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Abstract 

Wireless capsule endoscopy (WCE), the most efficient technology, is used in the endoscopic department for 

the examination of gastrointestinal (GI) diseases such as a poly and ulcer. WCE generates thousands of 

frames for a single patient’s procedure, and the manual examination is time-consuming and exhausting. In the 

WCE frames, computerized techniques make the manual inspection process easier. Deep learning has been 

used by researchers to introduce a variety of techniques for the classification of GI diseases. Some of them 

have concentrated on ulcer and bleeding classification, while others have classified ulcers, polyps, and 

bleeding. In this paper, we proposed a deep learning and Moth-Crow optimization-based method for GI 

disease classification. There are a few key steps in the proposed framework. Initially, the contrast of the 

original images is increased, and three operations based on data augmentations are performed. Then, using 

transfer learning, two pre-trained deep learning models are fine-tuned and trained on GI disease images. 

Features are extracted from the middle layers using both fine-tuned deep learning models (average pooling). 

On both extracted deep feature vectors, a hybrid Crow-Moth optimization algorithm is proposed and applied. 

The resultant selected feature vectors are later fused using the distance-canonical correlation (D-CCA) 

approach. For classifying GI diseases, the final fused vector features are classified using machine learning 

algorithms. The experiments are carried out on three publicly available datasets titled CUI Wah WCE 

imaging, Kvasir-v1, and Kvasir-v2, providing improved accuracy with less computational time compared 

with recent techniques. 
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1. Introduction  

A lot of research is being carried out by researchers in the field of medical imaging by utilizing 

computer vision and deep learning (DL) on different types of imaging technology such as magnetic 

resonance imaging (MRI), computed tomography (CT) [1], dermoscopy, X-ray [2], and capsule 

endoscopy [3]. A common type of cancer that affects both men and women is colorectal cancer [4]. 

These types of cancers can be a polyp, bleeding, or ulcer. Stomach disease affects approximately 3.6 

million children annually [5]. In the United States, the number of registered colorectal cancer cases 

since 2015 tallies 1.32 million. The total number of bowl infection cases tallies 1.6 million and 200,000 

new cases are added each year. Early-stage diagnosis is very difficult due to a high mortality rate. In 

2021, the number of reported stomach cancer cases tallied 149,500, while the numbers of deaths tallied 

52,980 [6]. 

Some infections can be linked to colorectal cancer such as short bowl and hemorrhoids. The 

diagnosis of these infections can be done by using colonoscopy techniques [7]. The drawback of this 

method is its high time consumption and a limited number of specialists available [3]. Moreover, this 

method is not suitable for detecting small bowls due to their complex build. This problem was 

addressed by introducing a new technique called wireless capsule endoscopy (WCE) [8]. WCE is a 

widely used method for detecting gastrointestinal (GI) diseases. In this method, a tiny camera with a 

diameter of 11 mm × 30 mm is used to capture the region of GI. The whole procedure may take more 

than 2 hours [9]. After capturing, all frames are compressed by utilizing the JPEG technique. In WCE, 

there is no need for an external wire and patients are asked to swallow the camera to record the video. 

After that, the radio telemetry method is used to transfer the videos to an external recorder. An array 

based on eight aerials is attached to the patient and a capsule in GI tract is located. This method can 

detect diseases and perform a small bowl diagnosis, and so it is popular in hospitals. Approximately 1 

million people are successfully treated by this method in the last year [10]. However, this method has a 

few limitations such as time consumption and a lack of experts. The main concern with this method is 

the time constraint because it takes a long time for a manual diagnosis. Also, an ulcer in the WCE 

images is not clearly visible due to the low contrast [11]. Therefore, there is a chance that a physician 

may miss the region of ulcer during the detection process. Furthermore, there is another problem that 

occurs during a diagnosis with the naked eyes with regard to similarity of color, texture, and variations 

of the shape [12].  

Therefore, researchers introduced various CV techniques for the diagnosis and classification of 

medical infections such as stomach cancers [13], skin cancers [14], and brain tumors. These techniques 

are based on some basic steps such as increasing the contrast and removing the noise from the original 

image, segmenting infected regions in the image, extracting important features of each image, selecting 

the best features, and finally classifying them into relevant classes. Contrast enhancement is an 

important step of a computerized method. The main purpose of this step is to improve the intensity 

range of an infected region to get better segmentation accuracy and extract relevant features [15]. In the 

segmentation part, infected regions are detected through several techniques such as saliency based [16], 

and named a few more [17]. The resultant images of this step are passed to the next step for feature 

extraction; however, this step has several challenges (i.e., change in shape of infected lesion, similarity 

in color of healthy and infected parts, presence of an infected region on the border) that reduce the 

segmentation accuracy. The reduction in segmentation accuracy later produces a misclassification of a 

disease into the relevant class. 

Recently, a deep convolutional neural network (CNN) has shown improved performance for both 

detection and classification of medical infections [18–20]. A CNN is a form of DL that includes several 

layers such as convolutional, ReLu, fully connected, and pooling. In a CNN model, the raw images are 

normally processed for features extraction and classification. Compared to the classical techniques, the 

CNN-based techniques produce much better and reliable results. Several DL techniques are utilized 

recently for automated recognition of multiple stomach diseases, as illustrated in Fig. 1 [21]. These 
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methods utilized the pre-trained CNN models for features extraction that are later employed for features 

optimization. The pre-trained CNN models are trained through transfer learning (TL) due to the 

shortage of memory and time. 

 

 
Fig. 1. Sample WCE images of multiple stomach diseases collected from Kvasir-v1 [21]. 

 

As an example, Ayyaz et al. [22] presented a hybrid CNN-based approach for stomach infection 

detection and classification. For feature extraction, they used several CNN pre-trained models, 

including VGG and AlexNet. Later on, they used a genetic algorithm to select the best features, which 

were then classified using machine learning methods. By the same token, Lee at al. [23] utilized DL 

models such as ResNet-50, VGG16, and Inception-V3 for classifying normal and ulcer GI images. In 

this method, Resnet-50 outperformed the rest of the deep networks. Khan et al. [24] introduced a 

saliency-based method to segment the GI infections, whereas a DL architecture is used for 

classification. They used a YIQ color space along with an HSI color space that is later feed to a 

contour-based approach for segmentation. Suman et al. [25] used several color spaces for feature 

extraction such as CMYK, LAB, YUV, RGB, XYZ, and HSV for non-ulcer and ulcer detections. These 

feature vectors are fused by utilizing a cross-correlation method, and a final classification is done by 

using support vector machine (SVM), attaining an accuracy of 97.89%. Yuan et al. [26] introduced an 

automated method for detecting an ulcer from the WCE frames. Initially, a saliency approach based on 

super pixel is implemented to draw an ulcer region boundary. Next, each level texture and color 

attributes are computed and fused to get the final map of saliency. After that, a saliency max-pooling 

(SMP) technique is introduced and merged with locality-constrained linear coding (LLC) to attain a 

recognition rate of 92.65%. Rustam et al. [27] proposed a bleedy image recognizer (BIR) DL 

architecture for classifying bleeding infected frames. They trained with using BIR and two custom deep 

models. They used 1,650 WCE images in the evaluation process and achieved an improved accuracy. 

The primary goal of this study was to perform an automatic analysis of WCE bleeding images. Jain et 

al. [28] presented an attention-based DL architecture for stomach disease classification and localization 

from WCE images. Initially, they performed an efficient CNN-based classification of stomach diseases. 

Later on, they combined Grad-CAM++ and a custom SegNet for the localization of infected regions. 

The presented method is evaluated on a KID dataset and achieved an improved accuracy. Lan and Ye 

[29] introduced a combination of an unsupervised DL method for WCE video summarization. They 

used several networks such as LSTM, autoencoder to name a few more and then performed 

summarization. The main purpose of this work was to help doctors in the analysis of the entire WCE 

video. Naz et al. [30] introduced a hybrid sequential framework for classifying stomach diseases from 

WCE images. They initially performed contrast enhancement through filtering techniques, followed by 

feature extraction using a hand-engineered method and VGG. Finally, a serial-based fusion is used, 

while the classification is performed. The main purpose of this work was to improve the current 

classification accuracy of stomach diseases. Several other techniques were also presented such as graph 

convolutional based [31], CNN-batch normalization [32], to name a few more [33].       
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 The features extracted from a single deep network extract a single characteristic; however, recent 

work has shown a decrease in accuracy when dealing with complex images [34]. Furthermore, the 

features extracted from the pre-trained models contain a significant amount of irrelevant and redundant 

information [13]. To deal with the redundant information, the researchers used several fusion and 

feature selection techniques, which thereby improved the accuracy. However, they were still confronted 

with the issue of computational time and room for improvement in the accuracy. We proposed a new 

automated end-to-end framework for stomach disease classification using a DL and hybrid moth-crow 

optimization algorithms in this article. The following are the major contributions of this work: 

⚫ A contrast stretching technique based on the maximum intensity value of the infected region and 

a combination of local-global information are proposed.  

⚫ For feature extraction, two pre-trained models, called MobileNet-V2 and NasNet Mobile, are 

fine-tuned and trained with using TL.  

⚫ Instead of deep layers, deep learning features are extracted from average pooling layers and 

refined, using an entropy-based function. The features are then combined with the help of a 

serial-based average threshold function.  

⚫ An amalgam crow-moth optimization algorithm is proposed based on the cross-entropy loss 

function for the best DL feature selection.    

The remainder of the paper is structured as follows: Section 2 provides a detailed mathematical 

formulation of the proposed DL and crow-moth flame optimization algorithms. The experimental 

results are presented in Section 4, which follows the conclusion in Section 5 with our key findings. 

 

2. The Proposed Methodology  

The proposed DL and hybrid crow-moth optimization algorithm-based frameworks consist of a few 

important steps, as illustrated in Fig. 2. The contrast of the original images is increased, and three 

operation-based data augmentations are performed. After that, two pre-trained DL models are fine-

tuned and trained on GI disease images using TL. By employing both fine-tuned DL models, features 

are extracted from the middle layers (average pooling). A hybrid crow-moth optimization algorithm is 

proposed and applied on both extracted deep feature vectors that are later fused using the distance-

canonical correlation (D-CCA) approach. The final fused vector features are classified using machine 

learning algorithms for classifying GI diseases. 

 

 

Fig. 2. The proposed framework of GI diseases classification using deep learning and moth-crow-based 

features optimization. 
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2.1 Contrast Enhancement and Augmentation 

Let Δ̃ be a database having three datasets of WCE images. Suppose 𝜙(𝑖, 𝑗)  is a WCE image of 

dimensions 𝑀 × 𝑁 × 𝐾 , where 𝑀 = 𝑁 = 256  and 𝐾 = 3 . The 𝐾 = 3  represents that the nature of 

input image is RGB. The contrast of each image is computed by the following mathematical 

formulation expressed as: 

 

𝜙𝑐1(𝑖, 𝑗) = �̃�𝑡 + �̃�ℎ (1) 

�̃�𝑡 = 𝐵𝑡(𝜙(𝑖, 𝑗) ⋅ 𝑆) + 𝐶𝑡 (2) 

�̃�ℎ = 𝑇ℎ(𝜙(𝑖, 𝑗) ∘ 𝑆) + 𝐶𝑡 (3) 

�̃�𝑐(𝑖, 𝑗) = (𝜙𝑐1(𝑖, 𝑗) − 𝜙(𝑖, 𝑗)) ∗ �̃�𝑡 (4) 

 

where, 𝜙𝑐1(𝑖, 𝑗) is initial contrast enhanced resultant image, �̃�𝑡  is bottom hat transformed values, �̃�ℎ 

denotes top-hat transformed values, �̃�𝑐(𝑖, 𝑗) is updated contrast enhanced values, 𝐶𝑡 is constant of value 

1, and 𝑆 is a structuring element value of 11. Two operators are also applied such as opening and 

closing denoted by (∘) and (⋅). The Gaussian function is applied on the updated contrast image �̃�𝑐(𝑖, 𝑗) 

to remove the noisy pixels. Mathematically, it is defined as follows: 

 

𝔾 =
1

2𝜋𝜎
𝑒

−1
2

(
�̃�𝑐−𝑀𝑒𝑎𝑛

𝜎
)
 (5) 

𝑀𝑒𝑎𝑛 =
1

𝑀𝑁
∑∑(�̃�𝑐(𝑖, 𝑗))

𝑁

𝑗=1

𝑀

𝑖=1

 (6) 

𝜎 = √𝐸 (�̃�𝑐(𝑖, 𝑗)) − 𝐸 (𝐸�̃�𝑐(𝑖, 𝑗))
2

 (7) 

�̃�𝐺(𝑖, 𝑗) = 𝔾(�̃�𝑐(𝑖, 𝑗)) (8) 

 

where, 𝔾 denotes the Gaussian function, 𝜎 is a standard deviation, and �̃�𝐺 is Gaussian updated image. 

After that, the minimum and maximum intensity values are computed denoted by 𝛼 from �̃�𝐺 and the 

Gaussian image is updated and expressed as follows: 

 

𝛼 =
max(�̃�𝐺(𝑖, 𝑗)) + min(�̃�𝐺(𝑖, 𝑗))

2
 (9) 

�̃��̃�(𝑖, 𝑗) = �̃�𝐺(𝑖, 𝑗) × 𝛼 (10) 

 

where, �̃��̃�(𝑖, 𝑗) is updated Gaussian image. This image is divided into three different channels and 

histogram of each channel is computed. Based on the histograms, the higher frequency pixel value is 

computed that is embedded in the threshold functions expressed as follows: 

 

𝐶ℎ𝑘(𝑥, 𝑦) = �̃��̃�(𝑀,𝑁, 𝑘), 𝑘 = 1,2,3 (11) 

𝐻𝑖𝑠𝑡𝑘 = ∑𝐻(𝐶ℎ𝑘)

3

𝑘=1

 (12) 

 

where, 𝐻 is the histogram of each channel. Based on 𝐻𝑖𝑠𝑡𝑘, three probability values 𝑝1, 𝑝2, and 𝑝3 are 

obtained and are individually put in the tumor region brightness increasing function expressed as 

follows: 
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𝑇𝑟 = {
𝐶ℎ𝑘       𝑓𝑜𝑟      𝐶ℎ𝑘(𝑥, 𝑦) ≤ 𝑝�̆�

𝑁𝑜𝑡 𝑈𝑝𝑑𝑎𝑡𝑒𝑑         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,       �̆� ∈ (1,2,3) (13) 

 

This function describes that if the pixel value of each channel ( �̆�) is less than or equal to the 

corresponding threshold value, and then the pixel value is updated with that probability value, 

otherwise the same pixel value will be considered. After that, all three resultant channels are combined 

and multiplied with a harmonic mean value. The new updated image is obtained as follows: 

 

�̃�𝑐𝑛(𝑖, 𝑗) = 𝜓(3, 𝐶ℎ𝑘), 𝑘 = 1,2,3 (14) 

�̃�𝑓𝐼(𝑖, 𝑗) = �̃�𝑐𝑛(𝑖, 𝑗) × 𝐻�̂� (15) 

 

where, 𝐻�̂� is a harmonic mean value defined as 𝐻�̂� =
𝑁

∑(
1

�̃�𝑐𝑛
)
, �̃�𝑐𝑛 is a concatenated image of three 

channels, and �̃�𝑓𝐼(𝑖, 𝑗) is the final contrast enhanced image. Visually, the resultant image is shown in 

Fig. 3. After this, three operations (horizontal flip, vertical flip, and rotate 90) are performed two times 

on all images of each dataset to increase the training images. 

 

 

Fig. 3. Proposed tumor contrast enhancement using WCE images. 

 

2.2 Transfer Learning 

TL is a technique to reuse a pre-trained deep CNN model for another task. As shown in Fig. 4, it is 

described that the originally pre-trained DL models are trained on an ImageNet dataset having 1,000 

object classes. Through knowledge transferring, the fine-tuned models are trained on Stomach dataset 

without having a maximum 8 GI diseases. This shows that the target data is less than the source data. 

Hence, the TL main purpose is to re-train a fine-tuned DL model on a smaller dataset. Mathematically, 

we can define this process shown as follows.  

A source domain is provided 𝑆𝑑𝑜𝑚 = {(𝑢1
𝑆, 𝑣1

𝑆), … . . , (𝑢𝑖
𝑆, 𝑣𝑖

𝑆), …… (𝑢𝑛
𝑆 , 𝑣𝑛

𝑆)} , where (𝑢𝑛
𝑆 , 𝑣𝑛

𝑆) ∈ ℝ; 

with a specific learning objective, 𝑆𝑙 , and target domain 𝑇𝑑𝑜𝑚 = {(𝑢1
𝑡 , 𝑣1

𝑡), … . . , (𝑢𝑖
𝑡 , 𝑣𝑖

𝑡), …… (𝑢𝑚
𝑡 , 𝑣𝑚

𝑡 )}, 

along with learning task 𝑇𝑑𝑜𝑚, (𝑢𝑛
𝑡 , 𝑣𝑛

𝑡) ∈ ℝ. The size of the training data is ((𝑚, 𝑛)|𝑛 ≪ 𝑚), and the 

labels are 𝑍1
𝐷  and 𝑍1

𝑇 . TL's major role is to enhance the target function 𝑇𝑑𝑜𝑚  learning ability and 

leveraging the information from the source 𝑆𝑑𝑜𝑚 and target 𝑇𝑑𝑜𝑚. 

 

2.3 Deep Features Extraction 
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MobileNet-V2 [35] is a new pre-trained DL light weight model used for classification. Compared to 

the V1 version [36], the MobileNet-V2 has a better capability to address the problem of gradient 

vanishing and due to the addition of an inverted residual block and linear bottleneck frame. The new 

features of MobileNet-V2 are the addition of expansion layer of 1 × 1 convolution and expending the 

channels before going to the depth wise convolution operation. This network is known as the 

“DagNetwork,” and accepts an input of dimensions 224 × 224 × 3. This network includes a total of 

154 layers and 163 × 2 connections. Originally, this network is trained on an ImageNet dataset and the 

output of the last layer has 1,000 object classes. The loss function named cross-entropy is employed for 

classification. In this work, fine-tuning is performed to reuse this model for feature extraction of GI 

WCE images. To accomplish this, the last three layers are removed with three new layers added known 

as New FC, Softmax, and Classification Output. Furthermore, we have only frozen the first 50 layers 

and retrained the remaining layers on the target dataset using TL. Following the fine-tuning of the 

model, features are extracted from the global average pooling layer, and the dimension of extracted 

features on this layer is 𝑁 × 1280. 

NasNet Mobile [37] is a DAGNet CNN architecture, consisting of basic building blocks that are 

optimized through reinforcement learning. Each cell consists of several layers such as convolutions, 

pooling, and recurrent as per the size of the network. This network has 5.3 M parameters and a total of 

12 cells. The first layer of this network called the “input layer” accepts an input of dimensions 224 ×

224 × 3. The total layers in this network are 913 with 1072 × 2 connections. We replaced the last 

three layers with the New FC, Softmax, and Classification Output layers during the fine-tuning process. 

Except for the first input layer, the first 500 layers are frozen, and the rest are retrained on GI WCE 

datasets. The training is done with TL, along with a learning rate of 0.001, mini batch size of 64, 100 

epochs, and an ADAM optimization method. Other hyperparameter values include a dropout factor of 

0.5, weight decay of 4𝑒−3 , and norm decay of 0.8. Following the training of a fine-tuned model, 

features are extracted from the global average pooling layer, yielding a feature vector of dimensions 

𝑁 × 1056. 

 

 

Fig. 4. Transfer learning based retrained a pre-trained deep learning model for GI disease classification. 

 

2.4 Moth-Crow Features Optimization 

In this work, a moth-crow optimization algorithm is utilized and modified through the Renyi entropy 

(RE) activation function and single layered feed forward neural network. Consider, we have two feature 
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vectors denoted by �̃�1  and �̃�2  having dimensions 𝑁 × 1280 and 𝑁 × 1056, respectively. The crow 

search algorithm [38] is applied on each vector separately and an RE activation function is added at the 

end. Features passed from the activation function are considered for the fitness calculation and process 

is continued for the initialized iterations. After that, a best crow search best feature vector is obtained 

and further passed to the moth flame optimization algorithm [39]. Similar to the crow search, RE 

activation function is selected and checked through fitness function for final features selection.       

Consider, 𝐶𝑛  crows that means flock size is 𝐶𝑛 . At the 𝑖𝑡ℎ  iteration, the current location of crow 

𝐶 may be described as vector 𝐴𝑙,𝑚. 

 

𝐴𝑙,𝑚 = [𝐴1
𝑙,𝑚, 𝐴2

𝑙,𝑚, 𝐴3
𝑙,𝑚, …… . , 𝐴𝑛

𝑙,𝑚] (16) 

 

Each crow has its own memory that stores information about where it hides its food. 𝑃𝑘,𝑖 represents 

the Crow 𝐶 food hiding position at the 𝑖𝑡ℎ iteration. Crow 𝐶 has discovered the finest place yet. Crows 

visit and investigate various sites in order to find the better food hiding sites. For this purpose, the 

position mechanism is selected. Assume that during the 𝑖𝑡ℎ iteration, crow 𝐶 must go to its food hiding 

place 𝑃𝑘,𝑖. At the same moment (iteration), crow 𝐷 chooses to pursue crow 𝑘 in order to get access to 

crow 𝐶′𝑠 food hiding spot. In this circumstance, two update conditions are selected: 

 

𝑥𝐷,𝑖+1 = 𝑥𝐷,𝑖 + 𝐷𝑟𝑎𝑛𝑑 × L𝐷,𝑖 × (𝑃𝑘,𝑖 − 𝑥𝐷,𝑖) (17) 

 

where, 𝐷𝑟𝑎𝑛𝑑 denotes the random numbers between 0 and 1 and L𝐷,𝑖  indicates the crow 𝐷  at 𝑖𝑡ℎ  

iteration’s flight length. The L𝐷,𝑖 has a substantial impact on the algorithm's capacity to search. Hence, 

the lower 𝐿 values favor local search, whereas larger 𝐿 values favor global search. The second update 

equation is defined as follows: 

 

𝑥𝐷,𝑖+1 = {

𝑥𝐷,𝑖 + 𝐷𝑟𝑎𝑛𝑑 × L𝐷,𝑖                                  

× (𝑃𝑘,𝑖 − 𝑥𝐷,𝑖)                𝑟𝐷 ≥ 𝑎𝑝𝑟𝑜𝑏𝐶,𝑖

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

 

where  𝑟𝐷  donates uniformly distributed random number with range between 0 and 1and 𝑎𝑝𝑟𝑜𝑏𝐶,𝑖 

donates the crow 𝐷 awareness probability at 𝑖𝑡ℎ iteration. We selected Eq. (18) update criteria and 

compute the RE value as follows: 

 

𝑅𝐸𝑣 = 𝐸𝑡(𝑥𝐷,𝑖+1) (19) 

𝐸𝑡 = − log ∑𝑃𝑖
2

𝑁𝑇

𝑖=1

 (20) 

 

where, 𝑅𝐸𝑣 denotes the RE value, 𝐸𝑡 is RE function, 𝑥𝐷,𝑖+1 is input initial crow search feature vector, 

𝑁𝑇 denotes the total number of features, and 𝑃 is the probability of each value. Based on the 𝑅𝐸𝑣, an 

activation function is proposed that selects the features for further processing expressed as follows: 

 

𝐴𝑡 = {
�̃�𝐷,𝑖+1         𝑓𝑜𝑟   𝑥𝐷,𝑖+1 ≥ 𝑅𝐸𝑣
𝑅𝑒𝑚𝑜𝑣𝑒,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (21) 

 

The selected features �̃�𝐷,𝑖+1  from this function are evaluated through single layered feedforward 

neural network (SLFFNN) [40] fitness function. The MSER is selected as a loss function of the fitness 

function. This process is executed 100 times and after that, a possible best feature vector is obtained 

that is further refined through moth flame algorithm [39]. The moth flame works based on the 

following three steps of creating the population, updating the positions, and updating the final amount 

of flame. Initially, the group of moths can be expressed as follows: 
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𝐵 = [

𝐵1,1 𝐵1,2 ⋯ 𝐵1,𝑧

𝐵2,1 𝐵2,2 … 𝐵2,𝑧

⋮ ⋮ ⋮ ⋮
𝐵𝑚,1 𝐵𝑚,2 ⋯ 𝐵𝑚,𝑧

] (22) 

 

where, 𝐵 ∈ �̃�, 𝑚 denotes the number of moths, and 𝑧 denotes the number of dimensions. The fitness 

value of each moth is stored in the following array manner: 

 

𝑂𝐵 = [

𝑂𝐵1

𝑂𝐵2

⋮
𝑂𝐵𝑚

], 𝑄 =

[
 
 
 
 
𝑞1,1 𝑞1,2 ⋯ 𝑞1,𝑧

𝑞2,1 𝑞2.2 … 𝑞2,𝑧

𝑞3.1 𝑞3.2 ⋯ 𝑞3,𝑧

⋮ ⋮ ⋮ ⋮
𝑞𝑚,1 𝑞𝑚,2 ⋯ 𝑞𝑚,𝑧]

 
 
 
 

, 𝑂𝑄 = [

𝑂𝑄1

𝑂𝑄2

⋮
𝑂𝑄𝑚

] (23) 

 

After that, the position of the moths is updated to get the global best solutions. To find the global best 

solution of the optimization challenge, the following function is selected: 

 

𝑀𝐹𝑂 = (𝑅, 𝑆, 𝑇) (24) 

 

where 𝑅  denotes the initial moths’ random positions defined by (𝑅: 𝑃 → {𝑃, 𝑂𝑃}) , 𝑆  denotes the 

movement of moths in the search space defined by (𝑆: 𝑃 → 𝑃), and 𝑇 denotes the complete search 

space defined by (𝑇: 𝑃 → 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒). The 𝑃 is utilized to implement the random distribution and is 

defined as follows: 
 

𝑃(𝑖, 𝑘) = (𝑢(𝑖) − 𝑙(𝑘) ∗ 𝑟() + 𝑙𝑏(𝑖)) (25) 

𝑈(𝑃𝑖 , 𝑄𝑗) = 𝐻𝑖 . 𝑒
𝑎1𝑐. cos (2𝜋𝑡) + 𝑄𝑗  (26) 

 

where 𝑙 and 𝑢 are the variable’s lower and upper limits, respectively. The gap between the 𝑖𝑡ℎ moth and 

the 𝑗𝑡ℎ  flame is referred to as 𝐻𝑖  i.e., (𝐻𝑖 = |𝑄𝑗 − 𝑃𝑖|). The symbol 𝑎1 is fixed for determining the 

logarithmic spiral’s form, where 𝑐 is an integer between -1 and 1. The moths update the positions until 

they get the local optima and the optimal solutions have been retained in each iteration. Finally, the 

selected flames (features) are obtained by the following equation shown as: 

 

𝐹𝑛
𝑖+1 = 𝑟𝑜𝑢𝑛𝑑 (𝑀𝑎𝑥 −∗

𝑀𝑎𝑥 − 𝐼

𝑉
) (27) 

 

where, 𝑀𝑎𝑥 denotes the highest possible amount of flames, 𝐼 denotes the number of iterations currently 

in progress, and 𝑉 denotes the amount of total iterations. The selected flames 𝐹𝑛
𝑖+1 are passed to the 

Eqs. (22)–(24) and their fitness is checked through SLFFNN. This above entire process is applied on 

both deep extracted feature vectors through which two best selected vectors are obtained in the output 

with dimensions 𝑁 × 752 and 𝑁 × 660. 

 

2.5 Distance Canonical Correlation based Fusion 

Consider that we have two selected feature vectors 𝐴1 and 𝐴2 having dimensions 𝑁 × 752  and 

𝑁 × 660, respectively. Initially, CCA [41] based fusion is performed and then the distance among pair 

of features is computed for the final fusion. CCA looks for transforming the two variates to such 

transformed variates, except for the maximum relationship across the two features vectors. In the two 

given feature vectors 𝐴1 ∈ 𝑹𝑖×𝑚 and 𝐴2 ∈ 𝑹𝑖×𝑛, CCA finds the linear combinations A1U1 and A2U2 

that maximize the feature vectors across the pairwise correlation. The Z1 and  𝑍2 ∈ 𝑹𝑖×𝑛 , 𝑐 ≤ 

𝑚𝑖𝑛(rank(A1, A2)), these are called recognized variates and 𝑈1 ∈ 𝑹𝑚×𝑐 and 𝑈2 ∈ 𝑹𝑛×𝑐 and these are 
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the canonical coefficients vectors. The first pair of canonical coefficient vectors 𝑢1
(1)

is found by the 

deflationary approach method. The linear combinations of two feature vectors are maximized and 

expressed as follows: 

 

𝑚𝑎𝑥
𝑢1

(1)
, 𝑢2

(1) 𝑐𝑜𝑟𝑟 (𝐴1𝑢1
(1)

, 𝐴2 𝑢2
(1)

)  (28) 

 

Based on this equation, the maximum combination is computed among the features. By considering 

the rest of the steps in CCA, we skipped all the others and selected the distance formula. Through the 

distance formula, features are fused based on the minimum distance value shown as follows: 
 

𝐷𝑖𝑠 = √(𝑓𝑖+1 − 𝑓𝑖)
2 − (𝑓𝑗+1 − 𝑓𝑗)

2
 (29) 

 

Based on this formula, the distance is computed among each feature, and only those feature pairs are 

considered whose distance is a minimum. The final fused vector is passed to machine learning 

classifiers for the final classification results. A few labeled results of the proposed framework are 

illustrated in Fig. 5. 

 

 

Fig. 5. Sample labeled GI disease prediction results of the proposed framework. 

 

3. Results and Discussion 

The proposed framework is evaluated on three publically available WCE images datasets having 

multiple GI diseases. The selected datasets are CUI Wah WCE images [34], Kvasir-v1, and Kvasir-v2 

[21]. The 50% of the images of each dataset are utilized for the training of the models, while 50% is 

employed for the testing process. In this work, the cross-validation value is set to 10-fold for the entire 

experimental process. The hype parameters are selected for the training of DL models based on a 

learning rate of 0.001, mini batch size of 64, 100 epochs, optimization method through ADAM, dropout 
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factor of 0.5, weight decay of 4𝑒−3 , and norm decay is 0.8. The sigmoid activation function is 

employed for features extraction, whereas the action loss is a cross-entropy max. Several classification 

methods have been employed for the evaluation applying a fine tree, weighted k-nearest neighbors 

(KNN), ensemble baggage tree, and multiclass SVM. The performance of each classifier is computed 

based on accuracy and computational time. The entire framework is simulated on MATLAB 2021b 

equipped with a personal computer and 8 GB of graphics card and 32 GB of RAM. 

 

3.1 Results 

The proposed framework is evaluated based on the five middle step experiments consisting of (1) 

features extraction from a fine-tuned MobileNet-V2; (2) features extraction from a fine-tuned NasNet 

mobile; (3) crow-moth flame modified optimization algorithm applied on MobileNet-V2 features; (4) 

crow-moth flame modified optimization algorithm applied on NasNet mobile features, and (5) fusion of 

best features using a D-CCA-based approach. The results are computed for each step using all datasets 

to analyze their importance in the proposed framework, accordingly. 

 

Table 1. Classification results of the proposed framework on CUI WCE images dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

CMFO-

MobileNet 

CMFO- 

NasNet Mobile 
Fusion Accuracy (%) Time (s) 

Fine tree √     89.64 336.8834 

 √    86.52 259.4367 

  √   92.93 154.9987 

   √  90.64 136.6625 

    √ 94.15 107.2105 

Weighted 

KNN 

√     91.46 362.7745 

 √    88.27 310.32267 

  √   94.18 194.7725 

   √  91.59 180.0024 

    √ 96.52 145.1178 

Ensemble 

baggage tree 

√     91.95 405.1178 

 √    87.47 367.9935 

  √   94.85 226.7843 

   √  90.43 210.5776 

    √ 96.78 163.0078 

MCSVM √     94.65 276.7734 

 √    92.87 251.1730 

  √   97.64 142.0783 

   √  96.79 128.7723 

    √ 99.42 103.8901 

The best results are given in bold. 

 

CUI WCE Dataset Results: Table 1 shows the outcomes of the proposed framework on the CUI 

WCE dataset. This table displays the classification accuracy of each step for the selected classifiers. 

The fine tree achieved the highest accuracy of 94.15% and shortest execution time of 107.2105 seconds 

for the D-CCA-based selected features fusion. The weighted KNN achieved the highest accuracy of 

96.52% for the D-CCA fusion, with the shortest time of 145.1178 seconds. With a computational time 

of 163.0078 seconds, the ensemble tree achieved the highest accuracy of 96.78%. For the fusion 

process, the MCSVM classifier had a higher accuracy of 99.42%. This classifier’s best execution time 

was 103.8901 seconds. Fig. 6 also illustrates the MCSVM (fusion) confusion matrix. According to the 
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results, the fusion process produces superior results; however, selecting the best features improves 

classification accuracy when compared to fine-tuned model features. Furthermore, the selection process 

reduces the computational time that was later improved in the fusion step. Fig. 7 illustrates the overall 

time of this dataset, which demonstrates the strength of the proposed framework. 

 

 
Fig. 6. Confusion matrix of MCSVM for CUI WCE dataset. 

 

 
Fig. 7. Comparison of middle steps of the proposed framework based on computational time. 

 

Kvasir-v1 Dataset Results: Table 2 presents the classification results of the proposed framework on 

the Kvasir-v1 dataset. Similar to the CUI Wah WCE dataset, this dataset was also evaluated on middle 

steps for each selected classifier. The fine tree achieved the highest accuracy of 92.57% and the 

minimum testing time of 91.9465 seconds for the D-CCA-based selected features fusion. The weighted 

KNN classifier obtained the best accuracy of 93.28% for the fusion process with the shortest time of 

106.7678 seconds. Performance of the ensemble tree is not improved than the previous classifiers, with 

this classifier achieving an accuracy of 92.89%. For the D-CCA-based features fusion, the MCSVM 

classifier had a higher accuracy of 97.85% on this dataset. The shortest time of this classifier was 

71.0315 seconds that was smaller than the rest of the classifiers. The confusion matrix of MCSVM is 

also presented as shown in Fig. 8. This figure illustrated the true prediction rate of each class. 

According to the results provided in this Table, it is observed that the initial fine-tuned models’ 

accuracy is improved after employing the features selection algorithm. Also, it is noteworthy that the 

selection process reduced the overall testing time of the proposed framework. The performance of 
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MCSVM is better than the rest of the classifiers for all middle and fusion steps. Fig. 9 illustrated the 

time plot of this dataset and shows the strong point of the feature selection and D-CCA fusion. 

 

Table 2. Classification results of the proposed framework on Kvasir-v1 dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

HMFO-

MobileNet 

HMFO- 

NasNet Mob 
Fusion Accuracy (%) Time (s) 

Fine tree √     87.43 192.5783 

 √    85.29 180.7443 

  √   90.75 126.5521 

   √  88.49 116.0078 

    √ 92.57 91.9465 

Weighted 

KNN 

√     89.14 212.5976 

 √    86.97 190.7654 

  √   92.52 154.5895 

   √  90.30 140.2574 

    √ 93.28 106.7678 

Ensemble 

baggage tree 

√     88.50 275.7158 

 √    85.71 207.5754 

  √   90.50 176.3113 

   √  89.83 141.6432 

    √ 92.89 123.7386 

MCSVM √     91.98 176.7832 

 √    90.54 157.8594 

  √   94.24 102.3899 

   √  93.90 88.3243 

    √ 97.85 71.0315 

The best results are given in bold. 

 

 

Fig. 8. Confusion matrix of the proposed framework for Kvasir-v1 dataset. 
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Fig. 9. Comparison of middle steps of the proposed framework based on computational time on  

Kvasir-v1 dataset. 

 

Table 3. Our framework’s classification results on the Kvasir-v2 dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

HMFO-

MobileNet 

HMFO- 

NasNet Mob 
Fusion Accuracy (%) Time (s) 

Fine tree √     87.43 260.6804 

 √    85.29 287.9583 

  √   90.75 168.8992 

   √  88.49 152.7328 

    √ 92.57 121.0488 

Weighted 

KNN 

√     89.14 382.2346 

 √    86.97 292.4334 

  √   92.52 274.2535 

   √  90.30 189.3324 

    √ 93.28 146.7282 

Ensemble 

baggage tree 

√     88.50 402.3328 

 √    85.71 309.4543 

  √   90.50 236.3453 

   √  89.83 190.2324 

    √ 92.89 151.3453 

MCSVM √     91.98 220.2332 

 √    90.54 197.4324 

  √   94.24 152.9864 

   √  93.90 138.3332 

    √ 97.20 111.1375 

The best results are given in bold. 

 

Kvasir-v2 Dataset Results: Table 3 shows the outcomes of the proposed framework on the Kvasir-

v3 dataset. This classification performance of the selected classifiers is computed for all the middle 
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steps. The fine tree classifier obtained the highest accuracy of 92.57% for the fusion step. The weighted 

KNN and ensemble tree classifiers also obtained the best accuracy of 93.28% and 91.98%, respectively, 

for the D-CCA-based fusion step. For the D-CCA based fusion process, the MCSVM classifier had a 

higher accuracy of 97.20% that is improved than the rest of the selected classifiers. Fig. 10 also 

illustrates the confusion matrix of MCSVM. For this dataset, the shortest execution time was 111.1375 

seconds for MCSVM, which is also plotted in Fig. 11. According to the results, the accuracy of the 

proposed framework jumped and computational time decreased after the optimization step. However, 

the D-CCA fusion step gave a better performance based on both accuracy and time. 

 

 
Fig. 10. Confusion matrix of the proposed framework for Kvasir-v2 dataset. 

 

 
Fig. 11. Comparison of middle steps of the proposed framework based on computational time on 

Kvasir-v2 dataset. 
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3.2 Discussion 

The detailed analysis of the proposed framework is conducted in this section. The results of each 

selected dataset are given in Tables 1–3. MCSVM performed better for all three datasets. The confusion 

matrixes of MCSVM are illustrated in Figs. 6, 8, and 10. The testing times are also plotted in Figs. 7, 9, 

and 11 for each dataset, respectively, showing the shortest time consumed by the D-CCA fusion step. As 

shown in Fig. 2, the proposed framework consists of several important steps. The contrast enhancement 

step effects the classification accuracy of the entire framework. Therefore, we conducted a comparison 

based on the following two steps comprised of (1) importance of contrast enhancement in the proposed 

framework based on the accuracy value and (2) difference in the computational time without employing 

the contrast enhancement step in the proposed framework. Tables 4–6 show the effect of the contrast 

enhancement step in the proposed classification framework of GI diseases. The values given in these 

tables show that accuracy of the proposed framework is improved after employing the contrast 

enhancement technique; however, without contrast enhancement, accuracy is degraded by an average of 

6%. On the other hand, the computational time is minimized without employing the contrast enhancement 

step. Based on this observation, it is clear that the addition of some important steps (i.e., enhancement) 

increases the accuracy of the system, provided that the system’s computational time is affected as well.  

 

Table 4. Comparison of our classification results with or without contrast enhancement step on the CUI 

WCE dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

HMFO-

MobileNet 

HMFO- 

NasNet Mob 
Fusion Accuracy (%) Time (s) 

Contrast 

enhanced 

dataset 

√     94.65 222.8767 

 √    92.87 212.3240 

  √   97.64 122.8343 

   √  96.79 108.3323 

    √ 99.42 91.0131 

Without 

contrast 

enhanced 

dataset 

√     88.62 201.8579 

 √    83.55 191.9343 

  √   89.88 102.8553 

   √  85.56 89.0684 

    √ 92.28 73.9044 

The best results are given in bold. 

 

Table 5. Comparison of our classification results with or without contrast enhancement step on Kvasir-

v1 dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

HMFO-

MobileNet 

HMFO- 

NasNet Mob 
Fusion Accuracy (%) Time (s) 

Contrast 

enhanced 

dataset 

√     91.98 176.7832 

 √    90.54 157.8594 

  √   94.24 102.3899 

   √  93.90 88.3243 

    √ 97.85 71.0315 

Without 

contrast 

enhanced 

dataset 

√     86.73 150.4759 

 √    81.87 131.0352 

  √   88.20 92.8050 

   √  84.07 73.6894 

    √ 91.69 61.1135 

The best results are given in bold. 
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Table 6. Comparison of our classification results with or without contrast enhancement step on Kvasir-

v2 dataset 

Classifier 

Feature Performance measure 

MobileNet 
NasNet 

Mobile 

HMFO-

MobileNet 

HMFO- 

NasNet Mob 
Fusion Accuracy (%) Time (s) 

Contrast 

enhanced 

dataset 

√     91.98 220.2332 

 √    90.54 197.4324 

  √   94.24 152.9864 

   √  93.90 138.3332 

    √ 97.20 111.1375 

Without 

contrast 

enhanced 

dataset 

√     85.67 192.9044 

 √    79.99 170.2432 

  √   86.01 122.0352 

   √  83.78 112.5065 

    √ 92.96 98.6849 

The best results are given in bold. 

 

At the end, the proposed framework’s accuracy is compared with state-of-the-art (SOTA) techniques, 

as given in Table 7 [21, 34, 42–47]. In [21], authors used the Kvasir-v2 dataset and achieved an 

accuracy of 96.33%. Later on, authors in [42] obtained an accuracy of 96.33% on the Kvasir-v2 dataset. 

The proposed framework obtained an improved accuracy of 97.2% on the Kvasir-v2 dataset. In [43], 

authors used the Kvasir-v1 dataset and attained an accuracy of 94.46% that was further improved in 

[44] up to 97%. The proposed framework achieved an improved accuracy of 97.85% on the Kvasir-v1 

dataset. Researchers in [34] used the CUI Wah WCE dataset and attained an accuracy of 96.50% that 

was further improved in [45] up to 98.40%. The proposed framework achieved an accuracy of 99.42% 

which is better than any SOTA method. Overall, the proposed framework showed an improved 

accuracy, dominating any SOTA method. 

 

Table 7. Comparison of our results with SOTA techniques 

Study Year Dataset Accuracy (%) 

Pogorelov et al. [21] 2017 Kvasir-v2 94.20 

Gamage et al. [46] 2019 Kvasir-v2 90.74 

Majid et al. [34] 2020 CUI Wah WCE 96.50 

Khan et al. [45] 2020 CUI Wah WCE 98.40 

Kumar et al. [43] 2021 Kvasir-v1 94.46 

Yogapriya et al. [42] 2021 Kvasir-v2 96.33 

Al-Adhaileh et al. [44] 2021 Kvasir-v1 97.00 

Ahmed [47] 2022 Kvasir-v1 90.17 

Proposed  CUI Wah WCE 99.42 

 Kvasir-v1 97.85 

 Kvasir-v2 97.20 

The best results are given in bold. 

 

4. Conclusion 

A deep learning and moth-crow modified optimization algorithm-based frameworks are proposed for 

GI disease classification. The contrast enhancement-based data augmentation step is employed for 

better training of the fine-tuned models. Features are extracted from global average pooling layers that 

are optimized through the moth-crow modified optimization algorithm. The best selected features are 
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fused using the D-CCA-based fusion technique. The final fused vector is then passed on to machine 

learning classifiers for classification. The experimental process is conducted on three datasets of CUI 

Wah WCE, Kvasir-v1, and Kvasir-v2, resulting in improved accuracy through our framework. Based 

on the results, we arrived at the following conclusions:  

⚫ The proposed contrast enhancement technique shows an improvement in the classification 

accuracy. 

⚫ The learning of fine-tuned models from the middle layers takes some time during the training 

process but do return better results later. 

⚫ The proposed moth-crow modified optimization algorithm improves the classification accuracy 

and reduces the testing time due to a fewer number of predictors. 

⚫ The D-CCA fusion method removes the recurrent features and improves the overall accuracy. 

The limitation of this work is the addition of a contrast enhancement step that increases the 

computational time. In the future, the “EfficientNet” pre-trained model will be considered for feature 

extraction. Furthermore, the issue of irrelevant and redundant features will be resolved by employing a 

search point algorithm based on the Newton Raphson. Moreover, our framework will be fine-tuned to 

work smoothly with the Internet of medical things and blockchain-assisted systems [48, 49]. 
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