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Stability of a planetary climate system with the biosphere species competing for resources
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With the growing number of discovered exoplanets, the Gaia concept finds its second wind. The Gaia concept
defines that the biosphere of an inhabited planet regulates a planetary climate through feedback loops such that
the planet remains habitable. Crunching the “Gaia” puzzle has been a focus of intense empirical research. Much
less attention has been paid to the mathematical realization of this concept. In this paper, we consider the stability
of a planetary climate system with the dynamic biosphere by linking a conceptual climate model to a generic
population dynamics model with random parameters. We first show that the dynamics of the corresponding
coupled system possesses multiple timescales and hence falls into the class of slow-fast dynamics. We then
investigate the properties of a general dynamical system to which our model belongs and prove that the feedbacks
from the biosphere dynamics cannot break the system’s stability as long as the biodiversity is sufficiently high.
That may explain why the climate is apparently stable over long time intervals. Interestingly, our coupled climate-
biosphere system can lose its stability if biodiversity decreases; in this case, the evolution of the biosphere under
the effect of random factors can lead to a global climate change.
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I. INTRODUCTION

An understanding of the mechanisms and scenarios of
climate change as well its current and potential effects on
ecosystems and biodiversity has been a focus of keen attention
and intense research over the last few decades [1–3]. There
is a general consensus that climate change will likely have
an adverse impact on the ecological systems and population
communities resulting in species extinction and a considerable
biodiversity loss worldwide.

While the top-down effect of climate on ecosystems is thus
well established, relatively little attention has been paid to the
possibility of an opposite, bottom-up effect that ecosystems
may have on the climate. Mainstream research often tends to
consider the ecosystems and population communities as “bi-
ological actors on the physical stage” [4], often disregarding
possible feedback. Meanwhile, in planetary science, there is
the concept of Gaia [5,6] that postulates the biosphere regu-
lates the planetary climate to mitigate it for its own survival.
While this hypothesis has been introduced long ago, current
research in planetary and earth sciences inspires new applica-
tions of this hypothesis. In particular, it has been shown that
even if a model exoplanet has significant climate perturba-
tions, then the Gaia concept is still valid [7] (the original Gaia
concept is based on a static planetary climate). The possible
influence of environmental fluctuations on the evolution of
life was considered in Ref. [8]. Coupling between the climate
and the biosphere can affect the climate stability through the
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existence of climate feedback loops and climate tipping points
[9–11]. This supports the Gaia concept but also broadens it
compared to its original statement: While showing that the
biosphere can indeed affect the climate, it does not necessarily
change the climate to provide better conditions for the bio-
sphere to function. The Gaia concept was further developed
in Refs. [12,13], where the coupling between the climate and
biosphere was studied using the maximum entropy production
principle.

Despite the long history of the problem and the large
number of papers discussing various aspects of the Gaia hy-
pothesis, relatively little attention has been paid to the specific
mechanisms through which the biosphere can make an ef-
fect on climate. The few studies that directly addressed this
question by means of mathematical modeling used somewhat
disputable assumptions or simplistic models. Correspond-
ingly, it remains largely unclear to what extent the population
dynamics of species in the biosphere can change the global
climate. In this paper, we contribute to the discussion of the
Gaia concept by considering a semiquantitative mathematical
model of coupled climate-biosphere dynamics. The model
explicitly takes into account the well-established empirical
observation that the presence of vegetation tends to decrease
the planetary albedo [14] and hence can change the global en-
ergy balance. We first develop a rigorous mathematical theory
that reveals the property of the corresponding class of systems
to which our model belongs. By applying the theory to a few
particular cases, we then show that both biodiversity and the
total biomass can have a significant, albeit different, effect on
the state of the climate.
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We mention here that modeling physical processes in a
climate system often leads to difficult mathematical problems,
e.g., involving complicated systems of partial differential
equations for biological and chemical processes [2]. There
exist climate models with different levels of realism; they
can include thousands and even millions of equations, with
thousands of parameters to adjust. Usually, one investigates
these models by computer simulations [15]. However, it is
difficult to estimate the reliability of these computations, since
it is connected with a difficult mathematical problem on the
structural stability of attractors [16,17]. The theory of the
linear response of climate systems to perturbations [18,19]
is based on the Ruelle theory of the linear response for dy-
namical systems that holds on the formal hypothesis that
the dynamical system is of the type axiom A one. The last
fact implies structural stability. However, Smale’s A-axiom
systems [17] seldom appear in practical applications. The
class of structurally stable systems is very narrow; this mainly
includes systems with hyperbolic or almost hyperbolic behav-
ior. One can expect, therefore, that the attractors of climate
systems are not structurally stable: Their topological structure
can change under small perturbations. Correspondingly, they
can exhibit complicated bifurcations under small parameter
perturbations. Since parameter values are often known with
only a poor accuracy, it can make predictions obtained from
“realistic” models questionable or even unreliable. The prob-
lem is further exacerbated by the uncertainty arising due to,
often, insufficient resolution of small-scale processes, as ne-
glecting the variability of the unresolved scales can lead to
major errors in the dominant scales [20].

These interesting and important questions are highlighted
in detail in a recent review [21] (see also Ref. [22]). An
alternative approach to “realistic” models is given by the
so-called conceptual climate models. The climate system is
a complex system that consists of a large number of coupled
subsystems. On a large scale, they include the main agents
such as the atmosphere, oceans, the biosphere, etc. Concep-
tual climate models endeavor to relate the equilibria and the
bifurcations of the entire system to the interaction between
its parts while describing the subsystems’ states by only a
small number of dynamical variables. The effect of “hidden”
degrees of freedom (not taken into account explicitly) and
the corresponding fluctuations can to some extent be taken
into account by including into the model random variables
and applying the tools and techniques of random dynamical
systems [23].

There are different types of conceptual climate models.
Many of them are energy balance models; mathematically,
they are defined by an ordinary differential equation describ-
ing the energy conservation in the climate system. The most
popular model is a zero-dimensional model [24] based on the
theory of blackbody radiation determining global temperature
changes due to the difference in incoming and outgoing solar
radiation. This difference may be caused by a change in the
control parameters such as the surface albedo, the greenhouse
gas emission, and even the solar constant. The system’s equi-
libria and the ideas on how to find them by the bifurcation
theory tools are discussed in Ref. [25].

One question that holds the key to the understanding of
long-term climate dynamics is as follows: Why does the

climate stay stable over long time intervals (e.g., hundreds
of thousands of years) before experiencing a transition to a
different state? To address this question in the context of the
Gaia hypothesis [10,11], in this paper we consider a con-
ceptual climate model where the dynamical variables can be
decomposed as slow and fast modes. Then for large times the
fast mode dynamics is captured by the slow dynamics on a
stable slow manifold of a slow-fast system. The slow variables
determine a long-term climate evolution under external factors
whereas the fast modes may be associated with rapid fac-
tors. We mention here that the mode decomposition technique
can be used for deterministic as well as stochastic climate
models [23].

The paper is organized as follows. In the next section,
we introduce a planetary climate model with a biosphere
component that arises from coupling between the concep-
tual zero-dimensional global energy balance model of climate
dynamics and a generic ecosystem dynamics model (a multi-
specific population system living on multiple food sources). In
Sec. III, we consider a general class of systems to which our
model belongs and discuss the stability of those systems. We
then show in Sec. IV that, in the case of our climate-biosphere
model, the planetary climate remains stable with regard to
a variation of the ecosystem model parameters as long as
biodiversity is sufficiently large, but it can lose stability (hence
potentially resulting in regime shifts and a global climate
change) if the number of species is small. A discussion and
conclusions can be found in the last section.

II. THE MODEL

The energy balance system is a baseline climate model. It
is defined by the following equation [25],

dT

dt
= λ−1

(
− eσT 4 + μ0I0

4
(1 − A)

)
, (1)

where λ is thermal inertia, T is the averaged surface temper-
ature, t is time, and A is the average albedo of the planet’s
surface. On the right-hand side, the first term is the outgoing
emission and the second term represents the incoming star’s
radiation. Generally, incoming radiation to the planetary sur-
face from a star is modified by a parameter μ0 to allow for
variations in the stellar irradiance per unit area I0 (the solar
constant in the case of the Earth), or for long-term variations
of the planetary orbit [26]. On the other side, the outgoing
emission depends on the fourth power of temperature, the
effective emissivity e, and a Stefan-Boltzmann constant σ .

This model can be coupled with the modeled biosphere’s
dynamics as follows. The complete averaged albedo A can
depend on the biosphere state. For simplicity, we mostly focus
our analysis on a single global ecosystem in which species are
competing for several resources. We consider the following
classical model,

dxi

dt
= xi[−μi + φi(v) − γi xi], i = 1, . . . , m, (2)

dvk

dt
= Dk (Sk − vk ) −

M∑
i=1

bki xi φi(v), k = 1, . . . , n (3)
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(cf. Refs. [27,28]), where x = (x1, x2, . . . , xn) are the species
abundances, m � 1, and v = (v1, . . . , vn) the resource con-
centrations. Here, μi are the species mortalities, Dk > 0 are
resource turnover rates, Sk is the supply of the resource
vk , and φi is the specific growth rate of species as a func-
tion of the availability of the resource (also known as the
Michaelis-Menten function). The coefficients γi > 0 define
self-limitation effects [29]. We assume that each of the re-
sources vk , k = 1, . . . , n, is consumed by all species so that
the fraction of the kth resource in the ith species is positive
bik > 0.

We consider general φ j which are bounded, non-negative,
and Lipshitz continuous,

0 � φ j (v) � C+, |φ j (v) − φ j (ṽ)| � Lj |v − ṽ|, (4)

i.e., φk have a minimal smoothness, and they are bounded and
non-negative. The last restriction means that species consume
resources.

Moreover, we suppose

φk (v) = 0, for all k, v ∈ ∂Rm
+, (5)

where ∂Rm
+ denotes the boundary of the hyperoctant Rm

+ =
{v : v j � 0, ∀ j}. Moreover, we suppose that

∂φk (v)

∂v j
� 0, for all k, j, v ∈ ∂Rm

+. (6)

This assumption means that as the amount of the jth resource
increases, all the functions φl also increase.

Conditions (4) and (5) can be interpreted as a generaliza-
tion of the well-known von Liebig law, where

φk (v) = rk min

{
v1

Kk1 + v1
, . . . ,

vm

Kkm + vm

}
(7)

(cf. Ref. [27]), where rk and Kk j are positive coefficients, and
k = 1, . . . , M. The coefficient rk is the maximal level of the
resource consumption rate by the kth species and coefficients
Kki, i = 1, . . . , M define the sharpness of the consumption
curve φk (v).

A simple way to couple climate subsystem (1) and the
modeled biosphere defined by (2) and (3) is to suppose that
the resource supply parameters Sk depend on the surface tem-
perature T . Moreover, we can suppose the albedo is a linear
function of xi:

A = A(x) = A0 − m−1
m∑

j=1

c jx j . (8)

Finally, we obtain the following climate-biosphere system,

dxi

dt
= xi[−μi + φi(v) − γi xi], i = 1, . . . , m, (9)

dvk

dt
= Dk (Sk (T ) − vk ) −

m∑
i=1

bki xi φi(v), k = 1, . . . , n,

(10)

dT

dt
= λ−1

[
−eσT 4 + μ0I0

4

(
1 − A0 + m−1

m∑
j=1

c jx j

)]
.

(11)

As an example, let us consider a model planet where the
surface is significantly covered by ice [30] and the ice-albedo
feedback is the main regulator of the planetary climate dy-
namics [31]. Let the area of some region of the planet be Sarc,
the area occupied by ice be Sice, while the free ice area be Sfree

[32], where Sfree = Sarc − Sice. One can suppose that different
species coexist in the free ice domain and the averaged albedo
of this domain is a linear combination of contributions of
different species. Then we obtain

A0 = AiceSiceS−1
arc , c j ∝ Sfree = Sarc − Sice, (12)

where Aice is the albedo of the ice-covered area. This relation
will be useful below.

Suppose that species populations xi and resources vk are
fast variables, while the temperature T evolves slowly. Such a
situation arises if, for example, γi � 1 (see Ref. [33]). Then
one can show that for large times txi(t ) ≈ Xi(T ), where Xi(T )
are time-averaged equilibrium species populations for fixed T
(see Sec. IV). Then we obtain the following equation:

dT

dt
= λ−1

[
−eσT 4 + μ0I0

4

(
1 − A0 + m−1

m∑
j=1

c jXj (T )

)]
.

(13)
Note that Eq. (13) formally resembles the well-known ice-
albedo feedback modification of the zero-dimensional energy
balance model [25].

When the system (9), (10), and (13) is regarded as a model
of a particular biosphere, the choice of coefficients ck is deter-
mined by the environmental conditions at a given location and
the corresponding species properties. Since we are aiming at
building a global model, we want Eqs. (9), (10), and (13) to be
applicable to any part of a modeled planet. Thus, we consider
the coefficients unspecified. More precisely, we suppose that
coefficients ck are random numbers described by certain prob-
ability distributions. We introduce these coefficients randomly
assuming the randomness of the biological evolution.

In the upcoming section, we will consider a general class of
a slow-fast system with random coefficients, which includes
the system (13) as a particular case.

III. A GENERAL CLASS OF SYSTEMS

A. A slow-fast system

In this section, we consider the following class of systems,

dyi

dt
= κgi(y, x), (14)

dx j

dt
=

p∑
l=1

Ajl xl + κ1Fj (y, x), (15)

where i = 1, . . . , n, j = 1, . . . , p, and

Fj (y, x) =
m∑

k=1

b jk fk (y, x).

In these equations, the unknown vector-valued function y(t ) =
[y1(t ), . . . , yn(t )] consists of slow components, the unknown
function x = (x1, . . . , xp) determines fast components, κ, κ1

are small positive parameters, gi, fk are given smooth and
uniformly bounded functions, bjk are bounded coefficients,
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and the square matrix Ajl defines a linear operator A with the
spectrum σ (A) such that

Re σ (A) < −δ0 < 0.

Then for sufficiently small κ, κ1 > 0 the system of equations
(14) and (15) has a locally attracting smooth and locally in-
variant in an open neighborhood Uκ,κ1 of x = 0 manifold M
defined by

x j = 	 j (y, κ, κ1) = κ1

(
m∑

k=1

c jk fk (y, 0) + X̃ j (y, κ, κ1)

)
,

(16)
where

cik = −
m∑

j=1

(A−1)i jb jk .

Here, A−1 stands for a matrix inverse to A and sufficiently
smooth functions X̃ j (y, κ, κ1) define small corrections such
that

|X̃ j (·, κ, κ1)|C1(Uκ,κ1 ) → 0 (κ, κ1 → 0). (17)

The existence of M follows from the known results (for
example, Refs. [16,34,35]).

As a result, we obtain the following system for slow vari-
ables,

dyi

dt
= κgi[y,	(y, κ, κ1)], (18)

where 	(y, κ, κ1) = [	1(y, κ, κ1), . . . , 	p(y, κ, κ1)].
For consideration of the systems with random parameters

we need to use arguments from dynamical system theory and
the Hoeffding inequality, one of the concentration inequali-
ties.

Recall the basic concept of structural stability introduced
by Andronov and Pontryagin in 1937 [36]. Consider a smooth
vector field F on a compact domain Dn of Rn with a smooth
boundary (or on a compact smooth manifold M of dimension
n). Assume that F ∈ C1(Dn) and consider all ε-small pertur-
bations F̃ such that

|F̃ |C1(Dn ) < ε. (19)

Consider systems of differential equations dx/dt = F (x)
and dx/dt = F (x) + F̃ (x) and suppose that they define global
semiflows St

F and St
F+F̃

on Dn. The system dx/dt = F (x)
is called structurally stable if there exists an ε0 such that
for all positive ε < ε0 trajectories of semiflows St

F and St
F+F̃

are orbitally topologically conjugated (there exists a home-
omorphism, which maps trajectories of the first system into
trajectories of the second one). Roughly speaking, the original
system is structurally stable if any sufficiently small C1 pertur-
bations of that system conserve the topological structure of its
trajectories, for example, the equilibrium point stays an equi-
librium (maybe slightly shifted with respect to the equilibrium
of a nonperturbed system), or the perturbed cycle is again a
cycle (maybe slightly deformed and shifted). We denote the
structural stability constant of the system dx/dt = F (x) by
ε0(F ).

Note that structurally stable dynamics may be, in a
sense, “chaotic.” There is a rather wide variation in different

definitions of “chaos.” Chaotic (not periodic and no rest point)
hyperbolic sets occur in some model systems [16,36–41].

B. Systems with random parameters

We consider systems (18), which arise, in a natural way,
from systems decomposed in slow and fast variables. We will
use the following notation. We denote by EX the expectation
of a random quantity X , and by Var X its variance. Moreover,
Pr[A] denotes the probability of a random event A. In this
section, we formulate general principles on averaging with re-
spect to the parameters that are applicable to fast-slow climate
models.

Consider the following general system of differential equa-
tions,

dyi

dt
= gi[y,	(y)], (20)

where i = 1, . . . n, y(t ) = [y1(t ), . . . yn(t )] is an unknown vec-
tor function, and 	 = (	1, . . . , 	p), 	l (y) are functions,
which will be defined below. Let Bn be a compact subdomain
of Rn with a smooth boundary ∂Bn. We suppose that gi(y,	)
are smooth functions uniformly bounded as are the first and
second derivatives with respect to all variables y,	,

|gi|C2(Bn×Rp) < Cg, (21)

where Cg is a positive constant.
We assume, moreover, that the functions 	i(y) are sums of

other functions fi j (y) with random parameters ci j :

	i(y) = m−1
m∑

j=1

fi j (y, ci j ). (22)

For (20) we set the initial data

y(0) = y(0). (23)

Let the following assumptions hold:
Assumption 1. Let ci j be independent random quantities

such that Eci j = c̄. Moreover, we suppose that almost surely
in ci j the functions fi j and their derivatives satisfy

sup
y∈Bn

| fi j (y, ci j )| < Cf , (24)

sup
y∈Bn

∣∣Dk
y fi j (y, ci j )

∣∣ < Cf ,k, k = 1, 2, (25)

where positive constants Cf ,Cf ,k are uniform in i, j, m.
Here, we do not suppose that ci j are normally distributed,

so we can consider sufficiently general random ci j with dif-
ferent probability density functions (PDFs). Our assumption
is general enough and it allows us to apply the Hoeffding
theorem [42]. The two main cases are particularly interesting.
The first arises when fi j are linear functions of ci j . In this
case we suppose that the PDF of ci j has a bounded support.
For example, we can take a bounded Pareto distribution for
ci j , but it is not allowed to take the standard Pareto density
law. This case occurs in the presented paper, where ci j are
variations of albedo. A more interesting case can occur, if, for
example, fi j (y) = yi/(ci j + yi ) with yi � 0. Then the support
of ci j should lie in (c0,+∞), c0 > 0, and here we can take
the Pareto distribution. So, it is possible to make averaging
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over species parameters for a system with Holling’s functional
responses.

Together with system (20) we consider the corresponding
averaged system,

dȳi

dt
= ḡi(y), (26)

where

ḡi(y) = gi(y, 	̄1(y), . . . , 	̄p(y)), (27)

where i = 1, . . . , n, and y(t ) = [y1(t ), . . . yn(t )] is an un-
known vector function, and 	̄i(y) are averages of functions
	i(y) over the random parameters ci j :

	̄i(y) = m−1
m∑

j=1

fi j (y, ci j ). (28)

We assume that the following conditions hold,

ḡ(y) · e(y) < 0 ∀y ∈ ∂Bn, (29)

and

g(y,	(y)) · e(y) < 0 ∀y ∈ ∂Bn, (30)

where e(y) is a normal vector to the boundary ∂Bn at the point
y directed inward on the domain Bn. For the system (26) we
set the same initial data (23). Condition (29) implies that the
Cauchy problem (23) and (26) defines a global semiflow on
the domain Bn.

C. Main features of the systems with random parameters

For slow variable systems (18) we prove an averaging
theorem assuming that cik are random independent parameters
(see the Appendix). This theorem asserts the attractor of the
original system is close to the attractor of the averaged one
with a probability Prm, which is exponentially close to 1 for
large m. So, our main idea is as follows: A relative climate
stability results from the effect where a large number of in-
dependent factors can mutually cancel each other out. The
probability Prm satisfies an inequality that involves the number
ε0, which is a measure of stability under perturbations. If
ε0 > 0 is small, i.e., the original system is weakly stable and
conserves its dynamics only under very small perturbations,
then the estimate (A12) from Theorem 1 (see Appendix)
makes sense only for large m > m0(ε0) [in fact, for bounded
m the right-hand side of (A12) is negative].

Moreover, structurally stable systems are seldom found in
real applications (if we exclude the cases n = 1 and n = 2,
where they are generic). According to the basic result of
Smale [16,41], for dimensions n > 2 structurally stable sys-
tems are not generic. To overcome this difficulty, we consider
an approach which allows us to show that solutions of the orig-
inal system stay in a small neighborhood of a local attractor
of the corresponding averaged system.

The stability of many dynamical regimes can be proved
by using Lyapunov functions. Recall that L(y) is a Lyapunov
function of a system dy/dt = g(y) in a domain V ⊂ Rn if
L is at least C1 smooth and L(y(t )) does not increase along
trajectories y(t ) of the system:

∇L(y) · g(y) � 0, y ∈ V . (31)

For example, if y∗ is a stable rest point of the system, then
one can construct a L(y) close to a quadratic form, which is a
Lyapunov function in a small neighborhood V of y∗ and

∇L(y) · g(y) � c|y − y∗|2, y ∈ V , (32)

for some c > 0.
The next statement (see the Appendix) can be proven for

the Lyapunov functions. If the averaged system defined by
(26) has a Lyapunov function, then the original system (20)
has the same Lyapunov function, a probability PrL, which is
exponentially close to 1 as m large.

This theorem can be applied to the energy balance system
(13) as follows. Suppose that the averaged system is gradient-
like [note that (13) enjoys this property]. Let Ā be an attractor
of the original system, which consists of stable equilibria.
Suppose that all equilibria of the averaged system are hyper-
bolic. Then there exists a Lyapunov function L(y) such that

Hḡ(y) = ∇L(y) · ḡ(y) � −ε,

for all y ∈ V (Ā) and some ε > 0, where V (Ā) is an open
subset of the attraction basins of Ā. This subset contains
all points y except for small δ neighborhoods of equilibria,
where δ → as ε → 0. Then with probability Prδ,ε,m all of the
original system also has the same Lyapunov function with
analogous properties.

IV. BIFURCATIONS OF THE COUPLED
CLIMATE-BIOSPHERE SYSTEM

For slow variable systems (18) we prove averaging theo-
rems (see Theorems 1 and 2 stated in Appendix) assuming
that cik are random independent parameters. In the general
case this system is complicated. To simplify the problem,
we suppose that the ci are random independent quantities
such that Eci = c̄, and, moreover, we apply the approximation
obtained in Refs. [28,43,44]. We assume that the turnovers
satisfy Dk � 1. Then

vk = Sk − S̃k, 0 < S̃k < const D−1. (33)

We consider two cases: γi = O(1), when self-limitation is not
small, and γi = 0.

A. Systems with self-limitation

Suppose that all species Xj survive and have positive abun-
dances. Then

Xj (T ) = Uj (T ) + O(D−1),

Uj (T ) := γ −1
j [φ j (S(T )) − μ j]+,

where we use the notation f+ = max( f , 0). Then Eq. (13)
takes the form [we remove the terms the order O(D−1)]

dT

dt
= λ−1

[
−eσT 4 + μ0I0

4

(
1 − A0 + m−1

m∑
j=1

c jUj (T )

)]
.

(34)
We apply Theorems 1 and 2, with p = 1 and

	1 = m−1
m∑

j=1

c jUj,
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where c j are random independent parameters. The averaged
system takes the form

dT

dt
= λ−1

(
− eσT 4 + μ0I0

4
[1 − A0 + CB(T )]

)
, (35)

where

B(T ) = m−1
m∑

j=1

Uj (T ), C = m−1
m∑

i=1

Eci = c̄.

The function B(T ) is the average biomass per species, and C
is the average perturbation of albedo per species.

Let all φi(S) be uniformly bounded by a constant a,
φi(S) < a for all i = 1, . . . , m and S. Then we find that, with
a probability exponentially close to 1, there exists a Lyapunov
function defined by

L(T ) = −eσT 5

5
+ μ0I0

4
[(1 − A0)T + CW ],

where

W (T ) =
∫ T

0
B(s)ds.

Nondegenerate local minima of this function are steady states
(local attractors) of the averaged system, and local extrema are
saddle points or repellers of that system. If c̄ is small enough,
we have only a single local attractor T = T̄e. Our theorems
(see the Appendix) imply that the original system then also
has (with a probability close to 1) a single local attractor T =
Te(m) and |Te(m) − T̄e| → 0 as m → ∞.

The situation dramatically changes if the condition φi < a
is violated, say, one species dominates or if m is small. Then it
is impossible to guarantee that |Te(m) − T̄e| → 0. This means
that decreases in biodiversity can produce global climate
changes.

To find possible bifurcations, we consider the simplest
case when we are dealing with a single resource v1 = v and
the growth functions are identical for all species, φi(v) =
v(Ki + v)−1. We assume that S(T ) = S0 + S1�(T ), where
the coefficient S1 defines an influence of temperature on the
resource supply and

�(T )2 = exp
[−(T − T0)2/2σ 2

T

]
.

This means that there exists an optimal temperature T0 for
species growth and a characteristic spread of this temperature
σT . Then we obtain Eq. (35) with

B(T ) = m−1
m∑

i=1

S0 + S1�(T )

γi[Ki + S0 + S1�(T )]
,

and the equation for the steady-state temperature takes then
the form

F (T ) = G(T ), (36)

where

F (T ) = eσT 4, G(T ) = μ0
I0

4
[1 − A0 + CB(T )].

Note that for C > 0 a biomass B growth diminishes the aver-
aged planetary albedo producing a hotter climate.

Depending on C we have either a single root of (36) or
three roots (see Fig. 1); in the latter case, two roots are lo-
cal attractors and the third root is a saddle point. With the

FIG. 1. This plot shows possible bifurcations in a climate-
biosphere system. The equilibrium temperature values are given
by intersections of curves y = F (T ) and y = G(T ). For the bio-
sphere, we have m = 20 species, where the parameter values are
Ki = 0.1, S0 = 0.1, μ = 0, S1 = 0.2, T0 = 280 K, and σT = 1. The
albedo coefficients ci are distributed randomly according to nor-
mal density Norm(Ec, σc ), where Ec = 0.2, σc = 0.03. We use
parameters similar to the Earth’s climate system, so we have
σ = 5.67 × 10−8 J s−1 m−2 K−4, A0 = 0.62, μ0 = 1, e = 0.65, and
I0/4 = 340 W m−2. The self-limitation parameters γi = γ , where
γ = 2. We have a single intersection for Ec = 0.2 and the three
intersections for Ec = 0.15.

growth in C, the lower stable root eventually merges with the
unstable one and disappears in a pitchfork bifurcation. We
mention here that a similar bifurcation occurs in the ice-albedo
feedback problem (see above). A similar bifurcation resulting
from the bistability of the system is also found in Ref. [45].
In that paper, another energy balance model is considered,
in particular, A0 depends on temperature T and the cause
of bistability is connected with that dependence. Bistability
can lead to a transition from a hothouse Earth to snowball
Earth and vice versa. In our case the averaged biomass B(T )
dependence on surface temperature T is important, and to ob-
tain bifurcations, we should have a B(T ) sufficiently sharply
increasing in T .

It is interesting to investigate how small the number of
species should be to cause these bifurcation effects. Such a
sensitivity analysis can be done as follows. Let Ccrit be a criti-
cal value of C in Eq. (35) such that the bifurcation still exists
for C > Ccrit but it is absent for C < Ccrit. Let us estimate
the probabilityPbif that the random quantity X = m−1 ∑m

j=1 c j

is more than Ccrit. The probability Pbif depends on m. For
large m the PDF of that quantity is close a normal density,
X ∈ Norm(c̄, m−1σ 2

c ), where c̄ and σ 2
c are the expected value

and the variance of ci, respectively. By these arguments we
conclude that, if the value Pbif is not negligible, then the
following condition should be satisfied:

m < mc = σ 2
c

(c̄ − Ccrit )2
.

For m < mc fluctuations in random species parameters can
essentially influence system dynamics (Fig. 2).
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FIG. 2. This plot shows the robustness of the climate-biosphere
system with respect to a change of species number. The choice
of parameters is the same as in the previous plot, Ec = 0.2 and
γ = 0.03. The red, dark blue and green curves show dependences
y = G(T ) for different species numbers, m = 20, 25, and 30, while
the linearlike curve is y = F (T ). The temperature Teq that defines a
stable climate state is given by the second intersection of curves F (T )
and G(T ). This intersection weakly depends on m that is consistent
with theoretical results. Note that Teq depends on the biodiversity m
in a nonmonotone manner while the biomass growth pushes the curve
y = G(T ) upward, leading to a hotter climate that is consistent with
experimental data from Ref. [46].

It is interesting to understand how global warming affects
the described bifurcation effect. Consider the cold planetary
region and relation (12). We observe that a decrease of the
area occupied by ice increases the coefficient c̄ and decreases
A0.Thus it reinforces the bifurcation effect and can lead to
climate bifurcation.

B. Systems without self-limitation

System (2) and (3) of species competing for resources
without self-limitation terms γixi exhibits very interesting
properties. In a pioneering work [27] it was shown, by nu-
merical simulations, that three competing species can coexist
in a chaotic regime. An analytical proof of the existence
of chaos is obtained in Ref. [47] for special Lotka-Volterra
(LV) systems, which can be derived from our system (2) and
(3) under the assumption Dk � 1. Those LV systems have a
special structure, namely, they can be interpreted as a system
with n resources. Under some assumptions they can support
the coexistence of m � n species. Given an n, by adjusting
the LV system parameters one can simulate any prescribed
structurally stable dynamics, which can be chaotic or periodic.
For example, to simulate the Lorenz dynamics, we take n = 3
and m = 12 species.

When we couple system (2) and(3) with temperature dy-
namics, we obtain (9) and (10). That system exhibits new
effects. To show it, let us fix the temperature T first. Under
the assumption Dk � 1, we use (33) and then by substituting
these formulas into Eqs. (9) and by the Taylor expansion of

φi(v) at S, we have the following weakly perturbed LV system,

dxi

dt
= xi

(
−ri + φi(S) +

m∑
j=1

Ki jx j

)
+ O(D−2), (37)

where D = min Dl and

Ki j =
n∑

l=1

Ail Bl j,

Ail = ∂φi(S)

∂Sl
, Bl j = bl jD

−1
l φ j (S).

Suppose that

−ri + φi(S) =
n∑

l=1

Ailμl (38)

for some coefficients μl . Only under that assumption is the
coexistence of many species possible (see Ref. [47]). Then
the dynamics of system (37) is determined by some hidden
Volterra variables qi. Species abundances xi can be expressed
via qi as follows,

xi(t ) = xi(0) exp

(
−

∑
Ail ql (t )

)
, (39)

while the dynamics of q is governed by

dqi

dt
= Gk (q, A, B, m, μ), k = 1, . . . , n, (40)

where

Gk (q) = −μk +
m∑

i=1

Bkixi(0) exp

(
−

n∑
l=1

Ail ql (t )

)
.

In [47] it is shown that Gk (q) can approximate any prescribed
functions in a compact domain that implies the existence of
complicated dynamics and a chaotic and periodic large time
behavior of q.

Suppose now that S depends on the temperature T , and
for each T condition (38) is satisfied. From a biological point
of view, it is possible only if climate evolves slowly and the
parameters of organisms in the population have enough time
to adapt so that condition (38) is satisfied. The importance of
such a genetic adaptation with respect to climate changes is
shown in Ref. [48]. So, if the climate evolves quickly, systems
without self-limitations should exhibit mass extinctions.

Let us take into account that now the biomass can explicitly
depend on time (since the large time behavior of biomass B
may be chaotic or periodic). Then Eq. (35) changes and reads

dT

dt
= λ−1

(
− eσT 4 + μ0I0

4
[1 − A0 + CB[q[t, T (·)]]]

)
,

(41)
where the biomass per species B[t, T (·)] =
m−1 ∑m

i=1 xi[t, T (·)] becomes a complicated functional
depending on all values of T (t ′), 0 � t ′ � t . This equation,
Eqs. (40) for q, and relations (39) give us a system describing
a coupled climate-ecosystem dynamics. Such nonlinear
equations with a retarded nonlinearity can exhibit complicated
behavior. One can simplify the ecological equations (40) by
averaging with respect to random species parameters. For
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simplicity, let us consider the case of a single resource
S with φi(S) = aiS/(Ki + S), where ai, Ki are random
parameters subject to the density ρ(a, K ) with the support
S = {a > 0, K > δ > 0} and supposing that xi(0) are also
random with the average x̄(0). Then, using our Theorem I
from the Appendix, we have the averaged system for q,

dq

dt
= −μ + mḠ(q),

where

Ḡ(q) = x̄(0)

D

∫
S

aSρ(a, K )

K + S
exp

(
− aSq

(K + S)2

)
dadK.

To simplify the analysis further, let us consider a natural
situation, where the dynamics of species is much faster than
the temperature dynamics. Then one can make averaging over
time t in the equations for xi(t ) in the term B(t, T ) that pro-
duces the averaging term 〈B(t, T )〉, where the moving average
of f is

〈 f (·)〉 = τ−1
∫ t

t−τ

f (s)ds, (42)

where τ � 1 is a large averaging interval.
We obtain then Eq. (35) with 〈B[τ, T (·)]〉 instead of B(T ).

However, a stochastic (chaotic) dynamics of the averaged
biomass B(t ) can lead to random transitions between different
stable states via an intermediate state (similarly to Ref. [45],
where the noise is induced by the solar irradiance).

V. DISCUSSION AND CONCLUSIONS

Understanding the planetary climate dynamics and identi-
fication of factors and processes that can affect its stability are
important problems, in particular, because of their prominent
effect on the biosphere functioning. The climate-biosphere
system is an extremely complex system and the corresponding
mathematical model, even a relatively simple “conceptual”
one, is usually too complicated for a comprehensive analytical
study. The possibility of nontrivial model reduction lies in
the observation that different processes often go with very
different rates, i.e., take place on very different timescales. In
particular, many complex systems, including climate models,
have slow and fast components. According to classical results
[35], large time dynamics of such systems are captured by
a dynamics of slow modes on a slow invariant manifold.
It is well known that even low-dimensional systems exhibit
complex bifurcations that may account for the complexity of
the climate dynamics [49–51]. Moreover, such models exhibit
multistationarity, i.e., the existence of many stationary states
that, according to Ref. [52], provides the climate stability
under variations of astronomical factors.

There is growing evidence that the biosphere can have a
variety of feedback loops to the climate and a comprehensive
understanding is only possible based on the analysis of a
coupled climate-biosphere system. The importance of such
coupling is the essential content of the Gaia concept [5,6].
Several specific feedback mechanisms have been investigated.
For instance, in the Earth system, the perturbation of the
carbon cycle [53], water-vapor [54] cycle, or a disturbance
in oxygen production [55] are examples of such feedback, but

Biosphere 
(mul�species popula�on dynamics) 

Global climate 
(quan�fied by the mean temperature) 

Adverse effects of climate 
change resul�ng in species 

ex�nc�on and biodiversity loss 

High biodiversity: neutral feedback 
preserving climate stability 

Low biodiversity: poten�ally 
destabilizing feedback leading 

to the regime shi�  

2 

1 

3 

FIG. 3. Schematic summary of the feedbacks in our model of
a coupled climate-biosphere system [see Eqs. (9)–(11)]. Arrow 1
shows the potentially destructive effect of the global climate change
on the population dynamics and ecosystems functioning. Arrow 2
shows the neutral feedback that the population dynamics has on the
global climate in the case of high biodiversity, i.e., a large number
of coexisting species. Arrow 3 shows the potentially destabilizing
feedback of the population dynamics on the global climate in the
case of low biodiversity.

there are many more. In this paper, we focus on the feedback
induced by the effect that the biosphere (in particular, vege-
tation, e.g., see Ref. [14]) can have on the planetary albedo,
hence potentially changing the global energy balance. We
addressed this issue theoretically by considering a conceptual
model of climate-biosphere dynamics arising from the cou-
pling between a global energy balance model and a generic
multispecific model of population dynamics. While the zero-
dimensional energy balance models have been mostly used
to investigate the bistability between hothouse and snowball
climates (see Ref. [21] for a review), here we focus on bi-
furcations within a warm climate induced by an interaction
between the climate and biosphere.

In our approach, we assumed that the parameters of fast
subsystems are random and mutually independent. Under
such assumptions, we prove a general theorem on the connec-
tion between attractors of averaged and original systems. If the
attractor Ā of the averaged system has a low fractal dimension,
then, with a probability close to 1, the attractor of the original
system is close to Ā. We mention here that the importance of
this result goes beyond the climate dynamics; arguably, it may
have a variety of applications in many different fields such as
global network systems with unknown parameters, foodwebs,
gene networks, etc.

Referring back the Gaia concept, why, however, was the
climate system stable over long periods of time in the past?
Our study provides a possible answer to this question. Climate
stability can be explained by the fact that many independent
factors are canceled out. Our findings are summarized in
Fig. 3. Thus, our model confirms the Gaia concept in the
sense that the stability of the climate system is ensured by
high biodiversity. But our analysis also suggests a possibil-
ity of positive feedback of the biosphere on climate change.
Consider a scenario of a slow change in the energy balance
resulting, for instance, in a gradual increase of the mean
temperature. It has been shown in many studies that such an
increase would eventually result in species extinctions and
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biodiversity loss (see arrow 1 in Fig. 3). Our results predict
that the exact nature of the feedback loop will depend on
the extent of the biodiversity loss. As long as the number
of extinctions is not too large, the biodiversity loss will not
have any notable feedback on the climate dynamics (arrow 2
in Fig. 3). However, should the biodiversity loss becomes con-
siderable, i.e., the number of surviving species becomes small,
the failing biota would increasingly likely have a positive
feedback on the climate change, resulting in its destabilization
(bifurcation) followed by the transition to another steady state
(cf. arrow 3 in Fig. 3). The global climate change resulting
from this bifurcation is likely to have a stronger negative effect
on the biosphere, hence accelerating extinctions.

This model may be used to reconstruct and project cli-
mate change on the ice planets of the Solar System [56,57]
and some exoplanets [58,59]. Another possible application
of our approach is paleoclimate modeling. For example, in
the Cryogenian period, the planet was transformed into so-
called “snowball Earth,” where early life survived under the
environmental stress [60], and became stable and even diverse
[61]. Our model may help to evaluate how biodiversity could
contribute to global ice melting in this period.
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APPENDIX

In this Appendix, constants c and Ci can depend on system
parameters but are uniform in m for large m. Note that we
sometimes denote different constants by the same index if it
does not lead to confusion. Our proving plan can be outlined
as follows. To simplify our statement, we first prove three
auxiliary lemmas, and then we state short demonstrations of
theorems. The lemmas show the following. Let us choose a
point y(k) in a bounded domain of the phase space. Consider
the probability that the difference between the original and
averaged system at this point is more than a fixed positive
number. Our lemmas imply that this probability is expo-
nentially small in the parameter m. Moreover, any bounded
domain can be covered by balls centered at such points and

the number of those balls is polynomial in m. Therefore using
a sufficient smoothness of averaged and original systems we
obtain that the difference between those systems is small with
a probability close to 1.

Auxiliary probabilistic estimates. Let us fix some points
y(k) ∈ Bn, where k = 1, 2, . . . , M and M is a positive inte-
ger, which will be adjusted later. Let us define the events
Aε,i(k) by

Aout,ε,i(k) = {|ḡi(y
(k) ) − gi(y(k),	(y(k) ))| > ε/4}, (A1)

Aε,i(k) = NotAout,ε,i(k), (A2)

where Not B denotes the negation of B and ḡi(y) are defined
by relation (27).

The next auxiliary lemma is elementary but useful.
Lemma 1. One has

Pr

[
M∏

k=1

n∏
i=1

Aε,i(k)

]
� 1 −

M∑
k=1

n∑
i=1

Pr [Aout,ε,i(k)].

Proof. That lemma can be proved by de Morgan’s rule. �
Furthermore, we use Chernoff bounds to estimate

Pr [Aout,ε,i(k)]. Let Cḡ,	 be a Lipshitz constant of ḡ with
respect to the variables 	1, . . . , 	p, i.e., for all y ∈ Bn and
i = 1, . . . , n,

|ḡi(y,	
(1) ) − ḡi(y,	

(2) )| � Cḡ,	|	(1) − 	(2)|, (A3)

where |	| = maxl |	l |. This constant Cḡ,	 exists due to as-
sumption (21) to g. Moreover, an analogous estimate holds
for derivatives with respect to y:

|∇yḡi(y,	
(1) ) − ∇yḡi(y,	

(2) )| � C̃ḡ,	|	(1) − 	(2)|. (A4)

Lemma 2. One has

Pr[Aout,ε,i(k)] < 2 exp
(−mε2/32C2

ḡ,	C2
f

)
,

∀ i = 1, . . . , n, k = 1, . . . , M.

Proof. Our the first step is to estimate the differences
	i(y(k) ) − E	i(y(k) ). To this end, let us fix indices i and k
and introduce Xj by

Xj = f ji(y
(k), ci j ). (A5)

Then

	i(y
(k) ) = m−1

m∑
j=1

Xj . (A6)

Assumption 1 on ci j implies that Xj are independent random
variables. Moreover, by (24) we have

|Xj | � Cf . (A7)

Let us recall the Hoeffding inequality. Let Xj , j = 1, . . . , m
be independent random variables strictly bounded in intervals
[aj, b j], i.e., almost surely Xi ∈ [ai, bi]. Let X̄ = m−1 ∑m

j=1 Xj

be the average of those quantities. Then (see Ref. [42])

Pr[|X̄ − EX̄ | � δ] � 2 exp

(
− 2mδ2∑m

j=1(ai − bi )2

)
.
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Therefore, according to Hoeffding’s inequality for each δ > 0,
we obtain

Pr[|	l (y
(k) ) − E	l (y

(k) )| > δ] < 2 exp
( − 2mδ2/C2

f

)
,

(A8)
where l = 1, . . . , p.

The second step of the proof is as follows. Consider the
events

Bδ,l,k = {|	l (y
(k) ) − E	l (y

(k) )| < δ}.
Let Bδ,k = ∏p

l=1 Bδ,l,k be the product of those events.
Let us take δ = ε/4C2

ḡ,	. Then, if the event Bδ,k takes
place, we have (because g is a Lipshitz map with the Lipshitz
constant Cḡ,	 and by definition of ḡ) that

|ḡ(y(k) ) − g(y(k),	(y(k) ))| < ε/4,

i.e., the event Aε,i(k) takes place. Consequently,

Pr[Bδ,k] � Pr[Aε,i(k)]

that gives

�Pr[Aout,ε,i(k)] � Pr[NotBδ,k].

The probability Pr[NotBδ,k] is estimated by (A8), which com-
pletes the proof of the lemma. �

Let us define now the events Aout,ε,i, j (k) and Aε,i, j (k) by

Aout,ε,i, j (k) = {|gi j (y
(k) ) − gi j (y

(k) )| > ε/4n}, (A9)

where

ḡi j (y) = ∂ ḡi(y)

∂y j
, gi j (y) = ∂gi(y,	(y))

∂y j
,

and

Aε,i, j (k) = NotAout,ε,i(k). (A10)

There holds the following lemma:
Lemma 3. One has

Pr[Aout,ε,i, j (k)] � 2 exp(−mC0ε
2),

∀i, j = 1, . . . , n, k = 1, . . . , M, (A11)

where a constant C0 is uniform in m.
The proof of Lemma 3 repeats the same arguments used in

the proof of Lemma 2 so we do not present it.

Demonstrations of Theorems 1 and 2

Theorem 1. Suppose condition (29) holds and that aver-
aged system defined by (26) generates a global dissipative
semiflow on the domain Bn. Moreover, let us assume that the
averaged system (26) is structurally stable with a structural
stability constant ε0(ḡ) and that system has an attractor Ā.
Then with probability PrĀ the original system (20) also defines
a global dissipative semiflow on Bn, which has an attractor A
topologically equivalent to Ā. The probability PrĀ satisfies the
inequality

PrĀ > 1 − C1n exp
(−C2mε2

0 − n ln ε0
)
, (A12)

where C1,C2 are positive constants uniform in m.
Proof. We use Lemmas 1–3 and the following construction.

The domain Bn has the dimension n, therefore we can cover it
by N (rε) ∼ (rε)−n balls �ε,k of the radius ε centered at some

points y(k) ∈ Bn. Here, r is a positive constant uniform in ε.
We denote the union of all those balls by Uε , which is an open
neighborhood of Bn.

Let us consider the perturbationg̃(y) = g(y,	(y)) − ḡ(y)
and estimate the C1 norm of g̃ on Uε . Suppose that all events
Aε,i(k) and Aε,i, j (k) defined by (A2) and (A10), respectively,
take place. Then

|g̃(y(k) )| + |∇yg̃(y(k) )| < ε/2, k = 1, . . . , N (ε). (A13)

Then, due to conditions (21) on g, and the definition of ḡ, we
have

|g̃|C2(Bn ) < C1,

where a positive constant C1 is independent of m. Therefore,
for each y ∈ Bn one can find such a point y(k) that there hold
the estimates

|g̃i(y
(k) ) − g̃i(y)| < rε,

∣∣∣∣∂ g̃i(y(k) )

∂y j
− ∂ g̃i(y)

∂y j

∣∣∣∣ < rε.

Those last inequalities and (A13) imply

|g̃(y)| + |∇yg̃(y)| < ε/2 + C2rε, y ∈ Uε, (A14)

where C2 is a positive constant. We set r = 1/2C2. Due to
conditions (29) and (30) the vector fields g and ḡ are directed
towards the interior of Bn that allows us to apply now the def-
inition of structural stability [41]. Then for positive ε � ε0(ḡ)
the attractor of the original system is topologically equivalent
to the attractor of the averaged system. Note that ε0 does not
depend on m and it is defined by the averaged system only.

Furthermore, we compute the probability that all the events
defined by (A13) take place by Lemmas 1–3. This finishes the
proof. �

Theorem 2. Suppose condition (29) holds and that the av-
eraged system defined by (26) has a Lyapunov function such
that

∇L(y) · ḡ(y) � −ε, y ∈ V , (A15)

where V is an open subdomain of Rn with a compact closure,
and moreover,

|L|C2(V ) < CL

for a positive constant CL. Then with the probability PrL,ε the
original system (20) has the same Lyapunov function such that

∇L(y) · g(y) � −ε/2, y ∈ V . (A16)

The probability PrL,ε satisfies the inequality

PrL,ε > 1 − C̄1 exp(−C̄2mε2 − ln ε),

where C̄1, C̄2 are positive constants uniform in m.
Let us note that, similarly to the previous theorem, if ε > 0

is small, the estimate from that theorem makes sense only for
sufficiently large m > m0(ε).

Proof. We apply the same idea used in the previous proof.
The domain V can be covered by N (rε) ∼ (rε)−n balls �ε,k
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of the radius ε centered at some points y(k) ∈ Bn. Here, r is a
positive constant uniform in ε. Let us introduce the functions

H̄ (y) = ∇yL(y) · ḡ(y), H (y) = ∇yL(y) · g(y,	(y)).

Consider the events

Hout,ε (k) = {|H (y(k) ) − H̄ (y(k) )| > ε/4}, (A17)

Hε (k) = NotHout,ε (k) = {|H (y(k) ) − H̄ (y(k) )| � ε/4}.
(A18)

Suppose that all events defined by (A18) take place. Then

|H (y(k) ) − H̄ (y(k) )| < ε/4, ∀ k = 1, . . . , N (ε). (A19)

Now we use the estimate

|H (y(k) ) − H (y)| < LipH |y(k) − y|, (A20)

where LipH is a Lipshitz constant of H . Let us estimate that
constant. By definition of H one has

∂H

∂yk
= m−1

n∑
i=1

m∑
j=1

ci j
∂ (L f j )

∂yk
.

Due to Assumption 1, one has∣∣∣∣∣
n∑

i=1

m∑
j=1

ci j
∂ (L f j )

∂yk

∣∣∣∣∣ < mnc1R0, (A21)

where

c1 = max
i, j,y∈V

(| fi j (y)||∇L(y)| + |∇ f j (y)||L(y)|). (A22)

The same estimate holds for the Lipshitz constant of H̄ . There-
fore, (A19) and (A20) give

sup
y∈V

|H (y) − H̄ (y)| < ε/4 + rC3ε, (A23)

where C3 > 0 is a constant uniform in m. Let us set r =
1/4C3. Then condition (A15) of Theorem 2 in this Appendix
and (A23) show that (A16) is satisfied. Furthermore, to com-
plete the proof, we compute the probability that all the events
defined by (A13) take place by estimates analogous to those
obtained in Lemmas 1–3. �
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