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A B S T R A C T

Traps are routinely used in insect ecology, conservation, and pest control, but the understanding of trap
counts remains limited. A well developed theory only exists for non-baited traps (e.g. pitfall traps) and the
simplest animal movement modes, such as Brownian motion, but not for more complex or realistic situations.
In particular, important questions as to how the trap counts may differ in case of a baited trap and what its
effect can be on the population distribution in the domain where the trap is installed are largely open. In
order to bridge this gap in our knowledge, here we use straightforward yet powerful simulation framework of
individual-based modelling. A baited trap has a strong effect on the animal movement pattern changing it from
the Correlated Random Walk to the Biased Random Walk. This, in turn, is shown to have a dramatic effect
on the trap counts. We show that a baited trap can introduce strong heterogeneity into the spatial population
distribution, hence resulting in spatiotemporal pattern formation. We also consider a system of multiple traps
and show that the trap efficiency can decrease if the traps are installed close to each other.
1. Introduction

Evaluation of population abundance is a task frequently arising in
ecology and agro-ecology (Seber, 1982), for instance in the context of
nature conservation or pest control (Binns et al., 2000; Pedigo, 1999).
Depending on the species traits, the overall goal of a study and the
available resources, there is a variety of means to do it, e.g. by direct
counting of the individuals (McDonald and Hodgson, 2021). One of the
common approaches, in particular for small arthropods such as insects
and gastropods, is the use of the traps (Pedigo, 1999; Baars, 1979;
Epsky et al., 2008; Jonason et al., 2014; Raworth and Choi, 2001). One
or several traps are installed in a study area (to which we will refer as
a field); after a certain time interval, their content is checked and the
number of individuals of a given species is counted. Based on the trap
count, a conclusion is then made about the corresponding population
abundance in the field. Often the traps remain in the field over a
considerable stretch of time, so that the above procedure is repeated
several or many times, hence resulting in a series of trap counts.

Straightforward as it may seem at the first sight, interpretation of
the trap count(s) often poses a significant challenge (Jonason et al.,
2014; Engel et al., 2017; Boetzl et al., 2018; Ahmed and Petrovskii,
2019). In fact, there is only one conclusion that can be made unam-
biguously: if the trap count contains individuals of a given species, then
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1 For instance, for ground-walking insects, such non-baited trap can be just a hole in the ground to which they occasionally fall — the so called ‘‘pitfall traps’’

this species is indeed present in the field. However, the opposite is not
true: the absence of individuals of a given species in the trap count does
not necessarily mean that the species is absent from the field. Because
animal movement often can be regarded as a random process (Codling
et al., 2008; Turchin, 1998), their absence in the trap count may as
well happen simply by chance, e.g. if the population density is low and
the time of trap exposure was not long enough. It can also result from
an inefficient or inadequate trap design that does not fully take into
account species traits.

Thus, even the interpretation of presence/absence data may bring
some difficulties, and the estimation of the population density based on
trap counts is a much more difficult problem (Petrovskii et al., 2014).
In fact, due to the inherent randomness of the processes resulting in
trapping, to work out a sensible estimate based on a single trap count
is impossible. In the case where several trap counts are available, the
estimation in principle becomes possible but strongly depends on the
trap type or design (Brown and Matthews, 2016). A consistent theory
only exists in the case of ‘passive’ non-baited traps1 (Pedigo, 1999;
Ahmed and Petrovskii, 2019; Bearup et al., 2016; Petrovskii et al.,
2012), i.e. in the case where the presence of the trap does not change
the animals movement pattern until they fall into the trap.
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An alternative trap type is refereed to as ‘active’ or baited traps.
The general idea of a baited trap is that they contain a bait or a lure:
something that animals can perceive from a considerable distance and
that attracts them to its source, i.e. to the trap. The nature of the lure
depends on the species traits; for instance, there are pheromone-baited,
light-baited and colour-baited traps (Epsky et al., 2008). Whichever is
the case, the generic effect of a baited trap is to change the inherent
animal movement pattern by making their movement towards the
trap more likely. Baited traps are frequently used due to their proven
efficiency in catching animals, not only for monitoring purposes but
also for pest control as they are capable to catch individuals of a
harmful species in large numbers; the corresponding control strategy
being known as ‘‘mass trapping’’ (El-Sayed et al., 2006). In spite of that,
somewhat paradoxically, any consistent theory allowing for the baited
trap counts analysis is largely missing (but see Byers et al., 1989; Byers,
1999). Their interpretation is usually relative rather than absolute
(i.e. a larger trap count is assumed to correspond to a larger population
density) and is often based on heuristic, semi-intuitive concepts and
quantities such as, for instance, the attraction radius and the trap
catchment area (also known as the effective sampling area, e.g. Turchin
and Odendaal, 1996). Perhaps even more importantly, the effect of
the baited traps on the distribution of the monitored population is
hardly known at all. Meanwhile, such effect can be significant, as
even non-baited traps are known to disturb the animal distribution
considerably (Petrovskii et al., 2012, 2014).

We mention here that good understanding of the effect of baited
traps on monitored species is also needed in a broader framework
of ecosystem-scale processes. Indeed, animal movement, e.g. in the
context of animal dispersal, is regarded as a major factor that brings
different aspects of ecosystem’s functioning together (Clobert et al.,
2001; Bullock et al., 2002; Turchin, 2013). Disruption or alternation of
natural animal movement patterns can cause significant disruption in
the ecosystem level processes and functions. Therefore, mathematical
models of the whole-system processes, in particular in agricultural
systems, must take the effect of traps on the population distribution of
targeted species into account (Guichard et al., 2012; Tonnanga et al.,
2017; Yamanaka et al., 2003).

In this paper, we endeavour to partially bridge this gap in our
knowledge by looking into the effect of baited traps on the spatial
distribution of an animal population (to which we for convenience will
refer as insects) and the variety of situations and factors affecting the
trap counts. The paper is organised as follows. In Section 2, we describe
our mathematical model and the details of simulation procedure. In
Section 3, we present the simulation results obtained in the case of
a single trap, in particular to reveal the effect of persistence in the
individual animal movement, the strength of attraction by a baited
trap, the effect of the trap design and the domain shape. In Section 4,
we extend our investigation onto the case where a few traps (e.g. two
or three) are installed. In particular, we will show that, depending
on the distance between the traps, they can start interacting and that
can have a significant effect both on the trap counts and the spatial
population distribution. In Section 5, we discuss our main findings and
their implications.

2. Mathematical model

2.1. Individual-based vs mean-field models

There exists a variety of modelling techniques to simulate the
evolution of population distribution in the presence of trap(s). They
can roughly be sorted into two qualitatively different types such as
individual-based models (IBM) and mean-field (MF) models. The latter
describes the population as a whole in terms of the population density;
usually, models of this type consist of either partial differential equa-
tions (e.g. the diffusion equation (Bearup et al., 2015, 2016) or the
2

telegrapher equation (Alharbi and Petrovskii, 2018; Tilles and Petro-
vskii, 2019) or integral equations (Petrovskii et al., 2014)). The former
describes the movement of every individual in a given population (Jopp
and Reuter, 2005); this information can be summarised to reveal the
corresponding changes in the population distribution (Petrovskii et al.,
2022).

Each of these approaches has its strengths and weaknesses. The
power of the IBM is that it allows to account for details of individual
behaviour at the ‘microscale’ related to a single individual. Also, it
is usually straightforward to implement, which makes it accessible
to a broad variety of researchers with different background. Its main
drawback is that it is essentially simulation-based. Every particular
simulation run uses a particular parameter set and hence by itself gives
only very little information about the system properties more generally;
in order to obtain such information (e.g. the structure of the param-
eter space), one has to perform many simulation runs for different
parameter values, which can be expensive and time-consuming.

The main power of the MF models is that they can, in principle, be
solved or analysed analytically, at least sometimes, which can provide
a general and reliable information about the system properties as a
whole. In practice, however, a comprehensive mathematical analysis
is rarely possible. Even for the standard model such as the diffusion
equation, its explicit solution is only available for spatial domains with
a simple, idealised geometry. Any more realistic problem has to be
solved numerically, often using elaborate numerical methods, so that,
in practical terms, there is little difference between the IBM and the MF
models as simulations have to be used anyway. Moreover, for MF mod-
els more complicated (and, arguably, more realistic) than the diffusion
equation, there may arise more fundamental problems related to the
adequate choice of the boundary conditions. For instance, in the case of
the telegrapher equation, which is the MF counterpart for the correlated
individual random walk, the solution is only positively defined only for
a specific choice of the boundary and/or initial conditions (Alharbi and
Petrovskii, 2018; Tilles and Petrovskii, 2019).

Given the above, in this paper we use the IBM approach as it seems
to be better fit for the goals of the study. Details of our model are
described in the next section.

2.2. The baseline IBM model

In its movement, an animal usually follows a curvilinear path.
However, curves are difficult to analyse. A common approach (Kareiva
and Shigesada, 1983; Jopp and Reuter, 2005; Edelhoff et al., 2016)
approximates the continuous time by a discrete time with a certain time
step 𝛥𝑡, i.e. 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑡 where 𝑖 = 0, 1, 2,… . Generally speaking, 𝛥𝑡
can also be a function of 𝑖; here we consider it constant. In terms of
empirical studies on animal movement, moments 𝑡𝑖 correspond to the
moments when the animal position is recorded. Correspondingly,

𝐫𝑖 = 𝐫(𝑡𝑖), 𝑖 = 0, 1, 2,… , (1)

where 𝐫𝑖 = (𝑥𝑖, 𝑦𝑖) is the animal’s position at time 𝑡𝑖 (hence considering
the movement in a 2D space, e.g. on the surface of the ground), 𝐫0
being its initial position. Correspondingly, a given continuous curve
(movement path) is replaced with a broken line.

A given broken line is fully determined by the corresponding se-
quence of step sizes {𝑙𝑖}, where 𝑙𝑖 is the length of the link connecting
two subsequent positions, 𝑙𝑖 = |𝛥𝐫𝑖| = |𝐫𝑖+1 − 𝐫𝑖|, and the sequence of
he turning angles {𝜃𝑖} between the two adjacent links. Since 𝛥𝐫𝑖 =
𝛥𝑥𝑖, 𝛥𝑦𝑖), obviously

2
𝑖 = 𝛥𝑥2𝑖 + 𝛥𝑦2𝑖 and 𝜃𝑖 = arctan

(

𝛥𝑦𝑖
𝛥𝑥𝑖

)

. (2)

Note that Eqs. (2) effectively describe the change in the path descrip-
tion between the Cartesian and polar coordinates.

If animal movement can be regarded as random, which is often
the case (but see Turchin (1998) for a discussion of the ‘‘bugbear
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Fig. 1. Animal’s movement path simulated using the CRW with 𝑝0 = 0.5 over a time interval of different duration: from left to right, 10, 100, and 1000 time steps. The initial
animal’s position is at the origin.
of randomness’’), both 𝑙𝑖 and 𝜃𝑖 become random values defined by
their probability distribution functions, say, 𝑆(𝑙) and 𝑃 (𝜃), respectively.
Different movement patterns correspond to 𝑆 and 𝑃 with different
properties and vice versa. For instance, the rate of decay in 𝑆 at large
𝑙 is a property that differentiates between Brownian and non-Brownian
random walks. While the exponential or faster-than-exponential rates
are characteristic for the Brownian motion (BM), a slower rate (e.g. a
power law with a sufficiently small exponent) correspond to a Levy
walk (Klafter et al., 1996; Viswanathan et al., 1996, 2011). In this
study, we mostly focus on the effect of the turning angle (see be-
low) and hence stick to the case where 𝑆(𝑙) decays sufficiently fast.
Specifically, we consider 𝑆 to be the half-normal distribution:

𝑆(𝑙; 𝛿) =

√

2
𝛿
√

𝜋
exp

(

− 𝑙2

2𝛿2

)

, 𝑙 ≥ 0, (3)

where 𝛿 is the distribution parameter.
The probability distribution of the turning angle is a factor that help

to further differentiate between different random walk types. In case of
BM, the angle is distributed uniformly over the circle:

𝑃 (𝜃) = 1
2𝜋

. (4)

In case of animal movement, especially if considered at a sufficiently
small time scale (i.e. for a sufficiently small 𝛥𝑡), this is not realistic as it
implies frequent abrupt turns and hence cannot approximate a smooth
movement path. A more realistic alternative to BM is the Correlated
Random Walk (CRW) (Kareiva and Shigesada, 1983) where the turning
angle distribution has the maximum at 𝜃 = 0 and the standard deviation
is significantly smaller than 𝜋, so that small turning angles are more
likely than large ones. Thus, the CRW takes into account the correlation
between the turning angle in any two consequent steps.

For simulations, we use the truncated normal distribution:

𝑃 (𝜃) = 𝐶

𝑝0
√

2𝜋
exp

(

− 𝜃2

2𝑝20

)

, −𝜋 ⩽ 𝜃 ⩽ 𝜋, (5)

where 𝐶 is the normalising coefficient to ensure that the total proba-
bility is 1 and 𝑝0 is a parameter called persistence. The smaller 𝑝0, the
more likely the movement direction in the next step along the path is
close to the direction in the previous step and hence the more directed
the movement is.

Note that both BM and the CRW assume that the space is isotropic,
i.e. there is no any particular direction that would be favoured by
the animals in their movement. Although this assumption is feasible
in many cases, it is hardly realistic in the presence of a baited trap:
indeed, the main idea of the baited trap is to ensure that the movement
towards the trap is more likely than in any other direction. In order to
account for this movement type, we consider the Biased Random Walk
(BRW) (Codling et al., 2008) where the turning angle is distributed as
follows:

𝑃 (𝜃, 𝜅) = 𝐶
√

exp

(

−
(𝜃 − 𝜅)2

2

)

− 𝜋 ⩽ 𝜃 ⩽ 𝜋, (6)
3

𝑝0 2𝜋 2𝑝0
where 𝜅 is the bearing of the baited trap taken at the current animal’s
position (𝑥𝑖, 𝑦𝑖). Let (𝑥𝑡𝑟𝑎𝑝, 𝑦𝑡𝑟𝑎𝑝) be the trap position, then, obviously,

𝜅 = arctan
(

𝑦𝑖−𝑦𝑡𝑟𝑎𝑝
𝑥𝑖−𝑥𝑡𝑟𝑎𝑝

)

± 𝜋 when 𝑥𝑖 < 𝑥𝑡𝑟𝑎𝑝; and 𝜅 = arctan
(

𝑦𝑖−𝑦𝑡𝑟𝑎𝑝
𝑥𝑖−𝑥𝑡𝑟𝑎𝑝

)

when 𝑥𝑖 > 𝑥𝑡𝑟𝑎𝑝.
Using distributions 𝑆 and 𝑃 , the animal’s movement path can be

generated for each of the movement type; examples are shown in
Figs. 1–2. We readily observe that the complexity of the movement path
depends on the timescale: a longer time span generates a path of a more
complicated (less regular) shape.

In the below, we consider the simultaneous movement of 𝑁 iden-
tical non-interacting animals, so that the movement path of each of
them is generated in the same way. We consider animal movement
in a computational domain of a square shape, i.e. −𝐿 ≤ 𝑥𝑘𝑖 ≤ 𝐿 and
−𝐿 ≤ 𝑦𝑘𝑖 ≤ 𝐿 (𝑘 = 1, 2,… , 𝑁 , 𝑖 = 0, 1, 2,…), 𝐿 being the domain
size. For the initial condition, we use a random distribution: for each
animal, both 𝑥𝑘0 and 𝑦𝑘0 are random numbers uniformly distributed on
(−𝐿,𝐿). The domain is closed, so that animals cannot leave it through
the external boundary; when an animal hits the boundary in its random
movement, it is returned back to the domain.

2.3. Modelling trap counts

In simulations, a trap is defined as a sub-domain of a certain shape
with a characteristic size much smaller than the size of the whole
computational domain. As soon as animal in its movement hits the trap
boundary, it is regarded as ‘trapped’: its movement path terminates, the
animal is removed from the system and the trap count (the number of
caught animals) increases by one.

Consider a circular trap of radius 𝑅 with the coordinates of its centre
as (𝑥𝑡𝑟𝑎𝑝, 𝑦𝑡𝑟𝑎𝑝). The mathematical conditions describing the capture of
the 𝑘th animal at moment 𝑡𝑗 are as follows:
(

𝑥𝑘𝑖 − 𝑥𝑡𝑟𝑎𝑝
)2 +

(

𝑦𝑘𝑖 − 𝑦𝑡𝑟𝑎𝑝
)2 > 𝑅2, 𝑖 = 0, 1,… , 𝑗 − 1, (7)

(

𝑥𝑘𝑗 − 𝑥𝑡𝑟𝑎𝑝
)2

+
(

𝑦𝑘𝑗 − 𝑦𝑡𝑟𝑎𝑝
)2

< 𝑅2. (8)

Obviously, at the same moment of (discrete) time, more than one
animal can be caught. Let 𝑀(𝑡𝑗 ) be the ‘daily count’, i.e. the number
of animals caught at moment 𝑡𝑗 and let 𝑇 (𝑡𝑗−1) be the total (cumula-
tive) number of animals caught over the preceding time, then 𝑇 (𝑡𝑗 ) is
calculated as

𝑇 (𝑡𝑗 ) = 𝑇 (𝑡𝑗−1) +𝑀(𝑡𝑗 ) =
𝑗
∑

𝑘=1
𝑀(𝑡𝑘). (9)

Thus, the cumulative trap count 𝑇 is an increasing (more generally,
non-decreasing) function of time.

2.4. Mean-field approach: Diffusion equation

In case the number of insects in the area is sufficiently large, their
distribution can be described by the population density. While the
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Fig. 2. Animal’s movement path simulated using the BRW over the time interval of 1000 steps for different persistence values: left to right, 𝑝0 = 0.5, 1, 2. The baited (attracting)
trap is located at the origin, (𝑥𝑡𝑟𝑎𝑝 , 𝑦𝑡𝑟𝑎𝑝) = (0, 0), the initial animal’s position is (−50,−50).
movement of an individual animal is often almost entirely random (but
see Turchin (1998), Pyke (2015)), changes in the population density are
usually more regular and more predictable. In models, the population
density is a solution of a mean-field equation. As each of these two
modelling approaches has its own drawbacks (see Section 2.1), they
work best when used in combination. In particular, in modelling trap
counts, by considering a relevant mean-field solution against the IBM
simulations, one can reveal the pattern and estimate the underlying
population density (Petrovskii et al., 2012, 2014).

As we have discussed it above, even in the baseline case of diffu-
sion equation (respectively, for individual insects performing BM), an
explicit exact solution is only available for a very special, unrealistic
choice of system’s geometry. However, for a more general and more
realistic case, such as a circular trap installed in a domain of an arbi-
trary shape (but sufficiently far away from the domain boundary), the
following approximate expression was shown to provide a sufficiently
accurate description of the cumulative trap counts (Petrovskii et al.,
2012):

𝑆𝑀𝐹 ≈
2𝑈𝑝
√

𝜋

√

𝐷𝑡
(

1 + 𝛼𝜋
𝑝

√

𝐷𝑡
)

, (10)

where 𝑝 is the trap perimeter (𝑝 = 2𝜋𝑅 for a circular trap), 𝑈 is
the initial population density (assuming that initially the population
is distributed uniformly) and 𝛼 is a numerical coefficient on the order
of one. The diffusion coefficient 𝐷 can be related to the properties of
individual animal movement as

𝐷 ≈ 𝛿2

2𝛥𝑡
, (11)

where 𝛿2 is the variance of the step size distribution.
We emphasise that Eq. (10) was obtained in the case of diffusive

movement and it is not necessary valid for a more general case of
the CRW. However, since the CRW is known to converge to BM after
a sufficiently large number of steps (depending on the persistence),
one can expect that Eq. (10) may, on a certain time scale, provide a
reasonably good description of the trap counts arising in the population
where individuals perform the CRW. That will be investigated below.

3. Simulation results: trap counts by a single trap

In our IBM simulations, unless stated differently we consider the
insect population consisting of 𝑁 = 104 individuals moving in a square
𝐿 × 𝐿 domain centered at the origin, with size 𝐿 = 100 (except for
Section 3.2 where 𝐿 = 200). A circular trap of a certain radius 𝑅 is
placed at the origin, i.e. at the centre of the domain. The distribution
of step size is always considered as in Eq. (3) with 𝛿 = 1, our goal is
to reveal how the cumulative trap counts (see Eq. (9)) depend on the
distribution of turning angle, i.e. on the movement type; see Eqs. (5)
and (6).
4

Fig. 3. Cumulative trap count vs time obtained for different values of 𝑝0 as shown
in the figure legend. Here, as well as in all similar figures below, time is shown as
a number of time steps; see Section 2.2 for details. The trap is non-baited, so insects
perform the CRW. The trap radius is 𝑅 = 5, the domain size is (−50, 50) × (−50, 50)
(i.e. 𝐿 = 100) and the total insect population is 104.

3.1. Effect of persistence

In this section, insect movements are assumed to perform the CRW
so that their movement is described by Eqs. (3) and (5). Our goal here
is to reveal how the trap count dependence on time may be altered by
the movement persistence, as quantified by parameter 𝑝0.

Fig. 3 shows the cumulative trap counts over time obtained for
different values of 𝑝0. We readily observe that the trap efficiency (the
total number of insects caught over a given interval) strongly depends
on the movement type. In case of a low persistence (large values of 𝑝0,
see the green and purple curves), i.e. when the distribution of turning
angle is almost uniform over the circle and hence animal movement
is approximately Brownian, the trap efficiency is much smaller than
in case of a high persistence. The highest efficiency is achieved when
𝑝0 = 0.1 when an individual insect path becomes close to a straight line
(cf. Fig. 1, left).

We also observe that in all cases the graph of the trap count
dependence on time is a concave curve: apparently, the trap efficiency
decreases with time. The reason for this can be understood if one
looks into the spatial distribution of animals around the trap. Snapshots
of such distribution obtained at a certain moment of time for two
values of 𝑝0 are shown in Fig. 4. The presence of trap introduces
heterogeneity into the population distribution, so that the insect density
is smaller in a small vicinity of the trap, this effect of the trap being
more distinct for low persistence. A heuristic explanation of this is
that, since animal displacement in case of a low-persistent movement
(effectively, Brownian motion) is slow, the animals caught by the trap



Ecological Modelling 470 (2022) 110016O. Alqubori and S. Petrovskii
Fig. 4. Snapshots of the insects spatial distribution over the simulation domain obtained after 1000 time steps. Insects perform the CRW with (left) 𝑝0 = 2 (low persistence) and
(right) 𝑝0 = 0.1 (high persistence). Other parameters as in Fig. 3.
in its immediate vicinity are not compensated sufficiently fast by the
arrival of new ones from a larger distance.

3.2. Is a small baited trap equivalent to a large non-baited trap?

In some studies, attempts were made to interpret a baited trap as a
non-baited trap of a much larger size, i.e. with the radius equal to the
attraction radius of the ‘catchment area’ of the baited trap, cf. (Byers
et al., 1989; Byers, 1999). Such catchment area can be thought of as
a (large) circle with the radius determined by the animals perception
distance, that is, in the case of a light-baited trap, the maximum
distance at which the intensity of light is still strong enough to be
perceived by the insects and hence to alter their movement behaviour.
In this section, our goal is to check this hypothesis.

A baited trap of radius 𝑅𝑏 = 5 is installed at the centre of the
field. The effect of bait (e.g. the light intensity for light-baited traps)
decreases with the distance from the trap, eventually falling to a very
small value, so that the insects located at sufficiently large distance do
not perceive it and hence move as if there is no trap, e.g. performing
the CRW. We therefore introduce the attraction radius, say 𝑅𝐴𝑡𝑡, so that
the 𝑘th insect performs the CRW at the moment 𝑡𝑖 if

(𝑥𝑘𝑖 − 𝑥𝑡𝑟𝑎𝑝)2 + (𝑦𝑘𝑖 − 𝑦𝑡𝑟𝑎𝑝)2 > 𝑅2
𝐴𝑡𝑡, (12)

but changes its movement pattern to the BRW if

(𝑥𝑘𝑖 − 𝑥𝑡𝑟𝑎𝑝)2 + (𝑦𝑘𝑖 − 𝑦𝑡𝑟𝑎𝑝)2 < 𝑅2
𝐴𝑡𝑡. (13)

Thus, when insects enter the attraction area, they move towards the
trap in a much more directed manner. Since insects performing the
BRW will almost never go away from the baited trap, the attraction
area plays the role of the catchment area and its radius plays the role
similar to that of the radius of a non-baited trap.

Fig. 5 compares the cumulative trap count (see Eq. (9)) obtained
for the baited trap with that obtained for the large ‘equivalent’ non-
baited trap with radius 𝑅 = 𝑅𝐴𝑇𝑇 (for which we use a hypothetical
value 𝑅𝐴𝑇𝑇 = 35). Note that, since the radius of the non-baited trap is
rather large, in order to exclude the effect of domain boundaries, here
we consider a larger domain with 𝐿 = 200, that is −100 ≤ 𝑥, 𝑦 ≤ 100.
Since trap counts depend on the population density, in order to make
the obtained trap counts comparable with other results in this paper,
we also consider a larger population size, namely 𝑁 = 4 ⋅ 104. The
blue curve in Fig. 5 shows the cumulative trap count obtained for the
baited trap and the red curve shows the cumulative trap count obtained
for the large non-baited trap. We observe that the two traps are not
equivalent, as the curves have different shapes (concave for the non-
baited trap and sigmoid for the baited trap). In particular, at a small
5

Fig. 5. Cumulative trap counts vs time (shown as the number of time steps) calculated
for a baited trap (blue curve) with 𝑅𝑏 = 5 and the attraction radius of 𝑅𝐴𝑇𝑇 = 35 and
the ‘equivalent’ large non-baited trap (red curve) of radius 𝑅 = 𝑅𝐴𝑇𝑇 = 35. In both
cases, the persistence parameter is 𝑝0 = 2. The domain size is 𝐿 = 200 and the initial
insect population is 𝑁 = 4 ⋅ 104.

time (approximately over the first 250 time steps) the cumulative trap
count for the baited trap grows at an accelerating rate (as this part of
the curve is convex). Thus, in real-life applications, interpreting it as
trap counts by a non-baited trap can give a wrong, misleading message
as it can be regarded as a sign that the population density in the domain
(field) is increasing and hence may lead to unjustified decisions about
pest control measures.

Interestingly, the relative efficiency of the traps changes with time.
At a small time, the non-baited trap appears to be more efficient, as its
cumulative trap count is larger than that of the baited trap; however,
the situation changes to the opposite at a large time.

In order to provide a more detailed comparison between the two
traps, Fig. 6 shows the corresponding simulated insect spatial distribu-
tion. We readily observe that in the case of the large non-baited trap the
distribution is qualitatively the same as in Section 3.1 (see also Petro-
vskii et al., 2012), i.e. the population density in the immediate vicinity
of the trap falls to a small value. Interestingly, for the baited trap, it
is qualitatively different: in this case, the minimum population density
is reached at an intermediate distance from the trap while close to the
trap the density is large (see Fig. 6, right).
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Fig. 6. Snapshots of the spatial population distribution obtained after 3000 time steps in case of (left) a large non-baited trap of radius 𝑅 = 𝑅𝐴𝑇𝑇 = 35 and (right) a small baited
trap of radius 𝑅𝑏 = 5. Other parameters are the same as in Fig. 5.
Fig. 7. Cumulative trap count for the baited trap obtained for different values of 𝑝0.
The radius of the trap is 𝑅𝑏 = 5; the attraction radius is 𝑅𝐴𝑡𝑡 = 35. Here the domain
size is 𝐿 = 50 and the total insect population is 𝑁 = 104.

As it was shown in Section 3.1 in the case of the CRW, the trap
efficiency depends significantly on the movement persistence, i.e. on
parameter 𝑝0. The question therefore arise whether similar effect of the
movement persistence takes place in the case of the BRW. In order to
make an insight into this, we performed simulations with the baited
trap for different values of 𝑝0 in Eq. (6). The results are shown in Fig. 7.
We observe that a decrease in 𝑝0 not only leads to a significant increase
in the cumulative trap count (hence increasing the trap efficiency)
but has a somewhat more subtle effect by altering the shape of the
curve: the convex part of the curve shrinks towards small time and the
transition between the convex and concave parts becomes more abrupt.

3.3. Baited trap may lead to formation of transient patterns

In this section, we will have a more systematic look into the effect
of the attraction produced by a baited trap. We first consider a trap of
radius 𝑅𝑏 = 5 installed at the origin of a square domain [−𝐿,𝐿]×[−𝐿,𝐿]
with 𝐿 = 50. We assume that the attraction radius is large, 𝑅𝐴𝑇𝑇 > 𝐿,
so that insects perform the BRW across the whole domain.

The results are shown in Fig. 8. We observe that, in case of a
large 𝑝0, the spatial population distribution is similar to the case of a
non-baited trap (i.e. where insects perform the CRW) apart from the
emergence of an area along the domain border with a somewhat lower
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population density (Fig. 8, left). However, in case of a sufficiently small
value of 𝑝0 (high persistence of the individual movement), the trap
introduces a distinct heterogeneity into the population distribution: a
cross-shaped spatial pattern emerges. The pattern is transient: the cross-
shaped distribution is eventually shrinking with time (not shown here),
as insects continue moving towards the trap.

We hypothesise that the curious shape of the population distribution
emerging in case of a small 𝑝0 is an effect of the domain shape. Indeed,
it is readily seen that the minimum distance from the trap to the domain
border (i.e. along the coordinate axes) is about 1.4 times shorter than
the maximum distance (i.e. to the domain corners). Correspondingly,
after a given time interval, the insects that started their approach to
the trap from locations at (or close to) (±𝐿, 0) and (0,±𝐿) will be
significantly close to the trap than the insects that started from the
corners.

In order to check this hypothesis, we repeat the same simulations
as above but now considering the domain of a circular shape with
the radius 𝑅𝐷 = 𝐿 = 50. Since the circular domain of this size has
the area somewhat smaller than the square one, in order to maintain
the same initial population density we use a smaller population size,
namely 𝑁 = 8 ⋅ 103.

The results are shown in Fig. 9. We readily observe that, in this case,
the population distribution keeps the circular symmetry for any value
of 𝑝0, no pattern emerges.

In conclusion of this section, Fig. 10 shows the cumulative trap
count obtained for the two fields. We observe that, in spite of the
pattern formation in the case of the square field, there is no difference
in the shape of the curves; in fact, they are practically the same until
approximately 𝑡 ≈ 500. At a later time, the efficiency of the trap
in the square field appears to be slightly higher, e.g. by time 𝑡 =
1000 it catches a somewhat larger number of insects compared to its
counterpart in the circular field. That, however, can be the effect of
saturation in the trap count curve: if considered as the percentage of
the total initial population size, this number is higher in the circular
field than in the square one, 95% against 80%, respectively.

3.4. Effect of a mixed-type trap

We now consider trap counts by a trap of a different design. Namely,
we assume that the light-baited trap is shadowed on one side. It can still
catch insects that cross the trap boundary but it only has an attractive
power on one side, by not on the other side. Thus, such ‘hybrid’ trap is
effectively a combination of a baited trap if approached from one side
– from the positive direction of coordinate 𝑦 (or, in polar coordinates,
from the range of polar angle 0 ≤ 𝜙 ≤ 𝜋) – and non-baited trap if
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Fig. 8. Snapshots of the population distribution in a square domain obtained at 𝑡 = 1000 in the case of a baited trap with a different strength of the bias in insect movement,
i.e. different values of 𝑝0. Left to right: 𝑝0 = 3, 1.5 and 1, respectively. The trap radius 𝑅𝑏 = 5 and the total insects population is 𝑁 = 104.
Fig. 9. Snapshots of the population distribution obtained at 𝑡 = 1000 in the case of a baited trap installed in a circular field. Left to right: 𝑝0 = 3, 1.5 and 1, respectively. The trap
radius 𝑅𝑏 = 5 and the total insects population is 𝑁 = 8 ⋅ 103.
Fig. 10. Cumulative trap count by a baited trap vs time in a square and circular domain, left and right, respectively, obtained for different value of persistence parameter 𝑝0 (as
in the figure legend).
approached from the other side (negative 𝑦, polar angle 𝜋 < 𝜙 < 2𝜋).
Thus, insects perform the BRW as long as their position is in the upper
part of the plane (i.e. for 𝑦 ≥ 0) but perform the CRW in the lower
semi-plane (for 𝑦 < 0). In order to describe the effect of bait in the
upper semi-plane, we, similarly to Section 3.2, consider the attraction
area where we consider 𝑅𝐴𝑇𝑇 to be large 𝑅𝐴𝑇𝑇 > 𝐿, so that insect
perform the BRW in the whole upper semi-plane.

For simulations of this type, as above, we consider the circular trap
of radius 5 but, in order to exclude any possible effect of domain’s
corners, we consider the domain of a circular shape (instead of square)
of radius 50.
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Fig. 11 shows snapshots of the population distribution obtained at
different moments. We observe that the population distribution over
space is effectively a combination of two different distribution types.
The distribution in the lower semi-plane is qualitatively similar to that
previously observed in case of the CRW with a sufficiently large value
of parameter 𝑝0 (cf. Fig. 4, left), with somewhat lower population
density in a close vicinity of the trap compared to the rest of the
domain. However, the spatial distribution in the upper semi-plane is
quite different, with the population density reaching its maximum in
the vicinity of the trap.

Fig. 12 shows the cumulative trap count obtained for different
values of 𝑝 . It is readily seen that, for a sufficiently large value of 𝑝 ,
0 0
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Fig. 11. Snapshots of population distribution obtained after 200 and 300 time steps (left and right, respectively) in the presence of the mixed-type trap, with the value of
persistence parameter 𝑝0 = 2 and 𝑁 = 8 ⋅ 103.
Fig. 12. Cumulative trap count obtained with a mixed-type trap for different values of
the persistence parameter 𝑝0 (as shown in the figure legend). The domain has a circular
shape with radius 50, the trap radius 𝑅 = 5, the total insect population is 𝑁 = 8 ⋅ 103.

the results are almost indistinguishable from those obtained in case of
a baited (non-shadowed) trap. Indeed, the purple curve in Fig. 12 is
practically the same as the green curve in Fig. 7, both curves being
obtained for the same value 𝑝0 = 2. This can be easily explained, as for
large values of 𝑝0 the BRW becomes similar to the CRW, because in both
cases the turning angle is distributed almost uniformly over the circle.
However, for a smaller value of 𝑝0, some similarity only occurs at small
times. For instance, the left-hand side part of the blue curve in Fig. 12
for 0 < 𝑡 < 60 has a shape similar to the corresponding part of the red
curve in Fig. 7 (both being obtained for 𝑝0 = 0.5), although the latter is
considerably steeper. For a later time, the shape of the curves becomes
rather different, an increase in the trap count being much slower in the
case of the mixed-type trap.

4. Simulation results: trap counts with multiple traps

In this section, we consider how trap efficiency may be changed
if another trap or traps are installed in the same domain. Each of the
trap is described by its radius and the coordinates of its centre.; for
instance, in case of two traps, by 𝑅1,

(

𝑥(1)𝑡𝑟𝑎𝑝, 𝑦
(1)
𝑡𝑟𝑎𝑝

)

and 𝑅2,
(

𝑥(2)𝑡𝑟𝑎𝑝, 𝑦
(2)
𝑡𝑟𝑎𝑝

)

for the first and second trap, respectively. All simulation settings are
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similar to the above, with the only difference that conditions (7)–(8)
and Eq. (9) are now applied to each of the trap separately.

4.1. Combination of baited and non-baited traps

We begin with the case where there are two traps of different types
placed in the domain. One of them (say, Trap 1) is non-baited, so its
presence does not modify insect individual movement. Trap 2 is baited;
correspondingly, in order to model the effect of bait, as well as above
we introduce the attraction radius 𝑅𝐴𝑇𝑇 . Moreover, we consider the
case where the attraction radius is large, 𝑅𝐴𝑇𝑇 > 2𝐿, so that insects
perform the BRW (with the bearings taken at Trap 2, cf. 𝜅 in Eq. (6))
everywhere in the domain. Each trap has the same radius, 𝑅1 = 𝑅2 = 5.

Fig. 13 shows snapshots of the population distribution obtained at a
few moments of time in the case of the trap position as

(

𝑥(1)𝑡𝑟𝑎𝑝, 𝑦
(1)
𝑡𝑟𝑎𝑝

)

=

(−10,−10) and
(

𝑥(2)𝑡𝑟𝑎𝑝, 𝑦
(2)
𝑡𝑟𝑎𝑝

)

= (25, 25) for non-baited and baited trap,
respectively. We observe that the population distribution is strongly
asymmetric, with the maximum density reached in the close vicinity
of the baited trap. The non-baited trap creates a shadow, see the area
of low population density at top-right of the trap. The origin of the
shadow is intuitively clear. Insects walking towards baited Trap 2 from
the bottom left part of the domain will never reach it, because they will
be trapped by non-baited Trap 1 that they will meet on their way.

Fig. 14 shows the cumulative trap count for each of the traps. As it
may be expected, except for an early time, the trap count by the baited
trap (blue line) is much higher than the trap count by the non-baited
trap (red line). Interestingly, the trap count by the non-baited trap
appears to be somewhat larger compared to what it is in the absence
of the baited trap (cf. Fig. 3). Although Trap 1 is by itself non-baited,
because of its position inside the attraction (catchment) area of Trap
2, it gains extra catch by intercepting the insects travelling to Trap 2
from the bottom left corner of the domain.

4.2. Competition between two non-baited traps

In the above, we have observed that a non-baited trap introduces
heterogeneity to the population spatial distribution by creating a circu-
lar shaped area in the vicinity of the trap with a significantly lower
population density, this phenomenon is being the more explicit the
lower the persistence is (i.e. for higher values of 𝑝0); see Fig. 4. This is a
generic effect of a non-baited trap and is seen in the mean-field model
as well (Petrovskii et al., 2014, 2012). Moreover, the radius of the low
density area increases with time; see Petrovskii et al. (2012) for details.
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Fig. 13. Snapshots of the population distribution in the square domain with two traps (one baited, the other non-baited) obtained at time 𝑡 = 100, 200 and 300, left to right,
respectively. The persistence parameter is 𝑝0 = 1.5.
Fig. 14. Cumulative trap count vs time in the domain with two traps, blue line for the
baited trap, the red line for the non-baited trap. The total insect population is 𝑁 = 104,
the persistence parameter is 𝑝0 = 1.5.

Therefore, if more than one trap is placed in the domain, in the course
of time their low density areas can start overlapping. Apparently, it
can affect the trap counts for each individual trap: here we call this
competition between the taps. The goal of this section is to look into
this issue.

In order to make the effect of competition more explicit, we consider
two different configurations. In the first configuration, we consider
two non-baited traps (each of radius 𝑅 = 5) installed far away from
each other; more specifically

(

𝑥(1)𝑡𝑟𝑎𝑝, 𝑦
(1)
𝑡𝑟𝑎𝑝

)

= (−25, 0) and
(

𝑥(2)𝑡𝑟𝑎𝑝, 𝑦
(2)
𝑡𝑟𝑎𝑝

)

=
(25, 0), i.e. the distance between the traps is 𝑑12 = 50. Since the
growth of the low density area is known to be slow (Petrovskii et al.,
2014, 2012), one can expect that any interaction between the traps
in this case is negligible until after a very long time. In the second
configuration, we consider the non-baited traps placed much closer to
each other, namely

(

𝑥(1)𝑡𝑟𝑎𝑝, 𝑦
(1)
𝑡𝑟𝑎𝑝

)

= (0,−10) and
(

𝑥(2)𝑡𝑟𝑎𝑝, 𝑦
(2)
𝑡𝑟𝑎𝑝

)

= (0, 10), so
that 𝑑12 = 20.

Fig. 15 shows the population spatial distribution obtained at differ-
ent time in simulations with the first configuration. We observe that,
in this case, there is no any apparent overlap between the two low
density areas. On the contrary, in the second configuration (Fig. 16)
the emergence of such overlap is obvious already at a relatively small
time (see Fig. 16, left, obtained at 𝑡 = 1000).

The corresponding trap counts are shown in Fig. 17. In order to
reveal any possible effects of persistence, simulations were repeated
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for a few values of 𝑝0, so that 𝑝0 = 3, 2, 1 in Fig. 17 top to bottom,
respectively. We readily observe that, expect for some early time,
the cumulative trap count obtained by two traps taken together is
considerably larger in the case of distant traps (the first configuration,
cf. Fig. 15) than in the case of close traps (the second configuration,
cf. Fig. 16). This occurs for all considered values of 𝑝0, however the
difference between the trap counts becomes larger with a decrease in
𝑝0, i.e. when the individual animal movement becomes more directed.

The dashed line in Fig. 17 shows an estimate of the cumulative
trap count obtained from the MF model (diffusion equation), as given
by Eq. (10) (see Petrovskii et al., 2012 for all technical details). We
therefore observe that the MF model provides a good overall descrip-
tion of the cumulative trap count (just slightly overestimating it for
an intermediate time, e.g. approximately for 𝑡 ∈ (300, 1000) for the
parameters of Fig. 17, top) in case 𝑝0 is sufficiently large but fails
when 𝑝0 becomes small (𝑝0 = 1 or smaller). This is not surprising, in
fact expected, as the individual movement is approximately diffusive
(Brownian) for large values of 𝑝0 but becomes distinctly different for a
small 𝑝0, the latter being more adequately described by the telegrapher
equation rather than the diffusion equation.

4.3. Three non-baited traps

In this section, we briefly consider a somewhat more general con-
figuration with three non-baited traps installed in the domain. All traps
are of the same radius (𝑅 = 5) but placed at different relative position to
each other, so that Trap 1 and Trap 2 are close to each other but Trap 3
is far away. Namely, the position of the traps is

(

𝑥(1)𝑡𝑟𝑎𝑝, 𝑦
(1)
𝑡𝑟𝑎𝑝

)

= (20, 10),
(

𝑥(2)𝑡𝑟𝑎𝑝, 𝑦
(2)
𝑡𝑟𝑎𝑝

)

= (20,−10) and
(

𝑥(3)𝑡𝑟𝑎𝑝, 𝑦
(3)
𝑡𝑟𝑎𝑝

)

= (−20, 0). Since all traps are
non-baited, insects perform the CRW across the whole domain. In order
to calculate the trap count, conditions (7)–(8) and Eq. (9) are applied
to each of the traps.

Based on the results of Section 4.2, one can expect that the per-
turbation areas induced by each individual trap into the population
distribution will start overlapping after a relatively short interval leav-
ing the more distant Trap 3 unaffected for a much longer time. This is
indeed what is observed in simulations. Fig. 18 shows the population
distribution obtained for three moments of time. We readily observe
that the low density areas around Traps 1 and 2 start overlapping
already at time 𝑡 = 1000 while there is still no any obvious overlap
with Trap 3 until much later time 𝑡 = 3000.

Since an overlap between traps tend to decrease the trap count by
each of the trap, correspondingly, we expect that, except for an early
time, trap counts by Traps 1 and 2 will be smaller than that by Trap
3. This is confirmed by simulations. Fig. 19 shows the cumulative trap
count for each trap. At an early time, the cumulative trap count by each
trap is approximately the same for all three traps. However, starting



Ecological Modelling 470 (2022) 110016O. Alqubori and S. Petrovskii
Fig. 15. Snapshots of the population distribution at a few moments of time obtained in the square domain with two non-baited traps (hence all insects performing the CRW)
placed far away from each other. Left to right: 𝑡 = 1000, 2000, 3000. The total insect population is 𝑁 = 104 and the persistence parameter is 𝑝0 = 2.
Fig. 16. Snapshots of the population distribution at a few moments of time obtained in the square domain with two non-baited traps placed close to each other. Left to right:
𝑡 = 1000, 2000, 3000. The total insect population is 𝑁 = 104 and the persistence parameter is 𝑝0 = 2.
from approximately 𝑡 = 100 Trap 3 has a higher cumulative trap count.
Note that the trap counts by Traps 1 and 2 coincide at all time, as these
two traps are perfectly identical.

5. Discussion and conclusions

Traps are commonly used in insect ecology and pest control (Epsky
et al., 2008; Pedigo, 1999) for at least two different reasons. Firstly,
trap counts provide information about the presence (and sometimes
abundance) of a given species in the vicinity of the trap (Baars, 1979;
Raworth and Choi, 2001; Johnson, 1969). Secondly, traps, especially
baited traps (such as, depending on the species traits, pheromone
baited, light baited, colour baited, etc.) are used for mass trapping,
i.e. to catch and kill/remove insects in large numbers as a part of pest
management (El-Sayed et al., 2006). In spite of this, neither the factors
affecting the trap count nor the extent of the disturbance that the trap
can introduce into the population distribution are well understood. This
is particularly true in case of baited traps, because their effect changes
the movement behaviour (e.g. by turning isotropic random movement
into more directed movement towards the trap) and hence is much
more complicated than that of non-baited traps.

In this paper, by using numerical simulations of individual insect
movement of different type (cf. CRW and BRW, see Section 2.2), we
have provided a systematic investigation into the dynamics of animal
trapping by traps of various design (such as non-baited, baited and
hybrid). We considered both the issue of the trap efficiency, i.e. how
fast the cumulative trap count may increase over time, and the effect
that the trap may exert onto the spatial population distribution in the
domain where the trap is installed. Our main findings are summarised
below:
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1. Both for a non-baited and baited traps, the cumulative trap
count essentially depends on the persistence of animal individual
movement, i.e. on the variance of the turning angle distribution
(cf. parameter 𝑝0 in Eqs. (5) and (6), respectively). The smaller
the variance, the larger the trap count is; see Figs. 3 and 10. This
is in agreement with intuitive expectations. Indeed, in case of a
small 𝑝0 (high persistence), the movement path becomes close to
a straight line and the movement pattern becomes close to bal-
listic. Correspondingly, over a given time interval, the number of
animals that can be trapped is higher as they may travel to the
trap from locations further away. Hence, the ‘catchment area’ of
the trap is larger than in the case of large 𝑝0 (low persistence).
Essentially, this is a result of the obvious observation that the
ballistic movement is faster than the diffusive one (Codling et al.,
2008; Turchin, 1998; Viswanathan et al., 2011).

2. A baited trap is not at any time equivalent to a large non-baited
trap (where the radius for the latter is defined as the radius of the
attraction area of the former); see Section 3.2. At an early time,
the large non-baited trap has a higher cumulative trap count
than the baited one but this change to the opposite in the course
of time (see Fig. 5).

3. In case where there are more than one trap installed in the
domain, their efficiency tends to decrease with time: as their
growing catchment areas may start overlapping in the course of
time, the traps start ‘competing’ between themselves. This effect
is seen clearer when traps are installed close to each other; see
Fig. 19.

4. For a non-baited trap, the mean-field approximation (10) de-
rived from the diffusion equation (see Petrovskii et al. (2012) for
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Fig. 17. Cumulative trap counts obtained in the two trap case for the two configu-
rations: green curve for the traps placed far away from each other, red curve for the
traps paced close to each other. Panels top to bottom correspond to different values of
the persistence parameter, 𝑝0 = 3, 2 and 1, respectively. As a reference case, the blue
line shows the cumulative trap count obtained for a single trap. The dashed line shows
the mean-field approximation using Eq. (10).
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details) provides reasonably good overall description of the cu-
mulative trap count in case of low-persistence individual move-
ment 𝑝0 ≥ 2 but clearly fails in case of high-persistence move-
ment 𝑝0 ≤ 1 (see Fig. 17). The failure is readily explained by
the fact that the population dynamics in case of high-persistence
movement is more adequately described by a different MF model
(e.g. the telegrapher equation) instead of the diffusion equa-
tion (Alharbi and Petrovskii, 2018; Tilles and Petrovskii, 2019;
Holmes et al., 1994).

5. Trap introduces heterogeneity in the spatial population distri-
bution and can even lead to the pattern formation. In case
of a non-baited trap, such emerging heterogeneity is an area
around the trap where the population density falls to a small
value compared to the rest of the domain. The effect of a baited
trap can, depending on the domain shape, result in a stronger
heterogeneity by creating a curiously shaped pattern of high
population density (cf. Fig. 8). In the case where two traps of
different types are installed, their interaction can lead to the
formation of a shadow in the vicinity of the non-baited trap
(Fig. 13).

We emphasise that all our results are essentially new. Although
there is plenty of modelling studies addressing various aspects of indi-
vidual animal movement (e.g. Turchin, 1998; Jopp and Reuter, 2005;
Viswanathan et al., 2011; Pyke, 2015), this is usually done in the
context of migration, foraging and/or search efficiency. There is only a
small number of papers where animal movement is modelled in relation
to trapping. Current understanding of the factors affecting trap counts
collected by a baited trap, as well as trap’s possible feedback onto the
spatial distribution of the monitored/controlled population, is at its
infancy and almost entirely lacking the required rigour. Here we have
shown for the first time that the intuitive concept of the trap catchment
area (or the effective sampling area) often used for the interpretation of
the trap counts by a baited trap can be grossly misleading (see Item 2
above). We have also shown for the first time that a baited trap can
bring a significant disturbance to the spatial population distribution
on the field scale (cf. Item 5). This new result may have a variety
of important implications for modelling agri-ecological systems where
trapping is often a standard part of the agricultural procedures.

Since the IBM framework that we used in our study is inherently
stochastic, a question may arise as to what extent our results are
representative and reproducible. Indeed, in a generic stochastic system,
a single realisation (e.g. a simulation run) is hardly informative, i.e. at
best showing what may happen but not telling anything how likely that
happens. (In the context of animal movement, that applies to animal’s
movement path, as every new simulation run produces a different tra-
jectory.) However, the averaging of the results over multiple realisations
gives an estimate of the mean, which is a stable and reproducible
quantity. Moreover, by the virtue of the Central Limit Theorem, the
variance of the deviations from the mean is known to decrease with
the number of realisations. In our study, the trap count emerges as a
contribution from many individual animals with identical properties.
Although trapping of each individual animals is an entirely random
event, the contribution from many such events acts as averaging: it was
shown in earlier studies (Petrovskii et al., 2014, 2012) that deviations
from the cumulative trap count becomes negligibly small when the
number of animals is sufficiently large. In a system with a small number
of animals, similar regularisation is achieved by averaging over several
stochastic realisations (Petrovskii et al., 2014, 2012).

Our study leaves a few open questions. Perhaps the main one is
the possible effect of the heterogeneity of animal movement behaviour.
Such heterogeneity may arise through a variety of reasons. One reason
is the individual differences that are inherent in any species. In terms
of our approach, the presence of individual differences means that the
parameters of individual movement (cf. 𝑝0 and 𝛿) can be different
for different animals. The population as a whole is then described
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Fig. 18. Snapshots of the spatial population distribution simulated in a square domain with three non-baited traps installed. Animals perform the CRW with the persistence
parameter 𝑝0 = 2. Left to right: 𝑡 = 1000, 𝑡 = 2000, 𝑡 = 3000.
Fig. 19. Cumulative trap count for the configuration with three traps. Here the blue
and red curves are for Traps 1 and 2 that are close to each other and the yellow curve
is for Trap 3 that is placed much farther away (see details in the text). Persistence
parameter is 𝑝0 = 2. The total initial population size is 104.

not by a given parameter value but by a distribution of different
value’s frequency. Depending on the properties of the distribution, the
resulting effect on the trap counts can be considerable (Petrovskii et al.,
2014).

Another source of heterogeneity is the differential animal response
to the trap’s attracting agent, i.e. the bait. In the present study, we
assumed that the agent acts on the animal movement behaviour uni-
formly in space: as soon as animal’s position is within the attraction
radius, its movement becomes more ordered, i.e. more directed towards
the trap. However, this is of course a caricature of reality. It is more
likely that the strength of the attracting agent decreases continuously
with the distance from the trap and hence any possible change in the
animal movement behaviour occurs gradually rather than abruptly.
Understanding of the effects of this additional spatial heterogeneity lies
beyond the scope of this paper but will become the focus of future work.
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