an extension of the stability work done by Alveroğlu
[32]; however, it incorporates the method developed by Miklavčič & Wang [33]
to add roughness to the disk surface.

Two theoretical models exist in the literature to describe steady boundary
layer flow over rough rotating disks. The models are introduced by Miklavčič
& Wang [33] and Yoon et al. [34] and are herein referred to as the MW and
YHP models, respectively. Both models demonstrate how surface roughness
can lead to modifications in the classic von Kármán solution over a smooth
disk. Nevertheless, the two models are fundamentally different in their formu-
lations. For example, the YHP model imposes a surface roughness function on
the disk surface along the radial direction and assumes rotational symmetry.
Consequently, it leads to a particular case of anisotropic roughness composed
of concentric grooves. The roughness is thus felt as one traverses the disk in the
radial direction. In contrast, the MW approach models the surface roughness
by replacing the usual no-slip conditions at the disk surface with partial-slip
conditions. By modifying the boundary conditions in the radial and azimuthal
directions, the MW approach can independently model roughness in these two
directions. This leads to isotropic roughness when the roughness parameters



1.3. Motivation and aim of the current study 7

are identical in both directions and to anisotropic roughness when they differ.
Due to its greater flexibility, the MW approach has received considerable atten-
tion with regard to Newtonian fluids; accordingly, it will be used throughout
the course of the current investigation.

Under the MW formulation, Cooper et al. [35] examined the possibility
of delaying the onset of instability within the rotating disk system via the in-
troduction of distributed surface roughness. The convective stability analysis
examined both isotropic and anisotropic surface roughnesses and led to the
clear conclusion that surface roughness stabilised Type I mode. In contrast,
Type II mode is significantly destabilised by anisotropic roughness in the form
of the concentric grooves. Following this, Garrett et al. [36] considered the
effects on the stability predictions of using the two roughness models. Sim-
ilar results were found under the MW and YHP models for Type I modes;
however, differences in the response of Type II mode were observed. That is,
Reynolds-stress energy production increases with increasing roughness, where
the increase is slightly less pronounced for the YHP model than for the MW
one.

Complementary research continues using the MW model. For example,
Stephen [37] has recently confirmed the neutral curve described by Cooper et al.
using a rigorous asymptotic approach. Furthermore, Alveroglu et al. [32, 38]
have extended Cooper et al.’s work to the entire BEK family of boundary layer
flows (i.e., Bödewadt, Ekman and von Kármán). Again, surface roughness
was found universally stabilising for the dominant Type I mode. However,
increased concentric grooves destabilise Type II mode as it moves upstream
and eventually becomes the critical mode at the lowest Reynolds number. In
general, it is possible to have a delay in laminar-turbulent transition; however,
it seems necessary to use the appropriate type of surface roughness. There is
a space for a lot of room for future research on this issue, and the authors
tend to conduct an experimental research studies to confirm these theoretical
outcomes.

1.3 Motivation and aim of the current study

The author of this study was motivated by the problem posed by Schlumberger
∗ regarding the erosion of calcite disks when they are rotated and submersed in
acidic solutions. The problem was addressed by researchers at King Abdullah

∗The world’s largest oil field services company.
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University of Science and Technology (KAUST) in association with the Oxford
Centre for Collaborative Applied Mathematics (OCCAM) in 2011 ( Figure 1.3).
In this work, the fluids are assumed to be Newtonian and report on it as as
"mass transfer modeling in a rotating disk reaction vessel" which is accessible
online.

Since the report was used to model the reaction between the acidic fluids
and the calcite rotating disks, the problem had to be investigated chemically
and mathematically. Arguably, fluids are considered Newtonian during the
building of the mathematical model. However, in practice, gelling agents are
often added to acidic fluids to reduce the reaction rate of fluids with calcite
discs. Introducing these gelling agents changes the vicious structure of the flu-
ids completely; therefore, the gelled acids act as non-Newtonian shear-thinning
fluids in these experiments.

To add more accuracy and details to the experimental setup and procedure,
Schlumberger representatives provided the study group with supplementary
materials together with the previous experimental data (see Al-Mohammad,
Nasr-El-Din, Al-Fuwaires & Al-Aamri [4]). For example, Nasr-El-Din et al.
[4] used the power-law constitutive relationship to model gelled acidic fluids.
According to Figure 1.3, the etching pattern of swirling flow is observed on the
calcite disk. So, it becomes more pronounced as the Reynolds number of the
flow increases. On the other hand, there are significant similarities between
the experimental imageries and the images taken by Gregory et al. These
observations helped to formulate the research questions in the present study
which became the basic content for this thesis.

Figure 1.3: Calcite disks used during experiment. Reproduced from Nasr-El-Din et
al. [4].

In light of the above studies, it is important to consider a non-Newtonian
flow due to a rough surface using the Carreau [27] model. The present study
will determine the stability of the three-dimensional boundary layer of a gen-
eralised Newtonian fluid when the no-slip boundary condition is replaced by
a partial-slip condition. To date, there has been relatively little work on the
analysis of Carreau-type fluids taking into account the effects of surface rough-
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ness. From here, we aim to fill the associated gap in the existing literature.
In this work we will combine the work by Griffiths on the non-Newtonian flow
for the Carreau model [25] with the MW approach [1]. Following the method
suggested by Sahoo [39], the boundary condition is derived with some modifi-
cations to the viscosity because the viscosity is no longer constant and depends
on the shear rate.

Our main goal is to investigate how successively increasing levels of dis-
tributed surface roughness and different roughness types affect the transition
and the overall flow of the generic fully 3D rotating-disk boundary layer. The
approach is split into two distinct, but closely interconnected, sections of ex-
perimental and theoretical research. A further goal of this preliminary investi-
gation is to clarify the modifications to the well-known stability characteristics
of smooth disks with increasing levels of roughness; following this, the pos-
sibility of a potential bypass transition will be studied. There is a growing
interest in the literature about the effects of non-Newtonian boundary layer
flows. Fundamental to the modelling of non-Newtonian flows is the underlying
viscosity model, where a good overview of the most widely used models can
be found in [40]. Mitschka [41] was the first to generalise the von Kármán
solution to non-Newtonian flows using a power law fluid. More recently, the
base flows for various generalised Newtonian models have been derived by Grif-
fiths [42]. He then proceeded to explore convective instability characteristics
of the models[43, 44], utilising both asymptotic and numerical methods. In
particular, the power law studies are extended to include more sophisticated
models due to Bingham [45] and Carreau [46]. Griffiths demonstrates that,
unlike the power law and Bingham models, the Carreau model preserves the
von Kármán similarity solution, which has certain mathematical advantages
within the formulation. Furthermore, the Carreau model is highlighted in this
study due to the limitations of the power law, especially for very low and very
high shear rates. In general, the linear stability analyses of the rotating disk
boundary layer have revealed that different results are reached when power law
shear-thinning results are compared to those from the Carreau fluid mode [2].
Thereby, the growing interest in Carreau fluids has been the motivation for
the current investigation. Motivated by the above work, the effects of surface
roughness on the convective instability will be considered using two different
boundary conditions.

In light of the above points, this thesis aims to analyse the convective
stability of non-Newtonian fluids with the effect of roughness surface distur-
bances for the rotating disk. As for the thesis structure, it is organised as
follows. Chapter 2 briefly introduces the class of non-Newtonian fluids known
as generalised Newtonian fluids. It then goes on to derive the governing steady
mean flow equations using the MW model. The perturbation equations and
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the energy analysis are formulated in the same chapter. The flow solver and the
spectral Chebyshev method are included, too. Chapters 3, 4 and 5 examine the
effects of surface roughness generated by azimuthally anisotropic roughness (ra-
dial grooves), radially anisotropic roughness (concentric grooves) and isotropic
roughness, respectively. Chapter 6 analyses the effects of shear-thinning and
shear-thickening on roughness surface to identify a range of roughness parame-
ters. In each of these chapters, the steady mean flow solutions are provided and
convective neutral stability curves and the growth rate are illustrated. These
results are confirmed by conducting an energy balance analysis at the location
of the maximum amplification of each instability mode. This is because the
energy balance approach provides deeper insights into the physics of the sta-
bilisation process. Finally, Chapter 7 summarises the central argument of each
chapter and brings together the different findings from the chapters. Finally, a
future work section is presented to highlight how the scope of this thesis could
potentially be extended.

A significant portion of the work presented in Chapter 6 has been presented
in the following publication:

1. Alqarni, A. A., et al. "The instability of non-Newtonian boundary-
layer flows over rough rotating disks." Journal of Non-Newtonian
Fluid Mechanics 273 (2019): 104174.

The published work focuses on the mean flow, neutral stability, energy analysis
and growth rate for Carreau model rotating disk with the effect of roughness
parameters. An additional publication entitled "Application of new partial-
slip boundary conditions to non-Newtonian flow over a rough rotating disk"
is currently in preparation for submission to the Journal of Fluid Mechanics
(JFM). Parts of this paper are presented in Chapters 3, 4 and 5.



Chapter 2

The governing equations of
the non-Newtonian flow

This chapter examines the governing equations of a non-Newtonian fluid over a
rough rotating-disk. The generalised Newtonian fluid and governing equations
are first established in 2.1. The governing equations are then dimensioned and
scaled to the boundary layer region close to the disk surface where, the problem
is reduced to a set of ordinary differential equations using similarity solutions,
as is seen in 2.2 and 2.3. Then, the system is solved using boundary value
problem solver, bvp4c, for both shear-thinning and -thickening fluids under the
Carreau model in 2.3.1. The formulation of the linear convective instability
associated with the generalised Newtonian boundary-layer flow on a rotating
disk is outlined in 2.4. After that, the eigenvalue problem represented by the
linear perturbation equations is solved with the Chebyshev collocation method
in 2.4.1. Finally, the energy analysis is given in 2.5.

2.1 Generalised Newtonian fluids

The viscosity of a non-Newtonian fluid changes with the shear rate, as is ob-
served in many industrial processes and flow problems such as lubrication and
polymer processing. This change in the viscosity, often by two or three orders
of magnitude, cannot be ignored. The modification of Newton’s law of the vis-
cosity to allow for the viscosity change with shear rate was empirically derived
by Bird, Armstrong & Hassager [40]. The model is commonly known to lead
to a generalised Newtonian fluid.
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The constitutive relation for a Newtonian fluid in a simple flow has a con-
stant viscosity at all shear rates. From this definition, the following governing
relationship for an incompressible Newtonian fluids occurs

⌧ = µ�̇, (2.1)

where ⌧ is defined as the shear stress tensor, the parameter µ is the fluid
viscosity that is assumed to be constant in Newtonian fluid. The quantity
�̇ = ru+ (ru)T is the rate of deformation tensor for an arbitrary flow field
u = u(x, y, z, t) in an arbitrary coordinate system. Therefore, shear stress is
a linear function of the shear rate in the Newtonian fluid.

µ(�̇) =
�̇

⌧
, (2.2)

For generalised Newtonian fluids, the constitutive relation is given by

where µ is a scalar and is a function of the invariants of the tensor (i.e.,
viscosity function depending on the invariants of the tensor �̇). Also, it can be
defined as µ = µ�̇ where �̇ values are independent of the choice of coordinate
system. The three invariants are defined (see Bird et al. [40] ) by selecting the
following tensor component combinations:

I = tr�̇ =
X

�̇ii,

II = tr�̇2 =
X

i

X

j

�̇ij �̇ji =
X

�̇
2
ij ,

III = tr�̇3 =
X

i

X

j

X

k

�̇ij �̇jk�̇ki.

For the incompressible fluids given �̇ = ru + (ru)T , the first invariant
is clearly zero (i.e. I = 2(r.u) = 0). Also, the third invariant III vanishes
to zero for flows dominated by shearing, such as axial annular flow, tube flow
and the flow between rotating disks (Bird et al. [40]). Thus, more attention
should be given to the second invariant II because µ depends only on the
second invariant of the rate-of-strain tensor for the type of flow considered
within this thesis. The quantity µ is assumed to be a function of II only.
The second can be expressed in terms of �̇, the magnitude of �̇ is given by
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Regarding the literature, the generalised Newtonian viscosity is a function
of the shear rate. This means that the viscosity of non-Newtonian fluid is
commonly written as ⌧ = µ(�̇)�̇.

A number of empirical relationships for generalised Newtonian fluids have
been investigated in the literature. The most commonly used types of gener-
alised Newtonian fluids models are Power law, Carreau, and Bingham models.
These models are studied to determine the relation between shear stress and
shear rate. The most popular model is Power law model (Ostwald).

The Power law, Bingham [26] and Carreau-Yasuda models are expressed
respectively as:

µ = m(�̇)(n�1)
,

µ =

(
0, ⌧ 6 ⌧0

µp + ( ⌧0�̇ ), ⌧ > ⌧0,

µ = µ1 + (µ0 � µ1)
⇥
1 + (��̇)a

⇤(n�1/a)
.

Here, m is the consistency coefficient and n is the flow behaviour index. When
n < 1 the fluid is shear-thinning, and for n > 1 the fluid is shear-thickening.
For n = 1, ⌧⇤0 = 0 and µ

⇤
0 = µ

⇤
1 and the fluid is returned to a Newtonian

flow. The quantities µp, µ
⇤
0 and µ

⇤
1 are the plastic-shear-rate viscosity, the

zero-shear-rate viscosity and the infinite-shear-rate viscosity, respectively. The
quantity �⇤ refers to the time constant, often defined as the ’relaxation time’.
It is noted that when a = 2, the Carreau-Yasuda model reduced to the better
known Carreau model. From the above models we will choose the Carreau
model to model the viscosity. According to Nouar & Frigaard [47] and Nouar,
Bottaro & Brancher[48], the Carreau model is more realistic in its descriptions
of the rheological behaviour of shear-thinning fluids. Moreover, it is capable
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of modelling the steady shear, complex viscosity, stress growth and stress re-
laxation functions. Therefore, this model is flexible because it can fit a wide
range of experimental data. Based on this, the Carreau model is adopted for
the current study.

The Carreau model was first developed by Pierre Carreau [27]. It is called
shear-thinning (pseudoplastic) for n < 1 so that the fluid’s viscosity decreases
when the shear rate increases. For shear-thickening (dilatant) flows, the fluid’s
viscosity increases with an increase in the shear rate n > 1. This shows that
this model is able to provide a physical description of fluid behaviour in regions
of both very high and very low shear as is seen in Figure (2.1):

for n < 1 : lim
�̇!0

µ(�̇) ! µ0, lim
�̇!1

µ(�̇) ! µ1,

for n > 1 : lim
�̇!0

µ(�̇) ! µ0, lim
�̇!1

µ(�̇) ! 1.

Figure 2.1: Viscosity as a function of shear rate for shear-thickening and shear-
thinning Carreau fluids and Newtonian fluids.

2.2 The governing boundary-layer equations

The approach developed by Griffiths [42] is adopted to obtain the mean-flow
profiles under the Carreau [46] viscosity model. However, some modifications
are required to incorporate the partial-slip approach to surface roughness. The
disk is assumed to be of an infinite radius and rotating at a constant angular



The governing boundary-layer equations 15

velocity, ⌦⇤, within an incompressible Carreau fluid. Cylindrical polar co-
ordinates exist within the rotating reference frame and the governing equations
are given by

r · u⇤ = 0, (2.3a)
@u⇤

@t⇤
+ u⇤ ·ru⇤ +⌦⇤

⇥ (⌦⇤
⇥ r⇤) + 2⌦⇤

⇥ u⇤ = �
1

⇢⇤
rp

⇤ +
1

⇢⇤
r · ⌧ ⇤

.

(2.3b)

Here u⇤ = (u⇤, v⇤, w⇤) is the total velocity vector; t
⇤ is time; p

⇤ is the fluid
pressure; r⇤ = (r⇤, 0, z⇤) is the position vector in space; ⌦⇤ = (0, 0,⌦⇤) is the
constant angular velocity; and ⇢⇤ is the fluid density. An asterisk, where used,
refers to a dimensional variable.

The stress tensor for generalised Newtonian models is given by ⌧ ⇤ = µ
⇤�̇⇤,

where µ
⇤ = µ

⇤(�̇⇤) is the non-Newtonian viscosity. The magnitude of the rate
of strain tensor is given by �̇⇤ =

p
�̇⇤ : �̇⇤/2 and, for a Carreau fluid, we have

µ
⇤(�̇⇤) = µ

⇤
1 + (µ⇤

0 � µ
⇤
1)
⇥
1 + (�⇤�̇⇤)2

⇤(n�1)/2
. (2.4)

The power index n characterises the fluid behaviour, such as being shear-
thinning when n < 1, Newtonian when n = 1 and shear-thickening when
n > 1. The quantities µ

⇤
0 and µ

⇤
1 denote the zero-shear-rate and infinite-

shear-rate viscosities, respectively. �
⇤ is referred to as the time constant or

‘relaxation time’.

Equations (2.3) can be expressed without the vector notation as
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@z⇤
+

u
⇤
v
⇤

r⇤
+ 2⌦⇤

U
⇤ = �

1

r⇤⇢⇤
@p

⇤

@✓

+
1

⇢⇤

h 1

r⇤2
@(r⇤2⌧⇤✓r⇤)

@r⇤
+

1

r⇤
@⌧

⇤
✓✓

@✓
+
@⌧

⇤
✓z⇤)

@z⇤

i
, (2.5c)

@w
⇤

@t⇤
+ u

⇤@w
⇤

@r⇤
+

v
⇤

r⇤
@w

⇤

@✓
+ w

⇤@w
⇤

@z⇤
= �

1

⇢⇤
@p

⇤
1

@z⇤

1

⇢⇤

h 1
r⇤
@(r⇤⌧⇤z⇤r⇤)

@r⇤
+

1

r⇤
@⌧

⇤
z⇤✓

@✓
+
@⌧

⇤
z⇤z⇤)

@z⇤

i
. (2.5d)
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Here the stress tensor components in Equations (2.5) are found as

⌧
⇤
r⇤r⇤ = 2µ⇤

⇣
@u

⇤

@r⇤

⌘
, (2.6a)

⌧
⇤
✓✓ = 2µ⇤

⇣ 1

r⇤
@v

⇤

@✓
+

u
⇤

r⇤

⌘
, (2.6b)

⌧
⇤
z⇤z⇤ = 2µ⇤

⇣
@w

⇤

@z⇤

⌘
, (2.6c)

⌧
⇤
r⇤✓ = µ

⇤
h
r
⇤ @

@r⇤

⇣
v
⇤

@r⇤

⌘
+

1

r⇤
@u

⇤

@✓

⌘
= ⌧

⇤
✓r⇤ , (2.6d)

⌧
⇤
r⇤z⇤ = µ

⇤
⇣
@u

⇤

@z⇤
+
@w

⇤

@r⇤

⌘
= ⌧

⇤
z⇤r⇤ , (2.6e)

⌧
⇤
✓z⇤ = µ

⇤
⇣
@u

⇤

@z⇤
+

1

r⇤
@w

⇤

@✓

⌘
= ⌧

⇤
z⇤✓, (2.6f)

where �̇⇤ is the rate-of-strain tensor and takes the form

�̇
⇤ =

(
2

" 
@u

⇤

@r⇤

!2

+

 
1

r⇤
@v

⇤

@✓
+

u
⇤

r⇤

!2

+

 
@w

⇤

@z⇤

!2#
+

"
r
⇤ @

@r⇤

 
v
⇤

r⇤

!

+
1

r⇤
@u

⇤

@✓

#2
+

 
@u

⇤

@z⇤
+
@w

⇤

r⇤

!2

+

 
@v

⇤

@z⇤
+

1

r⇤
@w

⇤

@✓

!2) 1
2

=

r
II

2
(2.7)

with II =
P

i

P
j �̇

2
ij = �̇

2
r⇤r⇤ + �̇

2
✓✓ + �̇

2
z⇤z⇤ + 2(�̇2r⇤✓j + �̇

2
r⇤z⇤ + �̇

2
✓z⇤).

The system will be reduced to a non-dimensional form with the following
dimensionless variables

U(r, ✓, z) =
u
⇤

⌦⇤l⇤
, V (r, ✓, z) =

v
⇤

⌦⇤l⇤
, W (r, ✓, z) =

w
⇤

⌦⇤l⇤�
, (2.8)

r =
r
⇤

l⇤
, z =

z
⇤

�l⇤
. t

⇤ = (⌦⇤
t
⇤), P (r, ✓, z) =

p
⇤

⇢⇤(⌦⇤l⇤)2
. (2.9)

here ⌦⇤
l
⇤ is natural velocity, l⇤ is length scales and non-dimensional boundary-

layer thickness � will be determined later. by substituting Equations (2.8) and
Equations (2.9) into Equations (2.5) to give the dimensionless continuity and
momentum equations

1

r

@(rU)

@r
+

1

r

@V

@✓
+
@W

@z
= 0, (2.10a)

@U

@t
+ U

@U

@r
+

V

r

@U

@✓
+W

@U

@z
�

(V + r)2

r
= �

@P

@r
+

1

⇢⇤(l⇤⌦⇤)2
h1
r

@(r⌧rr)

@r
+

1

r

@⌧r✓

@✓
+
@⌧rz

@z
�
⌧✓✓

r

i
, (2.10b)
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@V

@t
+ U

@V

@r
+

V

r

@V

@✓
+W

@V

@z
+

UV

r
+ 2U = �

1

r

@P

@✓
+

1

⇢⇤(l⇤⌦⇤)2
h 1
r2

@(r2⌧✓r)

@r
+

1

r

@⌧✓✓

@✓
+
@⌧✓z)

@z

i
, (2.10c)

@W

@t
+ U

⇤@W

@r
+

V

r

@W

@✓
+W

@W

@z
= �

1

�2

@P

@z
+

1

⇢⇤(l⇤⌦⇤)2
h1
r

@(r⌧zr)

@r
+

1

r

@⌧z✓

@✓
+
@⌧zz)

@z

i
. (2.10d)

The non-dimensionalisation of �̇ can be obtained from �̇ = �̇
⇤( �

⌦⇤ ), leading to

�̇
2 =

 
@U

@z

!2

+

 
@V

@z

!2

+ �
4

"
1

r2

 
@W

@✓

!2

+

 
@W

@r

!2#

+ �
2

(
2

" 
@U

@r

!2

+ 2

 
1

r

@V

@✓
+

U

r

!2

+ 2

 
@W

@z

!2

+

"
r
@

@r

 
V

r

!

+
1

r

@U

@✓

#2
+

2

r

@V

z

@W

✓
+ 2

@U

z

@W

r

)
. (2.11)

Now, it is possible to determine the dimensionless form of the viscous terms
⌧ij that appear in Equations (2.10) as

1

r

@(r⌧rr)

@r
= µ

⇤
0⌦

⇤ 2

r

@

@r

⇣
µ̃r
@U

@r

⌘
(2.12a)

1

r

@⌧r✓)

@✓
= µ

⇤
0⌦

⇤ 1

r

@

@✓

n
µ̃

h
r
@

@r

⇣
V

r

⌘
+

1

r

@U

@✓

io
(2.12b)

⌧✓✓

r
= µ

⇤
0⌦

⇤ 2µ̃

r2

⇣
@V

@✓
+ U

⌘
, (2.12c)

@⌧rz

@z
= µ

⇤
0⌦

⇤ 1

�2

@

@z

h
µ̃

⇣
@U

@z
+ �

2@W

@r

⌘i
, (2.12d)

1

r2

r
2
@(r⌧✓r)

@r
= µ

⇤
0⌦

⇤ 1

r2

@

@r

n
µ̃

h
r
3 @

@r

⇣
V

r

⌘
+ r

@U

@✓

io
, (2.12e)

1

r

@(r⌧✓✓)

@r
= µ

⇤
0⌦

⇤ 2

r

@

@✓

h
µ̃

⇣1
r

@V

@✓
+

U

r

⌘i
, (2.12f)

@⌧✓z

@z
= µ

⇤
0⌦

⇤ 1

�2

@

@z

h
µ̃

⇣
@V

@z
+
�
2

r

@W

@✓

⌘i
, (2.12g)

1

r

@(r⌧zr)

@r
= µ

⇤
0⌦

⇤ 1

�

n1
r

@

@r

h
µ̃r

⇣
@U

@z
+ �

2@W

@r

⌘io
, (2.12h)

1

r

@⌧z✓

@✓
= µ

⇤
0⌦

⇤ 1

�

n1
r

@

@✓

h
µ̃

⇣
@V

@z
+
�
2

r

@W

@✓

⌘io
, (2.12i)

@⌧zz

@z
= µ

⇤
0⌦

⇤ 1

�

h
2
@

@z

⇣
µ̃
@W

@z

⌘i
. (2.12j)
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Here µ̃ =
h
1 + (r�1

k�̇)2
i (n�1)

2 is the non-dimensional Carreau model with
respect to µ

⇤
0. This is normalised with respect to µ

⇤
0 to facilitate direct quan-

titative comparisons with the corresponding Newtonian mean-flow profiles. In
practical applications, the zero-shear-rate viscosity is typically larger three to
four orders than the infinite-shear-rate viscosity. Accordingly, µ

⇤
1/µ

⇤
0 is as-

sumed negligible and neglected in the current analysis. Here k = r⇤�⇤⌦⇤

l⇤� is
the dimensionless of the constant �⇤. Again, � remains, as of yet, undeter-
mined. By substituting Equations (2.12) in Equations (2.10), the system can
be written as

1

r

@(rU)

@r
+

1

r

@V

@✓
+
@W

@z
= 0, (2.13a)

@U

@t
+ U

@U

@r
+

V

r

@U

@✓
+W

@U

@z
�

(V + r)2

r
= �

@P

@r
+

µ0
⇤

⇢⇤⌦⇤(l⇤�⇤)2
⇣2
r

@

@r

h
µ̃r
@U

@r

⌘i
+

1

r

@

@✓

n
µ̃

h
r
@

@r

⇣
V

r

⌘
+

1

r

@U

@✓

io

+
@

@z

h
µ̃

⇣
@U

@z
+
@W

@r

⌘i
�

2µ̃

r2

h
@V

@✓
+ U

i⌘
, (2.13b)

@V

@t
+ U

@V

@r
+

V

r

@V

@✓
+W

@V

@z
+

UV

r
+ 2U = �

1

r

@P

@✓
+

µ0
⇤

⇢⇤⌦⇤(l⇤�⇤)2
⇣ 1

r2

@

@r

n
µ̃r

2
h
r
@

@r

⇣
V

r

⌘
+

1

r

@U

@✓

io
+

1

r

@

@✓

h
2µ̃
⇣1
r

@V

@✓
+

U

r

⌘i
+

+
@

@z

h
µ̃

⇣
@V

@z
+

1

r

@W

@✓

⌘i⌘
, (2.13c)

@W

@t
+ U

⇤@W

@r
+

V

r

@W

@✓
+W

@W

@z
= �

1

�2

@P

@z
+

µ0
⇤

⇢⇤⌦⇤(l⇤�⇤)2
n1
r

@

@r

h
µ̃r

⇣
@U

@z
+
@W

@r

⌘i
+

+
1

r

@

@✓

h
µ̃

⇣
@V

@z
+

1

r

@W

@✓

⌘i
+

@

@r

h
2µ̃
⇣
@W

@z

⌘io
, (2.13d)

with
µ0

⇤

⇢⇤⌦⇤(l⇤�⇤)2
= O(1).

Here the Reynolds number is scaled by the infinite-shear-rate velocity

Re =
⇢
⇤⌦⇤

l
⇤2

µ0
⇤ . (2.14)



The governing boundary-layer equations 19

The boundary layer thickness of the Carreau model fluid driven by a rotating
disk is defined as

� = O(Re
� 1

2 ).

Thus, Equations (2.13) are scaled and given by

1

r

@(rU)

@r
+

1

r

@V

@✓
+
@W

@z
= 0, (2.15a)

@U

@t
+ U

@U

@r
+

V

r

@U

@✓
+W

@U

@z
�

(V + r)2

r
= �

@P

@r
+

@

@z

⇣
µ̃
@U

@z

⌘

+O(Re
�1) (2.15b)

@V

@t
+ U

@V

@r
+

V

r

@V

@✓
+W

@V

@z
+

UV

r
+ 2U = �

1

r

@P

@✓
+

@

@z

⇣
µ̃
@V

@z

⌘

+O(Re
�1) (2.15c)

@W

@t
+ U

⇤@W

@r
+

V

r

@W

@✓
+W

@W

@z
= �Re

@P

@z
+

1

r

@

@r

⇣
µ̃r
@U

@z

⌘

+
1

r

@

@✓

⇣
µ̃r
@V

@z

⌘
+ 2

@

@z

⇣
µ̃r
@W

@z

⌘
+O(Re

�1) (2.15d)

where

µ̃ =
n
1 +

⇣
k

r

⌘2h
(U 02) + (V 02) +O(Re

�1) +O(Re
�2)
io(n�1)/2

. (2.16)

Here the prime denotes differentiation with respect to z and
h
(U 02)+ (V 02)

i
=

�̇2 after scaling. The details of the �̇ calculation and scaling are given in
Equation (2.11).

A boundary layer approximation is applied to the system of equations to
eliminate the terms that involve inverse powers of the Reynolds number by
assuming that Re � 1. A solution is proposed inside the boundary layer, where
the velocity components, pressure and viscosity have the following asymptotic
expansions

U(r, ✓, z̄) = U0(r, ✓, z) +Re
�1

U1(r, ✓, z) + ...,

V (r, ✓, z̄) = V0(r, ✓, z) +Re
�1

V1(r, ✓, z) + ...,

W (r, ✓, z̄) = W0(r, ✓, z) +Re
�1

W1(r, ✓, z) + ...,

P (r, ✓, z̄) = P0(r, ✓, z) +Re
�1

P1(r, ✓, z) + ...,

µ̃(r, ✓, z̄) = µ̃0(r, ✓, z) +Re
�1

µ̃1(r, ✓, z) + ...,
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where z̄ = z⇤

l⇤ = Re
� 1

2 z is the coordinate corresponding to the region outside
of the boundary layer.

The zero order equation is thus reached and will be solved later to find
solutions for the steady mean flow

1

r

@(rU0)

@r
+
@W0

@z
= 0, (2.17a)

U0
@U0

@r
+W0

@U0

@z
�

(V0 + r)2

r
=

@

@z

⇣
µ̃0
@U0

@z

⌘
, (2.17b)

U0
@V0

@r
+W0

@V0

@z
+

U0V0

r
+ 2U0 =

@

@z

⇣
µ̃0
@V0

@z

⌘
, (2.17c)

U0
@W0

@r
+W0

@W0

@z
= �

@P1

@z
+

1

r

@

@r

⇣
µ̃0r

@U0

@z

⌘
+ 2

@

@z

⇣
µ̃0r

@W0

@z

⌘
, (2.17d)

where
µ̃0 =

n
1 +

⇣
k

rRe1/2

⌘2h
(U 02

0 ) + (V 02
0 )
io(n�1)/2

, (2.18)

is the zero-order viscosity function.

2.3 Steady mean flow solutions

The dimensionless of the system 2.17 are scaled as

U(z) =
U

⇤
0

r⇤⌦⇤ , V (z) =
V

⇤
0

r⇤⌦⇤ , W (z) =
W

⇤
0

l⇤⌦⇤ , P (z) =
P

⇤
1

⇢⇤l⇤2⌦⇤2 ,

where l
⇤ =

⇥
⌫⇤

⌦⇤
⇤(1/2) is a characteristic length scale. Assuming the mean flow

is steady and axisymmetric, i.e., the mean flow velocities (U0, V0,W0) and
pressure P1 term are independent of time t and azimuthal direction ✓, these
lead to the following non-dimensional equations for the mean flow

2U +W
0 = 0, (2.19a)

U
2
� (V + 1)2 +WU

0
� (µU 0)0 = 0, (2.19b)

2U (V + 1) +WV
0
� (µV 0)0 = 0, (2.19c)

WW
0 + P

0
� qU

0 + 2µ0
U � (µW 0)0 = 0. (2.19d)
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where a prime denotes a derivative with respect to z and

q =
k
2(n� 1)(U 02 + V

02)

1 + k2(U 02 + V 02)
, µ = 1 + k

2[(U 0)2 + (V 0)2](n�1)/2
.

k = r
⇤
�
⇤⌦⇤(⌫/⌦)�1/2

.

Rearranging Equation (2.19b) and Equation (2.19c) result in

U
00 =

[U2
� (V + 1)2 + U

0
W ](&̄1 + &̄2V

02)� U
0
V

0
&̄2[2U(V + 1) + V

0
W ]

µ̃0[&̄1 + &̄2(U 02 + V 02)]
(2.20)

V
00 =

[2U(V + 1) + V
0
W ](&̄1 + &̄2U

02)� U
0
V

0
&̄2[U2

� (V + 1)2 + U
0
W ]

µ̃0[&̄1 + &̄2(U 02 + V 02)]
(2.21)

where &̄1 = 1 + k
2(U 02 + V

02) and &̄2 = k
2(1� n).

This formulation will lead to the first order ordinary differential equations
in five unknowns U ,U 0, V , V 0, W .

What follows is a discussion of the use the MW model [33] for surface
roughness to determine the boundary conditions at the disk surface. This
approach suggests that roughness can be modelled using partial-slip conditions
instead of the usual no-slip conditions at the disk surface. Here, the boundary
condition at the upper edge of the boundary layer is identical to the smooth-
disk formulation. To derive the boundary conditions, the method proposed
by Navier [49], where the partial-slip condition in the radial and azimuthal
directions are respectively given by

U |z=0= �⌧
z
r |z=0, V |z=0= ⌘⌧

z
✓ |z=0 .

Here � and ⌘ are the respective the slip coefficients defined as,

� = �1µ

r
⌦l2

v
and ⌘ = ⌘1µ

r
⌦l2

v
. (2.22)

Using the above transformations, Equation (2.22) enables the boundary con-
ditions to be determined as

U(0) = � U
0[1 + k

2(U 02 + V
02)(n�1)/2],

V (0) = ⌘ V
0[1 + k

2(U 02 + V
02)(n�1)/2],

(2.23)

W (0) = 0. (2.24)
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To derive the above Equations (2.23) we start from the generalised Navier
[49] partial slip in the radial direction,

U |z=0= �⌧
z
r |z=0, (2.25)

and the azimuthal direction

V |z=0= ⌘⌧
z
✓ |z=0 . (2.26)

The quantities � and ⌘ are slip coefficients. The shear stress components in
the above equations can be defined from Equations (2.6e) and (2.6f) and the
viscosity can be defined from Equation (2.16). Therefore, Equation (2.25) after
non-dimensionlising will take the from

U |z=0= �1µ̃0Re
1
2

n
1 + k

2
h⇣
@U

@z

⌘2
+
⇣
@V

@z

⌘2io(n�1)/2 @U(z)

@z
(2.27)

Where (Re
1
2 ) =

⇣
⌦l
µ0

⌘ 1
2 so

U |z=0= �1µ̃0

⇣⌦l
v0

⌘ 1
2
n
1 + k

2
h⇣
@U

@z

⌘2
+
⇣
@V

@z

⌘2io(n�1)/2 @U(z)

@z
(2.28)

with � = �1µ̃0

⇣
⌦l
v0

⌘ 1
2 such that

U |z=0= �

n
1 +

�
k
�2h⇣@U

@z

⌘2
+
⇣
@V

@z

⌘2io(n�1)/2 @U(z)

@z
(2.29)

Therefore, the partial slip conditions reduce to

U |z=0= �U
0
n
1 + k

2[U 02 + V
02]
o(n�1)/2

. (2.30)

Similarly to that the partial slip in Equations (2.26) the azimuthal direction

V |z=0= ⌘V
0
n
1 + k

2[U 02 + V
02]
o(n�1)/2

. (2.31)

with ⌘ = ⌘1µ(
⌦l
v0
)
1
2 and the prime denotes differentiation with respect to z.

Furthermore,
U = 0, V = �1 as z ! 1. (2.32)

The coefficients � and ⌘ give a measure of the roughness in the radial and
azimuthal directions, respectively. When � = ⌘ = 0, the boundary conditions
reduce to the no-slip boundary conditions for a smooth disk. The scenario
of anisotropic roughness is exemplified by concentric grooves (⌘ > 0,� = 0)
and radial grooves (⌘ = 0,� > 0); whereas isotropic roughness corresponds to
the case � = ⌘ > 0. In the particular case that n = 1 and � = ⌘ = 0, the
system defined by Equations (2.19), (2.23) and (E.6) reduces to the standard
von Kármán system. Similarly, when n = 1 and � 6= 0, ⌘ 6= 0 we recover the
governing equations for the standard MW model [33] for Newtonian fluids.
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2.3.1 Matlab solver for the steady mean flow

The MATLAB solver function bvp4c is used to obtain the mean-flow solu-
tions. This method is a finite difference code that implements the three-stage
Lobatto IIIa formula, that can be viewed as an implicit Runge-Kutta formula
with a continuous interpolate. This is a collocation formula, and the colloca-
tion polynomial provides a C1-continuous solution that is fourth-order accurate
uniformly in the interval [a,b] and is divided into subintervals by using mesh
selection points. Mesh selection and error control are based on the residual of
the continuous solution. The points of the initial mesh and an initial approxi-
mation of the solution at the mesh points are used to solve the equations.

Our goal is to obtain the mean flow velocity profiles U , V , W . The govern-
ing equations are transformed into the first order ordinary differential equations
in order to apply the bvp4c routine. The transformed variables are written as
follows

�1(z) = U, �2(z) = U
0
, �3(z) = V, �4(z) = V

0
, �5(z) = W,

(2.33)
The system of the ordinary differential Equations (2.20) and (2.21) become

�
0
1 = �2,

�
0
2 =

n
1 + k

2
⇣
(�2)2 + n(�4)2

⌘o
F � (1� n)k2�2�4G

µ

n
1 + nk2

⇣
(�2)2 + n(�4)2

⌘o ,

�
0
3 = �4,

�
0
4 =

n
1 + k

2
⇣
n(�2)2 + (�4)2

⌘o
G� (1� n)k2�2�4F

µ

n
1 + nk2

⇣
(�2)2 + n(�4)2

⌘o ,

�
0
5 = �2�1.

(2.34)

Here

F = �
2
1 � (�3 + 1)2 + �2�5,

G = 2�1(�3 + 1) + �4�5,

µ =
n
1 + k

2
⇣
(�2)

2 + (�5)
2
⌘o(n�1)/2

.
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Also, the partial-slip conditions are transformed as

�1 = ��2

n
1 + k

2
⇣
(�2)

2 + (�5)
2
⌘o(n�1)/2

,

�3 = ⌘�4

n
1 + k

2
⇣
(�2)

2 + (�5)
2
⌘o(n�1)/2

,

�5 = 0,

(2.35)

and

�1 ! 0, �3 ! �1 as z ! 1. (2.36)

Equations (2.34) and (2.35) define a two-point boundary value problem. The
size of the domain is determined to be z 2 (0, 20).

2.4 Derivation of the perturbation equations

A linear stability analysis will be conducted by introducing the dimensional
governing boundary-layer equations from Equations (2.17). These equations
are non-dimensionalised with respect to the local radial position ra and a local
similarity variables are defined by

U(z) =
U

⇤

⌦⇤r⇤a
, V (z) =

V
⇤

⌦⇤r⇤a
, W (z) =

W
⇤

⌦⇤r⇤a
, P (z) =

P
⇤

⇢⇤⌦⇤2r⇤2a
.

(2.37)

r =
r
⇤
a

l⇤
, z =

z
⇤

l⇤
, l

⇤ =
p

⌦⇤⌫⇤, t =
t
⇤

l⇤/(⌦⇤2r⇤2a )
. (2.38)

Perturbations are applied at a specific radius by imposing sufficiently small
disturbances on the steady-mean flow at some fixed local Reynolds number.
The local Reynolds number for Carreau fluids is defined as

Re =
⌦⇤

r
⇤
al

⇤

⌫⇤
= ra. (2.39)

The velocity, pressure and time are cast in dimensionless form using the scalings
r
⇤
a⌦

⇤, ⇢⇤(r⇤a⌦⇤) and l
⇤
/(r⇤a⌦

⇤), respectively. The instantaneous non-dimensional
velocities and pressure component, including the mean values and small per-
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turbations, are therefore given by

U0(r, ✓, z, t) =
r

Re
U(z) + u(r, ✓, z, t), (2.40a)

V0(r, ✓, z, t) =
r

Re
V (z) + v(r, ✓, z, t), (2.40b)

W0(r, ✓, z, t) =
1

Re
W (z) + w(r, ✓, z, t), (2.40c)

P0,1(r, ✓, z, t) =
1

Re2
P (z) + p(r, ✓, z, t), (2.40d)

where u,v, w and p are small perturbation quantities. At this stage, it is neces-
sary to apply the so called parallel-flow approximation to ensure the linearised
equations are separable in r, ✓ and t. This involves replacing the variable r

with the local Reynolds number and neglecting all terms O(Re
�2), and leads

to
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+
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where
µ̂ =

k
2(n� 1)µ

1 + k2
⇥
(U 0)2 + (V 0)2

⇤ ,

 =
⇣
U

0@u

@z
+ V

0@v

@z

⌘
.
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by assuming the normal-mode form for the perturbing quantities as

(u, v, w, p) = (û, v̂, ŵ, p̂)(z;↵,�,!;Re, k)ei(↵r+�✓�!t)
.

Here ↵ = ↵r + i↵i is the radial wave number, � is the azimuthal wave number
(which is real) and ! is the frequency of the disturbances expressed in the
rotating frame. We therefore rewrite Equation (2.41) as

⇣
i↵+

1

Re

⌘
û+ i�̄v̂ +

@ŵ

@ẑ
= 0, (2.42a)
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Re
+
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@ŵ
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⌘
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Re
+

W

Re

@ŵ
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Re
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, (2.42c)

h⇣
i↵U + i�̄V � i!

⌘
+

W
0

Re

i
ŵ = �

@p̂

@z
+

1

Re

@

@z

⇣
µ
@ŵ

@z

⌘
, (2.42d)

with �̄ = �/Re. The orientation angle of the stationary vortices with respect
to a circle centred on the axis of rotation as well as the mode number (i.e.,
number of spiral vortices on the disk surface) are given, respectively, as

� = tan�1

✓
�̄

↵̄

◆
, tan

⇣
⇡

2
� �

⌘
=
↵r

�
, (2.43)

n̄ = �̄Re. (2.44)

2.4.1 Numerical method for the perturbation equations

A spectral method based on Chebyshev polynomials is implemented to solve
the perturbation Equations (2.42). This helps to generate the neutral curves
for range of different values of roughness and power-law index. This method
has been recently used for the rotating disk for Newtonian fluids [32, 36, 50]
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and the method has also been adapted for the generalised Newtonian fluids
[51]. Previously a shooting method was been used in the literature to solve
linear governing perturbation equations. However this approach transformed
the perturbation system to a set of first order ODE system and solved one
eigenvalue per iteration, whilst the spectral method solved all eigenvalues in
one iteration. The Chebyshev polynomials of the first kind are defined as

Tm(y) = cos(m cos�1(y)).

and it satisfied the recurrence relation in the interval y 2 [�1, 1]

T0(y) = 1

T1(y) = y

Tm+1(y) = Tm+1(y) = 2yTm(y)� Tm�1(y)

Accordingly, the stability equations are linearised with respect to the per-
turbation quantities and solved via a Galerkin projection method, using Cheby-
shev polynomial decomposition. The method used here is presented by Ap-
pelquist and Imayama [52] to eliminate the need for algebraic transformation
and provides higher accuracy solutions to prior shooting methods. The govern-
ing perturbation equations are solved using a Chebyshev polynomial discreti-
sation method in the wall-normal direction to obtain solutions of the dispersion
relation D(↵,�;Re, [a, b]) = 0 with the aim of studying the occurrence of con-
vective instabilities for various values of the roughness and fluid parameters.
The use of the polynomials ensures a higher accuracy compared to standard
finite differences methods with a similar discretisation. An exponential map is
adopted to map the Gauss-Lobatto grid points used for the Chebyshev poly-
nomials into the physical space: 100 points are therefore distributed between
the disk surface z = 0 and the top of the domain zmax = 20 which is chosen
to match the outer bound of the mean-flow solution.

yi = cos

✓
i⇡

m

◆
.

The stability equations are written and solved in primitive variables at all the
collocation points except the ones at the boundaries

z = �4 log(
y �A

B
)

A = �1�B

B = 2/e�
zmax

4 � 1.

The Chebyshev polynomials and their derivatives in the physical space of the
rotating disk flows are constructed using the chain rule as follows in the trun-
cated series at collocation points Si(z) = Ti(y). Then, the truncated series
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of the perturbation quantities (û; v̂; ŵ; p̂) and their derivatives at collocation
points are later formed as the sum of the contributions of all the transformed
Chebyshev polynomials

û(zj) =
NX
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C
û
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ŵ
i Si(zj) p̂(zj) =

NX

i=0

C
p̂
i Si(zj)

û
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i S
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The perturbation quantities will be solved so that the perturbed flows (e.g.
U + û) satisfy the partial-slip condition and are subject to zero boundary
conditions at the disk surface and in the far-field. This ensures that the per-
turbations to the steady flow are contained within the boundary layer, and
that the effects of surface roughness are not double-counted within the analy-
sis [35, 50]. All perturbation quantities are normally set to be zero at the far
end of the physical domain. Moreover, the Chebyshev expansions of the pertur-
bation quantities along with the boundary conditions will be inserted into the
linearised governing equations. Furthermore, a new method of partial-slip will
be implemented through the thesis, and perturbation quantities will be solved
with the effect of the MW model. Therefore, the Chebyshev expansions of
the perturbation quantities will be substituted into the linearised perturbation
Equations (2.42) that lead to the matrix system

(A2↵
2 +A1↵+A0)⌫ = 0. (2.45)

where A2, A1 and A0 are square matrices and coefficients of ↵2, ↵ and ↵0

respectively, while ⌫ = (û, v̂, ŵ, p̂)T is the matrix of eigenfunctions. The form
of the matrices are stated below as
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A2 =

0

BBBBBBBBBBBBBBBBBBBBBBB@

S0(z0) 0 0 0 · · ·

0 SN (z0) 0 0 · · ·

0 0 SN (z0) 0 · · ·

0 0 0 SN (z0) · · ·

(1/Re)S0(z1) 0 0 0 · · ·

0 (1/Re)S0(z1) 0 0 · · ·

0 0 (1/Re)S0(z1) 0 · · ·

0 0 0 (1/Re)S0(z1) · · ·

...
...

...
... · · ·

SN (zN ) 0 0 0 · · ·

0 SN (zN ) 0 0 · · ·

0 0 SN (zN ) 0 · · ·

0 0 S
0
N (zN ) 0 · · ·

1

CCCCCCCCCCCCCCCCCCCCCCCA

,

A1 =

0

BBBBBBBBBBBBBBBBBBBBBBB@

"SN (z0) 0 0 0 · · ·

0 "SN (z0) 0 0 · · ·

0 0 "SN (z0) 0 · · ·

0 0 0 "SN (z0) · · ·

iUS0(z1) 0 0 0 · · ·

0 iUS0(z1) 0 0 · · ·

0 0 iUS0(z1) 0 · · ·

iUS0(z1) 0 0 0 · · ·

...
...

...
... · · ·

"SN (zN ) 0 0 0 · · ·

0 "SN (zN ) 0 0 · · ·

0 0 "SN (zN ) 0 · · ·

0 0 "S
0
N (zN ) 0 · · ·

1

CCCCCCCCCCCCCCCCCCCCCCCA

,



30 Numerical method for the perturbation equations

A0 =

0

BBBBBBBBBBBBBBBBBBBBBBB@

"SN (z0) 0 0 0 · · ·

0 "SN (z0) 0 0 · · ·

0 0 "SN (z0) 0 · · ·

0 0 0 "SN (z0) · · ·

A51 A52 A53 0 · · ·

A61 A62 A63 A64 · · ·

0 0 A73 A74 · · ·

A81 A82 A83 0 · · ·

...
...

...
... · · ·

"SN (zN ) 0 0 0 · · ·

0 "SN (zN ) 0 0 · · ·

0 0 "SN (zN ) 0 · · ·

0 0 "S
0
N (zN ) 0 · · ·

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

The complex parameter " in the matrices A2 and A1 is set to " = �20i,
where i =

p
�1, this ensures that the boundary conditions are properly im-

posed and
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The system of a quadratic eigenvalue problem in Equation (2.45) can be
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solved in MATLAB with the function polyeig that computes possible eigenval-
ues and eigenvectors of the system for fixed values of Re and various values of
� iteratively. The branch point is selected with the smallest imaginary part
of eigenvalue Im(↵i) for each � such as the imaginary part of ↵ for the next
iteration of � is zero; that is, a neutral point. This process is often used for a
wide range of Reynolds numbers to plot the entire neutral curve of convective
instability for Carreau fluids with no-slip and partial-slip boundary conditions
for different values of power-index.

2.5 Derivation of the energy balance equations

Following various studies in the literature [35, 36, 53], an integral energy equa-
tion for disturbances within the Carreau model is derived to analyse the un-
derlying physical mechanisms behind the effects of surface roughness. In order
to derive the energy equation, one needs to compute the sum of the resulting
expressions leading to the kinetic-energy equation for the disturbances

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R
�

u

R
µ�2u+ µ

0
✓
@u

@z
+
@w

@r

◆
+
@(µ̃U 0

 )

@z

�
+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R

�
v

R


µ�2v + µ

0
✓
@v

@z
+

1

R

@w

@✓

◆
+
@(µ̃V 0

 )

@z

�

�
w

R


µ�2w + 2µ0@w

@z
+ µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R

�
u

R


µ
0
✓
@u

@z
+
@w

@r

◆
+
@(µ̃U 0

 )

@z

�

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

v

R


µ
0
✓
@v

@z
+

1

R

@w

@✓

◆
+
@(µ̃V 0

 )

@z

�

�
µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�
�

w

R


2µ0@w

@z
+ µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�
,

(2.46)

where
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Substituting Equations (2.47), (2.48) and (2.49) into (2.5) gives the following
equation

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R

�
u

R


µ
0
✓
@u

@z
+
@w

@r

◆
+
@(µ̃U 0

 )

@z

�

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

v

R


µ
0
✓
@v

@z
+

1

R

@w

@✓

◆
+
@(µ̃V 0

 )

@z

�

�
µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�
�

w

R


2µ0@w

@z
+ µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�

= �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R
�

u

R


µ
0@w

@r
+
@(µ̃U 0

 )

@z

�

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

v

R


µ
0 1

R

@w

@✓
+
@(µ̃V 0

 )

@z

�

�
µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�
�

µ
0

R

@K

@z
�

w

R


µ
0@w

@z
+ µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�
.

(2.50)



Derivation of the energy balance equations 33

Therefore

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�

�
µ
0

R

@K

@z
�

µ
0

R


@(uw)

@r
+

1

R

@(vw)

@✓
+
@(ww)

@z
+

uw

R

�

�
u

R


@(µ̃U 0

 )

@z

�
�

v

R


@(µ̃V 0

 )

@z

�
�

w

R


µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�
,

where

 =

✓
U

0@u

@z
+ V

0@v

@z

◆
.

Hence

µ̃U
0
 = µ̃(U 0

U
0)
@u

@z
+ µ̃(U 0

V
0)
@v

@z
,

µ̃V
0
 = µ̃(U 0

V
0)
@u

@z
+ µ̃(V 0

V
0)
@v

@z
.

We get

�
u

R


@(µ̃U 0

 )

@z

�
�

v

R


@(µ̃V 0

 )

@z

�
= �

u

R

@

@z

✓
µ̃(U 0

U
0)
@u

@z

◆

�
u

R

@

@z

✓
µ̃(U 0

V
0)
@v

@z

◆
�

v

R

@

@z

✓
µ̃(U 0

V
0)
@u

@z

◆
�

v

R

@

@z

✓
µ̃(V 0

V
0)
@v

@z

◆

= �
(µ̃U 0

V
0)0

R

@(uv)

@z
�

(µ̃U 0
V

0)

R

✓
u
@
2
v

@z2
+ v

@
2
u

@z2

◆
�

(µ̃U 0
U

0)0

2R

@u
2

@z

�
(µ̃V 0

V
0)0

2R

@v
2

@z
�

(µ̃U 0
U

0)

R
u
@
2
u

@z2
�

(µ̃V 0
V

0)

R
v
@
2
v

@z2

= �
(µ̃U 0

U
0)0

2R

@u
2

@z
�

(µ̃V 0
V

0)0

2R

@v
2

@z
�

(µ̃U 0
V

0)0

R

@(uv)

@z

�
(µ̃U 0

U
0)

R

"
@

@z

✓
u
@u

@z

◆
�

✓
@u

@z

◆2
#
�

(µ̃V 0
V

0)

R

"
@

@z

✓
v
@v

@z

◆
�

✓
@v

@z

◆2
#

�
(µ̃U 0

V
0)

R


@

@z

✓
v
@u

@z

◆
+

@

@z

✓
u
@v

@z

◆
� 2

@u

@z

@v

@z

�



34 Derivation of the energy balance equations

Therefore

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�

�
µ
0

R

@K

@z
�

µ
0

R


@(uw)

@r
+

1

R

@(vw)

@✓
+
@(ww)

@z
+

uw

R

�

�
(µ̃U 0

U
0)0

2R

@u
2

@z
�

(µ̃V 0
V

0)0

2R

@v
2

@z
�

(µ̃U 0
V

0)0

R

@(uv)

@z

�
(µ̃U 0

U
0)

R

"
@

@z

✓
u
@u

@z

◆
�

✓
@u

@z

◆2
#
�

(µ̃V 0
V

0)

R

"
@

@z

✓
v
@v

@z

◆
�

✓
@v

@z

◆2
#

�
(µ̃U 0

V
0)

R


@

@z

✓
v
@u

@z

◆
+

@

@z

✓
u
@v

@z

◆
� 2

@u

@z

@v

@z

�

�
w

R


µ̃

✓
U

0 @

@r
+

V
0

R

@

@✓

◆
 

�
.

Then

E = �1K + (uU 0 + vV
0)w +

U(u2 + v
2) +W

0
w

2

R

+
@(up)

@r
+

1

R

@(vp)

@✓
+
@(wp)

@z
+

up

R
�

µ

R


@

@xi
(uj�ij)� �ij

@uj

@xi

�

�
µ
0

R

@K

@z
�

µ
0

R


@(uw)

@r
+

1

R

@(vw)

@✓
+
@(ww)

@z
+

uw

R

�

�
(µ̃U 0

U
0)0

2R

@u
2

@z
�

(µ̃V 0
V

0)0

2R

@v
2

@z
�

(µ̃U 0
V

0)0

R

@(uv)

@z

�
(µ̃U 0

U
0)

R

"
@

@z

✓
u
@u

@z

◆
�

✓
@u

@z

◆2
#
�

(µ̃V 0
V

0)

R

"
@

@z

✓
v
@v

@z

◆
�

✓
@v

@z

◆2
#

�
(µ̃U 0

V
0)

R


@

@z

✓
v
@u

@z

◆
+

@

@z

✓
u
@v

@z

◆
� 2

@u

@z

@v

@z

�

�
µ̃U

0
U

0

R


@

@z

✓
w
@u

@r

◆
�
@w

@z

@u

@r

�
�

µ̃U
0
V

0

R


@

@z

✓
w
@v

@r

◆
�
@w

@z

@v

@r

�

�
µ̃U

0
V

0

R


@

@z

✓
w
1

R

@u

@✓

◆
�
@w

@z

1

R

@u

@✓

�
�

µ̃V
0
V

0

R


@

@z

✓
w
1

R

@v

@✓

◆
�
@w

@z

1

R

@v

@✓

�
.

Removing the t and ✓ derivatives to ensure the steady and rotationally sym-
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metric flow leads to
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Using integration by parts, the perturbations are averaged over a single time
period and azimuthal mode. Later, they are integrated across the entire bound-
ary layer. This leads to
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. (2.51)

Here, an overbar denotes a period-averaged quantity, such that uv = uv
⇤+

u
⇤
v (where ⇤ indicates the complex conjugate), and the subscript W denotes

quantities evaluated at the wall. Terms on the left-hand side of Equation (2.51)
can be identified as: (a) the average disturbance kinetic energy convected by
the radial mean flow, (b) work done by the perturbation pressure, and (c) work
done by the viscous stresses across the boundary layer. On the right-hand
side we have: (I) the Reynolds-stress energy production term, (II) the viscous
dissipation energy term, (III) pressure work terms, (IV) contributions from
work done on the wall by viscous stresses, (V) terms arising from streamline
curvature effects and the three-dimensionality of the mean flow, and (VI) the
non-Newtonian viscosity terms. The energy equation is then normalized by
the integrated mechanical energy flux to give

�2↵̄i = (P1 + P2 + P3)| {z }
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II
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The terms PW2, S1, S2 and S3 in the energy balance Equation (2.52) are
identically zero due to the boundary conditions for the flow. The stability
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effects of both shear-thinning and shear-thickening Carreau fluids will be in-
vestigated by calculating the total energy of the system, which is the sum of
the energy production and dissipation terms. An increased total energy would
show a destabilising effect on the modes, while decreased total energy reveals
a stabilising effect on the mode.



Chapter 3

Effect of
radially-anisotropic
roughness on the Carreau
model

In this chapter, the solution to the equations of the generalized non-Newtonian
fluids using a Carreau model [27] is found for the radially anisotropic roughness-
radial grooves. After finding solutions for the base flow velocity profiles, the
local convective linear stability analysis is conducted. As discussed in [32, 35],
the partial-slip boundary conditions do not affect the perturbation equations.
That is, the governing stability equations are unaffected by surface roughness
within the MW model. This approach is based on the logic of not double-
counting the effects of roughness which has been open to the criticism (private
communication, Garrett 2019). Therefore, this chapter will consider explicitly
the effect of imposing the MW model within the perturbation equations to
determine whether a material change occurs in the results.

The stability analysis of the Carreau fluids is conducted using the spectral
Chebyshev method developed by Alveroglu et al. [32, 38] to compute the
neutral curves for the convective instability. Thus, the system of stability
equations is solved for the perturbation eigenfunctions. Besides, the neutral
stability are plotted for the Type I and Type II instability modes for a range
of ⌘ parameters and variation of power-index parameters. After that, the
growth rates of the Carreau model for these cases are obtained. The effects of
surface roughness on the growth rates of the the Type I mode are discussed.
Furthermore, the energy analysis is solved here to confirm the results of the
prior linear stability analysis, thereby giving some physical insight into the
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responses. Also, a Chebyshev discretization method is used to solve the energy
analysis equations derived in Chapter 2.5.

The steady mean flow solution for Carreau model with the radially anisotropic
roughness (radial grooves) is presented in Section 3.1. The neutral stability
curves is provided in Section 3.2, while the neutral stability curves for the
convective instability by applying the partial-slip boundary conditions in the
steady mean flow and in the disturbances for radially anisotropic roughness is
given in Section 3.3. The effect of radially anisotropic roughness for a range
of power-index is investigated in Section 3.4. Finally, key points will be drawn
in Section 3.5.

3.1 The steady mean flow results

This section aims to identify the solutions of the steady mean for the Carreau
model with the effect of the radially anisotropic roughness that corresponds to
radial grooves on the disk surface. This is achieved by setting the roughness
parameters in the partial-slip boundary conditions as � = 0, ⌘ > 0 which is
obtained from MW model [33]. The steady mean flow Equations (2.20, 2.21)
of the Carreau model are solved using the MATLAB solver (see Subsection
2.3.1) with the partial-slip boundary conditions (2.23, 2.24). The mean flow
profiles are computed for the three velocity components (U, V,W ) for disks
with different magnitudes of radial grooves and various values of power-law
index parameters.

Figure 3.1: Radial grooves.
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(a) (b)

(c)

Figure 3.2: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness for shear-thinning fluid. (a) U -profile, (b) V -profile, (c) W -
profile.

The radial mean flow profiles U are presented in Figures (3.2) and (3.3)
(a) while, the azimuthal mean flow component V is presented in Figures (3.2)
and (3.3) (b). The flow component W , in the axial direction, is presented in
Figures (3.2) and (3.3) (c). The initial values of U 0(0), V 0(0) and W (z1) are
important for the computation of the flow profiles and are shown in Tables
(3.1) and (3.2) for various values of roughness parameters. The initial values
for Newtonian flow are identical to those obtained by Cooper et al. [35]. Hence,
the results are presented as follows: n = 0.9 and n = 1.1. Other values such
as n = 0.6, n = 0.7, n = 1.2 and n = 1.4 can be found in Appendices (A.1)
and (A.2) with their initial values.

Figures (3.2) and (3.3) (a) for the U profiles clearly show, there is a reduc-
tion in the magnitude of the radial wall jet, combined with an increase in radial
grooves for all flows in both shear-thinning and shear-thickening. The physical
sense behind this condition is that the increased roughness size would act to
hold back the base of the wall jet, according to Garrett et al. [36]. On the other
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(a) (b)

(c)

Figure 3.3: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness for shear-thickening fluid. (a) U -profile, (b) V -profile, (c) W -
profile.

hand, the reduction rate of the radial wall jet is substantially modified with
⌘ that increases when n changes from 0.6 to 1.4. Hence, the maximum value
for the radial flow profile U is reduced for increasingly shear-thinning Carreau
fluid. However, it increases with the increasingly shear-thickening Carreau flu-
ids. We also observe that the U profile infection point is moved towards the
disk surface, which is interpreted as narrowing of the fluid boundary layer.
Moreover, the location of the maximum value of U remains nearly unchanged
for both n < 1 and n > 1, but moves slightly towards the disk surface for as
roughness is increased. These changes of the U component are similar to those
observed in the smooth case for increased surface roughness.

Figures (3.2) and (3.3) (b) show that the wall value of the azimuthal velocity
profile V increases when the radial grooves (i.e the non-zero ⌘) are gradually
increase. Therefore, this finding is consistent with the results in the case of
Newtonian flow (see Cooper et al. [35] and [33]). Likewise, the Figures (3.2)
and (3.3) (c) highlight that the magnitude of axial flow W for all flows is
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reduced when the radial grooves increase. In other words, the amount of flow
entrained into the boundary layer reduced for the Non-Newtonian fluids when
the roughness is increases.

Table 3.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning n = 0.9.

Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0 0.6440 0.7968 0.7659
⌘ = 0.25 0.4953 0.6128 0.7134
⌘ = 0.50 0.4073 0.5038 0.6766
⌘ = 0.75 0.3486 0.4305 0.6483
⌘ = 1 0.3049 0.3772 0.6253

Table 3.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening n = 1.1.
Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0 0.4137 0.4892 1.0148
⌘ = 0.25 0.3534 0.4178 0.9531
⌘ = 0.50 0.3099 0.3664 0.9045
⌘ = 0.75 0.2767 0.3272 0.8648
⌘ = 1 0.2505 0.2962 0.8313

3.2 The convective instability for the radial-grooves

In this section, the local convective instabilities are assessed through a linear
stability in the case of the radial grooves that are distributed over the rotating
disk. The convective instability is determined by the computed solutions of
the perturbation Equations (2.42). The local convective instability is analysed
in terms of both the neutral curves in (3.2.1) and the growth rates in (3.2.2).
The perturbation quantities are subject to zero boundary conditions at both
the disk surface and in the far-field. This ensures that the perturbations to the
steady flow are contained within the boundary layer and the effects of surface
roughness are not double-counted within the analysis [35, 50]. That is, the
boundary conditions are as follows:

û(z = 0) = v̂(z = 0) = ŵ(z = 0) = ŵ
0(z = 0) = 0, (3.1a)

û (z ! 1) = v̂ (z ! 1) = ŵ (z ! 1) = p̂ (z ! 1) = 0. (3.1b)
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The conditions at z = 0 represent the no-slip condition at the wall. The
conditions at z ! 1 assume that all disturbances decay at a great distance
from the disk. At this point, it is possible to set the frequency to zero, so that
! = 0. This highlights the importance of the spatial instability of stationary
vortices that rotate with the rough disk in the rotating frame of reference.

3.2.1 Neutral curves

(a) (b)

(c)

Figure 3.4: Neutral curves of the convective instability for the Carreau flow over
radially anisotropic roughness with n = 0.9.

Two spatial branches are found to determine the convective instability char-
acteristics of the system. Neutral curves, defined by neutral spatial growth
↵i = 0, are calculated for a variety of shear-thinning and -thickening fluids
using the Carreau viscosity model over rough surfaces. The Type I mode re-
sults from the (inviscid) inflectional behaviour of mean-flow components and
appears as the upper lobe in neutral curves. The Type II mode arises from the
(viscous) streamline curvature and Coriolis effects and appears as a smaller
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lower lobe. The neutral curves of the Carreau flow are presented for (Re,↵r),
(Re, n̄) and (R,�)-planes, where n̄ and � are defined from Equations (2.44)
and (2.43).

The figures depicted in this section show the neutral stability data for a
range of ⌘ and two values n. Other values of n for this case and their critical
values can be seen in Appendices (A.3) and (A.4). It is seen from the shear-
thinning fluid in Figure (3.4) (a) that increasing the level of roughness increases
the critical Reynolds number, stabilising the type I mode. Conversely, the Type
II mode is initially destabilised as ⌘ is increases. After a threshold value of the
parameter ⌘ = 0.5, the Type II mode onsets earlier than the Type I mode and
becomes the dominant instability mechanism in the system. The result of the
curve in the Newtonian fluids (i.e. ⌘ = 0) is consistent with those found by
Cooper et al. [35] and Alveroglu et al. [32], the results for critical values can
be seen from Table (3.3).

(a) (b)

(c)

Figure 3.5: Neutral curves of the convective instability for the Carreau flow over
radially anisotropic roughness with n = 1.1.



46 The growth rate

Table 3.3: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 0.9.

Parameters Re n̄ �

⌘ = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
⌘ = 0.25 303.65(319.19) 20.21(12.81) 8.81(14.80)
⌘ = 0.50 336.18(279.45) 17.29(9.22) 7.27(12.00)
⌘ = 0.75 365.18(262.23) 15.36(7.40) 6.30(10.27)
⌘ = 1 391.40(253.69) 13.94(6.27) 5.61(9.06)

Table 3.4: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 1.1.

Parameters Re n̄ �

⌘ = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
⌘ = 0.25 325.12(391.33) 16.76(12.97) 9.16(15.96)
⌘ = 0.50 343.98(351.57) 14.92(10.07) 7.93(13.71)
⌘ = 0.75 361.28(327.76) 13.54(8.33) 7.05(12.08)
⌘ = 1 377.23(312.51) 12.48(7.16) 6.38(10.84)

The neutral curves of the shear-thinning flow in terms of the number of
spiral vortices are revealed in Figure (3.4) (b). There is a substantial decrease
in the number of vortices along the upper branch of the neutral curve as well as
a slight decrease along the lower branch. Furthermore, Figure (3.4) (c) shows
a significant decrease in the vortex angle � along both the upper and lower
branches of the neutral curves with increased ⌘. This is in addition with the
strong stabilising effect on the Type I mode.

For the shear-thickening fluid in Figure (3.5) (a), it is clear that the neutral
curves reveal the strong stabilising effect of increased roughness parameters on
both modes in terms of critical Reynolds number. The effect of increasing
the radial grooves diminishes the Type I lobe in terms of the width whereas
it expands the Type II mode. Conversely, there is a decrease in the number
of vortices and the vortex angle along the upper branch and a slight decrease
along the lower branches for increased roughness as illustrated in Figures (3.5)
(b) and (c). The critical values of both modes in the smooth case are in very
close agreement with the existing results in the literature, as evidence in Table
(3.4).

3.2.2 The growth rate

The growth rates of the Type I instability mode are presented for shear-
thinning and -thickening Carreau fluids for the radially-anisotropic case at
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Re = Rec + 25. Here Rec is the critical Reynolds number presented in Tables
(3.3) and (3.4) for the onset of the Type I mode of instability. That is, they
are presented at a fixed distance into the neutral curve. More importantly, the
growth rate of the instability mode is measured as the absolute value of the
negative imaginary part of the radial wavenumber, |↵i|, at particular values of
the vortex number n̄ for each level of roughness.

(a) (b)

Figure 3.6: Growth rates of type I and type II instability modes at Re = Rec + 25
for the case of radial grooves within (a) shear-thinning and (b) shear-thickening,
respectively.

Moreover, Figures (3.6) (a) and (b) show the stabilising effect of radial
grooves for Carreau fluids of each flow is detected in the Type I mode in
the shear-thinning and shear-thickening regimes. That is, the value of the
most rapidly growing the Type I mode decreases with an increase in roughness
parameter ⌘. These results also show the destabilisation of the Type II mode
of each flow with an increase in the roughness size. Therefore, the value of the
most rapidly growing the Type II mode is indicated by increases proportionally
to the surface roughness. Overall, the maximum growth rate shifts to lower
values of n̄ for both modes. This signals the reduction in the number of vortices
as a result of the increase in the surface roughness level. Moreover, to ensure
the levels of roughness are sufficiently high, the Type II growth rate exceeds
the Type I growth rate. The critical parameters obtained for each flow are thus
presented in Tables (3.3) and (3.4). Similarly, the discussion of the growth rates
for the Newtonian flow is provided by Cooper et al., where the flow results are
included as a validation.
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3.3 The novel approach for the perturbations

This section is a novel approach which extends the slip-velocity model for
roughness from the base flow to be included in the perturbations terms. So,
the no-slip conditions are replaced by the partial-slip conditions for the steady-
mean flow and it is applied to the boundary conditions of the perturbation
quantities. Therefore, Equations (2.42) will be computed within the roughness
boundary conditions as defined below:

û(z = 0) = � û
0[1 + k

2(û02 + û
02)(n�1)/2] (3.2a)

v̂(z = 0) = ⌘ v̂
0[1 + k

2(û02 + û
02)(n�1)/2] (3.2b)

ŵ(z = 0) = 0, ŵ0(z = 0) = �2û (3.2c)

and
û (z ! 1) = v̂ (z ! 1) = ŵ (z ! 1) = p̂ (z ! 1) = 0 (3.3)

These conditions are identical to the ones used in the previous analysis
of the mean flow section under the MW model. The implementation of the
boundary conditions a significant advantage of using these variables.

3.3.1 Neutral curves

As mentioned in the previous section, the two instability modes contribute to
the neutral curves for the Carreau model. The upper lobe is the Type I mode
of instability that is attributed to an inflectional crossflow velocity component,
and the second branch Type II mode of instability that is corresponded to
streamline curvature and other viscous effects. As defined by neutral spatial
growth ↵i = 0, neutral curves have been calculated for a variety of shear-
thinning and -thickening fluids for various values of ⌘ = 0.1, 0.2, 0.3, 0.4. The
neutral curves of the Carreau flow are presented here for (Re,↵r), (Re, n̄) and
(R,�)-planes.

Figures (3.7) and (3.8) show the neutral curves arise from the analysis of
both models for the Carreau flow over radially anisotropic roughness. This oc-
curs in both the shear-thinning and shear-thickening regimes. Although they
result in different values from the previous ones (See Subsection 3.2.1), both
collections of neutral curves reveal the same qualitative behaviour. Here, the
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(a) (b)

(c)

Figure 3.7: Neutral curves of the convective instability for the Carreau flow over
radially anisotropic roughness with n = 0.9.

Type I lobe is diminished in terms of critical Re when the values of rough-
ness increase. As for the Type II mode, it dominates in terms of critical Re

with increased the values of roughness, and the type II mode dominate the
stability characteristics. At this point, it is possible to consider the effect of
shear-thinning and shear-thickening fluids as stabilising despite its destabil-
ising effects on Type II mode. Of importance is that the critical Reynolds
numbers Rec are greatly altered from those in the previous Subsection 3.2.1
(see Tables (3.5) and (3.6)).

In light of the figures, the wavenumbers neutral curves clearly shift down-
wards due to increasing the values of roughness. As for their effects on shear-
thinning and shear-thickening fluids in terms of the critical Reynolds number,
radial grooves have a strong stabilising effect on the Type I mode, while they
have destabilising effect Type II in terms of width of the instability region.
Furthermore, the numbers of vortices and the wave angle demonstrate a re-
markable decrease occurs along the upper and lower branches of the neutral
curves when ⌘ is increases, as Figures (3.7) show.
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(a) (b)

(c)

Figure 3.8: Neutral curves of the convective instability for the Carreau flow over
radially anisotropic roughness with n = 1.1.

Table 3.5: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 0.9.

Parameters Re n̄ �

⌘ = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
⌘ = 0.1 278.66(349.40) 22.93(16.89) 10.30(17.05)
⌘ = 0.2 287.96(304.25) 20.74(13.37) 9.25(14.89)
⌘ = 0.3 295.47(279.56) 18.77(11.28) 8.46(13.31)
⌘ = 0.4 301.58(264.75) 17.21(9.86) 7.82(12.08)

Table 3.6: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 1.1.

Parameters Re n̄ �

⌘ = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
⌘ = 0.1 312.02(414.61) 18.27(15.60) 10.20(17.47)
⌘ = 0.2 318.73(382.32) 17.12(13.41) 9.52(16.10)
⌘ = 0.3 324.88(359.60) 16.23(11.66) 8.92(15.15)
⌘ = 0.4 330.49(341.27) 15.33(10.65) 8.43(13.957)



The growth rate 51

3.3.2 The growth rate

The same method used in Section (3.2.2) can be re-applied in this context.
This is to study the effect of the radially anisotropic roughness on the growth
rates of the instability modes of the Carreau model boundary layer flow with
partial-slip conditions. Calculations have been carried out for type I mode at
Re = Rec + 25. The growth rates of the secondary Type II mode are not
involved here due to their very small value compared to the dominant Type I
mode. Figures (3.9) (a) and (b) show the growth rates of the Type I instability

(a) (b)

Figure 3.9: Growth rates of Type I and Type II instability modes as a function of
vortex number n̄ at Re = Rec +25 for the radial grooves with (a) shear-thinning and
(b) shear-thickening, respectively.

modes within the Carreau model, where Re = Rec + 25 is a function of the
vortex number n̄ for each level of roughness. The values of the critical Reynolds
number Rec for both n = 0.9 and n = 1.1 are shown in Tables (3.5) and (3.6)
for the onset of the convective instability of the Type I mode. The maximum
growth rate thus shifts to lower values of n̄ for this mode, thereby indicating
a decrease in the number of vortices along upper and lower branches. This
occurs when the level of surface roughness increases.
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3.4 Energy analysis results

The energy balance calculation is carried out at the location of maximum am-
plification of the Type I mode at Re = Rec + 25. Here Rec is the critical
Reynolds number for the onset of the Type I mode of instability for the par-
ticular rough surface being considered. The results for various levels of radial
grooves roughness are compared to the Newtonian case in Figure ( 3.10).

(a) n = 0.9. (b) n = 1.1.

Figure 3.10: Energy balance of Type I instability at Re = Rec + 25 for n = 0.9 and
n = 1.1, respectively.

The purpose of the energy analysis is to establish the underlying physical
mechanisms behind the effects of roughness disks of the Carreau boundary
layer flows for both shear-thinning and shear-thickening regimes. Therefore, it
is important to consider the energy balance Equation (2.51) of any eigenmode
of the perturbation Equations (2.42). It is worthy to note that the positive
terms in that equation contribute to the energy production, unlike the negative
ones that remove energy from the system. The eigenmode of a disturbance is
amplified (↵i < 0) when energy is produced by the disturbance outweighs en-
ergy dissipated in the system. It is possible to interpret the effect of increasing
the size of the surface roughness on the instability modes of both regimes for
the Carreau fluids in light of this formulation. This is done by calculating the
total energy of the system which is the sum of the energy production and dis-
sipation terms. Increasing the total energy for higher values of the roughness
parameters shows a destabilising effect on the modes. In contrast, a reduced
total energy indicates a stabilisation effect.

Figures ( 3.10) (a) and (b) show the energy balance calculations of the case
of radial grooves for the Type I mode for both shear-thinning and -thickening
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(a) n = 0.9. (b) n = 0.9.

(c) n = 1.1. (d) n = 1.1.

Figure 3.11: Type I mode for the azimuthal and the axial disturbance velocity profiles
of Carreau model in the case of a radial grooves rotating disk at Re = Rec + 25 for
shear-thinning and -thickening fluids, respectively.

fluids, respectively. The destabilisation effect, i.e., reduction in the energy of
the system that occurs when ⌘ increases, can be seen from the Figures. This
effect mainly results from the reduction in the energy production term P2 as
well as in the energy dissipation term D for each flow. However, decreasing
of the G1 and G3 terms and a substantial increasing of the viscous dissipation
for increased radial grooves lead to a destabilisation effect of the Type I mode
in this flow. It is also worthwhile to note that the reduction in all terms
decreases when n = 0.9 and n = 1.1. Additional, non-Newtonian viscosity
effects, indicated by Ni, do not play a role in the instability in general. This
means that non-Newtonian viscosity acts to change the steady flow although
no stability response to this inviscid is reported.

The azimuthal velocity perturbation v̂ and the axial velocity perturbation,
ŵ, are demonstrated to provide some explanations about the energy trends of
the Carreau flow for the Type I mode (Figures (3.11) provides more details).
Besides, the structure of v̂ disturbance profiles remains unchanged when the
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profiles move away from the wall as ⌘ increases. The significant decay of the P2

term in n < 1 is attributed to a reduction in the amplitude of the axial velocity
perturbation, ŵ. Therefore, for both n < 1 and n > 1 flows, the decrease in
that term results from the strong reduction in the maximum amplitude of the
axial profile ŵ when the roughness increases.

3.5 Conclusion

In this chapter, the mean flow equations are solved for a range of roughness
surfaces. This is achieved by using the approach of Miklavčič & Wang [33]
parameters with modification and a variety of fixed power-index values for the
Carreau model. In light of the numerical results, anisotropic roughness helps
to decrease the magnitude of the radial wall jet when ⌘ increases for all n.

Then we considered both the Type I and II modes for the onset of linear
convective instability within the boundary-layer flows for both shear-thinning
and shear-thickening Carreau fluids. Furthermore, radially anisotropic rough-
ness on the convective instability of stationary disturbances is believed to have
a strong stabilising effect on the Type I instability mode in terms of the critical
Reynolds number for the onset of the convective instability for both n = 0.9
and n = 1.1. However, the Type II mode has a slight destabilising effect as
this type of roughness level is increased and it becomes more dominate for
sufficiently high levels. Moreover, Tables (3.3)-(3.6) show that the numbers
of vortices, n̄, and the vortex angle, �, are decreased at all values of power-
low index as radially anisotropic roughness is increased. Moreover, imposing
the MW model for the mean flow or for the mean flow within the perturba-
tions equations results in a quite similar behaviour. Nevertheless, the latter
seems different quantitatively in terms of critical values with the increased of
the roughness. Also, the results of the novel method lead to more stabilizing
effects and less destabilizing effects on type I and the type II, respectively.
Physically, the radial grooves correspond to slip in the azimuthal direction
which means it is not aligned in the radial direction. As a result, there is some
competing effect especially for the type II mode, where it seems that some
developing instabilities are convected azimuthally and they keep growing for a
given radial location. Overall, our findings are consistent with those presented
by Al-Malki [54] for Newtonian boundary-layer flows.

To support the results of the analysis of the convective neutral curves, the
effect of the growth rates of the Type I instability for a range of roughness
and power-index parameters has been examined. An energy balance equation
is conducted and derived from the stability equations to establish the underly-
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ing physical mechanisms behind the effects of rough surfaces on two values of
power-index n. The total energy of the system influenced by the sum of energy
production and dissipation. This makes it possible to identify the effects of
surface roughness on the stabilisation of shear-thinning and shear-thickening
fluids. Contributions to the energy change of the system have been identi-
fied as the term P2 and the term D, production by the Reynolds stresses and
conventional viscous dissipation. An increased energy change in a rough case,
compared with the smooth case. (i.e., when � = ⌘ = 0), indicates destabilisa-
tion of the modes, whereas a reduced energy change indicates a stabilisation.
The energy balance of terms for the system of flows is calculated for the Type
I mode at the location of maximum amplification at Re = Rec + 25 for this
surface roughness type. The behaviour of the energy balance terms is qual-
itatively consistent with the neutral curve behaviours as Section 3.2 argues.
Overall, the energy analysis has revealed that radially anisotropic roughness
(radial grooves) helps to reduce the energy production of the Type I mode for
both fluids. This is a stabilisation effect on the Type I mode and destabilising
Type II.



Chapter 4

Effect of
azimuthally-anisotropic
roughness on the Carreau
model

In this chapter, the boundary-layer equations for the generalized non-Newtonian
using a Carreau model [27] fluid have been solved to obtain the steady mean
flow profiles and highlight the effects of azimuthally anisotropic roughness-
concentric grooves). The chapter also examines the effects of this roughness
on the convective instability mechanisms within fixed values of shear-thinning
and shear-thickening flows. This chapter investigates the effects of including
partial-slip boundary conditions into the perturbations equations. The con-
vective instability of Carreau fluids with the effects of azimuthally anisotropic
roughness will be determined by using the spectral Chebyshev method used by
Alveroglu et al. [32, 38]. Therefore, the system of stability equations will be
solved for the perturbation eigenfunctions and the curves of neutral stability
are plotted of both the Type I and Type II modes for a range of � parameters
and fixed values of power-index parameters. After that, the growth rates of the
Carreau model for this case are investigated. The effects of surface roughness
on the growth rates of each instability mode are discussed. In addition, the
energy analysis of the effects of azimuthally anisotropic roughness is solved to
confirm the results of the prior linear stability analysis.

The steady mean flow solution is given in Section 4.1. The neutral stabil-
ity curves that apply the partial slip in the mean flow only are presented in
Section 4.2. Also, the neutral stability curves and the growth rate by applying
the partial-slip within the mean flow and the disturbances are computed in
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Section 4.3. The energy analysis within the effect of azimuthally anisotropic
for fixed values of power-index parameters is presented in Section 4.4. Finally,
a conclusions will be drawn in Section 4.5.

4.1 The steady mean flow results

In this section, we solve the steady mean flow and study the effects of the
azimuthally anisotropic roughness on the mean flow components of the Car-
reau model. The azimuthally anisotropic surface roughness corresponds to
concentric grooves on the disk surface and is achieved by setting the rough-
ness parameters in the partial-slip boundary conditions to � > 0, ⌘ = 0 within
the MW model. The steady mean flow Equations (2.20, 2.21) of the Carreau
model are solved using the MATLAB solver (see Subsection 2.3.1) with the
partial-slip boundary conditions (2.23, 2.24). The mean flow profiles are com-
puted the three velocity profiles (U, V,W ) for disks with different sizes of radial
grooves and various values of power-law index parameters. Figures (4.2) and
(4.3) show the effect of the azimuthally anisotropic surface roughness on the
mean flow components U in the radial direction, V in the azimuthal direction,
and W in the axial direction on shear-thinning and shear-thickening fluids.

Figure 4.1: Concentric grooves.
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(a) (b)

(c)

Figure 4.2: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness for shear-thinning fluid. (a) U -profile, (b) V -profile, (c) W -
profile.

Table 4.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning n = 0.9.

Parameters U 0(0) �V 0(0) �W (z1)

� = 0 0.6440 0.7968 0.7659
� = 0.25 0.4786 0.9629 0.8190
� = 0.50 0.3766 1.0547 0.8529
� = 0.75 0.3090 1.1116 0.8753
� = 1 0.2615 1.1500 0.8910

Table 4.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening n = 1.1.
Parameters U 0(0) �V 0(0) �W (z1)

� = 0 0.4137 0.4892 1.0148
� = 0.25 0.3401 0.5635 1.0769
� = 0.50 0.2867 0.6122 1.1236
� = 0.75 0.2469 0.6460 1.1585
� = 1 0.2165 0.6706 1.1860
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(a) (b)

(c)

Figure 4.3: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness for shear-thickening fluid. (a) U -profile, (b) V -profile, (c) W -
profile.

The radial mean flow components U are presented in Figures (4.2) and
(4.3) (a), and the azimuthal mean flow porfile V is presented in Figures (4.2)
and (4.3) (b). The flow component W in the axial direction is presented in
Figures (4.2) and (4.3) (c). The initial values of U 0(0), V 0(0) and W (z1) are
given for various values of roughness parameters in Tables (4.1) and (4.2). Our
findings are consistent with Cooper et al [35] in terms of the Newtonian flow.
The results here are presented for n = 0.9 and n = 1.1. For further figures and
data, the parameters n = 0.6, n = 0.7, n = 1.2 and n = 1.4 can be found in
Appendices (B.1) and (B.2) with their initial values.

It can be seen from Figures (4.2) and (4.3) (a) that with increasing �,
the location of the maximum value of U moves towards the disk surface with
increased roughness for all n > 1 and n < 1. Increasing this parameter also
increases the radial wall jet, thereby reducing the wall shear stress and causing
a less impactful viscous interaction between the disk and the fluid. Hence,
the ability of the disk to accelerate the fluid is diminished, and this results
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in a reduced peak in the U profile. Furthermore, there is an increase in the
radial jet and a slight thinning of the boundary layer, as is evident in Figures
(4.2) and (4.3) (a). As the figures show us, the concentric grooves increase
the fluid into the boundary layer. This has little effect on the mean azimuthal
velocity as seen in Figures (4.2) and (4.3) (b). Also, figures (4.2) and (4.3)(c)
show that azimuthally anisotropic roughness on the disk surface increases the
magnitude of the axial flow for increased � for all flows, as reported in Tables
(4.1 and 4.2). Therefore, the fluid amount entrained into boundary-layer is
increased when roughness increases.

4.2 The convective instability for the concentric-
grooves

This section concerns the occurrence of convective instabilities in the case of the
concentric grooves distributed in a radial direction over the rotating disk. The
convective instability is solved by the computed solutions of the perturbation
Equations (2.42) using the spectral Chebyshev method stated in (2.4.1). The
local convective instability is analysed in terms of neutral curves in (4.2.1)
and the growth rates in (4.2.2). The perturbation quantities are subject to
zero boundary conditions (3.3) at both the disk surface and in the far-field.
This ensures that the perturbations to the steady flow are contained within
the boundary layer and the effects of surface roughness are not double-counted
within the analysis [35, 50].

4.2.1 Neutral curves

This section presents the neutral stability curves for a range of concentric
grooves and fixed power-index parameters. They have been calculated for
values of the surface grooves distributed in a radial direction ranging for fixed
values of n = 0.6 to n = 1.4 in increments of 0.1. The results of n = 0.9 and
1.1 are presented here, the other values can be found in Appendices (B.3) and
(B.4) with their critical values. As discussed in Chapter 3, the points on the
curves are solutions to the system where ↵i = 0. The region outside of the
curve indicates that the disturbed flow will decay to be in steady situation
(i. e ↵i > 0), whereas the region inside or the close to the neutral curves
shows unstable flow parameters when a disturbance grows exponentially (i.
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e ↵i < 0). The stability of the flow will be interpreted through the critical
Reynolds number Rec that is defined as the minimum Reynolds number for
which instability occurs. One lobe maps out the neutral curve as there is
only one minima of the modified branch 1. This lobe is identified as the
Type I instability mode. This spatial branch behaviour is typical and are
different to the two lobed branches. The neutral curves of the Carreau flow
with the concentric grooves are plotted for (Re,↵r), (Re, n̄) and (R,�)-planes.
Neutral curves for azimuthally anisotropic roughness case are produced for

(a) (b)

(c)

Figure 4.4: Neutral curves of the convective instability for the Carreau flow over
azimuthally anisotropic roughness with n = 0.9.

shear-thinning and -thickening ( see Figures (4.4) and (4.5)). As Figures (4.4)
(a) show that increasing the number � stabilises both the Type I and Type II
modes in terms of the critical Reynolds number and the width of the unstable
region. Moreover, the lower lobe of the neutral curve vanishes immediately
in the presence of even modest levels of roughness. Therefore, this will lead
to the Type I mode becoming the dominant form of instability mechanism
for the Carreau model in n < 1. Similarly, Figures (4.4) (b) and (c) present
that the number of the stationary vortices n̄ and the wave angle � for this
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case. This indicates that increase roughness has a significant stabilising effect
along on the upper and lower branches. Clearly, the results are consistent with
those of Alveroglu et al. [32], Cooperet al. [35] in the case of Newtonian fluids
(as reported in Tables (4.3) and (4.4)). The neutral curves in Figure (4.5)

(a) (b)

(c)

Figure 4.5: Neutral curves of the convective instability for the Carreau flow over
azimuthally anisotropic roughness with n = 1.1.

(a) reveal that concentric grooves keep their strong stabilising effect in terms
of the critical Reynolds number and the width. It is noticed here that the
effect is less effective compared to the effect of this grooves on shear-thinning
in terms of critical the Reynolds number. Similarly, Figures (4.5) (b) and (c)
show the number of stationary vortices n̄ and the wave angle � for this case.
This indicates that increasing roughness has a significant stabilizing effect on
the upper and lower branches. Our results are again consistent with those of
Alveroglu et al. [32], Cooperet al. [35] in the case of Newtonian fluid.
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Table 4.3: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 0.9.

Parameters Re n̄ �

� = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
� = 0.25 398.21(�) 51.18(�) 17.29(�)
� = 0.50 624.80(�) 93.68(�) 22.90(�)
� = 0.75 947.45(�) 156.25(�) 28.23(�)
� = 1 1361.66(�) 237.80(�) 32.79(�)

Table 4.4: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 1.1.

Parameters Re n̄ �

� = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
� = 0.25 377.04(�) 29.23(�) 14.05(�)
� = 0.50 481.01(�) 42.25(�) 17.13(�)
� = 0.75 611.90(�) 58.70(�) 20.11(�)
� = 1 768.01(�) 78.53(�) 22.91(�)

4.2.2 The growth rate

The growth rates of the Type I instability mode are presented for shear-
thinning and -thickening Carreau fluids for the azimuthally-anisotropic at
Re = Recritical + 25; that is, at a fixed distance into the neutral curve. Note
that the growth rate of the instability mode is measured as the absolute value
of the negative imaginary part of the radial wavenumber, |↵i|, at particular
values of the vortex number n̄ for each level of roughness. Since the Type II
mode vanishes at even modest levels of all surface roughness under our model
and it is not considered here.

Figures (4.6) (a) and (b) obviously show the stabilising effect of the concen-
tric grooves on the Type I mode for Carreau fluids of each flow. Of particular
interest is the most rapidly growing mode because they are likely to dominate
and occur in the experiments. The figures reveal that the maximum growth
rate shifts to higher values of n̄, suggesting an increase in the number of vor-
tices with the roughness level. These results highlight the behaviour of shifting
maximum growth rates with number of spiral vortices n̄ for shear-thinning and
-thickening Carreau fluids in this case. In contrast to that substantial increase,
the value of the maximum growth rate decreases for increased roughness, that
is a stabilising effect of the roughness. The critical parameters obtained for
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(a) (b)

Figure 4.6: Growth rates of Type I instability at Re = Rec + 25 over azimuthally
anisotropic roughness with the shear-thinning and shear-thickening.

each flow emphasise these results, as Tables (4.3) and (4.4) illustrate.

4.3 The novel approach for the perturbations

Using the same methodology and Equations that used in Section 3.3 to explore
the occurrence of convective instabilities in the case of the concentric grooves
distributed over the rotating disk within the partial-slip conditions defined in
Equations (3.2) and (3.3).

4.3.1 Neutral curves

Two spatial branches are found to determine the convective instability char-
acteristics of the system. The neutral curves, defined by ↵i = 0, have been
calculated for � = 0.1, 0.2, 0.3, 0.4 in increments of 0.1 at two fixed values of
power- index. This range is considered sufficient to capture the convective
instability characteristics of the concentric grooves within the Carreau model
that is fixed at power-index parameters. The neutral curves of the Carreau
flow are presented for (Re,↵r), (Re, n̄) and (R,�)-planes where n̄ and � are
defined in the Equations (2.44) and (2.43). Critical Reynolds numbers for the
onset of dominant type I modes are given in Tables (4.5) and (4.6).

Figure (4.7) (a) reveals the neutral curves of the related flow azimuthally
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anisotropic for n < 1. It shows that decreasing the � parameters (� > 0) has a
stabilising effect on the the Type I mode in terms of the critical Reynolds num-
ber. In addition, the lower branch of the neutral curve vanishes immediately
in the presence of even modest levels of roughness. The other two parameters
also show the effects of surface roughness are the number of the stationary
vortices n̄ and the vortex angle �. Figures (4.7) (b) and (c) show that the
number of vortices and the vortex angle substantially increase along the upper
and lower branches in contrast with the strong stabilising effect for increased
roughness.

Also, the neutral curves neutral curves of this flow for n > 1 are presented
in Figure (4.8) (a), (b) and (c). These figures clearly show that concentric
grooves keep their strong stabilising effect on this flow in terms of the critical
Reynolds number and the width of unstable region. However, the effect of this
case on the shear-thinning in terms of critical the Reynolds number is stronger
when it is compared to this case.

(a) (b)

(c)

Figure 4.7: Neutral curves of the convective instability for the Carreau flow over
azimuthally-anisotropic roughness with n = 0.9.
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(a) (b)

(c)

Figure 4.8: Neutral curves of the convective instability for the Carreau flow over
azimuthally-anisotropic roughness with n = 1.1.

Table 4.5: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes type I and (type II) for n = 0.9.

Parameters Re n̄ �

� = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
� = 0.1 345.46(�) 35.46(�) 14.04(�)
� = 0.2 487.90(�) 49.10(�) 16.52(�)
� = 0.3 756.34(�) 69.92(�) 19.18(�)
� = 0.4 1314.33(�) 114.41(�) 23.48(�)

Table 4.6: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes type I and (type II) for n = 1.1.

Parameters Re n̄ �

� = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
� = 0.1 343.53(�) 23.42(�) 12.29(�)
� = 0.2 397.20(�) 28.23(�) 13.55(�)
� = 0.3 468.25(�) 33.90(�) 14.85(�)
� = 0.4 562.56(�) 40.73(�) 16.27(�)
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Furthermore, the two lobed structure of the neutral curves in the case of a
smooth surface, � = 0, again disappears for even modest levels of roughness.
The increase in the number of vortices and the vortex angle have a similar
style as n < 1, as is indicated in Figures (4.7) (b)-(c). Overall, these values
gradually increase for increased surface roughness levels. Moreover, roughness
acts to stabilise the Type I mode of instability, with particular sensitivity to
azimuthally anisotropic case. However, the Type II mode is suppressed in the
case of azimuthally anisotropic roughness and the lower lobe is vanishes for
even modest levels of roughness.

4.3.2 The growth rate

Following the same method used in (4.2.2) to consider the effect of concentric
grooves on the growth rates of the instability modes of the Carreau model
within the partial-slip conditions for the Type I. The growth rates of the sec-
ondary the Type II mode are not involved here due to their very small value
compared to the dominant the Type I mode.

(a) (b)

Figure 4.9: Growth rates of Type I instability at Re = Rec + 25 over azimuthally
anisotropic roughness with the shear-thinning and shear-thickening.

Figures (4.9) (a) and (b) indicate growth rates of the Type I instability
mode at a fixed distance into the neutral curve, as a function of the vortex
number n̄ for each level of roughness at Re = Rec + 25. The results clearly
show the stabilising effect of azimuthally anisotropic roughness on the Type I
mode of each n. Furthermore, the figures reveal that the maximum growth rate
shifts to lower values of n̄, indicating an increase in the number of vortices as
an effect of increased surface roughness parameters. Obviously, the maximum
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growth rate for all values of this case increases when the power-index increases,
too. In general, all the results of growth rates are consistent with the critical
Reynolds numbers for each flow presented previously.

4.4 Energy analysis results

The results of solving the energy balance Equation (2.51) are provided here for
the case of azimuthally anisotropic surface roughness. The goal is to establish
the underlying physical mechanisms behind the effects of radially grooved disks
on the Carreau model flows boundary layer flows for both shear-thinning and
-thickening fluids. The maximum growth rates obtained in Section (4.2.2)
are used here to obtain the energy balance for flows. The energy balance
calculation is applied at the location of maximum amplification of the Type
I mode at Re = Rec + 25. Here Rec is the critical Reynolds number for the
onset of the Type I mode of instability for the particular rough surface being
considered. Results for the value of roughness � = 0 are compared to the
Newtonian case in Figure (4.10).

(a) n = 0.9. (b) n = 1.1..

Figure 4.10: Energy balance of Type I instability at Re = Rec + 25 for n = 0.9 and
for n = 1.1, respectively.

Note that the positive terms in that equation contribute to the energy
production whereas the negative terms remove energy from the system. The
eigenmode of a disturbance is amplified (↵i < 0) when the energy produced by
the disturbance outweighs energy dissipated in the system. The effect of surface
roughness on the instability modes of both shear-thinning and shear-thickening
Carreau fluids can be interpreted from this formulation by calculating the total
energy of the system which is the sum of the energy production and dissipation
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terms. Increasing the total energy for higher values of the roughness param-
eters shows a stabilising effect on the modes. the Type II mode disappears
at even modest sizes of concentric grooves in each flow. Therefore, the energy
balance for the Type I mode only is provided here.

(a) n = 0.9. (b) n = 0.9.

(c) n = 1.1. (d) n = 1.1.

Figure 4.11: Type I mode for the azimuthal and the axial disturbance velocity profiles
of Carreau model in the case of a concentric groove rotating disk at Re = Rec + 25
for n = 0.9 and n = 1.1, respectively.

Figures (4.10) (a) and (b) show the energy balance calculations for a
range of concentric grooves of Type I mode for both shear-thinning and shear-
thickening fluids, respectively. Here, the results are normalized by the me-
chanical energy flux of the most energetic mode within each figure and so
comparisons can be made at different values of �. Two different figures can
not however be directly compared. Clearly, there is a stabilisation effect on
the Type I mode for the flows of n = 0.9 and n = 1.1. This effect results
from reducing the energy production in term P2 as well as from dissipating it
in term D. However, it is worth noting that P2 has a primary effect on the
total energy that indicates the stability behaviour of the flow while the term
of dissipation energy D has a slight effect on the total energy in the case. In
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addition, the energy removing effects of the terms arise from the streamline
curvature effects and the three dimensionality of the mean flow turns into an
energy production for positive values. So, these terms contribute to energy
production in the system. Moreover, as we discussed in the previous case,
there is a negligible effect on the energy balance for non-Newtonian terms Ni.
The modified viscosity is therefore again seen to act to establish new steady
flows which are unstable through inviscid effects. This is as expected for the
inviscid Type I mode.

In Figure (4.11) there are two disturbance profiles for this case for the Type
I instability mode. It is obvious from these figures that when we increase the
roughness parameter, the disturbance profiles are not changed with the profiles
and it is close to the wall especially for |v̂| in n < 1. For n > 1, there is strong
decrease of the P2, due to a decrease in the amplitude of the axial velocity
perturbation, |ŵ| and the amplitude of both disturbance profiles reduces when
�. increases.

4.5 Conclusion

In this chapter, the mean flow is solved for the mean flow equations for a
range of concentric grooves parameters using the approach of Miklavčič &
Wang parameters with modification and a variety of power-index values for
the Carreau model with some modification because the viscosity independent
from the shear rate. It is noticed from our numerical results that anisotropic
roughness with these grooves on the mean flow results are to decrease the
magnitude of the radial wall jet as � is increased. This the opposite of the
radially-anisotropic roughness as increase the magnitudes of the axial direction
and also increase the magnitudes of the radial and wall jets of � increased.

We obtain that on the Type I mode the onset of linear convective instability
of boundary-layer flows for both shear-thinning and shear-thickening Carreau
fluids. Here the effects of azimuthally anistropic of roughness on the Carreau
model for two kinds of boundary conditions within the perturbation equations
are investaigted. The first one is the smooth boundary condition and the sec-
ond one is the partial-slip approach of Miklavcic & Wang [1] with modification.
The effects of this type of roughness on the convective instability of stationary
disturbances demonstrate that it has a strong stabilising effect on the Type I
instability mode in terms of the critical Reynolds number for the onset of the
convective instability for both n = 0.9 and n = 1.1. Moreover, the number of
vortices, n̄, and the vortex angle, �, are decreased at all values of power low
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index as � increases, as is shown in Tables (4.3)-(4.6).

The effects of roughness are examined in the case of azimuthally anisotropic
on the convective instability of stationary disturbances on the Carreau fluid
for shear-thinning fluid when n < 1 or shear-thickening fluid n > 1. The
neutral curves have revealed that both have a strong stabilising effect on both
the Type I and Type II modes. In terms of the number of the vortices n̄

and the vortex angle �, the increased surface roughness acts to increase both
of them despite being noticeable on the upper-branch modes. In general, it
is found that the effects that arise when imposing the partial-slip within the
disturbances equations are somewhat more pronounced than when using the
MW approach for the steady mean flow only.

The results of the analysis of the convective neutral curves are confirmed
by studying the effect of the growth rates of the Type I instability for a range
of roughness and power-index parameters. An energy balance equation is con-
ducted and derived from the stability equations in Chapter 2.5 for two values
of power-index n. All physical processes (both energy production and dissi-
pation) are weakened by the introduction of shear-thinning shear-thickening
fluids to identify the effects of surface roughness. Moreover, non-Newtonian
viscosity is believed to play a negligible role in the dominant instability mecha-
nisms. The results instead suggest that their benefit comes from modifying the
steady flow profiles which, in turn, are more stable to inviscid Type I effects.
The behaviours of the energy balance terms are qualitatively consistent with
the neutral curve behaviours. Overall, it is found that a disk with concentric
grooves has a stronger stabilizing effect effect than the radial grooves in previ-
ous chapter. The reason as mentioned by Al-Malki [54] that there is a slip in the
radial direction and the developing of the vorticity within the boundary layer
that leads to the instability forming is effectively swept or slips downstream in
the radial direction. Thus, concentric grooves act to increase this radial flow
effect and delaying transition in the boundary layer. substantially, concentric
grooves merge in somehow and prevent developing instabilities downstream so
this lead to stabilize the flow.



Chapter 5

Effect of isotropic
roughness on the Carreau
model

In this chapter, the solution of the boundary-layer equations for the general-
ized non-Newtonian fluids determines the steady mean profiles for a Carreau
model [27] with isotropic roughness surface. It also examines the effect of
the roughness on the convective linear stability analysis. As discussed in the
previous chapter the partial-slip boundary conditions does not affect the per-
turbation equations; that is, the governing stability equations are unaffected
by surface roughness within the MW model. However, the MW model is also
implemented to the perturbation equations for this case too for shear-thinning
and shear-thickening Carreau fluid. Thus, the system of stability equations is
solved for the perturbation eigenfunctions and the curves of neutral stability
are plotted for both the Type I and Type II modes for a variation of � = ⌘ > 0
parameters and fixed power-index. Furthermore, the growth rates of the Car-
reau model for this case are found. The effects of surface roughness on the
growth rates is studied for Type I instability mode. Lastly, the energy analysis
is solved to confirm the results of the prior linear stability analysis.

For consistency, the structure of this chapter follows Chapters 3 and 4. The
steady mean flow solution is presented in Section 5.1.The convective instability
is solved by applying the partial slip in the mean flow only in Section 5.2
whereas the convective instability by applying the partial-slip within the mean
flow and the disturbances in solved Section 5.3 for isotropic roughness. The
effect of isotropic roughness on the energy analysis equations is investigated in
Subsection 5.4. Finally, conclusions are drawn in Section 5.5.
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5.1 The steady mean flow results

The steady mean flow is solved to examine the effects of isotropic roughness on
the mean flow components of the Carreau model. The isotropic surface rough-
ness corresponds to radial and concentric grooves on the disk surface and is
implemented by setting the roughness parameters in the partial-slip boundary
conditions to � = ⌘ > 0 within the MW model. The steady mean flow Equa-
tions (2.20, 2.21) of the Carreau model are computed using the MATLAB
solver (see Subsection 2.3.1 for more details) with the partial-slip boundary
conditions (2.23, 2.24). The mean flow profiles are computed for three ve-
locity components (U, V,W ) for disks with different values of roughness and
fixed values of power-law index parameters. Figures (5.2) and (5.3) indicate
the effect of the isotropic surface roughness on the mean flow components for
shear-thinning and shear-thickening fluids.

Figure 5.1: Isotropic roughness distribution.
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(a) (b)

(c)

Figure 5.2: Mean flow components of the Carreau flow over isotropically rough disk
for shear-thinning fluid. (a) U -profile, (b) V -profile, (c) W -profile.

Table 5.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning n = 0.9.

Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0 0.6440 0.7968 0.7659
� = ⌘ = 0.25 0.3633 0.7008 0.7503
� = ⌘ = 0.50 0.2353 0.5906 0.7254
� = ⌘ = 0.75 0.1674 0.5055 0.7018
� = ⌘ = 1 0.1267 0.4410 0.6808

Table 5.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening n = 1.1.
Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0 0.4137 0.4892 1.0148
� = ⌘ = 0.25 0.2873 0.4689 1.0005
� = ⌘ = 0.50 0.2097 0.4282 0.9726
� = ⌘ = 0.75 0.1603 0.3877 0.9421
� = ⌘ = 1 0.1271 0.3522 0.9127
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(a) (b)

(c)

Figure 5.3: Mean flow components of the Carreau flow over isotropically rough disk
for shear-thickening fluids. (a) U -profile, (b) V -profile, (c) W -profile

The radial mean flow profiles U are indicated in Figures (5.2) and (5.3)
(a). The azimuthal mean flow component V is provided in Figures (5.2) and
(5.3) (b), while the flow component W in the axial direction is presented in
Figures (5.2) and (5.3) (c). The initial values of U 0(0), V 0(0) and W (z1) are
important for the computation of the flow profiles and appear in Tables (5.1)
and (5.2) for various values of � = ⌘ > 0. The initial values for Newtonian
flow (� = ⌘ = 0) agree with those appearing in Cooper et al. [35] Tables (5.1)
and 5.2 for the isotropic case. The results are presented here for n = 0.9 and
n = 1.1. Other values (n = 0.6, n = 0.7, n = 1.2 and n = 1.4) can be found in
Appendices (C.1) and (C.2) with their initial values.

In both Figures (5.2) and (5.3) (a), the radial velocity component U of
the flow reduces and moves towards the disk surface as a result of increased
isotropic roughness, thereby decreasing the radial wall jet. Regarding the
azimuthal profile in Figures (5.2) and (5.3) (b), the wall value of the component
increases as roughness is increased which is similar to the concentric groove
case discussed in Section 3.1. Increasing the non-zero � = ⌘ 6= 0 leads to a
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reduced radial jet that moves toward the disk. Furthermore, it has little effect
on the boundary-layer thickness for the axial profile as is seen in Figures (5.2)
and (5.3) (c). Interestingly, for each particular regime of the Carreau flow,
the effect of isotropic roughness on the mean flow profiles are similar to the
effects of the concentric grooves case. Therefore, the effects observed for radial
concentric grooves in Sections 3.1 and 4.1 are combined for the isotropic case.

5.2 The convective instability for the isotropic case

This section aims to address the convective instabilities in the case of isotropic
roughness over the rotating disk. The convective instability is determined
by computing the solutions of the perturbation Equations (2.42) and imple-
menting the spectral Chebyshev method provided in (2.4.1). Likewise, the
stability equations are solved as primitive variables over 100 collocation points
distributed between the upper and lower boundaries. The local convective
instability is analysed in terms of neutral curves in (5.2.1) and the growth
rates in (5.2.2). Here the perturbation quantities are subject to zero bound-
ary conditions at both the disk surface and in the far-field. This ensures that
the perturbations to the steady flow are contained within the boundary layer
and the effects of surface roughness are not double-counted within the analysis
[35, 50]. The perturbation Equation. (2.42) is subject to Equation (3.3).

5.2.1 Neutral curves

The neutral curves defined by the neutral spatial growth ↵i = 0, have been
calculated for fixed values of shear-thinning and -thickening fluids using the
Carreau viscosity model with isotropic rough surfaces. The characteristics
of the Carreau fluid are determined by n and k parameters. The relaxation
parameter is fixed by selecting k = 100, the power-law index n is fixed, where
the isotropic parameters vary. Two spatial branches are found to determine
the convective instability characteristics of the system. The Type I mode
results from the (inviscid) inflectional behaviour of mean-flow components and
appears as the upper lobe in neutral curves. The Type II mode arises from the
(viscous) streamline curvature and Coriolis effects and appears as a smaller
lower lobe. The neutral curves of the Carreau flow are produced for (Re,↵r),
(Re, n̄) and (R,�)-planes. Each curve encloses a region in which the boundary-
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layer is connectively unstable. The results of n = 0.9 and 1.1 are presented
here, the other values can be found in Appendices (C.3) and (C.4) with their
critical values.

(a) (b)

(c)

Figure 5.4: Neutral curves of the convective instability for the Carreau flow over
isotropic roughness with n = 0.9.

The isotropic case for shear-thinning and -thickening is illustrated in Fig-
ures (5.4) and (5.5). Increasing levels of isotropic roughness has a strong sta-
bilisation effect on both of the Type I and Type II instability modes for n < 1
and n > 1 as evidence in Figures (5.4) and (5.5) (a). Thus, the Type I mode
is strengthened and becomes the dominant for this case. Here the Type II
mode vanishing completely for relatively modest levels of isotropic roughness
and only being visible as a distinct lower lobe for � = ⌘ = 0. The effect on the
Type I mode is also much stronger in terms of critical number Re, while has
more reductions in terms of the width of the unstable region with an increase
in the roughness values.

Figures (5.4) and (5.5) (b) demonstrate the effects of isotropic roughness
on the number of vortices n̄ for this flow. It can be seen from the figure that
the number of vortices decreases along the upper branch of the neutral curves



78 Neutral curves

as roughness is increases. However, there is a slight increase in the number
of vortices along the lower branches of the neutral curves as the roughness
parameter is increased. This seems to be a combination of the effects of the
azimuthal and radial roughness cases. This is because concentric grooves leads
to a decrease while radial grooves lead to an increase in the number of vortices.

The effects of isotropic roughness on the vortex angle are presented in
Figures (5.4) and (5.5) (c). We observe that the effects of varying isotropic
roughness decrease the vortex angle � along both the upper and lower branches
and this opposite to number of vortices. The numerical predictions of the
critical parameters at the onset of convective instability are presented in Tables
(5.3) and (5.4) for each flow discussed here. The critical values of the Type I
mode are in very good agreement with the existing results in the literature for
the Newtonian case as well as for the results identified in [32, 35].

(a) (b)

(c)

Figure 5.5: Neutral curves of the convective instability for the Carreau flow over
isotropic roughness with n = 1.1.
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Table 5.3: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 0.9.

Parameters Re n̄ �

� = ⌘ = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
� = ⌘ = 0.25 392.20(�) 32.44(�) 11.41(�)
� = ⌘ = 0.50 508.30(�) 34.66(�) 10.46(�)
� = ⌘ = 0.75 607.66(�) 34.63(�) 9.45(�)
� = ⌘ = 1 693.74(�) 33.93(�) 8.67(�)

Table 5.4: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 1.1.

Parameters Re n̄ �

� = ⌘ = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
� = ⌘ = 0.25 385.11(�) 22.98(�) 11.03(�)
� = ⌘ = 0.50 465.49(�) 24.87(�) 10.53(�)
� = ⌘ = 0.75 538.87(�) 25.68(�) 9.90(�)
� = ⌘ = 1 604.74(�) 25.88(�) 8.46(�)

5.2.2 The growth rate

The growth rates of the Type I instability mode within shear-thinning and
-thickening are obtained for the isotropic case at Re = Rec + 25; that is, at a
fixed distance into the neutral curve as a function of the vortex number n̄ at
each size of roughness. Note that the growth rate of the instability mode is
measured as a variation of the absolute value of the negative imaginary part
of the radial wavenumber, |↵i|, at particular values of the vortex number n̄

for each level of roughness. The growth rates of the Type II mode are not
considered here, owing to their very small value in compared to the dominant
Type I mode. So, we only present here the growth rates of the Type I instability
mode.

The effect of isotropic roughness on the growth rates of the instability
modes of the Carreau boundary layer flows can be seen in Figures (5.6) (a)
and (b). They depict the stabilising effect of isotropic roughness on the Type
I mode of each flow as the value of the maximum growth rate decreases cor-
responding to an increase the roughness values. Moreover, location of the
maximum growth rate shifts to higher values of n̄, and this indicates an in-
crease in the number of vortices as an effect of increased surface roughness
level � and ⌘. It is observed in the isotropic roughness case, there is a much
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stronger stabilizing effect on the Type I mode in terms of growth rate reduc-
tion. Therefore, The overall effect of this case is still to reduce the number of
vortices.

(a) (b)

Figure 5.6: Growth rates of Type I instability at Re = Rec+25 for both shear-thinning
(a) and shear-thickening (b) in the case of isotropic roughness.

5.3 The novel approach for the perturbations

This part is concerned with the occurrence of convective instabilities in the case
of the isotropic roughness over the rotating disk. The convective instability is
obtained by solving the perturbation Equations (2.42) system as a quadratic
eigenvalue problem and imposing the partial-slip boundary condition defined
in Chapter (3.2) within Equations (3.2) and (3.3).

5.3.1 Neutral curves

The Figures here depict the neutral stability data for a range of isotropic
roughness parameters and fixed power-law index parameters of the Carreau
model. The points on the curves are defined by neutral spatial growth as ↵i =
0. It is found for 0.1  � = ⌘  0.4 in increments of 0.1 within shear-thinning
and -thickening Carreau fluids. The neutral curves are plotted for (Re,↵r),
(Re, n̄) and (R,�)-planes. Each curve encloses a region in which the boundary
layers are convectively unstable (i.e. a disturbance grows exponentially as ↵i <

0, whereas the region outside of the curve indicates that the disturbed flow
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will decay to the steady state as ↵i > 0). Two spatial branches arise from
crossflow and streamline-curvature instability modes are found that determine
the convective instability characteristics for each size of roughness.

(a) (b)

(c)

Figure 5.7: Neutral curves of the convective instability for the Carreau flow over
isotropic roughness with n = 0.9.

It can be seen in Figures (5.7 and 5.8) (a) that as the roughness is increased,
the critical Reynolds number is also significantly increased and stabilises the
type I mode. Therefore, the effect on the Type I mode is even more strongly
stabilising than radial grooves. Moreover, the Type II mode is stabilised in
the same way as observed for the concentrically grooves and vanishes even for
modest levels of isotropic roughness. Thus, the Type I mode considered the
dominant instability mechanism of both flows in this case. Also, in Tables
(5.5) and (5.6), the critical Reynolds number at which the Type I mode onsets
increases with roughness level, especially for n = 0.9 compared to n = 1.1.
Also, the width of instability region shrinks with an increase in the roughness
level for shear-thinning more than for -thickening cases. Overall, both flows
(i.e shear-thinning and -thickening) have significant stabilising effects
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In terms of the number of vortices (see Figures (5.7)and (5.8) (b)), there
is a slight variation in the number of vortices along both branches as for both
flow with increased roughness. In Figure (5.8)(c), it can be observed that the
critical wave angles follow the same trends with changing roughness parameters
as seen in Figure (5.7) (c). The effect of increasing roughness parameters is to
decrease the vortex angle of each flow for the Carreau flow along both the upper
and lower branches. It is also observed that the vortex angle at the critical
Reynolds number decreases continuously as the power-index n increases along
the lower branch. Critical data for the range of � = ⌘ and n values considered
are presented in Tables (5.5) and (5.6).

(a) (b)

(c)

Figure 5.8: Neutral curves of the convective instability for the Carreau flow over
isotropic roughness with n = 1.1.
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Table 5.5: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II) for n = 0.9.

Parameters Re n̄ �

� = ⌘ = 0 267.06(433.91) 46.32(23.82) 11.78(20.02)
� = ⌘ = 0.1 352.30(�) 30.60(�) 12.01(�)
� = ⌘ = 0.2 476.27(�) 34.84(�) 12.02(�)
� = ⌘ = 0.3 642.66(�) 38.93(�) 11.96(�)
� = ⌘ = 0.4 855.07(�) 42.53(�) 11.69(�)

Table 5.6: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes type I and (type II) for n = 1.1.

Parameters Re n̄ �

� = ⌘ = 0 304.69(458.65) 19.54(18.72) 11.06(18.96)
� = ⌘ = 0.1 349.32(�) 21.59(�) 11.23(�)
� = ⌘ = 0.2 403.88(�) 23.59(�) 11.26(�)
� = ⌘ = 0.3 467.95(�) 25.30(�) 11.20(�)
� = ⌘ = 0.4 541.99(�) 26.96(�) 11.14(�)

5.3.2 The growth rate

This section adopts the methodology highlighted in Section (5.2.2) to examine
the effects of isotropic roughness on the growth rates of the instability modes
of the Carreau model boundary layer flows. Calculations have been carried
out for the Type I mode at Re = Rec+25. The growth rates of the secondary
Type II mode are not included here due to their very small value compared to
the dominant Type I mode.

Figure (5.9) (a) and (b) clearly reveal the stabilising effect of isotropic
roughness on the Type I mode and the maximum growth rate decreases for
increased the values of roughness parameters. Moreover, the maximum growth
rate is shifted to lower number of vortices. The number of spiral vortices at
the maximum growth rate location is predicted to decease compared with the
Newtonian case. Furthermore, the maximum growth rate for all values of
roughness parameters are reduced with the chosen values of the power-index
values. The overall effect of isotropic roughness reduces the number of vortices.
Thus, the stabilising results seen here agree with the critical values for each
flow reported in Tables (5.5) and (5.6).
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(a) (b)

Figure 5.9: Growth rates of Type I instability at Re = Rec+25 for both shear-thinning
(a) and shear-thickening (b) in the case of isotropic roughness.

5.4 Energy analysis results

The energy balance calculation is analysed at the location of maximum ampli-
fication of the Type I mode at Re = Rec+25. Here Rec is the critical Reynolds
number for the onset of the Type I mode of instability for the particular rough
surface considered. Results for various levels of roughness are compared to
the Newtonian case in Figure (5.10). The energy balance calculations of the
dominant Type I mode aims to establish the underlying physical mechanisms
behind the effects of roughness disks for fixed values of shear-thinning and
shear-thickening Carreau fluids.

As discussed in Chapter 4, the energy balance Equation ( 2.51) can be
done for any eigenmode of the perturbation Equations (2.42). Again here the
positive terms in that equation contribute to the energy production, whereas
the negative terms remove energy from the system. The eigenmode of a dis-
turbance is amplified (↵i < 0) when the energy produced by the disturbance
outweighs energy dissipated in the system. So, it is possible to use this formu-
lation to interpret the effect of surface roughness on the instability modes of
both regimes of Carreau fluids. This is solves by calculating the total energy
of the system which is the sum of the energy production and dissipation terms.
Increasing the total energy for higher values of the roughness parameters shows
a destabilising effect on the modes. In contrast, a reduced total energy would
indicate a stabilisation effect.
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(a) n = 0.9. (b) n = 1.1.

Figure 5.10: Energy balance of Type I instability at Re = Rec+25 for shear-thinning
and shear-thickening Carreau fluids in the case of isotropic roughness.

(a) n = 0.9. (b) n = 0.9.

(c) n = 1.1. (d) n = 1.1.

Figure 5.11: Type I mode for the azimuthal and the axial disturbance velocity profiles
of Carreau model in the case of isotropic rotating disk at Re = Rec + 25 for shear-
thinning and shear-thickening Carreau fluids.
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Figures (5.10) (a) and (b) present the energy balance calculation of the
Type I mode for isotropic roughness for both shear-thinning and -thickening
fluids, respectively. Clearly, the stabilisation effect obtained for each flow in
the system is due to a strong decrease in energy changes of the flows when
roughness increases. This effect arises mainly from the changes in the energy
production term P2 and in the energy dissipation term D. Both energy pro-
duction and dissipation in each flow decrease for higher values of � and ⌘.
Furthermore, the energy removing effects of the G1, G2 and G3 terms arise
from the streamline curvature and the three dimensionality of the mean flow
result in an energy production effect for both cases. In other words, these
terms contribute to energy production in the system. In addition, there is a
negligible effect on the energy balance for non-Newtonian terms Ni. The mod-
ified viscosity is therefore again seen to establish new steady flows which are
unstable through inviscid effects. This is as expected for the inviscid Type I
mode.

It is interesting to provide some explanation about the energy trends of
the Carreau model of flows by analysing the form of azimuthal velocity per-
turbation, v̂, and the axial velocity perturbation, ŵ. These profiles contribute
to the dominant energy production term P2 and energy dissipation term D.
The magnitudes of the two disturbance profiles are given in Figure (5.11) for
n = 0.9, n = 1.1 for isotropic rough disk case for the Type I instability mode.
It can be seen from the figures that there is no change in the general form of
v̂ disturbance profiles and it is translated close to the wall as the roughness
parameters increase. The reduction of the P2 term for each flow is due to the
reduction in the amplitude of the axial velocity perturbation, ŵ (as evidence
in Figure (5.11) (b)). The decrease in the dissipation D for n = 1.1 is owing
to the increase of the maximum value of the azimuthal velocity profile v̂.

5.5 Conclusion

In this chapter, the mean flow equations are solved for a range of values of
isotropic surface roughness. Here, the approach of Miklavčič & Wang param-
eters with some modifications and a variety of fixed values of the power index
for the Carreau model. The numerical results show that isotropic roughness
decreases the magnitude of the radial wall jet as � = ⌘ is increased.

Isotropic roughness is found to have a strong stabilising effect on both of
the Type I and Type II modes of instability in terms of postponing the onset
of the convective instability. Furthermore, it is observed that increased surface
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roughness acts to increase the number of vortices along the upper branch for
both of n. However, increasing the values of roughness, � = ⌘, acts to reduce
the value of the vortex angle � along both branches. The critical Reynolds
numbers, the number of vortices and the vortex angle of shear-thinning and
shear-thickening for the onset of both modes are reported in Tables (5.3)-(5.6),
respectively.

The chapter also examined the effect of the growth rates of the Type I in-
stability for a range of roughness and power-index parameters for the isotropic
case. An energy balance analysis is also carried out and derived from the sta-
bility equations to study the effects of the isotopic rough surfaces on two values
of power-index n. The total energy of the system is affected by the the sum
of energy production and dissipation. This, as a result, determines the effects
of the isotropic surface roughness on the stabilisation of both shear-thinning
and shear-thickening fluids. Factors that contribute to change in the energy
system have been identified as the terms P2 and the term D, production by the
Reynolds stresses and conventional viscous dissipation. The behaviour of the
energy balance terms are qualitatively consistent with the neutral curve be-
haviours in Section 5.2. Overall, the energy analysis has revealed that isotropic
roughness acts to reduce energy production of the Type I mode for both fluids.
This results in a stabilisation effect on the Type I mode.



Chapter 6

Effect of shear-thinning
and shear-thickening
Carreau fluids on the
roughness surface

Several research studies have presented numerical results for the generalized
non-Newtonian fluids with the no-slip conditions. Mitschka & Ulbrecht [41]
were the first to obtain the solution of the mean flow. The Power-law flow they
used was equivalent to the solution for the Newtonian fluid flow given by von
Kármán [55], where the power-law index n was equal to unity. Concerning the
alternative Carreau models, Dabrowski [56] addressed the problem of the flow
due to a rotating disk for shear-thinning and -thickening fluids. More recently,
Griffiths [2] has presented the mean flows and an analysis of their stability
using asymptotic and numerical approaches for Carreau fluids. All of these
previous studies consider the von Kármán flow with the no-slip conditions.
In the context of the rotating disk problem, no previous studies have utilised
the form of the Carreau rheological model with partial-slip conditions, as this
chapter aims to do.

In this chapter, the boundary-layer equations for generalized non-Newtonian
fluids are solved to obtain the steady mean profiles for various power-indices
of the Carreau model with fixed roughness parameters. Then, the linear per-
turbation equations are solved to study the occurrence of linear convective in-
stabilities. The Chebyshev collocation method described in Subection (2.4.1)
has been applied to solve the perturbation equations. Abdulameer et al. [51]
used this numerical method to compute the neutral curves for the convective
instability of non-Newtonian (Power-law) flow for the BEK system. Thus, the



6.1. The steady mean flow results 89

system of stability equations is solved for the perturbation eigenfunctions and
the neutral curves are plotted for fixed roughness parameters and variation
of power-index. After that, the growth rates of the Carreau model for shear-
thinning and -thickening fluids are obtained and compared for different cases of
fixed roughness parameters. The energy analysis is solved here to confirm the
results of the prior linear stability analysis. Chebyshev discretization method
is used to solve the equations and investigate the effect of surface roughness
and for a range of power index parameters. This method is used too in the
work for BEK system for both Newtonian fluid by Alveroglu et al. [38] and
non-Newtonian flow by Abdulameer et al. [51]. Some of results presented here
of course also appear in the previous chapters, but we are particularly con-
cerned here with the effect of the fluid properties for fixed values of roughness.
Most of the content of this chapter appears in the literature as Alqarni et al.
[57].

The steady mean flow solution is presented in Section 6.1. The neutral
stability curves in obtained within the MW model for the mean flow only in
Section 6.2 while this model imposed too within both the steady mean flow
and the disturbances in Section 6.3 for three kinds of roughness surface. The
effect of shear-thinning and -thickening on the energy analysis equations is
investigated and this is presented in Section 6.4. Finally, conclusion are drawn
in Section 6.5.

6.1 The steady mean flow results

The steady mean flow of the Carreau model are computed Equations (2.20,
2.21) using the MATLAB solver (see Subsection 2.3.1 for more details) with
the partial-slip boundary conditions (2.23, 2.24). The mean flow profiles are
computed for three velocity components (U, V,W ) for radially anisotropic, az-
imuthally anisotropic and isotropic roughness surface cases ( see Subsections
3.1, 4.1 and 5.1 for more details).

The resulting profiles of this section are depicted in Figures (6.1)-(6.3) at
three examples of surface roughness for various values of n. The value of k

parameter is fixed at 100 in order to maintain consistency throughout the
remainder of this study; this is consistent with [2, 51]. The numerical code
for the steady flow has been validated against various prior studies in the
literature. In particular, our numerical values reported in Table (6.2) agree
entirely with [35, 50] when n = 1, and with [58] when n 6= 1 in Tables (6.1)
and (6.2). In all calculations we use the integration domain 0 < z < 20 up
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(a) (b)

(c)

Figure 6.1: Mean flow components of the Carreau flow over radially anisotropically
rough disk for shear-thinning and shear-thickening fluids, ⌘ = 0.25, � = 0. (a) U -
profile, (b) V -profile, (c) W -profile.

through the boundary layer. We find that this leads to converged far-field
values at all n and �, ⌘. Further increases beyond z1 = 20 have no material
effect on the results. This domain is consistent with related studies in the
literature [42, 51, 59].

Figure (6.1) indicates the effects of various values of power-index over a
rough rotating disk for radial grooves (⌘ = 0.25, � = 0). The radial-flow
profiles reveal that increasing n results in the wall jet moving outwards along
the z-axis. That is, the boundary-layer thickness increases with n > 1 (shear-
thickening) and narrows for n < 1 (shear-thinning). Furthermore, the growth
in the peak value shows an increased jet effect for shear-thickening fluids. In
the azimuthal velocity profile, the wall value of V increases with n; further
evidence of an increasing/narrowing boundary-layer thickness. With regards
the normal velocity component, we observe that increasing n leads to greater
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Table 6.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening n = 1.1, 1.2.

Parameters n �U 0(0) V 0(0) W (z1)

Radially anisotropic roughness (radial grooves)
⌘ = 0.25 1.1 0.3534 0.4178 0.9531

1.2 0.3020 0.3507 1.0906

Azimuthally anisotropic roughness (concentric grooves)
� = 0.25 1.1 0.3401 0.5635 1.0769

1.2 0.2906 0.4498 1.2211

Isotropic roughness
⌘ = � = 0.25 1.1 0.2873 0.4689 1.0005

1.2 0.2542 0.3897 1.1424

(a) (b)

(c)

Figure 6.2: Mean flow components of the Carreau flow over azimuthally anisotrop-
ically rough disk for shear-thinning and -thickening fluids, ⌘ = 0, � = 0.25. (a)
U -profile, (b) V -profile, (c) W -profile.
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fluid entrainment into the boundary layer. That is, shear-thickening fluids act
to entrain a greater volume of fluid into the boundary layer and shear-thinning
a lesser volume. This is consistent with the boundary-layer thickening/ thin-
ning effects observed in radial and azimuthal flow components. Other values
( ⌘ = 0.50, ⌘ = 0.75 and ⌘ = 1) with their initial values can be seen in
Appendices (D.1.1) and (D.2.1).

Figure (6.2) shows the case of concentric grooves (� = 0.25, ⌘ = 0) and we
see mostly similar responses to n in the azimuthal and normal flow components.
However, there is some subtly different behaviour observed in the radial profile:
while a shear-thickening fluid again acts to thicken the boundary layer, the
radial jet is in fact accelerated for shear-thinning fluids. Other values ( � =
0.50, � = 0.75 and � = 1) with their initial values can be seen in Appendices
(D.1.2) and (D.2.2).

(a) (b)

(c)

Figure 6.3: Mean flow components of the Carreau flow in the case of isotropic rough-
ness, � = ⌘ = 0.25. (a) U -profile, (b) V -profile, (c) W -profile.

Figure (6.3) shows the mean-flow profiles for isotropic roughness (� = ⌘ =
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0.25) are similar to those in the radial case. Other values ( � = ⌘ = 0.50,
� = ⌘ = 0.75 and � = ⌘ = 1) with their initial values can be seen in Appendices
(D.1.3) and (D.2.3).

Table 6.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for Newtonian fluid and shear-thinning n = 1, 0.9, 0.8.

Parameters n U 0(0) �V 0(0) �W (z1)

Radially anisotropic roughness (radial grooves)
⌘ = 0.25 1.0 0.4170 0.5034 0.8269

0.9 0.4953 0.6128 0.7134
0.8 0.5904 0.7522 0.6137

Azimuthally anisotropic roughness (concentric grooves)
� = 0.25 1.0 0.4018 0.7251 0.9425

0.9 0.4786 0.9629 0.8190
0.8 0.5736 1.3277 0.7074

Isotropic roughness
⌘ = � = 0.25 1.0 0.3242 0.5706 0.8693

0.9 0.3633 0.7008 0.7503
0.8 0.4016 0.8658 0.6447

6.2 The convective instability

Here Equations are solved (2.42) with the aim of studying the occurrence of
convective instabilities of shear-thinning and -thickening Carreau flow. For
each n in the particular range of interest, two spatial branches determine the
convective instability characteristics of the system. The local convective in-
stability is analysed in terms of neutral curves in (6.2.1) and the growth rates
in (6.2.2). The perturbation Equations (2.42) are subject to zero boundary
conditions (3.3).

6.2.1 Neutral curves

This section calculates the spatial branches for each n and Re for a given
wave number � and the frequency ! and the value of ↵ satisfies the dispersion
relation is calculated for a variety of shear-thinning and -thickening fluids using
the Carreau viscosity model with fixed values rough surfaces. As discussed
previously, structurally the neutral curve is divided into two lobes or branches:
the upper branch that represents the type I crossflow instability and the lower
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branch representing the type II centrifugal instability. The spatial branches
for the cases when n < 1, n = 1 and n > 1 are plotted for (Re,↵r), (Re, n̄)
and (R,�)-planes. Example neutral curves resulting from our analyses for all
n are shown in Figures (6.4)-(6.6) and critical Reynolds numbers for the onset
of instabilities are shown in Tables (6.3)- (6.5).

(a) (b)

(c)

Figure 6.4: Neutral curves of the convective instability for the Carreau flow over
radially-anisotropically rough disk with n = 0.8, 0.9, 1.0, 1.1, 1.2 with ⌘ = 0.25,
� = 0.

Figures (6.5)-(6.6) (a) and (b) show that stability of the boundary lay-
ers over isotropic and azimuthally-anisotropic rough surfaces is dominated by
the Type I mode; this is evident from their single-lobed structure. The data
presented in Tables (6.3) , (6.4) and (6.5) further suggests that, for these sur-
faces, there is a maximum value of Rec achieved at around n = 1.2. Further
movement in n either side of this acts to stabilise the boundary layer in terms
of increasing the critical Reynolds number. However, it is clear that shear-
thinning fluids have the greatest stabilising effect. Additional figures with
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their critical values are provided in Appendices (D.3) and (D.4) for three cases
of roughness surface.

Parameters n Re n̄ �

Radially anisotropic
⌘ = 0.25 0.8 298.51(273.67) 22.54(12.32) 8.11(13.77)

0.9 303.65(319.19) 20.21(12.81) 8.71(14.79)
1.0 313.09(358.72) 18.35(13.03) 9.07(15.60)
1.1 323.12(391.33) 16.76(12.97) 9.26(15.94)
1.2 338.80(417.76) 15.45(12.74) 9.33(16.21)

Table 6.3: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

(a) (b)

(c)

Figure 6.5: Neutral curves of the convective instability for the Carreau flow over
azimuthally-anisotropically rough disk with n = 0.8, 0.9, 1.0, 1.1, 1.2 with � = 0.25,
⌘ = 0.

In contrast, both the Type I and II modes are important over radially
anisotropic rough surfaces, as shown in the distinct lobes in Figures (6.4) (a)
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and (b). Furthermore, it is seen that shear-thinning fluids are destabilising
over such surfaces and the critical Reynolds numbers of both modes modes
increase when n increases, too. Although our results are only presented for
�, ⌘ = 0.25, similar qualitative behaviour is obtained at all other roughness
levels.

Parameters n Re n̄ �

Azimuthally anisotropic
� = 0.25 0.8 444.46(�) 78.18(�) 24.15(�)

0.9 398.21(�) 51.18(�) 19.84(�)
1.0 380.68(�) 37.31(�) 17.31(�)
1.1 377.04(�) 29.23(�) 15.58(�)
1.2 380.86(�) 24.03(�) 14.31(�)

Table 6.4: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

(a) (b)

(c)

Figure 6.6: Neutral curves for the convective instability of an isotropically-rough
rotating disk with n = 0.8, 0.9, 1.0, 1.1, 1.2 with � = ⌘ = 0.25.
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Also, Figure (6.4) (c) shows the qualitatively different results for Carreau
fluids in terms of the wave angle. When n < 1 and n > 1 increases then the
type I and type II critical Reynolds numbers increases, however, the lower-
branch structure appears to be largely unaffected and the effect of decreasing
n is much more noticeable on the upper-branch modes. Figures (6.5)-(6.6) (c)
clearly indicate that as the shear-thickening parameter increases so the critical
Reynolds numbers decrease. More generally in these figures, we would consider
the effect of both shear-thinning and -thickening to be stabilising as the area
enclosed by the wavenumber neutral curves is decreases in this case.

Parameters n Re n̄ �

Isotropic roughness
� = ⌘ = 0.25 0.8 408.49(�) 39.81(�) 12.11(�)

0.9 392.20(�) 32.44(�) 12.24(�)
1.0 385.36(�) 27.04(�) 12.11(�)
1.1 385.11(�) 22.98(�) 11.71(�)
1.2 389.45(�) 20.12(�) 11.36(�)

Table 6.5: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

6.2.2 The growth rate

The growth rates of the Type I instability mode are presented for shear-
thinning and -thickening Carreau fluids for the three cases of the roughness:
radially-anisotropic and azimuthally anisotropic and isotropic roughness at
Re = Rec + 25; that is, at a fixed distance into the neutral curve. Note that
the growth rate of the instability mode is measured as the absolute value of the
negative imaginary part of the radial wavenumber, |↵i|, at particular values of
the vortex number n̄ for each level of roughness. The Type II mode vanishes
at even modest levels of some surface roughness under the model and so is
not considered here due to the dominant Type I mode and also Carreau fluids
have only a slight effect in the cases of both concentric grooves and isotropic
roughness. So, the growth rate of the Type II instability mode is presented
here for the radial grooves only.

Figure (6.7) (a) shows shear-thickening fluids to be the most stable in terms
of the delayed onset of instability and the weakest subsequent development for
radially-anisotropic surface roughness. It is also interesting to note the effect
that shear-thinning and -thickening fluids have on the mode number (number
of spiral vortices) n̄ under all roughness types: the number of spiral vortices
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(a) ⌘ = 0.25,� = 0. (b) � = 0.25, ⌘ = 0.

(c) ⌘ = � = 0.25.

Figure 6.7: Growth rates of Type I and Type II instability at Re = Rec + 25 in the
cases of both anisotropic roughness (a) and (b) and isotropic roughness (c).

is reduced with increased n. In contrast, Figures (6.7) (b) and (c) reveal the
stabilising effect on the growth rates of the Type I mode for both isotropic and
azimuthally-anisotropic roughness. That is, even though there appears to be
some stabilising effect in terms of the onset of instability (Rec) when moving n

either side of n = 1.1, the subsequent development of that instability is quelled
by shear-thinning fluids.

6.3 The novel approach for the perturbations

This part discusses with the occurrence of convective instabilities in the case
shear-thinning and -thickening over the rotating disk. The convective insta-
bility is obtained by solving the perturbation Equations (2.42) system as a
quadratic eigenvalue problem according to the partial-slip boundary condition
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defined in Chapter (3.2) in Equations (3.2).

6.3.1 Neutral curves

Neutral curves are produced for a range of different power-index with three
cases of roughness and the comparisons between them are presented here. The
standard neutral curve plots, the Reynolds number of the flow is plotted against
different variables in order to identify the range of stability that the flow should
have. These variables are ↵r and number of vortices n̄ and the wave angle
�. Figures (6.8)-(6.10) show the relationship of neutral curve with increasing
power-index for various cases of roughness.

(a) (b)

(c)

Figure 6.8: Neutral curves of the convective instability for the Carreau flow over
radially anisotropically rough disk with n = 0.8, 0.9, 1.0, 1.1, 1.2.

The effect of increasing power-index n in a concentrically grooved disk case
in terms of width shrinks the Type I lobe. However, a stark destabilising effect
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has been noticed on the Type II as seen in Figure (6.8) (a). In contrast, Figures
(6.9) and (6.10) (a) indicate that both n > 1 and n < 1 have a stabilising effect
on both the Type I and Type II modes in terms of the critical Reynolds number
on the radial grooves. Furthermore, the effect on the Type I mode is stronger
compared to the concentric grooves case. It also is found that the Type II
mode is vanished when n increases.

It is found that a similar effect of the shear-thinning and -thickening on
the isotropic roughness where the Type I mode has strong stabilising effect.
It also observed that the Type II mode is stabilised in the same way as seen
for the radially grooved disk. Overall, shear-thinning and -thickening Carreau
fluids have a destabilising effect on radially-anisotropic that is promoted when
n is increases; this is in contrast to have a slight stabilising effect on the Type
I mode that is promoted when n increases on the azimuthally anisotropic and
isotropic roughness.

Parameters n Re n̄ �

Radially anisotropic
⌘ = 0.1 0.8 261.28(300.17) 25.98(16.94) 10.17(16.31)

0.9 278.66(349.40) 22.93(16.89) 10.30(17.05)
1.0 295.34(386.80) 20.34(16.30) 9.07(15.60)
1.1 312.02(414.61) 18.27(15.60) 10.20(17.47)
1.2 328.84(435.86) 16.56(14.77) 10.09(17.40)

Table 6.6: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

Parameters n Re n̄ �

Azimuthally anisotropic
� = 0.1 0.8 377.93(�) 47.61(�) 15.46(�)

0.9 345.46(�) 35.46(�) 14.04(�)
1.0 339.11(�) 28.14(�) 17.31(�)
1.1 343.53(�) 23.42(�) 12.29(�)
1.2 353.14(�) 20.12(�) 11.72(�)

Table 6.7: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

The effect of shear-thinning and -thickening Carreau fluids in terms of the
number of vortices, it can be seen in Figure (6.8) (b) a concentrically grooved
disk tends to lower the number of vortices as n increased. The same behaviour
in the other two cases, by increasing power-index n leads to a decrease in the
number of vortices on the a radially grooved disk and isotropic roughness in
Figures (6.9) and (6.10) (b). Critical parameters for the onset of the Type I and
Type II modes are given in Tables (6.6), (6.7) and (6.8). Figures (6.8), (6.9)
and (6.10)(c) represent neutral curves in terms of the wave angles. It can be
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(a) (b)

(c)

Figure 6.9: Neutral curves of the convective instability for the Carreau flow over
azimuthally-anisotropically rough disk with n = 0.8, 0.9, 1.0, 1.1, 1.2.

seen that all of them tend to lower number of the wave angles on Type I whilst
on Type II leads to an increase in the wave angles on a concentrically grooved
disk as n increased. We notice that the increased in azimuthally anisotropic
the wave angles for the Newtonian (i.e n = 1) fluid is more obvious than
other. Moreover, as n increases the change on the upper lobe is noticeable but
slight change of the lower lobe on radially-anisotropic. The lower lobe of the
neutral curve vanishes immediately for each value of n in the radial grooves
and isotopic roughness.

6.3.2 The growth rate

Using the same method adopted in Section (6.2.2) to study the effect of both
shear-thinning and -thickening fluids on the growth rates. Calculations have
been carried out for type I mode at Re = Rec + 25. Results for various cases
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(a) (b)

(c)

Figure 6.10: Neutral curves for the convective instability of an isotropically-rough
rotating disk with n = 0.8, 0.9, 1.0, 1.1, 1.2.

Parameters n Re n̄ �

Isotropic roughness
� = ⌘ = 0.1 0.8 381.93(�) 38.40(�) 12.48(�)

0.9 352.30(�) 30.60(�) 12.01(�)
1.0 345.75(�) 25.24(�) 12.11(�)
1.1 349.32(�) 21.59(�) 11.23(�)
1.2 358.00(�) 18.95(�) 10.90(�)

Table 6.8: The values of the critical Reynolds number Re, n̄ and wave angle � on the
both modes Type I and (Type II).

of roughness are compared to the Newtonian case in Figure (6.11).

In the case of disk with radial grooves (6.11) (a), it can be seen that the
maximum amplification shifts to lower values of n̄, suggesting a deceasing in
the number of vortices over the disk for n > 1 and n < 1. For both concentric
grooves and isotropic roughness (6.11) (b) and (c), there is a decrease in the
value of n̄. In general, it is noted that the behaviour of the shifting maximum
growth rates with number of spiral vortices n̄ for Carreau fluids is the same
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(a) ⌘ = 0.1,� = 0. (b) � = 0.1, ⌘ = 0.

(c) ⌘ = � = 0.1.

Figure 6.11: Growth rates of Type I instability at Re = Rec +25 in the cases of both
anisotropic roughness (a) and (b) and isotropic roughness (c).

for the smooth case. So,the number of spiral vortices is increased for shear-
thinning and -thickening Carreau fluids for all roughness cases.

6.4 Energy analysis results

The maximum growth rates obtained in section (6.2.2) for each flow are used
here to find the energy balance for Carreau flows. The energy balance cal-
culation is applied at the location of maximum amplification of the Type I
mode at Re = Rec + 25. Here Rec is the critical Reynolds number for the
onset of the Type I mode of instability for the particular three rough surface
cases being considered. Results for various levels of roughness are compared
to the Newtonian case in Figure (6.12). The aim of the energy analysis is to
establish the underlying physical mechanisms behind the effects of roughness
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disks of the Carreau boundary layer flows for shear-thinning and -thickening
fluids. By considering the energy balance Equation (2.51) of any eigenmode of
the perturbation Equations (2.42).

(a) Radial grooves. (b) Concentric grooves.

(c) Isotropic case.

Figure 6.12: Energy balance of Type I instability at Re = Rec+25 for shear-thinning
and -thickening fluids.

Note that, the positive terms in that equation contribute to the energy
production whereas the negative terms remove energy from the system. The
eigenmode of a disturbance is amplified (↵i < 0) when the energy produced by
the disturbance outweighs energy dissipated in the system. The effect of sur-
face roughness on the instability modes of both shear-thinning and -thickening
Carreau fluids can be interpreted from this formulation by calculating the total
energy of the system which is the sum of the energy production and dissipation
terms. Increased the total energy for higher values of the roughness parameters
shows a destabilising effect on the modes. In contrast a reduced total energy
indicates a stabilisation effect.

Figures (6.12)(a) indicates a destabilisation effect on the Type I mode in
case of radially anisotropic roughness. In particular, increased power index n

leads to growth in the energy production term P2. It is also worth noting that
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the energy producing in the terms G1 and G3 notably decreases. In contrast to
the radially-anisotropic case is the azimuthally-anisotropic and isotropic cases.

(a) ⌘ = 0.25,� = 0. (b) ⌘ = 0.25,� = 0.

(c) � = 0.25, ⌘ = 0. (d) � = 0.25, ⌘ = 0.

(e) � = ⌘ = 0.25. (f) � = ⌘ = 0.25.

Figure 6.13: Type I mode profiles for the azimuthal and the axial disturbance velocity
profiles of Carreau model at Re = Rec +25 for shear-thinning and -thickening fluids.

It can be seen from Figure (6.12) (b) the energy balance calculation for
azimuthally-anisotropic. Clearly, there is a stabilisation effect obtained in the
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Type I mode due to a strong decrease in total energy of the flow as n parameter
is increased. The main reason of this effect is the large reductions in the energy
production term P2, the energy dissipation term D and the non-Newtonian
viscosity N2. The changes in the other terms seem to be negligible. However,
a small stabilising effect can be observed for shear-thickening fluids due to a
reduction in the total energy. Figure (6.12) (c) shows a similar stabilising effect
of isotropic roughness on the Type I mode.

The disturbance profiles are the azimuthal velocity perturbation, v̂, and
the axial velocity perturbation, ŵ, which consider to be the dominant energy
production term P2. The magnitudes of these two disturbance profiles are
presented in Figures (6.13) (a)-(f) for three cases of roughness within shear-
thinning and -thickening Carreau fluids. Figure (6.13) (a) and (b) can be seen
that the general form of both the disturbance profiles are changed with the
profiles being simply translated towards the wall as n increased for the case of
a concentric grooved disk. In the case of a radially grooved disk and isotropic
case. Figures (6.13) (c)-(f) that strong increase of the P2 term for each flow is
due to the growth of the amplitude of the axial velocity perturbation, ŵ. The
reduction in the dissipation rate of the system is due to the decrease of the
maximum value of the azimuthal velocity profile v̂.

6.5 Conclusion

In this chapter, the mean flow profiles have been obtained for the mean flow
equations for a range values of shear-thinning and -thickening fluids under the
Carreau flow model. The numerical results indicate that anisotropic roughness
with radial grooves on the mean flow results are to decrease the magnitude
of the radial wall jet as ⌘ increased. This opposes the of the azimuthally
anisotropic roughness as increase the magnitudes of the axial direction and
also increase the magnitudes of the radial and wall jets of � increased for all n.
Furthermore, the effect of isotropic roughness on the properties of mean flow
components U, V,W are similar to the effects observed in the radial grooves
case, but it is less effective. Also, the effects of the isotropic case can be seen
as a combination of the effects for radial and concentric grooves.

Of importance also is the Type I mode for the onset of linear convec-
tive instability of boundary-layer flows for both shear-thinning and -thickening
Carreau fluids with the three cases roughness surface. The first part is for the
smooth boundary condition and the second one is the partial-slip approach of
Miklavcic & Wang [1] with modification. The effects of radially anisotropic
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roughness on the convective instability of stationary disturbances on this flow
demonstrated that has a strong stabilising effect on the Type I instability mode
in terms of the critical Reynolds number for the onset of the convective insta-
bility for both n = 0.9 and n = 1.1. However, the Type II mode has a slight
destabilising effect as this type of roughness level is increased and it becomes
more dominate for sufficiently high levels. Moreover, we can observe from Ta-
bles (6.3) and (6.6) that the numbers of vortices, n̄, and the vortex angle, �,
are decreased at all values of power-law index as radially anisotropic roughness
is increased.

We then continue the effects of roughness in the azimuthally anisotropic
on the convective instability of stationary disturbances on the Carreau fluid
for shear-thinning when n < 1 or shear-thickening n > 1. The neutral curves
reveal that both have a strong stabilising effect on the Type I and Type II
instabilities. Moreover, the Type I and Type II critical Reynolds numbers
decrease, indicating an advanced onset of convective instability. The area
encompassed by the neutral curves is increased. For the number of the vortices
n̄ and the vortex angle � we have seen that increased surface roughness acts
to increase both of them, despite being more noticeable in the upper-branch
modes.

In the case of the isotropic roughness has a strong stabilising effect on both
of the Type I and Type II modes instability in terms of postponing the onset of
the convective instability. Also, it is observed that increased surface roughness
acts to increase the number of vortices along the upper branch for both of n.
However, increasing the roughness, � = ⌘ acts to reduce the value of the vortex
angle � along both branches. The critical Reynolds numbers, the number of
vortices and the vortex angle of shear-thinning and shear-thickening for the
onset of both modes are reported in Tables (6.5) and (6.8) .

The chapter also examined the effect of the growth rates of the Type I in-
stability for three cases of roughness and variety power-index parameters. An
energy balance equation is considered and calculated to establish the under-
lying physical mechanisms behind the effects of power-index n parameters on
different cases of roughness. The total energy of the system is affected by the
physical processes via energy production and dissipation terms. The results of
the energy analysis are consistent with the results of the neutral curves for both
shear-thinning and shear- thickening fluids. Overall, the effect of both shear-
thinning and shear- thickening fluids have revealed that radially-anisotropic
roughness (radial grooves) and isotropic roughness acts to reduce energy pro-
duction of the Type I mode for both fluids. This is a stabilisation effect on the
Type I mode which is the opposite effect of azimuthally-anisotropic roughness
on Type II mode.



Chapter 7

Conclusion and Future
work

This thesis is concerned with the convective instability of the boundary-layer
flow over rough rotating disks for a category of non-Newtonian fluids, abiding
by the generalised viscosity law due to the Carreau model. A detailed summary
and conclusions drawn from the results of each investigation can be found at
the end of each chapter. However, in Section (7.1) reviews key findings results
and makes some general conclusions, while Section (7.2) provides suggestions
for further areas for research in the light of this thesis.

7.1 Completed work

This thesis investigates the effects of surface roughness on the convective insta-
bility characteristics of a generalised Newtonian fluid, modelled as a Carreau
fluid. The non-Newtonian flows rotating boundary-layer flows study by Grif-
fiths for the Carreau model [42] is combined with the effects of surface rough-
ness. The viscosity function of Carreau fluids is controlled by two parameters,
n and the relaxation parameter k. The partial-slip boundary conditions have
been used under the MW approach with modifications to model a rotating
disk with radially anisotropic, azimuthally anisotropic and isotropic surface
roughness. The problem has been formulated in a rotating reference frame at-
tached to the disk surface, where all disturbances are assumed to be stationary
in this frame; that is, disturbances are fixed in place by the roughness and
rotate with the disk. Besides, the boundary-layer approximation is applied to
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the Navier-Stokes equations in order to construct the governing leading order
equations. The non-dimensionalised governing continuity and boundary-layer
equations are solved to obtain the solutions of steady mean of flows.

Furthermore, the mean flow profiles are obtained for the Carreau model
with the different types of roughness imposed. Moreover, mean flow profiles
have been computed for a range of shear-thinning and -thickening flows over the
three surface conditions. The numerical results show that radially anisotropic
roughness has an opposite effect on the mean flows to azimuthally anisotropic
roughness in the sense that it increases the magnitudes of the axial flow and
also increases the magnitudes of the radial and wall jets as � is increased. Fur-
thermore, the effects of isotropic roughness on the properties of mean flow com-
ponents U, V,W are similar to the effects observed in the radially anisotropic
roughness despite being less pronounced. Also, the effects of the isotropic
roughness can be seen as a combination of the effects of radial and concentric
grooves.

A subsequent linear stability analysis is then performed on each roughness
model to solve the eigenvalue problem with a collocation approach based on
Chebychev polynomials. Neutral curves have been calculated that prescribe
the parameter regions for instability. Also, critical values of the Reynolds
number, spiral vortex number and spiral vortex orientation angles have been
computed. Two approaches to modelling the effects of surface roughness have
been considered for each roughness type, in contrast to the current literature.
The first approach aims to impose a partial-slip boundary conditions on the
steady flow only (consistent with Cooper et al. [35] and Garrett et al. [36]).
The second imposes the partial-slip approach to both the steady flow and
perturbations. The literature argues that the first approach avoids double
counting the effects of roughness, but this approach has recently received some
criticism (Garrett, private communication).

Consistent with the von Kármán Newtonian boundary-layer flow over smooth
surfaces, the non-Newtonian flow over rough surfaces (under both approaches)
exhibits two types of instability: the Type I mode originating inviscid effects,
and the Type II mode of viscous effects. It is found that the introduction of
surface roughness has an obvious stabilising effect on both shear-thinning and
-thickening flows in general. Each of the three types of surface roughness con-
sidered here postpone the onset of the Type I instability by increasing the crit-
ical Reynolds number, and both isotropic and azimuthally-anisotropic surface
roughness (concentric grooves) entirely eliminates the Type II mode instability.
The effects of radially anisotropic roughness (radial grooves) on the convective
instability of stationary disturbances demonstrate a strong stabilising effect on
the Type I instability mode in terms of the critical Reynolds number for the
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onset of the convective instability for both n = 0.9 and n = 1.1. However, the
Type II mode has a slight destabilising effect as this type of roughness level in-
creases and becomes dominate for sufficiently high levels of radially anisotropic
roughness.

Furthermore, the effects of roughness have been considered for shear-thinning
when n < 1 and shear-thickening n > 1 flows. Moreover, the neutral curves
have a strong stabilising effect on both the Type I and Type II instabilities.
Moreover, the Type I and Type II critical Reynolds numbers decrease, indicat-
ing an advanced onset of convective instability. The area encompassed by the
neutral curves is increased. For the number of the vortices n̄ and the vortex
angle � we have seen that increased surface roughness acts to increase both of
them and this is more noticeable on the upper-branch modes.

(a) Radial grooves. (b) Concentric grooves.

(c) Isotropic case.

Figure 7.1: Plot of the type I critical Reynolds number versus various values of n, (a)
radial grooves, (b) concentric grooves, and (c) isotropic roughness.

Figure (7.1) shows a range of roughness values with their associated type I
critical Reynolds numbers at various roughness values and different values of
power-index. The figures from (a)-(c) reveal high values of the critical Reynolds
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number as all roughness levels and power-indices are increased for all shear-
thinning and shear-thickening. Furthermore, we notice that increasing both ⌘
and n in (7.1) (a) indicate a lower value of the critical Reynolds number than
those seen in (7.1) (b) and (c). Thus, the concentric grooves case has a strong
stabilising effect than the radial grooves and the isotropic roughness cases for
this mode as evidence in this figure.

Also, isotropic roughness has a strong stabilising effect on the Type I and
Type II modes in terms of postponing their onset. Furthermore, it is observed
that increased surface roughness acts to increase the number of vortices along
the upper branch for both of n. However, increasing the values of roughness,
� = ⌘, acts to reduce the value of the vortex angle � along both branches.
The critical Reynolds numbers, the number of vortices and the vortex angle of
shear-thinning and shear-thickening are presented for the onset of both modes.

The growth rates of the dominant instability mode have been considered at
a fixed distance into the neutral curve and a complementary energy analysis is
completed. The energy balance of terms for the system of flows are calculated
for the Type I mode at the location of maximum amplification at Re = Rec+25
for each surface roughness type. The behaviour of the energy balance terms
are qualitatively consistent with the neutral curve behaviours for the entire
chapters. So, the energy analysis has revealed that radially-anisotropic rough-
ness and isotropic roughness act to reduce energy production of the Type I
mode for both fluids. This is a stabilisation effect on the Type I mode that
is reversed by azimuthally-anisotropic roughness. This has a destabilisation
effect on the Type I mode.

The response of the instability modes to the change in the shear-thinning
and -thickening properties of the fluid is more subtle. For both isotropic and
azimuthally anisotropic surface roughness, there appears to be a particular
value of n > 1 (that is, shear-thickening fluid) that gives the minimum crit-
ical Reynolds number. Any changes to n either side of this lead to delayed
instability, with particular sensitivity observed for shear-thinning fluids. The
maximum growth rates within the unstable regime are found to reduce linearly
with increasingly shear-thinning fluids. In contrast, shear-thickening fluids are
more stable for radially anisotropic roughness in terms of both the delayed
onset of instability and its subsequent linear growth.

These qualitative effects are seen under both approaches to modelling
roughness but quantitative differences are found after incorporating partial
slip in the perturbation equations. The effects of roughness within partial-slip
conditions added to the purturbation equations for the isotropic and the az-
imuthally anisotropic roughness are able to increase the critical Re and reduce
the amplitudes of both the Type I and II modes and this is in a similar way to
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that observed by [35] and [36] but it is more obvious for this method. Overall,
isotropic surface roughness is seen to have the most significant effect on delay-
ing the onset of convective instability at all values n and this is supported by
the growth rate of the most dangerous Type I modes. Therefore, Moreover,
adding the MW model to the perturbation equations help to delay the tran-
sition from laminar to turbulence for the Carreau mdoel. This means these
fluids led to reduce skin-friction drag in enclosed rotor-stator devices observed
in rotor-stator type engineering applications. Therefore, it is the most effec-
tive type of distributed surface roughness discussed in this thesis and is used
as a passive-drag reduction mechanism. These results allow us to be confident
in our conclusions about the stabilising effects of roughness on the convective
instabilities within the boundary layer for Type I for the isotropic case.

7.2 Future work

There are numerous additional research areas that could be explored follow-
ing the work published here. In view of the results of the current theoretical
study, it will be instructive to conduct relevant experiments to verify the analy-
ses presented here and shed light on the appropriate approach to incorporating
partial-slip in the perturbing quantities. For the non-Newtonian rotating disk
flows, linear stability analysis for power-law model [22] could be investigated,
as we have done in chapters (3), (4), (5) and (6). The convective instability
characteristics of the BEK system of flows using a linear approach with the
parallel flow approximation for both power-law and Carreau fluids is another
potential research area. Each chapter could also be extended by considering
the travelling convective instability modes following the study of [35]. Study-
ing non-stationary modes would then permit a study the absolute instability,
following the approach introduced by Lingwood [60]. Of additional interest
would be an investigation of different model of effects roughness on the Car-
reau flows using the approaches developed by, for example, the YHP model
[34] (a MATLAB code is done for this model see Appendix (E.1)).

Another possible area of future work would be to consider the effects of the
surface roughness for other two-dimensional or three-dimensional boundary-
layer flows such as those over a rotating sphere. Recently, Segalini & Garrett
[61] presented a new solution for the steady boundary layer flow over a rotating
sphere that includes the boundary layer eruption at the equator. Thus, the
effects of surface roughness using the MW model [33] and the YHP model [34]
could be incorporated as an extension to this work. Moreover, the effects on
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non-parallel mean-flows could be investigated following the work by Davies
and Carpenter [62] for von Kármán. Additionally, the solution for the steady
three-dimensional boundary layer Newtonian flow over a rotating sphere is
presented taking into account the surface roughness using the MW model (see
Appendix (E.2)). This helps to study the disturbance eigenfunctions and plot
curves showing neutral stability. Furthermore, the asymptotic linear stability
analysis could also be conducted to confirm the results in the limit of high
Reynolds number behaviour.
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Appendix A

Radially-anisotropic roughness

A.1 Additional mean flow figures

(a) (b) (c)

Figure A.1: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness n = 0.6.

(a) (b) (c)

Figure A.2: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness n = 0.7.
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(a) (b) (c)

Figure A.3: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness n = 1.3.

(a) (b) (c)

Figure A.4: Mean flow components of the Carreau flow in the case of radially
anisotropic roughness n = 1.4.

A.2 Additional mean flow data

Table A.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.6.

Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0.25 0.8295 0.2862 0.4581
⌘ = 0.50 0.5882 0.4059 0.4400
⌘ = 0.75 0.4618 0.4779 0.4274
⌘ = 1 0.3826 0.5278 0.4175
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Table A.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.7.

Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0.25 0.7028 0.2320 0.5285
⌘ = 0.50 0.5268 0.3478 0.5047
⌘ = 0.75 0.4260 0.4218 0.4875
⌘ = 1 0.3597 0.4747 0.4740

Table A.3: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.3.
Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0.25 0.2603 0.0744 1.2382
⌘ = 0.50 0.2380 0.1361 1.1807
⌘ = 0.75 0.2194 0.1882 1.1311
⌘ = 1 0.2037 0.2330 1.0877

Table A.4: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.4.
Parameters U 0(0) �V 0(0) �W (z1)

⌘ = 0.25 0.2265 0.0639 1.3948
⌘ = 0.50 0.2101 0.1185 1.3337
⌘ = 0.75 0.1961 0.1659 1.2801
⌘ = 1 0.1839 0.2075 1.2325

A.3 Additional neutral stability figures

(a) (b)

Figure A.5: Neutral curves for the Carreau flow over radially anisotropic roughness
with n = 0.6.
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(a) (b)

Figure A.6: Neutral curves for the Carreau flow over radially anisotropic roughness
with n = 0.7.

(a) (b)

Figure A.7: Neutral curves for the Carreau flow over radially anisotropic roughness
with n = 1.3.

(a) (b)

Figure A.8: Neutral curves for the Carreau flow over radially anisotropic roughness
with n = 1.4.
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A.4 Additional critical values data

Table A.5: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.6.

Parameters Re n̄

⌘ = 0.25 318.02(179.07) 28.43(10.47)
⌘ = 0.50 413.43(171.30) 22.89(7.16)
⌘ = 0.75 497.97(174.52) 19.99(5.69)
⌘ = 1 574.63(180.22) 13.94(4.85)

Table A.6: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.7.

Parameters Re n̄

⌘ = 0.25 300.92(225.32) 25.22(11.47)
⌘ = 0.50 363.69(204.07) 20.64(7.90)
⌘ = 0.75 418.84(200.14) 17.97(6.27)
⌘ = 1 468.54(201.09) 16.18(5.30)

Table A.7: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 1.3.

Parameters Re n̄

⌘ = 0.25 353.57(439.48) 14.32(12.40)
⌘ = 0.50 365.24(409.57) 13.14(10.34)
⌘ = 0.75 376.22(386.81) 12.19(8.88)
⌘ = 1 386.56(369.58) 11.41(7.81)

Table A.8: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 1.4.

Parameters Re n̄

⌘ = 0.25 369.13(458.03.03) 13.41(12.02)
⌘ = 0.50 378.49(433.35) 12.43(10.30)
⌘ = 0.75 387.40(412.73) 11.65(9.02)
⌘ = 1 395.90(396.01) 10.98(8.04)



Appendix B

Azimuthally-anisotropic
roughness

B.1 Additional mean flow figures

(a) (b) (c)

Figure B.1: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness n = 0.6.

(a) (b) (c)

Figure B.2: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness n = 0.7.
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(a) (b) (c)

Figure B.3: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness n = 1.3.

(a) (b) (c)

Figure B.4: Mean flow components of the Carreau flow in the case of azimuthally
anisotropic roughness n = 1.4.

B.2 Additional mean flow data

Table B.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.6.

Parameters U 0(0) �V 0(0) �W (z1)

� = 0.25 0.8197 2.9150 0.5237
� = 0.50 0.5440 3.1684 0.5356
� = 0.75 0.4053 3.2903 0.5414
� = 1 0.3226 3.3615 0.5448
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Table B.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.7.

Parameters U 0(0) �V 0(0) �W (z1)

� = 0.25 0.6882 1.9151 0.6087
� = 0.50 0.4880 2.0962 0.6275
� = 0.75 0.3762 2.1922 0.6377
� = 1 0.3056 2.2510 0.6441

Table B.3: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.3.
Parameters U 0(0) �V 0(0) �W (z1)

� = 0.25 0.2508 0.3672 1.3743
� = 0.50 0.2211 0.3948 1.4306
� = 0.75 0.1971 0.4156 1.4767
� = 1 0.1776 0.4317 1.5148

Table B.4: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.4.
Parameters U 0(0) �V 0(0) �W (z1)

� = 0.25 0.2185 0.3057 1.5354
� = 0.50 0.1957 0.3269 1.5906
� = 0.75 0.1767 0.3434 1.6377
� = 1 0.1611 0.3566 1.6836

B.3 Additional neutral stability figures

(a) (b)

Figure B.5: Neutral curves for the Carreau flow over azimuthally anisotropic rough-
ness with n = 0.6.
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(a) (b)

Figure B.6: Neutral curves for the Carreau flow over azimuthally anisotropic rough-
ness with n = 0.7.

(a) (b)

Figure B.7: Neutral curves for the Carreau flow over azimuthally anisotropic rough-
ness with n = 1.3.

(a) (b)

Figure B.8: Neutral curves for the Carreau flow over azimuthally anisotropic rough-
ness with n = 1.4.
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B.4 Additional critical values data

Table B.5: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.6.

Parameters Re n̄

� = 0.25 911.48(�) 363.46(�)
� = 0.50 2786.69(�) 1256.07(�)
� = 0.75 4353.07(�) 2076.82(�)
� = 1 5298.69(�) 2596.93(�)

Table B.6: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.7.

Parameters Re n̄

� = 0.25 561.46(�) 141.11(�)
� = 0.50 1387.15(�) 412.35(�)
� = 0.75 2561.46(�) 825.41(�)
� = 1 3624.93(�) 1216.30(�)

Table B.7: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 1.3.

Parameters Re n̄

� = 0.25 389.02(�) 20.48(�)
� = 0.50 449.69(�) 26.10(�)
� = 0.75 520.93(�) 32.60(�)
� = 1 601.46(�) 39.93(�)

Table B.8: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II)for n = 1.4.

Parameters Re n̄

� = 0.25 399.88(�) 18.03(�)
� = 0.50 448.35(�) 21.90(�)
� = 0.75 503.82(�) 26.33(�)
� = 1 565.98(�) 31.26(�)
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Isotropic roughness

C.1 Additional mean flow figures

(a) (b) (c)

Figure C.1: Mean flow components of the Carreau flow in the case of isotropic rough-
ness n = 0.6.

roughness

(a) (b) (c)

Figure C.2: Mean flow components of the Carreau flow in the case of isotropic rough-
ness n = 0.7.
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(a) (b) (c)

Figure C.3: Mean flow components of the Carreau flow in the case of isotropic rough-
ness n = 1.3.

(a) (b) (c)

Figure C.4: Mean flow components of the Carreau flow in the case of isotropic rough-
ness n = 1.4.

C.2 Additional mean flow data

Table C.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.6.

Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0.25 0.4541 1.3161 0.4779
� = ⌘ = 0.50 0.2366 0.9262 0.4645
� = ⌘ = 0.75 0.1519 0.7190 0.4540
� = ⌘ = 1 0.1085 0.5900 0.4454
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Table C.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thinning fluid n = 0.7.

Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0.25 0.4341 1.0705 0.5537
� = ⌘ = 0.50 0.2432 0.8043 0.5361
� = ⌘ = 0.75 0.1610 0.6449 0.5214
� = ⌘ = 1 0.1169 0.5396 0.5093

Table C.3: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.3.
Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0.25 0.2251 0.3277 1.2939
� = ⌘ = 0.50 0.1791 0.3140 1.2665
� = ⌘ = 0.75 0.1455 0.2964 1.2331
� = ⌘ = 1 0.1206 0.2784 1.1981

Table C.4: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for shear-thickening fluid n = 1.4.
Parameters U 0(0) �V 0(0) �W (z1)

� = ⌘ = 0.25 0.2000 0.2789 1.4539
� = ⌘ = 0.50 0.1644 0.2714 1.4276
� = ⌘ = 0.75 0.1370 0.2601 1.3938
� = ⌘ = 1 0.1158 0.2476 1.3573

C.3 Additional neutral stability figures

(a) (b)

Figure C.5: Neutral curves for the Carreau flow isotropic roughness with n = 0.6.
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(a) (b)

Figure C.6: Neutral curves for the Carreau flow over isotropic roughness with n = 0.7.

(a) (b)

Figure C.7: Neutral curves for the Carreau flow over isotropic roughness with n = 1.3.

(a) (b)

Figure C.8: Neutral curves for the Carreau flow isotropic roughness with n = 1.4.
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C.4 Additional critical values data

Table C.5: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.6.

Parameters Re n̄

� = ⌘ = 0.25 488.90(�) 64.14(�)
� = ⌘ = 0.50 697.52(�) 61.87(�)
� = ⌘ = 0.75 864.61(�) 58.53(�)
� = ⌘ = 1 1007.61(�) 55.07(�)

Table C.6: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 0.7.

Parameters Re n̄

� = ⌘ = 0.25 438.48(�) 49.88(�)
� = ⌘ = 0.50 608.58(�) 50.41(�)
� = ⌘ = 0.75 746.33(�) 48.50(�)
� = ⌘ = 1 863.59(�) 46.25(�)

Table C.7: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 1.3.

Parameters Re n̄

� = ⌘ = 0.25 397.05(�) 17.88(�)
� = ⌘ = 0.50 454.17(�) 19.21(�)
� = ⌘ = 0.75 508.78(�) 20.02(�)
� = ⌘ = 1 559.59(�) 20.39(�)

Table C.8: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for n = 1.4.

Parameters Re n̄

� = ⌘ = 0.25 407.01(�) 16.16(�)
� = ⌘ = 0.50 455.79(�) 17.25(�)
� = ⌘ = 0.75 503.25(�) 17.99(�)
� = ⌘ = 1 547.98(�) 18.41(�)
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Shear-thinning and -thickening

D.1 Additional mean flow figures

D.1.1 Radially-anisotropic roughness

(a) (b) (c)

Figure D.1: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with ⌘ = 0.50, � = 0.

(a) (b) (c)

Figure D.2: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with ⌘ = 0.75, � = 0.
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(a) (b) (c)

Figure D.3: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with ⌘ = 1, � = 0.

D.1.2 Azimuthally-anisotropic roughness

(a) (b) (c)

Figure D.4: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = 0.50, ⌘ = 0.

(a) (b) (c)

Figure D.5: Mean-flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = 0.75, ⌘ = 0.
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(a) (b) (c)

Figure D.6: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = 1, ⌘ = 0.

D.1.3 Isotropic roughness

(a) (b) (c)

Figure D.7: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = ⌘ = 0.50.

(a) (b) (c)

Figure D.8: Mean flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = ⌘ = 0.75.
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(a) (b) (c)

Figure D.9: Mean-flow components of the Carreau flow for shear-thinning and -
thickening fluids with � = ⌘ = 1.

D.2 Additional mean flow data

D.2.1 Radially-anisotropic roughness

Table D.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for ⌘ = 0.50.

Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.5882 0.8117 0.4400
n = 0.7 0.5268 0.6955 0.5047
n = 1.3 0.2380 0.2721 1.1807
n = 1.4 0.2101 0.2370 1.3337

Table D.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for ⌘ = 0.75.
Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.4618 0.6371 0.4274
n = 0.7 0.4260 0.5623 0.4875
n = 1.3 0.2194 0.2509 1.1311
n = 1.4 0.1961 0.2212 1.2801

Table D.3: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for ⌘ = 1.
Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.3826 0.5278 0.4175
n = 0.7 0.3597 0.4747 0.4740
n = 1.3 0.2037 0.2330 1.0877
n = 1.4 0.1839 0.2075 1.2325
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D.2.2 Azimuthally-anisotropic roughness

Table D.4: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = 0.50.

Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.5440 3.1684 0.5356
n = 0.7 0.4880 2.0962 0.6275
n = 1.3 0.2211 0.3948 1.4306
n = 1.4 0.1957 0.3269 1.5906

Table D.5: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = 0.75.
Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.4053 3.2903 0.5414
n = 0.7 0.3762 2.1922 0.6377
n = 1.3 0.1971 0.4156 1.4767
n = 1.4 0.1767 0.3434 1.6377

Table D.6: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = 1.
Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.3226 3.3615 0.5448
n = 0.7 0.3056 2.2510 0.6441
n = 1.3 0.1776 0.4317 1.5148
n = 1.4 0.1611 0.3566 1.6836

D.2.3 Isotropic roughness

Table D.7: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = ⌘ = 0.50.

Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.2366 0.9262 0.4645
n = 0.7 0.2432 0.8043 0.5361
n = 1.3 0.1791 0.3140 1.2665
n = 1.4 0.1644 0.2714 1.4276
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Table D.8: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = ⌘ = 0.75.

Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.1519 0.7190 0.4540
n = 0.7 0.1610 0.6449 0.5214
n = 1.3 0.1455 0.2964 1.2331
n = 1.4 0.1370 0.2601 1.3938

Table D.9: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (z1) for � = ⌘ = 1.
Parameters U 0(0) �V 0(0) �W (z1)

n = 0.6 0.1085 0.5900 0.4454
n = 0.7 0.1169 0.5396 0.5093
n = 1.3 0.1206 0.2784 1.1981
n = 1.4 0.1158 0.2476 1.3573

D.3 Additional neutral stability figures

D.3.1 Radially-anisotropic roughness

(a) (b)

Figure D.10: Neutral curves for the Carreau flow for ⌘ = 0.50.
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(a) (b)

Figure D.11: Neutral curves for the Carreau flow for ⌘ = 0.75.

(a) (b)

Figure D.12: Neutral curves for the Carreau flow for ⌘ = 1.

D.3.2 Azimuthally-anisotropic roughness

(a) (b)

Figure D.13: Neutral curves for the Carreau flow for � = 0.50.
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(a) (b)

Figure D.14: Neutral curves for the Carreau flow for � = 0.75.

(a) (b)

Figure D.15: Neutral curves for the Carreau flow for � = 1.

D.3.3 Isotropic roughness

(a) (b)

Figure D.16: Neutral curves for the Carreau flow for � = ⌘ = 0.50.
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(a) (b)

Figure D.17: Neutral curves for the Carreau flow for � = ⌘ = 0.75.

(a) (b)

Figure D.18: Neutral curves for the Carreau flow for � = ⌘ = 1.

D.4 Additional critical values data

D.4.1 Radially-anisotropic roughness

Table D.10: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for ⌘ = 0.50.

Parameters Re n̄

n = 0.6 431.43(171.30) 22.89(7.16)
n = 0.7 363.69(204.07) 20.64(7.90)
n = 1.3 365.24(409.57) 13.14(10.34)
n = 1.4 378.40(433.35) 12.43(10.30)
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Table D.11: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for ⌘ = 0.75.

Parameters Re n̄

n = 0.6 497.97(174.52) 19.99(5.69)
n = 0.7 418.84(200.14) 17.97(6.27)
n = 1.3 376.22(386.81) 12.19(8.88)
n = 1.4 387.40(412.73) 11.65(9.02)

Table D.12: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for ⌘ = 1.

Parameters Re n̄

n = 0.6 574.63(180.22) 18.00(4.85)
n = 0.7 468.54(201.09) 16.18(5.30)
n = 1.3 386.56(369.58) 11.41(7.81)
n = 1.4 395.90(396.01) 10.98(8.04)

D.4.2 Azimuthally-anisotropic roughness

Table D.13: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = 0.50.

Parameters Re n̄

n = 0.6 2786.69(�) 1256.07(�)
n = 0.7 1387.15(�) 412.35(�)
n = 1.3 449.69(�) 26.10(�)
n = 1.4 448.35(�) 21.90(�)

Table D.14: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = 0.75.

Parameters Re n̄

n = 0.6 4353.07(�) 2076.82(�)
n = 0.7 2561.46(�) 825.41(�)
n = 1.3 520.93(�) 32.60(�)
n = 1.4 503.82(�) 26.33(�)

Table D.15: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = 1.

Parameters Re n̄

n = 0.6 5298.69(�) 2596.93(�)
n = 0.7 3624.93(�) 1216.30(�)
n = 1.3 601.46(�) 39.93(�)
n = 1.4 565.98(�) 31.26(�)
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D.4.3 Isotropic roughness

Table D.16: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = ⌘ = 0.50.

Parameters Re n̄

n = 0.6 697.52(�) 61.87(�)
n = 0.7 608.58(�) 50.41(�)
n = 1.3 454.17(�) 19.21(�)
n = 1.4 455.79(�) 17.25(�)

Table D.17: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = ⌘ = 0.75.

Parameters Re n̄

n = 0.6 864.61(�) 58.53(�)
n = 0.7 746.33(�) 48.50(�)
n = 1.3 508.78(�) 20.02(�)
n = 1.4 503.25(�) 17.99(�)

Table D.18: The values of the critical Reynolds number Re and n̄ on the both modes
type I and (type II) for � = ⌘ = 1.

Parameters Re n̄

n = 0.6 10007.61(�) 55.07(�)
n = 0.7 863.59(�) 46.25(�)
n = 1.3 559.59(�) 20.39(�)
n = 1.4 547.98(�) 18.41(�)
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Future work

E.1 YHP model MATLAB code

Main file:

1 c l e a r ;
2 c l c ;
3

4 a=0
5 gamma=0.1;
6 de l t a=gamma∗a ;
7

8 dr =0.001;
9

10 load ( ’ vonKarman . mat ’ ) ;
11 f r=yvK ( 1 , : ) ;
12 gr=yvK ( 2 , : ) ;
13 hr=yvK ( 3 , : ) ;
14 d f r=yvK ( 4 , : ) ;
15 dgr=yvK( 5 , : ) ;
16 xr=xvK ;
17

18 f a l l = [ ] ;
19 g a l l = [ ] ;
20 h a l l = [ ] ;
21 d f a l l = [ ] ;
22 dga l l = [ ] ;
23 r a l l = [ ] ;
24
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25 %xr=l i n s p a c e (0 ,20 ,5000) ;
26 %f r=in t e rp1 (xvK , yvK ( 1 , : ) , xr ) ;
27 %gr=in t e rp1 (xvK , yvK ( 2 , : ) , xr ) ;
28 %hr=in t e rp1 (xvK , yvK ( 3 , : ) , xr ) ;
29 %df r=in t e rp1 (xvK , yvK ( 4 , : ) , xr ) ;
30 %dgr=in t e rp1 (xvK , yvK ( 5 , : ) , xr ) ;
31

32 opt ions=odeset ( ’ RelTol ’ ,1 e�8, ’ AbsTol ’ ,1 e�9) ;
33 %opt ions=odeset ( ’ RelTol ’ , eps , ’ AbsTol ’ , 1 e�9) ;
34

35 f o r n=1:1:100
36

37 r=n∗dr
38 s o l i n i t = bvp in i t ( xr , [ 0 . 1 �1 �1 0 0 ] ) ;
39 s o l i n i t . y=[ f r ; gr ; hr ; d f r ; dgr ] ; % i n i t i a l i s e the

s o l u t i o n o f ODE with the r e s u l t s from the
prev ious t imestep

40

41 %so l = bvp5c (@(x , y ) karmanpde (x , y , f r , gr , xr , de l ta ,
gamma, r , dr ) ,@karmanbc , s o l i n i t ) ;

42 s o l = bvp5c (@(x , y ) karmanpde2 (x , y , f r , gr , hr , dfr , dgr ,
xr , de l ta , gamma, r , dr ) ,@karmanbc , s o l i n i t ) ;

43

44 x=l i n s p a c e (0 ,20 ,2000) ;
45 y=deval ( so l , x ) ;
46 %plo t (x , y ( 1 , : ) ) ;
47 %hold on ;
48

49 f r=y ( 1 , : ) ;
50 gr=y ( 2 , : ) ;
51 hr=y ( 3 , : ) ;
52 d f r=y ( 4 , : ) ;
53 dgr=y ( 5 , : ) ;
54

55 f a l l =[ f a l l ; f r ] ;
56 g a l l =[ g a l l ; gr ] ;
57 h a l l =[ h a l l ; hr ] ;
58 d f a l l =[ d f a l l ; d f r ] ;
59 dga l l =[ d ga l l ; dgr ] ;
60 r a l l =[ r a l l ; r ] ;
61

62 end
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63

64 % average over r
65 f ba r = [ ] ;
66 gbar = [ ] ;
67 hbar = [ ] ;
68 f o r m=1:1:2000
69 f ba r =[ fbar mean( f a l l ( : ,m) ) ] ;
70 gbar=[gbar mean( g a l l ( : ,m) ) ] ;
71 hbar= [ hbar mean( h a l l ( : ,m) ) ] ;
72 end
73 p lo t ( xr , fba r ) ;
74 x l ab e l ( ’ z ’ ) ;
75 y l ab e l ( ’ $\bar{ f }$ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
76 hold on ;

YHP model PDE:

1 f unc t i on dydx = karmanpde2 (x , y , f r , gr , hr , dfr , dgr , xr , de l ta
, gamma, r , dr )

2

3 % in t e r p o l a t e the r e s u l t s from the prev ious s tep
4 f 1=in t e rp1 ( xr , f r , x ) ;
5 g1=in t e rp1 ( xr , gr , x ) ;
6 h1=in t e rp1 ( xr , hr , x ) ;
7 df1=in t e rp1 ( xr , dfr , x ) ;
8 dg1=in t e rp1 ( xr , dgr , x ) ;
9

10 % roughness exp r e s s i on
11 s=de l t a ∗ cos (2∗ pi ∗ r /gamma) ;
12 sp=�de l t a ∗ s i n (2∗ pi ∗ r /gamma) ∗(2∗ pi /gamma) ;
13 spp=�de l t a ∗ cos (2∗ pi ∗ r /gamma) ∗ ( (2∗ pi /gamma) ^2) ;
14

15 % setup o f equat ions
16

17 eq1=�2∗f1�r ∗( y (1 )�f 1 ) /dr ;
18

19 term1=r ∗ f 1 . ∗ ( y (1 )�f 1 ) /dr ;
20 term2=h1 .∗ y (4 ) ;
21 term3=(1+(r�dr ) ∗ sp∗ spp/(1+sp^2) ) . ∗ ( f 1 .^2) ;
22 term4=(1+g1 ) .^2./(1+ sp^2) ;
23 term5=1+sp ^2;
24 eq2=(term1+term2+term3�term4 ) /term5 ;
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25

26 term1=r ∗ f 1 . ∗ ( y (2 )�g1 ) /dr ;
27 term2=h1 .∗ y (5 ) ;
28 term3=2∗ f 1 .∗(1+g1 ) ;
29

30 eq3=(term1+term2+term3 ) /term5 ;
31

32 dydx = [ y (4 ) ; y (5 ) ; eq1 ; eq2 ; eq3 ] ;

Boundary conditions:

1 f unc t i on r e s = karmanbc ( ya , yb )
2 r e s = [ ya (1 ) ; ya (2 ) ; ya (3 ) ; yb (1 ) ; yb (2 )+1 ] ;

E.2 Rotating-Sphere

E.2.1 Mean flow

Consider a steadily rotating sphere with angular velocity ⌦ in an otherwise
quiescent fluid. Also, let the problem be written in a fixed reference frame
in a spherical coordinate system where (r, ✓,�) denotes the radial, azimuthal
and tangential coordinates respectively. Adopted to our reference frame let
(u, v, w) denote the velocities in the ✓, � and r directions respectively. The
flow field is assumed to spherically symmetric and (u, v, w) are independent of
�. This reduces the steady polar Navier-Stokes equations and incompressible
continuity equation to the following form. Here all the physical quantities are
scaled by the density,⇢, the angular velocity, ⌦, and the sphere radius, R. The
boundary layer thickness is estimated by ✏ ⇡ ⌫/!

2
R where ⌫ is the kinematic

viscosity. This will introduce the small perturbation parameter of the problem,
namely ✏ = �/R. The mean-flow equations formulated as

@u
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@r
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Here Res is the Reynolds number based on the sphere radius and can be
defined as Res = ⌦R2

/⌫ = ✏
�2. Following the study of ([63],[64]) and the

study by ([61]) recently, we introduce the scaling as ⇣ = (r � 1)/✏) for the
coordinate and non-dimensionalisation using these asymptotic formula

u = U0 + ✏ U1 +O(✏2),

v = V0 + ✏ V1 +O(✏2),

w = ✏W0 + ✏
2
W1 +O(✏3),

p = ✏ P0 +O(✏2),

(E.2)

Substituting Equations ( E.2.1) into Equations ( E.1) we obtain the the
boundary layer equations and they are consistent with the ones derived in the
literature
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Where (U, V,W ) here is U0, V0 and W0 respectively. The non-dimensional
boundary conditions are expressed as

U = �
@U

@⇣
,

V = ⌘
@V

@⇣
+ sin ✓,

(E.4)

W (0) = 0, (E.5)

and
U = 0, V = 0 as ⇣ ! 1. (E.6)

These boundary conditions are derived from MW approach which assumes
that roughness can be modelled by a modification of the no-slip conditions at
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the disk surface. In particular, the model assumes partial slip at the sphere
surface but is otherwise identical to the smooth surface formulation. where
primes denote differentiation with respect to ⇣, and the two parameters ⌘
and � give empirical measures of the roughness in the radial and azimuthal
directions.

E.2.2 Steady mean flow solutions

In order to solve Equations ( E.3) at particular latitudes. a series expansion
solution in powers of ✓, constructing a solution of the form

U(⇣, ✓) = F1✓ + F3✓3 + F5✓
5 + F7✓

7
,

V (⇣, ✓) = G1✓ +G3✓3 +G5✓
5 +G7✓

7
,

W (⇣, ✓) = H1✓ +H3✓3 +H5✓
5 +H7✓

7
,

(E.7)

Where Fi, Gi and Hi are functions of the non-dimensional variable ⇣ and
parameter ✓, and i = 1, 3, 5, ..... are dimensionless and are funtions of an appro-
priate coordinate ⇣ where This is consistent with the series solution originally
proposed by Howarth [63] and Banks [64] where ✓ = 0. Also, the boundary
conditions can take this form.

Fm(0) = �F
0
m(0),

Gm(0) = ⌘G
0
m(0) +

(�1)
m�1

2

m!
,

Hm(0) = 0,

(E.8)

and
Fm = Gm = 0 as ⇣ ! 1. (E.9)

It is interesting to note that after substituting the above series expansions
into equations ( E.3) we will have the first order equations are written below
( E.2.2) in Equations and they are the same form as the von Kármán equations
for the rotating disk. We therefore see there is a the similarity of the polar
region with the rotating disk. So the von Kármán equations can be solved
with a similarity solution of a similar form, and by asymptotically expanding
in ✓ the series expansions will be the best option for a good approximation
especially the area around the pole.
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The boundary layer Equations ( E.3) and the boundary conditions Equa-
tions ( E.6) are solved in order to get the mean flow. This will give us the mean
boundary layer flow near the sphere surface which is expected to be similar
to the flow on the rotating disk. The methodology to solve these equations
is similar to that used by [18]. The solution by [64] is used up to ✓ = 6.
Beyond this polar angle the finite difference method is applied using space-
marching for the ✓ direction and Newton method for the ⇣ direction. More
specifically, three-point backwards differences are used for ✓ derivatives and
central differencing for the ⇣ derivatives. The detailed implementation of the
algorithm is given in [61]. The domain was discretised into 200 grid points
uniformly distributed in the wall-normal direction between the sphere surface
and ⌘max = 20, and 1000 uniformly distributed points between the pole and
the equator. The tolerance for convergence of the Newton-Raphson method is
such that the corrections should be less than ✓ < 10�5 of the equatorial tan-
gential velocity. The resulting flow of the velocity components are presented in
Subsection E.2.3, Subsection E.2.4 and Subsection E.2.5 that contain a variety
of roughness parameters with a single value of a latitude. also, in Subsection
2.3.1 presents a single value of rough parameters at each latitude ✓.

E.2.3 Radially anisotropic roughness

Table E.1: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 20

Parameters U 0(0) �V 0(0) �W (⇣1)

⌘ = 0 0.1516 0.1863 0.8683
⌘ = 0.25 0.1244 0.1527 0.8125
⌘ = 0.50 0.1062 0.1303 0.7707
⌘ = 0.75 0.0931 0.1142 0.7374
⌘ = 1 0.0831 0.1019 0.7099

Table E.2: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 80
Parameters U 0(0) �V 0(0) �W (⇣1)

⌘ = 0 0.2550 0.3533 0.6235
⌘ = 0.25 0.2213 0.3151 0.5919
⌘ = 0.50 0.1961 0.2842 0.5665
⌘ = 0.75 0.1764 0.2590 0.5454
⌘ = 1 0.1606 0.2381 0.5274
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(a) (b)

(c)

Figure E.1: Sphere boundary-layer velocity profiles for ✓ = 20. (a) U -profile, (b)
V -profile, (c) W -profile
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(a) (b)

(c)

Figure E.2: Sphere boundary-layer velocity profiles for ✓ = 80. (a) U -profile, (b)
V -profile, (c) W -profile

E.2.4 Azimuthally anisotropic roughness

Table E.3: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 20

Parameters U 0(0) �V 0(0) �W (⇣1)

� = 0 0.1516 0.1863 0.8683
� = 0.25 0.1199 0.2179 0.9237
� = 0.50 0.0983 0.2374 0.9628
� = 0.75 0.0830 0.2503 0.9907
� = 1 0.0717 0.2594 1.0114

Table E.4: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 80
Parameters U 0(0) �V 0(0) �W (⇣1)

� = 0 0.2550 0.3533 0.6235
� = 0.25 0.2250 0.3923 0.6552
� = 0.50 0.2002 0.4241 0.6804
� = 0.75 0.1793 0.4491 0.7003
� = 1 0.1606 0.4687 0.7161



Isotropic roughness 151

(a) (b)

(c)

Figure E.3: Sphere boundary-layer velocity profiles for ✓ = 20. (a) U -profile, (b)
V -profile, (c) W -profile

E.2.5 Isotropic roughness

Table E.5: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 20

Parameters U 0(0) �V 0(0) �W (⇣1)

� = ⌘ = 0 0.1516 0.1863 0.8683
� = ⌘ = 0.25 0.0972 0.1724 0.8533
� = ⌘ = 0.50 0.0675 0.1523 0.8273
� = ⌘ = 0.75 0.0500 0.1346 0.8007
� = ⌘ = 1 0.0389 0.1201 0.7761
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(a) (b)

(c)

Figure E.4: Sphere boundary-layer velocity profiles for ✓ = 80. (a) U -profile, (b)
V -profile, (c) W -profile

Table E.6: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) for ✓ = 80

Parameters U 0(0) �V 0(0) �W (⇣1)

� = ⌘ = 0 0.2550 0.3533 0.6235
� = ⌘ = 0.25 0.1927 0.3457 0.6170
� = ⌘ = 0.50 0.1488 0.3273 0.6041
� = ⌘ = 0.75 0.1180 0.3052 0.5896
� = ⌘ = 1 0.0960 0.2834 0.5753
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(a) (b)

(c)

Figure E.5: Sphere boundary-layer velocity profiles for ✓ = 20. (a) U -profile, (b)
V -profile, (c) W -profile

E.2.6 The effect of the latitude

Table E.7: Numerical values of the mean velocity flow parameters U
0(0), V 0(0) and

W (⇣1) at various latitudes for � = ⌘ = 0.25

Parameters U 0(0) �V 0(0) �W (⇣1)

✓ = 20� 0.0972 0.1724 0.8533
✓ = 30� 0.1398 0.2471 0.8344
✓ = 40� 0.1750 0.3080 0.8078
✓ = 50� 0.2005 0.3511 0.7732
✓ = 60� 0.2137 0.3735 0.7304
✓ = 70� 0.2122 0.3724 0.6787
✓ = 80� 0.1927 0.3457 0.6170
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(a) (b)

(c)

Figure E.6: Sphere boundary-layer velocity profiles for ✓ = 80. (a) U -profile, (b)
V -profile, (c) W -profile

E.2.7 Stability analysis

This equations are non-dimensionalised with respect to the local radial position
ra. Therefore, The local similarity variable are defined by

U(⇣) = U
⇤+u

⇤
, V (⇣) = V

⇤+v
⇤
, W (⇣) = W

⇤+w
⇤
, P (⇣) = P

⇤+p
⇤
.

(E.11)

After subtracting them into the mean flow equations.The equations gov-
erning the perturbations can be yield as

r · û = 0, (E.12)
@û

@t
+ (û ·r)u+ (u ·r)û = �

1

⇢
rp̂+ ⌫r2 · û.
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(a) (b)

(c)

Figure E.7: Sphere boundary-layer velocity profiles at various latitudes for � = ⌘ = 0.
(a) U -profile, (b) V -profile, (c) W -profile

Some terms in the momentum equation can be expressed here as
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(a) (b)

(c)

Figure E.8: Sphere boundary-layer velocity profiles at various latitudes for � = ⌘ =
0.25. (a) U -profile, (b) V -profile, (c) W -profile

The perturbation velocity û and pressure p̂ can be expanded in the normal-
mode form

(u, v, w, p) = (û, v̂, ŵ, ei(↵✓+�sine(✓)��!t)) (E.15)

Here ↵ = ↵r+i↵i is the radial wave number, � is the azimuthal wave number
(which is real) and ! is the frequency of the disturbances expressed in the ro-
tating frame. Also the number of completed cycles of the perturbations around
the azimuthal angle defined as n̄ = �̄Re. Furthermore, non-dimensionalising
the perturbation parameters by substituting the following formula:

u(⇣) = a⌦û, v(⇣) = a⌦v̂, w(⇣) = a⌦ŵ, p(⇣) = a⌦p̂. (E.16)
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, (E.17)
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(a) (b)

(c)

Figure E.9: Contours of the mean flow velocity components with � = ⌘ = 0.25. (a)
U -profile, (b) V -profile, (c) W -profile

and imposing (E.15) into (E.2.7) and (E.2.7), ignoring all the terms R
2, the

eigenvalue problem can be written as
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l factor can be expected to be 1. The orientation angle of the stationary
vortices with respect to a circle centred on the axis of rotation is given as

� = tan�1
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