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ABSTRACT
Human mortality patterns and trajectories in closely related popu-
lations are likely linked together and share similarities. It is always
desirable to model them simultaneously while taking their hetero-
geneity into account. This article introduces twonewmodels for joint
mortality modelling and forecasting multiple subpopulations using
themultivariate functional principal component analysis techniques.
The first model extends the independent functional data model to
a multipopulation modelling setting. In the second one, we pro-
pose a novel multivariate functional principal component method
for coherent modelling. Its design primarily fulfils the idea that when
several subpopulation groups have similar socio-economic condi-
tions or common biological characteristics such close connections
are expected to evolve in a non-diverging fashion. We demonstrate
the proposed methods by using sex-specific mortality data. Their
forecast performances are further compared with several existing
models, including the independent functional data model and the
Product-Ratio model, through comparisons with mortality data of
ten developed countries. The numerical examples show that the
first proposed model maintains a comparable forecast ability with
the existing methods. In contrast, the second proposed model out-
performs the first model as well as the existing models in terms of
forecast accuracy.
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1. Introduction

There have been tremendous developments in the area of mortality modelling and fore-
casting over the last three decades. These include the pioneeringmortalitymodel proposed
by [25], well-known as the Lee–Cartermodel. It rapidly gained credit and popularity, given
its simplicity and ability to capture most variations inmortality patterns evolved over time.
Several modifications and extensions of the Lee–Carter model have been put forward, see,
for instance, Lee andMiller [26], Booth et al. [2], Renshaw and Haberman [34] and Currie
et al [4]. It is worth noting that Hyndman and Ullah [19] further extend the Lee–Carter
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model to a functional data framework, which includes non-parametric smoothing tech-
niques, functional principal component decomposition and times series analysis to achieve
the task of mortality modelling and forecasting. Although the models as mentioned earlier
posed a great success in history, the single factor designs limit their capacity of mortality
modelling and forecasting on solely one population. It seems improper to prepare a mor-
tality forecast for an individual population in isolation from one another if they are closely
linked together. For example, due to biological and behavioural reasons, male mortality
rates have consistently been higher than female mortality rates, see Kalben [22]. However,
if male mortality improvements are faster than female ones, but two genders are projected
independently, the model may forecast male mortality rates lower than and eventually
diverge further from female mortality rates. As such, it is always a significant challenge in
human mortality modelling that the model can take multiple populations as well as their
heterogeneity simultaneously into account. Several mortality models for multiple popula-
tions have been proposed in the literature over the last decade, see, for instance, Delwarde
et al. [10] and Dowd et al. [11]. In more desirable cases, the model can further ensure
that the forecasts for multiple related populations maintain certain structural relationships
based on the extensive theoretical considerations and historical observations. A ‘coher-
ent’ or ‘non-divergent’ model is one of the most well-suited tools in mortality modelling
given the fact that the mortality of populations that are geographically close or otherwise
related is driven by a common set of factors such as socio-economic, environmental and
biological conditions and differences are unlikely to increase in the long run. Such coherent
forecast models are also documented in the literature, see, for example, the earliest aug-
mented common factor (ACF) model proposed by Li and Lee [29], which is an extension
of the Lee–Carter model with an additional common factor to capture both short-term
divergence and long-term coherence among related populations. Variants and extensions
of the ACF model have been subsequently developed, such as Li [27], Li et al. [28] and
Chen and Millossovich [6]. Some others like the Age-Period-Cohort (APC) model pro-
posed by Cairns et al. [5], incorporate a mean-reverting stochastic process for two related
populations and allow for different trends in mortality improvement rates in the short-
run but parallel improvements in the long-run. The Product-Ratio model developed by
Hyndman et al. [17], which models the product and ratio functions of the age-specific
mortality rates of different populations individually through a functional principal com-
ponent decomposition, achieves coherent mortality forecasts by constraining the forecast
ratio function via a stationary time series model to appropriate constants. Shang [35] and
Wu and Wang [37] use multilevel functional principal component analysis of aggregated
and population-specific data to extract the common trend and population-specific residual
trend among populations. The forecast of population-specific residual trend is restricted
to be a stationary time process to achieve convergence in the long run. Some other devel-
opments in this field include Jarner and Kryger [21], Hatzopoulos and Haberman [15] and
Wan and Bertschi [36]. Also, see Danesi et al. [9] and Enchev et al. [12] for reviews and
comparisons.

In this article, we propose two newmodels for mortality modelling and forecasting with
the theoretical framework of multivariate functional principal component analysis tech-
niques introduced by Chiou et al. [8] and Happ and Greven [14]. The main objectives
of the multivariate functional principal component analysis are to carry out an eigende-
composition with all populations grouped together and model multiple sets of functional
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curves that may be correlated among others, which allows us to construct two new mod-
els on top of these ideas. The first proposed model is to treat the groups of population
mortality rates within a large population equally andmodel themwith similarities and cor-
relations across ages and periods altogether for forecasting. The second proposed model is
a novel method for coherent mortality modelling and forecasting that captures the com-
mon trend and the population-specific trend of groups of mortality patterns and produces
forecasts of different populations that do not diverge and present convergence in the long
run. It incorporates both overall information from the population as a whole and specific
information from the subpopulations deviated from the overall information for mortal-
ity modelling and forecasting. The two proposed models are estimated using the weighted
functional principal component algorithm with geometrically decaying weighting scheme
[18], which assigns more weights to the most recent data than those in the distant past.
This extension can produce more realistic forecasts and achieve improved forecast accura-
cies than the original proposal of the multivariate functional principal component analysis
techniques when it comes to forecasting.

More will be discussed in detail in the article, and the rest of this article is organised as
follows. In Section 2, we give a review of the theoretical background about univariate and
multivariate functional principal component analyses. In Section 3, we describe the general
frameworks of two proposedmultivariate functional principal component analysis models
for mortality modelling and forecasting. We then illustrate the models by applying them
to the sex-specific mortality rates for Japan with comparisons to two analogous functional
data paradigms − the independent FPCA model and the Product-Ratio model proposed
byHyndman andUllah [19] andHyndman et al. [17], in terms of the systematic differences
and forecasting performances using sex-specific mortality data of ten developed countries
in Section 4. We lastly conclude this article with discussions and remarks in Section 5.

2. Theoretical background of FPCA

Functional principal component analysis (FPCA) is the core technique applied primar-
ily in this article. It is a statistical method for analysing the variation of a set of functional
curves in a dataset then reducing them from infinite dimensions to finite dimensions in the
principal component representations of variation [31]. It can also be regarded as a func-
tional extension of the multivariate PCAmethod, allowing the data dimension to increase
from finite space to infinite space [33]. After the Karhunen–Loève theorem in expansions
of a stochastic process proposed by Karhunen [23] and Loève [30], the theoretical develop-
ments of FPCA can be divided into two main fields: the linear operator and the covariance
operator perspectives, see, for example, Besse [1], Ramsay and Silverman [32], Yao et al.
[38], Hall et al. [13] and Bosq [3]. To get the readers well equipped with the necessary
concepts in this article, we firstly give a brief review of univariate FPCA then move on
to discuss the algorithm of performing multivariate FPCA directly from the results of
univariate FPCA.

2.1. Univariate FPCA (UFPCA)

Let Y(x) be a continuous and mean square integrable (L2-continuous) stochastic pro-
cess on a domain X with a mean function μ(x) = E(Y(x)) and a covariance function
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K(x, x′) = Cov(Y(x),Y(x′)) for all x ∈ X . Assuming that there exists a covariance opera-
tor � : L2(X ) → L2(X ) for any function f ∈ L2(X ), we have

(
�f

)
(x) =

∫
X
K(x, x′)f (x′) dx′, ∀ x ∈ X .

With the defined covariance operator �, we can perform a spectral analysis of the covari-
ance function K(x, x′), such that

(�φ) (x) =
∫
X
K(x, x′)φ(x′) dx′ = λφ(x),

to obtain a set of orthonormal basis eigenfunctions {φn(x)}∞n=1 and a corresponding set
of eigenvalues {λn}∞n=1, where λ1 ≥ λ2 ≥ · · · ≥ 0, representing the amount of variability
in Y(x) explained by the {φn(x)}∞n=1. Y(x) can now be represented as an infinite linear
combination of the orthonormal functions by the Karhunen–Loève theorem, that is

Y(x) = μ(x)+
∞∑
n=1

βnφn(x), ∀ x ∈ X ,

where βn is the principal component score with

βn =
∫
X
(Y(x)− μ(x))φn(x) dx.

The principal component scores {βn}∞n=1 are uncorrelated random variables with mean
zero and variance {λn}∞n=1. βn serves as the weight and the projection of the centred
stochastic process (Y(x)− μ(x)) in the direction of the n-th eigenfunction φn(x) in the
Karhunen–Loève representation of Y(x). In practice, only the first few eigenfunctions are
needed to represent the most important features of Y(x), we can therefore truncate the
Karhunen–Loève expansion at the first N-dimensional terms to obtain an approximation
of Y(x), i.e.

Y(x) ≈ μ(x)+
N∑

n=1
βnφn(x), ∀ x ∈ X , (1)

and thus reduce the infinite dimension of functional data into finite dimensions in prin-
cipal direction of variation which is often used for data analysis, e.g. for regression or for
clustering [31].

2.2. Algorithmof performingmultivariate FPCA (MFPCA) from the results of UFPCA

We now consider multivariate functional data and provide a natural path performingmul-
tivariate functional principal component analysis from the results of univariate functional
principal component analysis using a simple algorithm introduced by Happ and Greven
[14]. The main idea of the algorithm is derived from the theoretical framework of mul-
tivariate FPCA considering the covariance operator point of view, and its mathematical
details can be found in the supplementary material of this article.
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Given a random sample consisting of p ≥ 2 sets of subpopulation functions
Y(1)(x), . . . ,Y(p)(x) which are from the same population and have the variances on the
same scale1 on a domainX for all x ∈ X , the MFPCA estimation algorithm comprises the
following four steps:

Step 1. Perform a univariate functional principal component analysis for each element
Y(i)(x) consisting of the observed curves {Y(i)t (x)}Tt=1 with a subscript t, for t =
1, . . . ,T, as each observation unit.2 This gives us a set of estimated principal
component scores {β̂(i)t,n}Nn=1 and estimated eigenfunctions {φ̂(i)n (x)}Nn=1 with the
first suitably chosen N-dimensional approximations to each Y(i)(x).

Step 2. Combine all the estimated principal component scores into a single large matrix
� where

� =

⎛
⎜⎜⎝
β̂
(1)
1,1 . . . β̂

(1)
1,N . . . β̂

(p)
1,1 . . . β̂

(p)
1,N

...
. . .

...
. . .

...
. . .

...
β̂
(1)
T,1 . . . β̂

(1)
T,N . . . β̂

(p)
1,N . . . β̂

(p)
T,N

⎞
⎟⎟⎠ ∈ R

T×pN

and estimate the joint covariance matrix Ẑ = 1
N−1�

T�.
Step 3. Perform a matrix eigenanalysis for Ẑ to obtain a set of estimated orthonormal

eigenvectors {ĉn}Nn=1 and a set of corresponding eigenvalues {ν̂n}Nn=1 of Ẑ.
Step 4. Calculate the estimatedmultivariate eigenfunctions and the estimatedmultivari-

ate principal component scores according to their i-th elements:

ψ̂(i)n (x) =
N∑

m=1
[ĉn](i)m φ̂

(i)
m (x), ∀ x ∈ X ,

and

ρ̂t,n =
p∑

i=1

N∑
m=1

[ĉn](i)m β̂
(i)
t,m.

The empirical truncated multivariate Karhunen–Loève representation with the first N-
dimensional approximations to Y(i)t (x) is

Ŷ(i)t (x) = μ̂(i)(x)+
N∑

n=1
ρ̂t,nψ̂

(i)
n (x), ∀ x ∈ X ,

where μ̂(i)(x) = 1
T

∑T
t=1 Y

(i)
t (x), and the estimated multivariate principal component

score ρ̂t,n gives the individual weight of each observation unit t for its corresponding
estimated multivariate eigenfunction ψ̂(i)n (x).
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3. Methodology

3.1. WeightedMFPCAmodel formultipopulationmortality ratesmodelling and
forecasting

In this section, we firstly introduce our newmodel, namely weighted MFPCA (wMFPCA)
model for forecasting mortality rates of several subpopulations within a large population
simultaneously.

Let Y(i)t (x) denote the log of the observed mortality rates of the i-th subpopulation for
age x in year t.We assume there is an underlyingL2-continuous andmean square integrable
function f (i)t (x) that we are observing with error and at discrete points of x. Our discrete
observations are {xj,Y(i)t (xj)}, for i = 1, . . . , p, t = 1, . . . ,T, j = 1, . . . , J, such that

Y(i)t (xj) = f (i)t (xj)+ σ
(i)
t (xj)e

(i)
t,j ,

where {e(i)t,j }T,Jt,j=1 are i.i.d. standard normal random variables and σ (i)t (xj) allows the amount
of noise to vary with age x.

In demographic modelling, it is often the case that more recent experience has greater
relevance on the future behaviour than those data from the distant past. In view of this, we
comprise a weighted functional component algorithm for theMFPCAmodel, allowing the
forecasting results of the model to be based more on the recent data.

Let f̂ (i)t (x) be a smoothed function estimated from the observation Y(i)t (xj), and wt =
κ(1 − κ)T−t be a geometrically decaying weight with 0 < κ < 1. The overall mean func-
tion μ(i)(x) of Y(i)t (x) is estimated by the weighted average

μ̂(i)(x) =
T∑
t=1

wtf̂
(i)
t (x).

The mean-centred functional data is denoted as f̂ ∗(i)t (x) = f̂ (i)t (x)− μ(i)(x). We discretise
f̂ ∗(i)t (x) as a T by J matrix F̂(i)∗, then multiply F̂(i)∗ by W, where W = diag(w1, . . . ,wT),
such that F̂(i) = WF̂(i)∗. We then follow the algorithm of estimating MFPCA introduced
in the previous section to calculate the weighted principal component scores and the
weighted multivariate eigenfunctions using the functional form of F̂(i) to obtain F̂(i)t (x) =∑N

n=1 ρ̂t,nψ̂
(i)
n (x) up to the first N-dimensional approximations. We lastly combine the

estimated weighted average with the estimated weighted multivariate eigenfunctions and
the estimated multivariate weighted principal component scores to obtain the weighted
MFPCAmodel for mortality modelling and forecasting of the i-th subpopulation with the
first N-dimensional approximations, i.e.

Ŷ(i)t (x) = μ̂(i)(x)+
N∑

n=1
ρ̂t,nψ̂

(i)
n (x)+ σ̂

(i)
t (x)ê

(i)
t .

3.1.1. Out-of-sample forecasts and prediction intervals of the wMFPCAmodel
Forecasts can be obtained by forecasting the weighted principal component scores
{ρ̂t,n}Nn=1 using time series models independently. There is no need to consider the vec-
tor autoregression (VAR) model for forecasting the weighted principal component scores
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as they are not correlated. {ρ̂t,n}Nn=1 can be extrapolated using possibly non-stationary
autoregressive integrated moving average (ARIMA) model and we can select the order
of the ARIMA model based on the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC).

Let ρ̂t+h,n denote the h-step ahead forecast of ρ̂t,n, then the h-step ahead out-of-sample
forecast of Ŷ(i)t (x) is

Ŷ(i)t+h(x) = μ̂(i)(x)+
N∑

n=1
ρ̂t+h,nψ̂

(i)
n (x).

We can also obtain the forecasting variance of the model by adding up the variances of all
terms together given the fact that the components of the wMFPCAmodel are uncorrelated,
such that

Var(Y(i)t+h(x)) = τ̂ 2
μ̂(i)
(x)+

N∑
n=1

ν̂t+h,n(ψ̂
(i)
n (x))

2 + (σ̂
(i)
t+h(x))

2,

where τ̂ 2
μ̂(i)
(x) is the variance of the smoothed estimates of the mean function derived

from the smoothing method applied, ν̂t+h,n is the estimated variance of ρ̂t+h,n that can
be obtained from the time series method used, and the estimated variance of forecast error
(σ̂
(i)
t+h(x))

2 is calculated by taking the average of observational variance from the historical
data.

With the normality assumption on the model error and the known Var(Y(i)t+h(x)),
a 100(1 − α)% prediction interval for Ŷ(i)t+h(x) can be calculated as Ŷ(i)t+h(x)±
zα

√
Var(Y(i)t+h(x)), where zα is the (1 − α/2) quantile of the standard normal distribution.

3.2. Coherent wMFPCAmodel formultipopulationmortality ratesmodelling and
forecasting

Wenow introduce the idea of the coherentwMFPCAmodel, in the sense that the long-term
forecasts of several subpopulations within a large population will be non-divergent.

Let Y(i)t (x) be the log of the observed mortality rates of the i-th subpopulation for age
x in year t, {e(i)t }Tt=1 are the i.i.d. standard normal random variables, and σ (i)t (x) allows the
amount of noise varying with age x. The coherent wMFPCAmodel has the following form:

Y(i)t (x) = f (i)t (x)+ σ
(i)
t (x)e

(i)
t ,

where

f (i)t (x) = μ(x)+ η(i)(x)+ Gt(x)+ Z(i)t (x).

f (i)t (x) is the smoothedmortality function of the i-th subpopulation for age x in year t,μ(x)
is the average of total mortality function, η(i)(x) is the mean of the i-th subpopulation spe-
cific deviation function from the averaged total mortality function, Gt(x) is the common
trend across all populations, and Z(i)t (x) is the i-th subpopulation-specific deviation trend.
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In such a model, μ(x) and η(i)(x) are unknown fixed functions, while Gt(x) and
Z(i)t (x) are assumed to be independent zero mean stochastic processes to ensure identi-
fiability [35], such that Gt(x) and Z(i)t (x) can then be decomposed by the (multivariate)
Karhunen–Loève representation as

Gt(x) =
∞∑
k=1

βt,kφk(x),

Z(i)t (x) =
∞∑
l=1

γt,lϕ
(i)
l (x),

where {βt,k}∞k=1 and {φk(x)}∞k=1 are the corresponding principal component scores and the
eigenfunctions of Gt(x) while {γt,l}∞l=1 and {ϕ(i)l (x)}∞l=1 are the corresponding multivari-
ate principal component scores and the multivariate eigenfunctions of Z(i)t (x). It follows
that {βt,k}∞k=1 is uncorrelated with {γt,l}∞l=1. Following these expansions, the model can be
expressed as

f (i)t (x) = μ(x)+ η(i)(x)+
∞∑
k=1

βt,kφk(x)+
∞∑
l=1

γt,lϕ
(i)
l (x).

3.2.1. Estimation of the coherent wMFPCAmodel
We carry on the same weighted functional component algorithm applied in the wMF-
PCAmodel for the coherent wMFPCAmodel. The components of the coherent wMFPCA
model can be obtained using the estimation procedures below in practice:

Step 1. Obtain the totalmortality function among all subpopulations smoothedmortality
functions, ĝt(x) = 1

p
∑p

i=1 f̂
(i)
t (x), then calculate the weighted mean function of

the total mortality function, μ̂(x) = ∑T
t=1 wtĝt(x), where wt = κ(1 − κ)T−t is a

geometrically decaying weight with 0 < κ < 1.
Step 2. Calculate the centred functional data ĝ∗

t (x) = ĝt(x)− μ̂(x), then discretise ĝt(x)
as a T by JmatrixG∗, thenmultiplyG∗ byW, whereW = diag(w1, . . . ,wT), such
that Ĝ = WG∗.

Step 3. Perform univariate FPCA on the functional form of Ĝ to get Ĝt(x) =∑K
k=1 β̂t,kφ̂k(x)up to the firstK-dimensional approximations. Let g̃t(x) = μ̂(x)+∑K
k=1 β̂t,kφ̂k(x) be the estimated weighted total mortality function.

Step 4. Calculate the deviation of the i-th subpopulation specific mortality function from
the estimated weighted total mortality function, d̂(i)t (x) = f̂ (i)t (x)− g̃t(x), then
calculate the weightedmean of the i-th subpopulation specific deviation function,
η̂(i)(x) = ∑T

t=1 wtd̂
(i)
t (x).

Step 5. Obtain the demeaned functional data ẑ(i)∗t (x) = d̂(i)t (x)− η̂(i)(x), then discre-
tise ẑ(i)∗t (x) as a T by J matrix Ẑ(i)∗, then multiply Ẑ(i)∗ by W, where W =
diag(w1, . . . ,wT), to have Ẑ(i) = WẐ(i)∗.

Step 6. Perform multivariate FPCA on the functional form of Ẑ(i) to obtain Ẑ(i)t (x) =∑L
l=1 γ̂t,lϕ̂

(i)
l (x) up to the first L-dimensional approximations.
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With all the estimated components obtained above, we can represent the coherent
wMFPCA model for mortality modelling and forecasting of the i-th subpopulation, i.e.

Ŷ(i)t (x) = μ̂(x)+ η̂(i)(x)+ Ĝt(x)+ Ẑ(i)t (x)+ σ̂
(i)
t (x)ê

(i)
t ,

or the full representation of the coherent wMFPCA model with the first K-dimensional
approximations to the common trend and the first L-dimensional approximations to the
i-th subpopulation deviation trend, such that

Ŷ(i)t (x) = μ̂(i)(x)+
K∑

k=1

β̂t,kφ̂k(x)+
L∑
l=1

γ̂t,lϕ̂
(i)
l (x)+ σ̂

(i)
t (x)ê

(i)
t ,

where μ̂(i)(x) = μ̂(x)+ η̂(i)(x) is the mean function of the i-th subpopulation.

3.2.2. Out-of-sample forecasts and prediction intervals of the coherent wMFPCA
model
The h-step ahead out-of-sample forecast of Y(i)t (x) can be represented as

Ŷ(i)t+h(x) = μ̂(i)(x)+
K∑

k=1

β̂t+h,kφ̂k(x)+
L∑
l=1

γ̂t+h,lϕ̂
(i)
l (x),

where β̂t+h,k and γ̂t+h,l are the h-step ahead forecasts of the weighted principal component
scores of the common trend and the i-th subpopulation specific deviation trend. β̂t+h,k can
be obtained using a univariate time series forecasting method, such as ARIMA model. To
ensure the predictions of the subpopulations are coherent in the long term, the forecasts
of all subpopulation deviation trends need to be restricted to be convergent and a station-
ary process, such that limh→∞

∑L
l=1(γ̂t+h,lϕ̂

(i)
l (x)− γ̂t+h,lϕ̂

(j)
l (x)) = 0. γ̂t+h,k can hence

be achieved using possibly any stationary autoregressive moving average (ARMA) process
or autoregressive fractionally integrated moving average (ARFIMA) process. The order of
the aforementioned time series models can be decided based on the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC).

Given the way that the coherent wMFPCA model has been constructed, each com-
ponent is independent of the other components. Therefore, the forecast variance can be
expressed by the sum of component variances, i.e.

Var(Y(i)t+h(x)) = τ̂ 2
μ̂(i)
(x)+

K∑
k=1

ût+h,k(φ̂k(x))2 +
L∑
l=1

ω̂t+h,l(ϕ̂
(i)
l (x))

2 + (σ̂
(i)
t+h(x))

2,

where τ̂ 2
μ̂(i)
(x) is the variance of the smoothed estimates of themean function derived from

the smoothingmethod used, ût+h,k and ω̂t+h,l are the variances of β̂t+h,k and γ̂t+h,l that can
be obtained from the time series methods applied, and the forecast error (σ̂ (i)t+h(x))

2 is the
average of the observational variance estimated from the historical data.

With the normality assumption on the model error and the known Var(Y(i)t+h(x)),
a 100(1 − α)% prediction interval for Ŷ(i)t+h(x) can be calculated as Ŷ(i)t+h(x)±
zα

√
Var(Y(i)t+h(x)), where zα is the (1 − α/2) quantile of the standard normal distribution.
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Note that the weights {wt}Tt=1 are controlled by the tuning parameter κ in the geomet-
rically decaying weighting approach embedded in the two proposed models. The larger κ
is, the faster the weights for the historical observations are decaying over time geometri-
cally. In practice, the tuning parameter κ can be determined by minimising the average
root mean square error (RMSE) of all populations defined as

RMSE = 1
p

p∑
i=1

√√√√1
J

J∑
j=1

(
Y(i)t+h(xj)− Ŷ(i)t+h(xj)

)2
. (2)

The value of the parameter κ can alternatively be specified as a prior, if there is a strong
prior knowledge of how past data should be weighted [37].

For selecting the number of principal components in the two proposed models, we use
a cumulative percentage of total variation method. We denote N as a generic notation of
the number of principal components chosen, and N is determined by

N = argmin
N:N≥1

(∑N
n=1 λ̂n∑∞
n=1 λ̂n

≥ P
)
,

where λ̂n is the corresponding estimated eigenvalue of the principal components analysis,
and P = 0.9 is set to be the minimum acceptance level as suggested by Chiou [7].

4. Applications

In this section, we illustrate the two proposed models − the wMFPCA model and the
coherent wMFPCA model using sex-specific mortality data. We first present and plot the
observed mortality dataset, then demonstrate the usefulness of these two models by fore-
casting of the sex-specific mortality rates of Japan. We show the forecasting results for
males and females compared with the observed data. We further exhibit the ability of
non-diverging long-term forecasts of the proposed coherent wMFPCA model and finally
assess the forecasting accuracy of the two proposed models in comparison to the Product-
Ratio model and the independent FPCAmodel using the sex-specific mortality data of ten
different developed countries.

4.1. Sex-specificmortality data of Japan

The sex-specific mortality data of Japan are available for the year 1947 to the year 2016
from the Human Mortality Database [16]. The database consists of central death rates
by gender and single calendar year of age up to 110 years old. We restrict the data at the
maximum age of 100 to avoid problems associated with erratic rates above age 100. The
observed mortality rates curves are smoothed using penalised regression splines with a
partial monotonic constraint so that eachmortality curve is increasing above age 65mono-
tonically [19]. Figure 1 presents the sets of observed male and female mortality data as a
batch of smoothed curves (functional observation), respectively in a rainbow plot with
time-ordering indicated by the colours of the rainbow, from red to violet. Figure 1 shows
that there are steady declines in male and female mortality rates at most ages over the
examined period. The mortality curve patterns for male and female are reasonably similar,
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Figure 1. Smoothed log mortality rates for males and females from the year 1947 to the year 2016 in
Japan, viewed as functional data curveswith time-ordering indicated by the colours of the rainbow from
red to violet. (a) Male (b) Female.

while for male, the mortality rates are generally higher than the mortality rates of female,
particularly at around age 20. Despite the higher male mortality rates in comparison with
female’s, the mortality gap between male’s and female’s gets narrower over time at older
ages.

4.2. Sex-specificmortalitymodelling and forecasting by thewMFPCAmodel

In the demonstration of the first proposed weighted MFPCA model, we aim to make 20-
years-ahead out-of-sample forecasts for male and female mortality rates in Japan. We first
split the dataset with the observedmortality rates from the year 1947 to the year 1996 and a
test dataset with the remaining observedmortality data from the year 1997 to the year 2016.
We decide the value of the weight parameter over the interval 0 < κ < 1 that canminimise
the average rootmean square error (RMSE) stated in Equation (2) ofmale and femalemor-
tality data based on a rolling window approach; see Section 4.5 for the details. The mean
functions for male and female and their functional principal components are estimated as
discussed in the previous section. The analysis shows that the first three functional prin-
cipal components for male and female explain 97.2%, 2.3% and 0.2%, respectively, which
account for more than 99% in total of the variations in the sample data and are above the
minimum 90% acceptance level. We, therefore, select the first three estimated principal
components for approximations and demonstrations. For each score of the corresponding
functional principal component shared bymale and female, we forecast it independently by
a univariate ARIMA time series using the R package ‘forecast’ [20]. The order of ARIMA
models is chosen based on the Akaike information criterion (AIC). The figures and the
descriptions of the estimated functional principal components and their corresponding
scores for male and female using the wMFPCA model can be found in the supplementary
materials of this article. Figure 2 shows the 20-years-ahead forecasting results of mortality
curves of male (with RMSE = 0.2006) and female (with RMSE = 0.2406) from age 0 to age
100 for the year 2016 by the wMFPCA model based on the in-sample data from the year
1947 to the year 1996 in Japan.
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Figure 2. Predictedmortality curves of male (with RMSE = 0.2006) and for female (with RMSE = 0.2406)
fromage0 to age100with the95%prediction intervals using thewMFPCAmodel for the year 2016based
on the observations from the year 1947 to the year 1996 in Japan. Circles are the true logmortality rates,
solid lines are the predictions, and dashed lines are the 95% prediction intervals. (a) Male (b) Female.

Figure 3. Predicted mortality curves of male (with RMSE = 0.1821) and female (with RMSE = 0.1460)
from age 0 to age 100 with the 95% prediction intervals using the coherent wMFPCAmodel for the year
2016 based on the observations from the year 1947 to the year 1996 in Japan. Circles are the true log
mortality rates, solid lines are the predictions, and dashed lines are the 95%prediction intervals. (a) Male
(b) Female.

4.3. Sex-specificmortalitymodelling and forecasting by the coherent wMFPCA
model

The presentation of the coherent wMFPCA model forecasting follows the same strategies
of how we split the dataset for in- and out-of-sample data and choosing the weight param-
eter for the coherent wMFPCA model as we have done for the wMFPCA model in the
previous section. The figures and the descriptions of the estimated functional principal
components and their corresponding scores for male and female using the coherent wMF-
PCAmodel can also be found in the supplementarymaterials of this article. Figure 3 shows
the 20-years-ahead forecasting results of mortality curves of male (with RMSE = 0.1821)
and female (with RMSE = 0.1460) from age 0 to age 100 for the year 2016 using the coher-
ent wMFPCA model based on the in-sample data from the year 1947 to the year 1996 in
Japan.



JOURNAL OF APPLIED STATISTICS 13

4.4. Forecast pattern of life expectancy curves by the coherent and the
non-coherent forecastingmethods

In this section, we move on to examine and compare forecast patterns with mortality sex
ratios and life expectancy by the forecasts of the two proposed models − the wMFPCA
model and the coherent wMFPCA model with four different approaches − the indepen-
dent FPCAmodel [18], the unweightedMFPCAmodel, the Product-Ratio model [17] and
the weighted multilevel FPCA model proposed by Wu and Wang [37].

The independent FPCA model is a univariate FPCA method for forecasting two sub-
populations independently without considerations of any potential correlation of them.
The unweighted MFPCA model uses the theoretical framework proposed by Happ and
Greven [14] combined with the same extrapolation method as the wMFPCA model but
without any time weighting. The forecast results of the independent FPCA model, the
unweighted MFPCA model and the wMFPCA model are based on a non-stationary time
series model on their estimated principal component scores, leading to forecast results of
two ormore subpopulations divergent to different directions in the long run. They are thus
regarded as a non-coherent forecasting approach. Meanwhile, the Product-Ratio model
begins with an idea of obtaining the product and ratio function of all subpopulations by
assuming all subpopulations have equal variance. In the log scale, the product function can
be treated as the sum of all sub populations, whereas the ratio function can be treated as
the differences among subpopulations. The predictions can be obtained by firstly applying
the independent FPCA model to forecast the future realisations of the product and ratio
functions separately, then transforming the forecasts of the product and ratio functions
back to the original subpopulations functions. The convergent forecasts are achieved by
using stationary time series methods, namely the ARMA model or the ARFIMA model,
on the ratio function, which implicitly implies that the differences among subpopula-
tions will be convergent to zero in the long term. It is, therefore, viewed as an example
of a coherent forecasting approach. In a similar vein, the weighted multilevel FPCA
model and the proposed coherent wMFPCA model both restrict the stationary properties
on the deviation functions of each subpopulation from the overall mean to accomplish
the coherent forecasting with no need to assume all the subpopulations have the same
variances.

To deliver the concept of coherent forecasting more concretely, we plot the life
expectancy curves obtained from the observed male and female mortality rates from the
year 1997 to the year 2016 alongside the 20-years-ahead forecasts of the life expectancy
curves from the year 1997 to the year 2016 by the non-coherent forecast methods −
the independent FPCA model, the unweighted MFPCA model and the wMFPCA model
and the coherent forecast methods − the Product-Ratio model, the weighted multi-
level FPCA model and the coherent wMFPCA model using the observed mortality
rates from the year 1947 to the year 1996 in Figure 4. We can see that the conver-
gent forecastings by the coherent models fit well with the actual biological character-
istics trends in Figure 4, where the differences in males and females life expectancy
converge to a certain level gradually and slowly, instead of diverging into different direc-
tions like the forecast results of the non-coherent forecast methods. The demonstra-
tion shows the importance of coherent modelling when there exist common biological
characteristics among several subpopulations. See the supplementary material of this
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Figure 4. 20-year life expectancy predicted curves for male and female in Japan using the independent
FPCAmodel, theunweightedMFPCAmodel, thewMFPCAmodel, the Product-Ratiomodel, theweighted
multilevel FPCAmodel and the coherent wMFPCAmodel. Blue sold line is used formale and red sold line
is used for female. Dotted lines are the observed life expectancy for males and females. (a) Independent
FPCA model, (b) Unweighted MFPCA model, (c) wMFPCA model, (d) Product-Ratio model, (e) Weighted
multilevel FPCA model, (f ) Coherent wMFPCAmodel.

article for more details on the comparison of the historical and predicted patterns of
mortality sex ratios (Male/Female) by the coherent and the non-coherent forecasting
methods.
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4.5. Forecast accuracy evaluation with comparisons to other existingmethods

We now evaluate and compare the forecast accuracy of our two proposed models − the
wMPFCA model and the coherent wMFPCA model with the four different approaches −
the independent FPCA model, the unweighted MFPCA model, the Product-Ratio model
and the weighted multilevel FPCA model demonstrated in the previous section.

In order to have a comprehensive investigation of the forecast accuracy of our two pro-
posed models, we consider ten other developed countries for which data are also available
in the Human Mortality Database. We restrict data periods of all selected countries com-
mencing in the year 1950 up to the year 2010 for a unified purpose. We examine and
quantify the forecasting performance of our models by a rolling window analysis, which
is frequently used for assessing the consistency of a model’s forecasting ability by rolling
a fixed-size prediction interval (window) throughout the observed sample [39]. We hold
the sample data from the initial year up to the year t as holdout samples. We produce the
forecast for the t+ h year where h is the forecast horizon, then determine the forecasts
errors by comparing the forecast result with the actual out-of-sample data. We increase
one rolling window (1 year ahead) in year t+ 1 to make the same procedure again for the
year t+ h+ 1 until the rolling window analysis covers all available data.

We include four different forecast horizons (h = 5, 10, 15 and 20)with ten sets of rolling
window to exam the short-term, the mid-term and the long-term forecast abilities of the
two proposedmodels.We use the root mean square error (RMSE) tomeasure the standard
deviation of the average square prediction error regardless of sign. In our experiments, we
define the RMSE as follows:

RMSE(i)c (h) =
√√√√ 1

10 × 101

9∑
w=0

101∑
j=1

(
Y(i)t+w+h(xj)− Ŷ(i)t+w+h(xj)

)2
,

where c is the selected country, w is the rolling window set, i is the subpopulation for male
(i = M) and for female (i = F) and j is the age group including from age 0 to age 100 in
our experiment.

Based on the average RMSE results of ten sets of rolling window analysis across ten
countries in four different forecast horizons presented in Table 1, the proposed wMF-
PCA model shows to be more desirable for forecasting female mortality in Australia and
Belgium, while the independent FPCA model is particularly good for the long-term fore-
casting of femalemortality in Italy and Spain.We can see that the forecasting performances
between theweightedmultilevel FPCAmodel and the proposed coherent wMFPCAmodel
are comparable. The weighted multilevel FPCA model performs the best in terms of hav-
ing the lowest average female forecast errors in the short run and obtaining relatively
smaller male forecast errors in the long run than the other models. Meanwhile, the pro-
posed coherent wMFPCAmethod shows to be more capable of capturing rapid changes in
male mortality in the short-term forecasting and keeping female mortality forecast errors
relatively lower than the other models in the long-term forecasting across different periods
and age groups among the most considered countries. The forecast performances of the
unweighted MFPCA model and the Product-Ratio model are reasonably similar with no
particular outstanding area than the others.
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Table 1. Forecast accuracy of mortality for male and female using the independent FPCA model, the unweighted MFPCA model, the wMFPCA model, the Product-
Ratio model, the weighted multilevel FPCA model, and the coherent wMPFCA model is measured by the average RMSEs of ten sets of rolling windows analysis.

Independent FPCA model UnweightedMFPCAmodel wMFPCAmodel Product-Ratio model Weightedmultilevel FPCAmodel Coherent wMFPCAmodel

Country M F M+F
2 M F M+F

2 M F M+F
2 M F M+F

2 M F M+F
2 M F M+F

2

h = 5
Australia 0.1605 0.1436 0.1520 0.1623 0.1449 0.1536 0.1573 0.1429 0.1501 0.1622 0.1429 0.1525 0.1513 0.1511 0.1512 0.1485 0.1474 0.1479
Belgium 0.1747 0.1885 0.1816 0.1755 0.1880 0.1818 0.1701 0.1814 0.1757 0.1687 0.1909 0.1798 0.1545 0.1960 0.1753 0.1560 0.1866 0.1713
Canada 0.1337 0.1072 0.1204 0.1305 0.1075 0.1190 0.1308 0.1107 0.1208 0.1328 0.1025 0.1176 0.1223 0.1060 0.1142 0.1122 0.1045 0.1083
France 0.1297 0.1068 0.1182 0.1313 0.1054 0.1183 0.1374 0.1066 0.1220 0.1277 0.1193 0.1235 0.1096 0.1147 0.1122 0.1037 0.1184 0.1110
Italy 0.1988 0.1791 0.1889 0.1963 0.1661 0.1812 0.2028 0.1723 0.1875 0.2123 0.1741 0.1932 0.1797 0.1433 0.1615 0.1679 0.1487 0.1583
Japan 0.1127 0.1103 0.1115 0.1140 0.1124 0.1132 0.1058 0.1233 0.1146 0.1197 0.1003 0.1100 0.1366 0.0908 0.1137 0.1175 0.0835 0.1005
Netherlands 0.1362 0.1583 0.1472 0.1445 0.1579 0.1512 0.1416 0.1546 0.1481 0.1481 0.1474 0.1478 0.1282 0.1437 0.1359 0.1274 0.1444 0.1359
Spain 0.2140 0.1805 0.1973 0.2133 0.2011 0.2072 0.2046 0.1951 0.1999 0.2444 0.1681 0.2062 0.2375 0.1459 0.1917 0.2375 0.1841 0.2108
U.K 0.1019 0.1153 0.1086 0.1057 0.1061 0.1059 0.1066 0.1081 0.1074 0.1225 0.0967 0.1096 0.1131 0.0923 0.1027 0.1085 0.0913 0.0999
U.S.A 0.0895 0.0802 0.0848 0.0933 0.0859 0.0896 0.0891 0.0902 0.0897 0.0933 0.0720 0.0826 0.1080 0.0562 0.0821 0.0910 0.0616 0.0763
Average 0.1452 0.1370 0.1411 0.1467 0.1375 0.1421 0.1446 0.1385 0.1416 0.1532 0.1314 0.1423 0.1441 0.1240 0.1340 0.1370 0.1270 0.1320

h = 10
Australia 0.2178 0.1614 0.1896 0.2151 0.1567 0.1859 0.2129 0.1555 0.1842 0.2134 0.1535 0.1834 0.1977 0.1598 0.1787 0.1888 0.1554 0.1721
Belgium 0.2208 0.2073 0.2141 0.2248 0.2043 0.2146 0.2058 0.1957 0.2008 0.1989 0.2193 0.2091 0.1710 0.2270 0.1990 0.1751 0.2138 0.1945
Canada 0.1935 0.1342 0.1639 0.1944 0.1367 0.1656 0.1983 0.1442 0.1712 0.1877 0.1222 0.1549 0.1646 0.1199 0.1422 0.1577 0.1241 0.1409
France 0.2260 0.1690 0.1975 0.2180 0.1686 0.1933 0.2195 0.1661 0.1928 0.2049 0.1956 0.2003 0.1520 0.1725 0.1623 0.1577 0.1782 0.1679
Italy 0.2703 0.2512 0.2608 0.2607 0.2421 0.2514 0.2694 0.2550 0.2622 0.2804 0.2398 0.2601 0.2430 0.2089 0.2260 0.2376 0.2163 0.2269
Japan 0.1705 0.1964 0.1834 0.1605 0.1962 0.1783 0.1636 0.2303 0.1969 0.1918 0.1524 0.1721 0.2618 0.1645 0.2132 0.1904 0.1169 0.1537
Netherlands 0.1814 0.1929 0.1872 0.2008 0.1908 0.1958 0.1920 0.1899 0.1910 0.1883 0.1625 0.1754 0.1598 0.1578 0.1588 0.1596 0.1594 0.1595
Spain 0.3829 0.2689 0.3259 0.3444 0.3104 0.3274 0.3448 0.3109 0.3279 0.3517 0.2863 0.3190 0.3594 0.2604 0.3099 0.3287 0.3006 0.3147
U.K 0.1600 0.1769 0.1684 0.1665 0.1636 0.1650 0.1684 0.1716 0.1700 0.1992 0.1353 0.1672 0.1776 0.1163 0.1470 0.1670 0.1177 0.1424
U.S.A 0.1418 0.1222 0.1320 0.1459 0.1334 0.1396 0.1421 0.1426 0.1424 0.1384 0.1097 0.1240 0.1485 0.0822 0.1153 0.1535 0.0884 0.1210
Average 0.2165 0.1880 0.2023 0.2131 0.1903 0.2017 0.2117 0.1962 0.2039 0.2155 0.1777 0.1966 0.2035 0.1669 0.1852 0.1916 0.1671 0.1793

(continued).
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Table 1. Continued.

Independent FPCA model UnweightedMFPCAmodel wMFPCAmodel Product-Ratio model Weightedmultilevel FPCAmodel Coherent wMFPCAmodel

Country M F M+F
2 M F M+F

2 M F M+F
2 M F M+F

2 M F M+F
2 M F M+F

2

h = 15
Australia 0.2800 0.2056 0.2428 0.2766 0.2117 0.2442 0.2806 0.2004 0.2405 0.2711 0.2073 0.2392 0.2493 0.2088 0.2291 0.2487 0.2018 0.2252
Belgium 0.2798 0.2365 0.2581 0.2917 0.2397 0.2657 0.2656 0.2306 0.2481 0.2452 0.2605 0.2528 0.2126 0.2703 0.2415 0.2240 0.2551 0.2395
Canada 0.2514 0.1716 0.2115 0.2578 0.1743 0.2160 0.2614 0.1861 0.2238 0.2194 0.1512 0.1853 0.1860 0.1489 0.1675 0.1877 0.1458 0.1668
France 0.3087 0.2069 0.2578 0.3000 0.2199 0.2599 0.2906 0.2105 0.2505 0.2511 0.2724 0.2618 0.1776 0.2361 0.2069 0.2043 0.2497 0.2270
Italy 0.3101 0.2570 0.2836 0.2985 0.2461 0.2723 0.3060 0.2621 0.2841 0.2805 0.2669 0.2737 0.2284 0.2386 0.2335 0.2445 0.2453 0.2449
Japan 0.2333 0.2841 0.2587 0.2091 0.2870 0.2480 0.2221 0.3323 0.2772 0.2609 0.2158 0.2384 0.3704 0.2335 0.3019 0.2570 0.1605 0.2087
Netherlands 0.2298 0.2339 0.2319 0.2670 0.2361 0.2515 0.2496 0.2320 0.2408 0.2222 0.1883 0.2053 0.1860 0.1868 0.1864 0.1924 0.1856 0.1890
Spain 0.4820 0.3051 0.3936 0.4015 0.3673 0.3844 0.4097 0.3714 0.3906 0.3753 0.3593 0.3673 0.3901 0.3290 0.3595 0.3191 0.3564 0.3377
U.K 0.2277 0.2440 0.2358 0.2299 0.2269 0.2284 0.2323 0.2402 0.2363 0.2736 0.1754 0.2245 0.2342 0.1420 0.1881 0.2298 0.1508 0.1903
U.S.A 0.1617 0.1601 0.1609 0.1709 0.1691 0.1700 0.1665 0.1828 0.1747 0.1417 0.1291 0.1354 0.1407 0.1023 0.1215 0.1512 0.1129 0.1320
Average 0.2764 0.2305 0.2535 0.2703 0.2378 0.2541 0.2684 0.2448 0.2566 0.2541 0.2226 0.2384 0.2375 0.2096 0.2236 0.2259 0.2064 0.2161

h = 20
Australia 0.3657 0.2337 0.2997 0.3612 0.2433 0.3022 0.3595 0.2295 0.2945 0.3311 0.2508 0.2909 0.3047 0.2545 0.2796 0.3162 0.2526 0.2844
Belgium 0.3537 0.2589 0.3063 0.3665 0.2626 0.3146 0.3411 0.2493 0.2952 0.2976 0.2999 0.2988 0.2494 0.3101 0.2798 0.2751 0.3024 0.2888
Canada 0.3126 0.1985 0.2556 0.3210 0.2013 0.2612 0.3243 0.2144 0.2693 0.2564 0.1716 0.2140 0.2185 0.1743 0.1964 0.2246 0.1707 0.1976
France 0.3984 0.2572 0.3278 0.3922 0.2623 0.3273 0.3818 0.2585 0.3202 0.3068 0.3357 0.3213 0.2314 0.3040 0.2677 0.2702 0.3215 0.2958
Italy 0.3917 0.2613 0.3265 0.3779 0.2486 0.3132 0.3820 0.2681 0.3251 0.3094 0.3036 0.3065 0.2428 0.2833 0.2631 0.2803 0.2937 0.2870
Japan 0.3021 0.3798 0.3410 0.2692 0.3808 0.3250 0.2917 0.4374 0.3645 0.3298 0.2853 0.3076 0.4742 0.3224 0.3983 0.3256 0.2195 0.2725
Netherlands 0.3159 0.2521 0.2840 0.3394 0.2584 0.2989 0.3424 0.2538 0.2981 0.2980 0.2186 0.2583 0.2486 0.2340 0.2413 0.2675 0.2186 0.2431
Spain 0.6624 0.3784 0.5204 0.5497 0.4627 0.5062 0.5636 0.4694 0.5165 0.4735 0.4688 0.4712 0.4727 0.4357 0.4542 0.3838 0.4357 0.4097
U.K 0.2966 0.2982 0.2974 0.2939 0.2753 0.2846 0.2981 0.2952 0.2967 0.3310 0.2157 0.2733 0.2867 0.1711 0.2289 0.2841 0.1823 0.2332
U.S.A 0.1993 0.1948 0.1970 0.2068 0.2062 0.2065 0.1984 0.2173 0.2079 0.1668 0.1464 0.1566 0.1730 0.1295 0.1513 0.1922 0.1473 0.1697
Average 0.3598 0.2713 0.3156 0.3478 0.2802 0.3140 0.3483 0.2893 0.3188 0.3100 0.2696 0.2898 0.2902 0.2619 0.2761 0.2820 0.2544 0.2682

Theminimal forecast errors amongmodels in different forecast horizons are highlighted in bold.
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When we focus on the forecast horizon size up to twenty years for long-term fore-
casting, we can see that the coherent models maintain relatively less forecast bias among
two sexes than the non-coherent models. For instance, the independent FPCA model, the
unweighted MFPCA model and the proposed wMFPCA model both produce compara-
tively large forecasting errors for male mortality and give small forecast inaccuracies for
femalemortality. In contrast, the coherentmodels can keep the same level of forecast errors
for both genders.With assumed joint biological characteristics among the two genders that
we discussed in the previous section, the mortality pattern among two sexes is supposed
to get similar in the long run, and the convergent designed forecast model is therefore
needed. In particular, the coherent wMFPCA model shows to be more suitable and accu-
rate than the Product-Ratiomodel and the weightedmultilevel FPCAmodel as it produces
the smallest overall forecast errors and bias for both genders and across all the different
forecast horizons and the tested countries in our study.

The main finding in this section is that in the two-sex case, the accuracy of the male
forecast is considerably improved by the coherent models at the small expense of accuracy
in female mortality forecasts. By adopting the coherent forecasting, the forecast accuracy
among all subpopulations is homogeneous as it incorporates additional information into
the forecast for a single subpopulation. The additional information acts as a frame of refer-
ence limiting to the probability of a subpopulation forecast whichmay continue a diverging
trend from other related subpopulations directions.

5. Discussion and conclusion remarks

With the theoretical framework of multivariate functional principal component analysis
motivated by Chiou et al. [8] and Happ and Greven [14], in this article, we have pro-
posed two newmodels that aim tomodel and forecast for a group of mortality rates, taking
advantages of commonalities in their historical experience and age patterns. The first one,
namely as wMFPCA model, is introduced to acknowledge differences in groups, age pat-
terns and trends of several subpopulations to model together when subpopulations have
somewhat sufficiently similar historical patterns. The coherent wMFPCAmodel is a novel
extension of the wMFPCAmodel in a coherent direction.We design the coherent structure
of the model to primarily fulfil the idea that when several subpopulation groups have sim-
ilar socio-economic conditions or common biological characteristics and such these close
connections are expected to continue and evolve in a non-diverging fashion in the distant
future. The time weighting approaches on these two models lead us to expect the future
patterns of mortality to follow more likely recent past observations and obliterate some
parts of irrelevant distant past mortality movements in favour of forecast performances of
the two proposed models.

We have demonstrated the two proposed models through forecasting for sex-specific
mortality with the observed data from Japan. The wMFPCA model consists of the mean
functions and the functional principal components of each subpopulation with corre-
sponding scores shared by all subpopulations. We can obtain the forecasts of the wMF-
PCA model by extrapolating the shared principal component scores ahead with any
non-stationary time series model, such as ARIMA model in the numerical examples.
Coherence is another important issue that aims to be addressed in this article. The coher-
ent wMFPCA model includes two primary components: the average components among
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all subpopulations and each subpopulation’s component that deviated from the average
component. The coherence is ensured by applying a stationary time series model for the
forecasts of the deviation components corresponding PC scores. Under the stationary time
series scheme, it guarantees that the extrapolated PC scores of the deviation components
converge so that the deviation components also converge to their age-specific constants in
the long run. As the long-term forecasts of all the subpopulation’s deviation components
converge to constants and all different subpopulations share the same average components
in the proposed model, they gradually lose the ability to affect the mortality change, and
their impacts on the mortality change are also equal in the long term. Therefore, the fore-
casted mortality differences among all subpopulations are constrained, leading to a similar
constraint on the predicted life expectancy curves among all subpopulations in the mean-
time. The whole population’s mortality change is eventually dominated by the long-term
forecasts of the average components. This non-divergent forecastability of the proposed
coherent wMFPCA model is confirmed by the forecasts of mortality sex ratios and life
expectancy cures in the numerical examples of this article.

It is worth mentioning that Shang [35] and Wu and Wang [37] also proposed a simi-
lar approach using the multilevel functional principal component analysis framework for
coherent mortality forecasting. The multilevel functional principal component structure
relies on the set of the subpopulation-specified PC scores for different subpopulations but
sharing the same set of eigenfunctions among all the subpopulations in the deviation com-
ponents, which implies that the subpopulation-specified PC scores are not independent
and hence some multivariate or vector autoregressive moving average models with sta-
tionary restriction are required to extrapolate all the correlated subpopulation-specified
PC scores for coherent forecasting [37]. Moreover, estimating the subpopulation-specified
PC scores using the multilevel functional principal component analysis for multilevel
function data involves extra difficulties because the shared eigenfunctions in different lev-
els are not necessarily mutually orthogonal. Some additional assumptions may thus be
needed to estimate the subpopulation-specified PC scores and the shared eignfunctions in
a probabilistic structure [37]. In contrast, the multivariate functional principal component
framework that we adapted for the proposed coherent wMFPCA model provides a much
more straightforward idea to achieve the same coherent forecasting task than the multi-
level functional principal component approach. The proposed coherent wMFPCA model
allows each subpopulation to have its own set of eigenfunctions but sharing the same set of
PC scores among all the subpopulations. Given that the shared PC scores are uncorrelated,
there is no need to consider multivariate or vector autoregressive models when we extrap-
olate the set of the shared PC scores for forecasting. Coherent forecasts can be achieved
simply by extrapolating the set of PC scores in each dimension using some stationary time
series models independently. The estimation of the shared PC scores is also straightfor-
ward with no extra assumptions imposed because the eigenfunctions in the multivariate
FPCA framework are mutually orthogonal.

The usefulness of the two proposed models is illustrated through a series of forecast
accuracy evaluations and comparisons with other existing methods. The first proposed
wMFPCA model provides a very flexible framework for multipopulation mortality
forecasting with comparable forecast accuracy as the independent FPCA model, the
unweighted MFPCA model and the Product-Ratio model. The second proposed coher-
ent wMFPCA model outperforms the Product-Ratio model in terms of forecast accuracy
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with no assumptions needed to place on the equal variance of all subpopulations. The
proposed coherent wMFPCA model also shows to have a comparable overall short-term
forecasting performance with the weighted multilevel FPCA model but outperforms it
in the long-term forecasting and avoids the usage of multivariate time series models for
forecasting. Although the numerical results show that the independent functional method
gives relatively better forecast accuracy results for females in some developed countries
than the other multipopulation and coherent models, these outcomes are something that
we expected. The small variabilities and the good consistency of female mortality among
some developed countries can contribute to the independent functionalmethodwithmore
superior forecast performances as it does not include the information frommale mortality
with high instabilities for female mortality forecasting. However, the coherence property
becomes essential when it comes to human mortality modelling and forecasting as some
multiple related populations always maintain certain structural relationships supported
by the extensive theoretical considerations and historical observations, such as the non-
divergingmortality patterns amongmales and females. The independent FPCAmodelmay
provide slightly better forecast accuracy for females in the short run, but the model may
lead to themale mortality rates eventually diverged further from the female mortality rates
in the long term as demonstrated in the numerical examples in Section 4.4. In contrast, the
proposed coherent wMFPCA model maintains a comparable short-term forecast ability
as the independent FPCA model and only trades off a relatively small amount of forecast
accuracy for females in exchange for more sensible forecast results with less forecast error
and bias in the two-sex mortality case in the long term, and this is the main justification
that explains the importance and the advantage of the proposed coherent wMFPCAmodel
over the independent functional method. This feature of the coherent wMFPCA model is
also useful in some other specific practical applications, such as financial planning with
several related stock prices, in a situation that we aim to maintain a balanced error margin
amongst all subpopulations. This speciality is unique and has not been achieved by other
non-coherent or single population models.

The main limitations of the two proposed models also attribute to the characteristics
in which they belong to the classes of ‘non-parametric’ or ‘pure extrapolative’ methods.
They can capture trends in the historical data well. At the same time, they lack the ability
to incorporate more other related information, such as the change in medical technol-
ogy, environment and social-economy for predictions. Another issue is the compatibility
of the wMFPCA models. It requires a certain level of homogeneity among the observed
functional time series curves across different time periods and among subpopulations for
modelling and forecasting. The ability of the wMFPCA models may be affected if several
completely irrelevant subpopulations are placed together in the wMFPCAmodels. Also, if
the observed functional time series contains extreme realisations and cannot be regarded as
approximately coming from the same stochastic process, this could result in unsatisfactory
forecast accuracy. In this case, as suggested by Lee [24], one approach is to first partition
the curves into different relatively homogenous groups and then apply FPCA. Another
solution is to use a moving window approach to perform FPCA for the curves within a
time window. As the window can contain a shorter time-span the mortality curves inside
the window will have less variation and hence could be better treated as samples from the
same stochastic process.
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Notes

1. A standardisation may require for the p ≥ 2 sets of functions if their variances are not on the
same scale prior to the MFPCA estimation algorithm.

2. Note that here we notate t as each observation unit as t will be used to index the observed
mortality curves across years on an age domain in the later mortality data application.
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