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A B S T R A C T   

Short-term exposure studies have often relied on time-series of air pollution measurements from monitoring sites. 
However, this approach does not capture short-term changes in spatial contrasts in air pollution. To address this, 
models representing both the spatial and temporal variability in air pollution have emerged in recent years. Here, 
we modelled daily average concentrations of nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10) and 
ozone (O3) on a 25 m grid for Great Britain from 2011 to 2015 using a generalised additive mixed model, with 
penalised spline smooth functions for covariates. The models included local-scale predictors derived using a 
Geographic Information System (GIS), daily estimates from a chemical transport model, and daily meteorological 
characteristics. The models performed well in explaining the variability in daily averaged measured concen-
trations at 48–85 sites: 63% for NO2, 77% for PM2.5, 80% for PM10 and 85% for O3. Outputs of the study include 
daily air pollution maps that can be applied in epidemiological studies across Great Britain. Daily concentration 
values can also be predicted for specific locations, such as residential addresses or schools, and aggregated to 
other exposure time periods (including weeks, months, or pregnancy trimesters) to facilitate the needs of 
different health analyses.   

1. Introduction 

Epidemiological studies assessing the health impacts of short-term 
environmental exposures to air pollution often rely on air pollution 
measurements obtained from monitoring networks (Mo et al., 2019; Stas 
et al., 2021; Yang et al., 2020). Assigning concentrations based on 
measurements from a limited number of monitoring sites to individuals 
(e.g. cohort participants) in large geographic areas often fails to capture 
the spatial heterogeneity in ambient air pollution, especially for perva-
sive sources such as traffic-related air pollutants (Rushworth et al., 
2014). 

More recently, models representing spatial and temporal air pollu-
tion patterns have emerged. Some models, using deterministic tech-
niques, estimate the rate of dispersion and dilution of pollutants 
between emission source(s) and receiver(s) (e.g. address location) as a 
function of meteorology, terrain and land use. These ‘dispersion models’ 
often cannot easily be applied over large geographical areas for epide-
miological studies, especially at the national scale, due to high demands 
in terms of detailed data requirements (such as emission inventories) 

and computer processing. Land use regression (LUR) is a statistical 
approach that has been used extensively to estimate long-term (i.e. 
annual average) air pollution concentrations, often as an alternative to 
dispersion modelling. Traditional LUR models combine monitored air 
pollution concentrations with ‘land use’ information (e.g. land cover, 
population density, traffic indicators) (Hoek et al., 2008) using multiple 
regression. LUR has been shown in many locations (Beelen et al., 2013; 
Hystad et al., 2011; Meng et al., 2016; Muttoo et al., 2018; Rose et al., 
2011; van Nunen et al., 2017) to adequately represent the spatial vari-
ation in pollution concentrations. Increasingly, LUR includes the ability 
to add temporal components (e.g. meteorological data, chemical trans-
port models (CTM), emission inventories and satellite-derived data) to 
allow the prediction of concentrations over shorter periods (e.g. daily). 
Spatio-temporal LUR models often adopt statistical frameworks to 
represent the non-linear relationships between time-varying variables 
and air pollution measurements, and this includes generalised additive 
mixed methods (GAMM), a relative of the generalised linear model 
(GLM) (Lindström et al., 2014; Stafoggia et al., 2017; Yanosky et al., 
2014; Zhang et al., 2018). 
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There is a wealth of health data from routinely collected health 
registries and longitudinal cohort studies to facilitate epidemiological 
studies on both the short- and long-term effects of air pollution. There 
are some examples of high resolution spatio-temporal models, devel-
oped to provide adequate exposure assessment for these types of study 
(Chen et al., 2018; de Hoogh et al., 2019; Shtein et al., 2019; Silibello 
et al., 2021; Stafoggia et al., 2017; Yu et al., 2022), but these are limited 
at the national scale for Great Britain (GB). Here, we developed 
spatio-temporal models to predict daily average ambient concentrations 
of nitrogen dioxide (NO2), particulate matter (PM) with aerodynamic 
diameter ≤2.5 μm (PM2.5), particulate matter with aerodynamic diam-
eter ≤10 μm (PM10) and ozone (O3). We aimed to develop national-scale 
models that are suitable for predicting exposure at residential addresses 
and for use in air pollution epidemiological studies in Great Britain. 

2. Material and methods 

We developed generalised additive mixed models for NO2, PM2.5, 
PM10 and O3 for five years from January 1, 2011 to December 31, 2015 
using air pollution measurements from fixed sites, spatial data on land 
use, road network, traffic, topography, building heights and population 
density, and spatio-temporal data on meteorological conditions and air 
pollution maps from chemical transport models. 

2.1. Air pollution measurement data 

We obtained verified daily mean concentration measurements for 
NO2, PM2.5, PM10 and O3 from 2011 to 2015 from the Automatic Urban 
and Rural Monitoring Network (AURN). AURN classifies monitoring 
sites as background urban, background suburban, background rural, 
traffic urban, industrial urban and industrial suburban. We did not 
include the small number (n < 6) of industrial sites (including ports and 
airports) as the focus was on optimising model performance at resi-
dential addresses for exposure assessment. Monitoring sites with more 
than 75% daily mean measurements each month and year were included 
to ensure sufficient daily data availability. Less stringent criteria of 50% 
data completeness were applied for PM2.5 and PM10 due to fewer overall 
sites. The spatial distribution of the monitoring sites for NO2 (n = 85), 
PM2.5 (n = 56), PM10 (n = 48) and O3 (n = 57) is shown in the Sup-
plementary Material (Figure A.1). 

2.2. Potential predictor variables 

We used ERA5-Land reanalysed hourly climate models from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) with a 
spatial resolution of approximately 9 × 9 km to obtain dew point tem-
perature, temperature measured at 2-m height, and u-component and v- 
component of wind measured at 10-m height. Based on this information, 
we computed daily mean temperature, relative humidity, wind speed 
and wind direction as potential predictors. 

Chemical transport models simulate the formation, advection, 
deposition and dispersion of air pollutants in 3 dimensions, based on 
emission inventories (location, strength, size) and meteorological inputs 
(Akita et al., 2014). CTMs have been increasingly used to predict air 
pollution concentrations at the national/continental scale. We used 
hourly CTM estimates extracted from the Monitoring Atmospheric 
Composition and Climate – Interim Implementation ENSEMBLE (MAC-
C-II ENSEMBLE) model provided by Copernicus Atmosphere Monitoring 
Service (Marécal et al., 2015). MACC-II ENSEMBLE (referred to as 
“MACC” in the following context) is the median of seven state-of-the-art 
numerical air quality models in Europe, namely CHIMERE, EMEP, 
EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM with a 
spatial resolution of 0.1◦. 

Spatial predictor variables on land cover, road network, road traffic, 
topography, building, and population density were used to characterise 
the local environment and represent emission sources or sinks of air 

pollution. Description of the spatial predictors, including data source 
and resolution, is presented in the Supplementary Material (Table A.1). 

We used a combined version of the national Land Cover Map 2007 
(LCM2007), derived from LANDSAT and processed by the Centre for 
Ecology & Hydrology, and CORINE Land Cover 2012, an EU-wide map 
complied by the European Environmental Agency. LCM2007 has a high 
spatial resolution of 25 × 25 m but includes only two urban land cover 
classes, limiting its use in urban areas. CORINE has a lower resolution of 
100 × 100 m but differentiates eleven urban land cover classes, 
including urban parks. The combined product replaces the two land 
cover classes from LCM2007 with those from CORINE (Fecht et al., 
2014). Land cover classes were then aggregated into nine main groups: 
high density urban, low density urban, other built-up, ports, industrial, 
natural areas, green space, agriculture and watercourses. 

Road length by road type was extracted from Ordnance Survey 
(OS)’s Meridian 2 (Ordnance Survey, 2013). Meridian 2 displays road 
network at a 1:10,000 scale and differentiates between motorway, 
A-road, B-road, and minor road. Motorway and A-road were grouped to 
derive a separate class named major road. 

Information on road traffic intensity was obtained from Morley and 
Gulliver (2016). This includes modelled annual average daily traffic 
(AADT) on all roads in Great Britain, including minor roads. The AADT 
provided by the Department of Transport contains traffic count data for 
major roads, but for minor roads, count data on AADT is sparse. The data 
on traffic flows on minor roads was initially applied in a noise model and 
significantly improved noise prediction (Morley and Gulliver, 2016). 
The data includes information on traffic counts for different types of 
vehicles, including light motor vehicles, medium heavy vehicles, heavy 
vehicles, powered two-wheelers and all types. 

Information on altitude was obtained from the Ordnance Survey 
Terrain 50 database with a resolution of 50 m. Altitude was extracted 
from the locations of monitoring sites and included for model 
development. 

Information on buildings is not commonly included as a potential 
predictor variable in national-scale LUR models. However, studies using 
building density, building volume and/or aspect ratio (average building 
height divided by road width) have shown improvement to LUR model 
performance (Eeftens et al., 2016; Tang et al., 2013). We included 
building volume as a potential predictor to represent the ventilation in 
street canyons. We obtained highly detailed footprints and heights of 
buildings from the OS MasterMap Topography Layer – Building Height 
Attribute, then calculated building volume (unit: m3) by multiplying the 
two attributes. 

Information on population and households were obtained as counts 
for each residential postcode centroid (on average 15 households per 
postcode, with an average household size of 2.36 residents) from the 
2011 Census, provided by the Office for National Statistics (ONS). The 
population data were used as a proxy for domestic and residential 
pollution. 

2.3. Variable extraction 

We quantified spatial predictor variables around monitoring sites by 
creating circular distance buffers (ranging from 25 m to 5000 m) and 
linear distance using Geographic Information System (GIS) software 
ArcGIS v10.4 (ESRI). A complete list of spatial predictor variables is 
presented in the Supplementary Material (Table A.2). For inverse- 
distance variables, values for monitoring sites at very close proximity 
to roads (e.g. less than 3-m) would result in unrealistic concentration 
values. Therefore, a minimum distance of 3-m (minimum distance to the 
centre of the road from the roadside) was set for this type of variable. 

2.4. Model development 

2.4.1. Annual average models 
To test the spatio-temporal models’ ability to predict long-term 
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(annual) air pollution concentrations in comparison with traditional 
long-term exposure models, we developed separate annual LUR models. 
The modelling approach followed a standard approach for developing 
LUR models as described in Eeftens et al. (2012). Potential predictor 
variable with the highest correlation with all monitored concentrations 
was first offered to the model, followed by the next ranking variable 
using a supervised stepwise method. A predictor variable was main-
tained in the final model if i) the increment of adjusted R2 was greater 
than 1%; ii) the coefficient conformed to the pre-determined direction of 
effect; iii) the p-value was no greater than 0.05. If the resulting model 
included multiple variables from the same category but different buffers, 
the variable of less significance was removed. This was to avoid variable 
overlapping and make the models more intuitively interpretable (Beelen 
et al., 2013). We included annual CTM estimates (i.e. MACC) in the 
model as a fixed variable, and other variables were freely selected using 
the LUR modelling approach. The best combination of predictor vari-
ables has the highest R2. The output model contains a ‘best’ set of pre-
dictors and associated coefficients. 

Each spatial predictor variable was assigned a pre-defined direction 
of effect. The direction of effect was based on whether the variable acts 
as a ‘source’ (+) or ‘sink’ (− ) and was used to guide the variable se-
lection. For NO2, PM2.5 and PM10, traffic, population and the built 
environment (e.g. roads, buildings, industrial lands) are ‘sources’ that 
are expected to increase air pollution concentrations. Vegetation, agri-
culture and watercourse are ‘sinks’ that are expected to decrease 
pollution concentrations. The direction of effect was opposite for O3. 
This is because vegetation increases O3 levels as it emits highly reactive 
hydrocarbons, especially in growing (warm) seasons, and the presence 
of nitrogen oxides reacts with the hydrocarbons, which leads to the in-
crease of O3 concentrations (Kerckhoffs et al., 2015). Using a 
pre-defined direction of effects improves the application of models and 
limit the risk of overfitting. 

2.4.2. Daily average models 
To account for the time-varying spatial variability and reduce 

computational burden, a two-stage modelling approach was adopted, as 
described in Yanosky et al. (2014). The modelling approach was 
developed to represent a trade-off between model complexity and 
computational efficiency. The approach allows for the inclusion of 
time-varying smooth spatial terms and smooth terms of spatial predictor 
variables. 

For each pollutant, we developed a daily SpatioTemporal-Land Use 
Regression (ST-LUR) model for the study period January 1, 2011 to 
December 31, 2015. The first stage of the ST-LUR model was formulated 
as follows: 

yi,t =N (μi +
∑Q

q=1
fq(Mi,t,q)+ gt(Si), σ2

t ) (1)  

where yi,t is the daily average concentration for site i = 1…I and day t =
1…T (T =365) in a study year (T = 366 for the year 2012); μi is the fixed 
effects for each site; fq( ⋅) is the one-dimensional penalised spline 
smooth function for Q time-varying covariate (i.e. CTM estimates and 
meteorology covariates); Mi,t,q are time-varying covariates for q =

1…Q; gt( ⋅) accounts for time-varying residual spatial surface; Si is the 
spatial location paired with i th site; σ2

t is the daily-varying residual 
variance. 

The second stage is a spatial model that predicts the fitted site- 
specific terms, μ̂i, 

μ̂i =
∑L

l=1
dl(Xi,l) + g(Si) + bi (2)  

where Xi,l are time-invariant spatial predictor covariates for l = 1…L, 
dl( ⋅) is the one-dimensional penalised spline smooth function for L time- 
invariant covariate (e.g. land use predictors); g( ⋅) accounts for time- 

invariant surface; Si is the spatial location paired with i th site; bi is 
the random effect representing unexplained site-specific variabilities. 

Both model stages were fitted using the gam() function in the mgcv 
package of R v3.5.1 (Wood, 2018). The first stage (Equation (1)) used an 
iteratively back-fitting approach to estimate site-specific terms adjusting 
for time-varying covariate and residual daily spatial variability. The 
second stage (Equation (2)) fitted a spatial model to μ̂i, which was ob-
tained from the first stage model, using time-invariant covariates and 
residual time-invariant spatial variability in air pollution. The 
non-linearity of the variables was accounted for using spline terms. The 
degrees of freedom were selected using the default estimate. In the event 
that a smooth term used high degrees of freedom, the smoothing 
parameter in the gam() function was used to reduce the degrees of 
freedom. This approach forces a smoother function across the range of 
the covariate to reduce the potential for overfitting to the data. NO2, 
PM2.5 and PM10 measurements and CTM estimates were transformed 
with the natural logarithm since data were highly right-skewed. Data on 
O3 followed a normal distribution pattern and was therefore analysed 
un-transformed. 

We used spatial predictors from the annual models. The predictors 
were further evaluated in the second stage of the ST-LUR (i.e. fitting a 
spatial model from time-invariant and residual time-invariant spatial 
variability). Predictors were only included in the final models if they 
improved the explained variance, had expected positive/negative di-
rection of effect, and were statistically significant (p-value < 0.05). 

2.5. Model evaluation 

Five-fold cross-validation (CV) was used to assess the performance of 
the annual and daily models. Briefly, the sites were randomly allocated 
into five groups (folds), and the groups were checked to have a similar 
number of sites from each area (we divided Great Britain into five areas: 
South, Midlands, North, Scotland and Wales) and site type. Each group 
was removed from the dataset as a testing set sequentially, with the 
remaining four groups being fitted to a model. Predictions were made 
for the held-out dataset. The accuracy and precision of the models were 
quantified by root mean squared error (RMSE), root mean squared de-
viation (RMSD) and normalised root mean square error (NRMSE, nor-
malised by the range of measured concentrations), which measure the 
magnitude of residual error; and cross-validated R2 (CV-R2), which is the 
coefficient of determination between the held-out measurements and 
model predictions. The daily average models were also assessed on 
prediction bias (i.e. mean difference between measurements and cross- 
validation predictions), and slope was obtained by regressing pre-
dicted against monitored concentrations in a linear regression model. 

2.6. Sensitivity analysis 

We applied two sensitivity analyses within the context of the spatio- 
temporal models. Firstly, we removed the smooth terms in both fq(Mi,t,q)

and dl(Xi,l) for the time-varying and time-invariant covariates, respec-
tively. This was to test models’ predictive ability when using linear 
terms in place of smooth regression. Secondly, we left out all covariates 
(time-varying and time-invariant) and used spatial smoothing only to 
test the contribution of the covariates to model performance. 

3. Results 

3.1. Annual average models 

The annual models for NO2, PM2.5, PM10 and O3 included similar 
types of variables. Traffic-related variables were most frequently 
included in models indicative of road transport emissions. Traffic load in 
a 50 m buffer was included in all models, followed by (major) road 
length in a 1000 m buffer. NO2, PM2.5 and PM10 models also included 
building volume in a 50 m buffer, accounting for human activity and 
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street canyon effect formed by tall buildings. Each model (except for 
NO2) included a ‘pollution sink’ variable (natural land or greenspace in 
various buffer sizes), which fit the pre-defined direction of effect. The 
full list of the LUR variables is presented in the Supplementary Material 
(Table A.3). 

Model performance was calculated for individual years. The statistics 
are summarised in the Supplementary Material (Table A.5). Briefly, NO2 
and O3 showed consistent performance across years, with CV-R2 ranging 
from 0.75 to 0.78 and RMSE from 6.8 to 7.4 μg/m3 for NO2; and CV-R2 

ranging from 0.74 to 0.94 and RMSE from 3.1 to 4.8 μg/m3 for O3. The 
PM models performed less well, with CV-R2 ranging from 0.21 to 0.62 
and RMSE from 1.2 to 2.9 μg/m3 for PM2.5; and CV-R2 ranging from 0.47 
to 0.69 and RMSE from 1.6 to 3.3 μg/m3 for PM10. Unlike NO2 or O3, the 
PM annual models were very sensitive to variable selection, and the 
same set of variables performed more or less well for specific years. We 
further analysed the PM annual LUR models using the same monitoring 
sites and selection criteria but allowing each year to have different 
variables to maximise explained variance. The results showed a signif-
icant improvement in R2, ranging from 0.61 to 0.68 for PM2.5 and from 
0.66 to 0.76 for PM10. We explored various combinations of variables, 
but none could well explain the spatial variation of the measured con-
centrations for all study years. This may be due to the smaller number of 
monitoring sites and low variability in the PM annual mean measure-
ments (standard deviation (SD) ranging from 2.0 to 3.4 for PM2.5, and 
from 2.8 to 4.7 for PM10). 

The CTM-incorporated annual LUR models were compared with the 
aggregated daily ST-LUR models, and results are presented in Section 
3.2. We produced air pollution maps based on the annual average LUR 
models, and details can be found in Supplementary Material (Appendix 
B). 

3.2. Daily average models 

Table 1 shows summary statistics of the measured daily air pollution 
concentrations. The full list of the time-varying and time-invariant 
covariates included in the final models is presented in the Supplemen-
tary Material (Table A.4). The performance statistics of the ST-LUR 
model for all pollutants are shown in Table 2. Overall, the results indi-
cate strong performance. The NO2 model, including both space-time 
predictors (CTM estimates MACC and meteorology) and spatial pre-
dictors (traffic load in a 50 m buffer, major road length in a 1000 m 
buffer and building volume around main roads in a 50 m buffer), 
explained 63% of the variation in measured NO2 concentrations (CV-R2: 
0.63), a decrease of 9.2% compared to the Model R2. The RMSE was 
12.7 μg/m3, bias was 8.5 μg/m3 and slope was 0.79. Both PM2.5 and 
PM10 models included MACC, meteorology covariates, traffic load in a 
50 m buffer, natural land in a 1000 m buffer and building volume 
around main roads in a 50 or 100 m buffer. PM2.5 and PM10 models 
showed similar validation performance, with CV-R2 of 0.77 and 0.80, 
respectively (RMSE 5.0 μg/m3, bias 3.0 μg/m3 and slope 0.81 for PM2.5; 
RMSE 5.0 μg/m3, bias 3.4 μg/m3 and slope 0.91 for PM10). The spatial 
predictors of the O3 model were similar to the NO2 models, including 

traffic load (50 m buffer), major road length (1000 m buffer) and green 
space (300 m buffer). The O3 models explained the most variation in the 
measured concentrations (CV-R2 = 0.85) compared to the other pol-
lutants. The RMSE was 7.6 μg/m3, bias was 5.6 μg/m3 and the slope was 
close to 1 (0.96). In the sensitivity analysis, we showed that our ST-LUR 
using smooth functions for the spatial and spatio-temporal predictors is 
better than using linear terms at capturing space-time variability in 
measured concentrations. Models with linear terms reduced CV-R2 by 
0.17 for NO2, and 0.09–0.12 for PM2.5, PM10 and O3, suggesting that 
smoothing the covariates was more effective for NO2 than the other 
pollutants. The spatial smoothing only models had a lower agreement 
when leaving out covariates, with CV-R2 dropping by 0.12–0.27, 
depending on the pollutants. 

Table 3 shows the model performance by site type. Scatterplots of 
measurements versus predicted concentrations at each site are presented 
in the Supplementary Material (Figure A.2-A.5). For NO2, the perfor-
mance varied by site type. Larger errors were found for some urban 
traffic sites, and the model tended to underestimate at background sites 
(Figure A.2-A). Most traffic sites with a 50 m buffer contain both major 
and minor roads. Since the traffic counts on minor roads were estimated, 
this could induce errors in exposure predictions. Moreover, the poorer 
performance at some sites (R2 < 0.50) was because the model could not 
capture some measurements with extremely high concentrations. For 
example, the highest daily measurements for London Marylebone and 
Glasgow Kerbside (both traffic urban sites) during the study period were 
136 μg/m3 and 169 μg/m3, respectively, whereas the medians were 23 
μg/m3 and 33 μg/m3, respectively. In addition, a few traffic sites have 
low daily mean concentrations of less than 30 μg/m3 but relatively high 
values for the traffic load covariate, which resulted in a large bias in the 
prediction. The PM2.5 and PM10 models performed well at most sites. 
Model prediction for O3 also exhibited fewer errors, with good perfor-
mance at all background sites. The O3 model only included two traffic 
sites, of which Birmingham Tyburn Roadside yielded a good fit, whereas 
the prediction for London Marylebone was poor. The London Mar-
ylebone site was not an outlier as was checked by Cook’s D (influence 
statistics <1), and the poor prediction may also be explained by the large 
values of the traffic load and road length covariates. 

Fig. 1 shows the mapped model output for NO2 on six consecutive 
days from 1st to 6th January, 2015 for Greater London, as an example. 
The maps illustrate the space and time heterogeneity of NO2 concen-
trations captured by the models. Spatial patterns are clearly visible and 
predominantly driven by heavily trafficked major roads. The estimated 
daily mean concentrations across all London postcodes are lowest on 1st 
January, a public holiday (23.0 μg/m3), and increase over the next days 
until 4th January (mean 39.7 μg/m3), before slightly falling. 

In order to test each spatio-temporal model’s ability in long-term 
prediction, we calculated the annual average concentration from the 
daily estimates of ST-LUR at each monitoring site for each study year 
(referred to as “long-term ST-LUR”). The annual average estimates were 
regressed against annual measurements at monitoring sites, and results 
are summarised in Table 4. For the individual study years, the NO2 and 
O3 models predicted long-term spatial trends well, with a mean R2 of 

Table 1 
Descriptive statistics for daily monitoring data of NO2, PM2.5, PM10 and O3 from 2011 to 2015. Q1, median, mean, Q3 and SD are in μg/m3.   

Na Q1b Median Mean Q3c SDd CVe Skewness Completenessf 

NO2 130,906 11.6 22.8 27.4 37.6 21.1 77.0 1.4 94.4 
PM2.5 83,783 7.0 9.8 12.7 15.4 9.4 74.1 2.2 85.8 
PM10 67,294 11.2 15.4 18.3 22.0 10.9 59.4 2.0 84.0 
O3 97,791 34.0 48.0 47.1 60.8 19.2 40.9 − 0.1 95.7  

a N: number of daily mean observations. 
b Q1: 1st quantile (unit: μg/m3). 
c Q3: 3rd quantile (unit: μg/m3). 
d SD: standard deviation (unit: μg/m3). 
e CV: coefficient of variation = SD/Mean * 100%. 
f Completeness: % day with valid measurement from monitoring stations. 
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0.70 (range, 0.66–0.72) and a mean RMSE of 8.1 μg/m3 (range, 7.4–8.9 
μg/m3) for NO2; and a mean R2 of 0.77 (range, 0.66–0.88) and a mean 
RMSE of 4.9 μg/m3 (range, 3.8–5.6 μg/m3) for O3. The R2 was moderate 
for PM10, ranging from 0.57 to 0.64, and RMSE ranging from 1.8 to 3.2 
μg/m3. The performance varied largely by year for PM2.5, with the 
lowest R2 in 2011 (R2 = 0.32, RMSE = 3.2 μg/m3) and highest in 2015 
(R2 = 0.58, RMSE = 1.6 μg/m3). A comparison of the model perfor-
mance of the long-term ST-LUR and CTM-incorporated annual LUR 
models (referred to as “annual LUR”) are presented in the Supplemen-
tary Material (Table A.5). The annual LUR outperformed the long-term 
ST-LUR for NO2 and O3 across all study years. However, the difference of 
model performance between the two was small in terms of R2 and RMSE, 
with differences (model performance parameter for annual LUR minus 
long-term ST-LUR) of R2 ranging from 0.05 to 0.09 and RMSE from 0.55 
to 1.52 μg/m3 for NO2; and R2 ranging from 0.03 to 0.08 and RMSE 
ranging from 0.68 to 1.15 μg/m3 for O3. For PM2.5 and PM10, perfor-
mance varied by year for both sets of models, though the estimates from 
the long-term ST-LUR exhibited slightly more bias than the annual LUR 
models (differences of average bias were 1.5 μg/m3 for PM2.5 and 2.0 
μg/m3 for PM10). 

4. Discussion 

We developed spatio-temporal air pollution models using general-
ised additive mixed models to predict daily average concentrations for 
NO2, PM2.5, PM10 and O3. This is the first study to combine spatial and 
spatio-temporal predictors in a modelling framework to predict daily 
concentrations of multiple air pollutants for every 25 m grid cell for the 
whole of Great Britain. The results demonstrated good overall model 
performance and the ability to use the daily models as the basis for 
annual average concentration predictions. The models’ key feature is to 
estimate daily NO2, PM2.5, PM10 and O3 exposures at any point location 
in Great Britain. The models can be efficiently reproduced for another 
time period or region, as the modelling process was written in R (v3.5.1), 
with the option to use data on measured concentrations for local 
calibration. 

4.1. Predictor variables 

The selected GIS-derived spatial covariates were consistent with the 
findings in most LUR studies (Clougherty et al., 2013; de Hoogh et al., 
2018; Vienneau et al., 2013). The covariates were dominated by four 
types of variables: traffic load, building volume, road length and vege-
tation cover (green space and natural land). The anthropogenic emis-
sions were, in most cases, represented by road length and traffic 
load-related variables. Population/household count, altitude and other 
‘land cover’ variables were selected in the first stage but were not 
included in the model as they did not meet the criteria (e.g. not statis-
tically significant or improving explained variance). The covariate se-
lection process accounted for the spatial trends of residuals and allowed 
non-linearity in the effects of the covariates. The process is computa-
tionally feasible for large-area applications and has the potential to 
include other land use variables that have the potential for improving 
model performance in different geographic locations. 

Although industrial emissions (including ports and airports) can 
contribute substantially to ambient air pollution concentrations at some 
locations, industrial variables are not common in LUR models (Beelen 
et al., 2013). This is partly due to the lack of detailed industrial emission 
data. Some local/regional models contained industrial land-use vari-
ables indicating local industrial sources (Eeftens et al., 2016; Meng et al., 
2015), but this is not common in national-scale models. In essence, LUR 
does not lend itself to dealing with infrequent, discrete sources. Typi-
cally, this is the case where a source is related to between none and a 
maximum of two monitoring sites used to train models. Our models, for 
example, do not recognise Heathrow airport as an emission source. In 
this study, the land cover data included two industrial variables (i.e. 
ports and industrial land) but were not offered in the final model as they 
were not statistically significant. The industrial sources are included in 
CTM as diffuse sources, but the MACC CTM is not granular enough to 
capture individual sources and localised concentrations gradients. 

PM2.5, PM10 and O3 concentrations were explained mainly by the 
daily CTM as it captures the space and time patterns of pollutants 
operating on regional scales. For NO2, the CTM estimates or meteoro-
logical data made a relatively small contribution to modelling. NO2 
concentrations were mostly captured by the time-invariant land use 
variables. We did not explore the use of emission inventories and 

Table 2 
ST-LUR model performance with five-fold cross-validation. RMSE, RMSD and bias are in μg/m3.   

Na nb Model-R2 CV-R2 RMSE RMSD NRMSE (%) Bias Intercept Slope 

NO2 130,906 85 0.72 0.63 12.8 0.5 3.9 8.5 6.32 0.79 
PM2.5 83,783 56 0.93 0.77 5.0 0.6 3.3 3.0 2.32 0.81 
PM10 67,294 48 0.92 0.80 5.0 0.5 3.0 3.4 1.95 0.91 
O3 97,791 57 0.92 0.85 7.6 0.3 4.9 5.7 2.28 0.96  

a N: number of daily mean predictions. 
b n: number of monitoring sites. 

Table 3 
Model performance by site type.  

Pollutant Site Type Na R2 (range, 
median)b 

RMSE (range, 
median) 

NO2 Traffic Urban 28 0.55 (0.11–0.86, 
0.58) 

1.0 (0.5–2.4, 0.7) 

Background Urban 38 0.67 (0.25–0.88, 
0.73) 

0.7 (0.3–1.7, 0.6) 

Background 
Suburban 

4 0.70 (0.39–0.85, 
0.79) 

0.8 (0.4–1.3, 0.8) 

Background Rural 15 0.65 (0.37–0.85, 
0.65) 

1.0 (0.5–1.7, 1.0) 

PM2.5 Traffic Urban 17 0.86 (0.50–0.95, 
0.89) 

0.5 (0.3–1.0, 0.4) 

Background Urban 34 0.87 (0.49–0.95, 
0.89) 

0.5 (0.3–1.0, 0.5) 

Background 
Suburban 

2 0.93 (0.91–0.94, 
0.93) 

0.4 (0.4–0.4, 0.4) 

Background Rural 3 0.83 (0.71–0.89, 
0.88) 

0.8 (0.4–1.3, 0.6) 

PM10 Traffic Urban 17 0.81 (0.53–0.93, 
0.86) 

0.6 (0.3–2.9, 0.4) 

Background Urban 27 0.87 (0.58–0.94, 
0.90) 

0.4 (0.3–0.9, 0.4) 

Background Rural 4 0.80 (0.66–0.93, 
0.81) 

0.8 (0.3–1.9, 0.5) 

O3 Traffic Urban 2 0.66 (0.42–0.90, 
0.66) 

0.4 (0.3–0.5, 0.4) 

Background Urban 32 0.88 (0.68–0.94, 
0.89) 

0.3 (0.2–0.7, 0.3) 

Background 
Suburban 

3 0.90 (0.88–0.92, 
0.89) 

0.3 (0.2–0.3, 0.3) 

Background Rural 20 0.86 (0.65–0.95, 
0.88) 

0.4 (0.2–0.8, 0.4)  

a N: number of monitoring sites. 
b R2: average coefficient of determination, calculated by regressing the daily 

predictions and daily measurements for each site. 

W. Wang et al.                                                                                                                                                                                                                                  



Atmospheric Pollution Research 13 (2022) 101506

6

satellite-derived data in our models. These data have also been used in 
various spatio-temporal models for short-term air pollution estimates 
(de Hoogh et al., 2019; Di et al., 2020; Keller et al., 2015; Korek et al., 
2016; Li et al., 2021; Meng et al., 2015; Stafoggia et al., 2017; Yanosky 
et al., 2014). The key advantage of the MACC CTM over these 
time-varying terms and other CTM data (e.g. GEOS-Chem, CMAQ) is the 
trade-off between accessibility, spatial resolution and full temporal 
coverage of the study period. 

4.2. Spatio-temporal modelling 

Performance of daily models was particularly strong for PM2.5, PM10 
and O3 (CV-R2 range, 0.77–0.85) and more modest for NO2 (R2 = 0.63). 
This is not unexpected, as NO2 is a pollutant whose main source in Great 
Britain is road traffic and therefore shows more spatial than temporal 
variability. The use of non-linear effects for the spatial and spatio- 
temporal predictors improved the model performance. In contrast, 
spatial smoothing only models vastly decreased predictive power, sug-
gesting that the covariates in the original models played an important 
role in capturing the local space-time heterogeneity that cannot be 

Fig. 1. NO2 surface for postcode centroids in Greater London from Thursday, 1st January to Tuesday, 6th January, 2015.  

Table 4 
Summary statistics for long-term (annual) ST-LUR models. RMSE, RMSD and bias are in μg/m3.   

Year N R2 RMSE RMSD NRMSE (%) Bias Intercept Slope 

NO2 2011 79 0.70 8.3 0.4 14.5 5.8 5.24 0.82 
2012 73 0.66 8.9 0.5 14.0 6.3 5.54 0.82 
2013 74 0.72 8.0 0.5 14.2 5.4 4.01 0.89 
2014 74 0.72 8.1 0.4 14.4 5.6 3.55 0.89 
2015 76 0.72 7.4 0.5 13.6 5.2 3.57 0.89 

PM2.5 2011 49 0.32 3.2 0.9 13.3 2.3 7.93 0.48 
2012 54 0.38 2.8 0.9 12.8 1.9 6.53 0.51 
2013 55 0.46 2.5 0.8 12.0 1.8 6.45 0.52 
2014 52 0.45 2.2 1.0 13.4 1.6 6.39 0.49 
2015 51 0.58 1.6 0.8 13.3 1.2 4.08 0.61 

PM10 2011 43 0.57 3.2 0.5 11.1 2.4 4.09 0.82 
2012 47 0.58 2.7 0.8 13.6 2.3 3.41 0.83 
2013 46 0.61 2.6 0.7 12.7 2.1 3.77 0.80 
2014 39 0.64 2.3 0.8 12.9 1.9 4.52 0.74 
2015 39 0.63 1.8 0.7 8.6 1.6 3.72 0.78 

O3 2011 55 0.66 5.6 0.5 11.0 4.3 5.43 0.89 
2012 57 0.75 5.2 0.4 9.2 3.9 7.69 0.83 
2013 55 0.88 3.8 0.3 6.8 3.0 5.00 0.90 
2014 56 0.80 4.8 0.3 9.0 3.6 3.94 0.92 
2015 55 0.78 4.9 0.4 9.0 3.7 6.33 0.88  
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captured by spatial smoothing alone. 
Due to their wide range of values, traffic-related predictors were 

more likely to generate uncertainty in model performance. For example, 
values for traffic load within a 50 m buffer ranged from 0 to 16, 344, 189 
(unit: vehicle per day x road length) across monitoring sites. Even 
though the variable was scaled and log-transformed, model predictions 
were exceptionally high at sites with high traffic load. To limit the in-
fluence of traffic-related predictors, we truncated these variables to 
predicting no larger than the highest observed values, as in some other 
studies (Akita et al., 2014; Beelen et al., 2009; Yanosky et al., 2014). 
However, concentrations might still be overestimated due to the com-
bined effects of the covariates, which poses a limitation of LUR-based 
models. Such variables are particularly influential for large geographic 
area models when predicting concentrations for high-traffic locations 
such as road junctions. Therefore, unrealistic predictions were assessed 
on an individual basis and truncated, if necessary. 

Measured concentrations of PM2.5 and PM10 have low spatial varia-
tion in the study area (the spatial variance was 2.78 μg/m3 for PM2.5 and 
3.96 μg/m3 for PM10), which may explain models’ limited ability in 
predicting spatial variability. Monitored NO2 and O3 have a relatively 
large spatial variance of 16.68 μg/m3 and 9.98 μg/m3, respectively. The 
unexplained spatial variability could potentially be reduced by a denser 
monitoring network. However, this cannot be easily achieved for 
national-scale studies in the short term. The placement of monitoring 
sites usually takes into account the ambient environment (e.g. popula-
tion density and traffic density) and convenience. In Great Britain, 
monitoring sites are much denser in urban areas, and the number of sites 
varies largely by region. Pollution models unavoidably include more 
urban sites than suburban and rural sites. This may introduce biased 
estimates because the monitors in urban areas would capture higher 
pollution concentrations (lower for O3). 

We used a smaller number of measurement sites from AURN than 
were available to develop the models. One option was to borrow sites 
from another large monitoring network, the London Air Quality 
Network (LAQN). However, this would have resulted in oversampling in 
London relative to the rest of the UK, especially for roadside sites. 
Another option was to use monitoring stations (outside London) run by 
Local Authorities or organisations. However, the data quality cannot be 
assured, and/or the stations cannot provide continuous measurements 
for the study period. 

The two-stage GAMM approach primarily followed the approaches 
used in Yanosky et al. (2014), in that they developed two-stage GAMM 
models for predicting monthly concentrations of PM2.5 and PM10 for the 
conterminous United States (U.S.). Their predictors included geographic 
data and point source emissions (spatial) and meteorological data 
(spatio-temporal). The 1999–2007 models could explain 77% (cross--
validated) of the variation in daily PM2.5 and 58% (cross-validated) of 
the variation in daily PM10. Compared to Yanosky et al. (2014), our 
study included a broader range of GIS predictors and used daily CTM 
estimates in addition to meteorological data as time-varying covariates. 
The GIS predictors reduced spatial uncertainty in the model while 
allowing small-scale variation. The daily CTM incorporated meteoro-
logical data and accounted for concentrations through transmission, 
which reflected a more reliable temporal variation of pollution. 

An increasing number of studies use machine learning algorithms to 
develop spatio-temporal air pollution models at a large/national scale. 
In a model for Great Britain, Schneider et al. (2020) integrated land use, 
meteorological data, CTM estimates and satellite data in a multi-stage 
random forest model to estimate daily PM2.5 concentrations.The 
models explained an average of 77.8% of the variation in daily PM2.5 
measurements across Great Britain for the period 2011–2015, which is 
very similar to the result of our study (77.1%). Their spatial (annual 
average) CV-R2 yielded about 20% more spatial variation than our 
long-term ST-LUR. This may be due the larger number of monitoring 
sites deployed in their study, in which random forest was used to 
calculate PM2.5 concentrations from the more abundant PM10 sites, 

which could also increase the variability in the PM2.5 measurements. In a 
similar study, Di et al. (2019) used the same types of predictors in an 
ensemble strategy rooted in machine learning, including random forest, 
the gradient boosting machine and neural network, to develop exposure 
models of PM2.5 for the U.S. They found the ensemble strategy was more 
effective in predicting concentrations across time than individual base 
learners (cross-validated R2 = 0.86), as the approach can remedy the 
drawbacks from a single method (e.g. random forest tends to over-
estimate). The machine learning approach overall showed promising 
results and often outperformed alternative methods (Shtein et al., 2019; 
Stafoggia et al., 2020). The methods we presented in this study, which 
combined a wide range of spatial and spatio-temporal predictors, were 
less complex and less computationally intensive whilst achieving good 
model performance. 

4.3. Limitations 

Our models have some limitations. First, the models used a relatively 
small number of monitoring sites, especially for PM2.5 and PM10. The 
poor model performance in the held-out groups is likely due to the lack 
of sites and/or low variability in pollution concentrations. It is also 
difficult to identify and eliminate all extreme values caused by local 
events such as fires. Second, for a national model in Great Britain, the 
selection of monitoring sites is prone to bias due to the unevenness, and 
it is hard to balance density and representativeness. Third, the model 
accuracy is highly dependent on the input data. For example, we used 
improved traffic data that included estimated traffic counts on minor 
roads. The data was from modelling and therefore has an inherent error. 
This could have contributed to the poor performance at some traffic 
sites. Last, the spatial resolution of the MACC-II Ensemble CTM is rela-
tively coarse (0.1◦ or approximately 10 × 10 km2). Recently, processing 
algorithms have been developed which produce continental/global 
daily air pollution estimates at improved spatial resolution. This in-
cludes Multi-Angle Implementation of Atmospheric Correction 
(MAIAC), which downscales aerosol optical depth (AOD) retrievals to 1 
km resolution and has been successfully implemented in several spatio- 
temporal models for particulate matter (Di et al., 2019; Li et al., 2021; 
Schneider et al., 2020; Shtein et al., 2019). However, to our knowledge, 
there is currently no freely available CTM/satellite information on NO2 
or O3 with higher resolution than MACC. In this study, we did not have 
the capacity to run a daily CTM at a finer resolution. Therefore, we used 
MACC which is freely available and has full spatial and temporal 
coverage for the four pollutants. 

5. Conclusions 

We used generalised additive mixed models to predict daily mean 
concentrations of NO2, PM2.5, PM10 and O3 for Great Britain. The models 
combined spatial and spatio-temporal predictors, including land use 
variables, CTM estimates and meteorological parameters. Despite the 
limitations, the models could explain 63%–85% (cross-validated) of the 
variation in daily concentration measurements with a low imple-
mentation cost. In addition, the models allow the flexibility to aggregate 
to health-relevant exposure windows to facilitate large-scale short- and 
mid-term exposure studies, such as daily for time-series analyses and 
pregnancy trimesters and infancy exposure periods for studies on birth 
outcomes. The air pollution maps we produced are at fine resolution (25 
× 25 m) and capture the space-time variation in concentrations related 
to most localised emissions sources and background sources. Epidemi-
ological studies that need air pollution exposure of point locations can 
benefit from this study by simply providing coordinates or postcodes and 
extracting values from the maps/models. 
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