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The excess chemical potential µex(σ, η) of a test hard spherical particle of diameter σ in a fluid of hard spheres
of diameter σ0 and packing fraction η can be computed with high precision using Widom’s particle insertion
method [J. Chem. Phys. 39, 2808 (1963)] for σ between 0 and just larger than 1 and/or small η. Heyes
and Santos [J. Chem. Phys. 145, 214504 (2016)] showed analytically that the only polynomial representation
of µex consistent with the limits of σ at zero and infinity has a cubic form. On the other hand, through
the solvation free energy relationship between µex and the surface free energy γ of hard-sphere fluid at a
hard spherical wall, we can obtain precise measurements of µex for large σ, extending up to infinity (flat
wall) [J. Chem. Phys. 149, 174706 (2018)]. Within this approach, the cubic polynomial representation is
consistent with the assumptions of Morphometric Thermodynamics. In this work, we present measurements
of µex that combine the two methods to obtain high-precision results for the full range of σ values from
zero to infinity, which show statistically significant deviations from the cubic polynomial form. We propose
an empirical functional form for µex dependence on σ and η which better fits the measurement data while
remaining consistent with the analytical limiting behaviour at zero and infinite σ.

I. INTRODUCTION

The hard-sphere (HS) fluid was the first (Alder and
Wainwright) and remains one of the most studied systems
in molecular simulations. This is because, on one hand,
due to its simplicity, it is amenable to theoretical treat-
ment (e.g., via integral equations or density-functional
theories). On the other hand, it is sufficiently rich to
manifest crystal nucleation and a solid-fluid phase tran-
sition with increasing density and thus serves as a test
case for theoretical study of these important phenomena.

The bulk monodisperse HS fluid with sphere diameter
σ0 can be characterized by the equation of state (EOS),
which determines the fluid pressure p as a function of
number density ρ or packing fraction η = π

6σ
3
0ρ. (From

here on, we will use σ0 as the unit of length and thus
set σ0 = 1.) Another important quantity is the chemical
potential µ or, more precisely, the excess chemical poten-
tial µex(η), which is the difference between the chemical
potential of the HS fluid and that of the ideal gas with
the same density. More generally, we are interested in
the excess chemical potential µex(σ, η) of a spherical par-
ticle of diameter σ immersed in the HS fluid with packing
fraction η, which becomes the excess chemical potential
of the host fluid when σ = 1. This quantity is related to
the probability P (σ, η) of successful insertion (i.e., with-
out overlap with other spheres) of the particle at a ran-
dom uniformly distributed location in the bulk HS fluid
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as follows

µex(σ, η) = −β−1 lnP (σ, η) (1)

where β = 1/kBT is the inverse temperature and kB is
the Boltzmann constant. (Because of the trivial depen-
dence of the HS EOS on temperature, in what follows
we set β = 1.) Based on this relationship, the excess
chemical potential can be calculated in a simulation by
the so-called Widom’s particle insertion method.1 Unfor-
tunately, because the probability of a successful parti-
cle insertion decreases rapidly with increasing σ and/or
η, this method yields accurate results only for moderate
particle diameters and fluid packing fractions.
In their recent paper,2 Heyes and Santos used Widom’s

particle insertion method in the formulation of Lab́ık and
Smith3 to calculate µex(σ, η) for 0 < η ≤ 0.5 and 0 < σ ≤
1.1. Within the precision of their results, they showed
that the excess chemical potential can be expressed as a
cubic polynomial in σ:

µex(σ, η) = c0(η) + c1(η)σ + c2(η)σ
2 + c3(η)σ

3. (2)

This form is widely adopted by researchers and appears
in several well-known theoretical descriptions of the HS
fluid such as, for example, Percus-Yevick (PY) integral
equation4, the Scaled Particle Theory (SPT)5 or the Den-
sity Functional Theory.6 The following exact expressions
for c0(η) and c1(η) can be derived by considering the
limit σ → 0:

c0(η) = − ln(1− η), c1(η) =
3η

1− η
, (3)

while several approximate expressions for c2(η) and c3(η)
can be found in the literature.2 Currently, the most accu-
rate analytical approximation known to the authors is the
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Boubĺık-Carnahan-Starling-Kolafa (BCSK) expression2,7

in the form (2) with (3) and

c2(η) = 8 ln(1− η) + η
22− 21η + 4η2

2(1− η)2
,

c3(η) = −16

3
ln(1− η)− η

13− 43η + 27η2 − 2η3

3(1− η)3
. (4)

Note that the exact expression for c2(η) in the expansion
of µex(σ, η) in powers of σ can be derived within the SPT
framework8

c2(η) =
3η(2 + η)

2(1− η)2
.

However, as shown by Heyes and Santos2, this expression
(which they label ’PY-c’) is not as accurate as that in (4)
when compared to the coefficients in (2) obtained from
the least-squares fit to the simulation data.
From the perspective of solvation thermodynamics, the

excess chemical potential of a test particle is equivalent
to its solvation free energy (at infinite dilution), which
can be represented as the sum of volume and surface
contributions:

µex(σ, η) ≡ Fsolv = p(η)Vσ + γ(σ, η)Aσ , (5)

where p(η) is the pressure of the HS fluid, Vσ = π
6σ

3

and Aσ = πσ2 are the volume and surface area of the
spherical particle, respectively, and γ(σ, η) is the surface

free energy.
For a general non-planar surface S, the surface free

energy depends on its curvature, which can be charac-
terized by the average mean H̄S and Gaussian K̄S cur-
vatures of the surface. Formally, this dependence can be
represented by a Taylor series in powers of the mean and
Gaussian curvatures:9

γS(η) =
∞
∑

i=0

∞
∑

j=0

aij(η)H̄
i
SK̄

j
S , (6)

where the coefficients aij(η) depend only on the packing
fraction of the surrounding fluid. For a spherical surface
with diameter σ, H̄σ = 2σ−1 and K̄σ = 4σ−2 and the
σ-dependence of γ(σ, η) can be formally expressed as the
Taylor series in powers of σ−1:

γ(σ, η) =

∞
∑

n=0

γn(η)σ
−n, (7)

where γ0 is the surface free energy of the HS fluid at a
planar wall, γ1 = −γ0δ is related to the Tolman length

δ, while γ2 = 4(k + κ) is related10 to the sum of the so-
called bending rigidity k and Gaussian curvature rigidity

κ.
Note that the σ-dependence of γ (and correspond-

ingly µex(σ, η) in (5)) is significantly simplified11 un-
der fairly general conditions of Hadwiger’s theorem,12,13

which states that any motion-invariant, continuous, and

additive functional of a convex bounding surface S in
three dimensions can be written as a linear combination
of its volume VS , area AS , integrated mean curvature
CS = ASH̄S , and the Euler characteristic XS = ASK̄S .
The solvation free energy Fsolv is a functional that is ob-
viously motion-invariant and continuous, while additivity
can be considered a good approximation if the scale of
the surface is much bigger than the intrinsic length scale
(correlation length) of the fluid. Therefore, if such an
assumption holds, then the solvation free energy of any
shape S depends only on the four simple morphometric

measures VS , AS , CS , and XS , while the correspond-
ing four linear coefficients depend only on the thermody-
namic state of the solvent, and thus can be determined
in simple geometries, such as, for example, planar, cylin-
drical, and spherical surfaces. This greatly simplifies the
determination of Fsolv for solutes with complex shapes.
Hence it is important to determine the range of applica-
bility of such a simplified approach, which is referred to
as Morphometric Thermodynamics (MT).14,15

If S is a spherical surface of diameter σ, then the MT
expression for its solvation free energy is

Fsolv = FV Vσ + FAAσ + FCCσ + FXXσ ,

= FV
π

6
σ3 + FA πσ2 + FC 2πσ + FX 4π . (8)

Comparing this expression to (5) and (7), we see that
FV = p(η), FA = γ0(η), FC = 1

2γ1(η), and FX = 1
4γ2(η),

with all higher order terms in (7) equal to zero. So, the
MT expression for the excess chemical potential takes the
form

µex
MT(σ, η) = πγ2(η)+πγ1(η)σ+πγ0(η)σ

2+
π

6
p(η)σ3 (9)

In a recent paper10 we have presented high-precision
measurements of the HS fluid surface free energy of the
HS fluid at cylindrical and spherical walls of different
diameters. The purpose of this work was to test the
limits of applicability of the MT assumptions. While
we observed deviations from the MT at the cylindrical
wall, we were not able to detect such deviations in case
of the spherical wall within the precision of the simu-
lations. The main reason is that the precision of the
Gibbs-Cahn method which we used to determine γ(σ, η)
is higher for surfaces with larger area (i.e., for cylinders
and spheres with larger diameter σ), while deviations
from the MT are expected to be observed for convex sur-
faces with small areas, where the additivity assumption
of Hadwiger’s theorem may no longer hold. In Ref. 10,
using weighted least-squares fit of the Gibbs-Cahn results
for a spherical wall to a cubic polynomial in σ−1, we ob-
tained estimates of γn(η), n = 0, 1, 2, 3, in (7) and found
that γ0(η) is consistent with the flat-wall results obtained
in Ref. 16, while deviations of γ3(η) from zero were not
statistically significant.
Note that if the cubic polynomial dependence of

µex(σ, η) on σ were valid for all σ ∈ [0,∞), then πγ1(η)
and πγ2(η) in (9) would have to be equal to the exactly
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FIG. 1. Differences (scaled by η−2 for greater clarity) be-
tween coefficients of the cubic polynomial expressions (2) and
(9) with respect to σ for the excess chemical potential. The
coefficients γ1(η) and γ2(η) were obtained from the simulation
results for γ(σ, η) of HS fluid at a hard spherical wall,10 while
c0(η) and c1(η) are defined in (3).

known expressions (3) for c1(η) and c0(η), respectively,
in (2). In Figure 1 we plot the differences πγ1(η)− c1(η)
and πγ2(η) − c0(η), which show statistically significant
differences between these parameters in the cubic polyno-
mial expressions (2) and (9), especially for πγ1(η)−c1(η)
at larger η. (The coefficients γ1(η) and γ2(η) were ob-
tained in Ref. 10, as explained above.) Therefore, the cu-
bic polynomial dependence cannot be valid in the whole
range of σ values, although it appears to be a reasonably
good approximation at small η. Perhaps, as a compro-
mise, the following reference expression can be taken as
a reasonable cubic polynomial approximation for the ex-
cess chemical potential

µex
ref(σ, η) = c0(η) + c1(η)σ + πγ0(η)σ

2 +
π

6
p(η)σ3 (10)

where c0(η) and c1(η) are given by (3), γ0(η) is the sur-
face free energy of HS fluid at a planar hard wall, and
p(η) is given by the HS fluid EOS. Such an expression
exhibits correct asymptotic behaviour both at small and
large σ.
Widom’s particle insertion method, via the link (5)

between µex and γ, allows us to obtain results at spherical
surfaces with small diameters, and is thus complementary
to the Gibbs-Cahn method. By combining the results
obtained by these two methods, we should be able to
test the dependence of µex on σ over the full range of σ
values from 0 to ∞.
In this paper we report the results for µex(σ, η) which

clearly show deviation from the expression (10), as well as
from the general cubic polynomial dependence (2) tested
by Heyes and Santos.2 To achieve this, we have combined
the results from Ref. 10 for σ = 1, 2, 3, 4, 10, 20,∞ with

0 1 2 3 4

10
-2

10
-1

10
0

10
1

FIG. 2. Top: Excess chemical potential µex(σ, η) of spherical
particle with diameter σ immersed in the HS fluid with sphere
diameter 1 and packing fraction η obtained from molecular
simulations using Widom’s particle insertion method. Error
bars are smaller than the size of the dots.
Bottom: Estimated relative relative confidence intervals of
the simulation results, S(σ, η)/µex(σ, η).

the newly obtained high-precision results from Widom’s
particle insertion method3 (essentially repeating the sim-
ulations of Heyes and Santos,2 but with much larger com-
puting budget and extended range of σ values up to σ = 4
for small η).
The rest of the paper is organized as follows. In the

next Section, we describe the details of our simulations
and the obtained results, followed by the analysis of the
results in Section III, and the summary in Section IV.

II. SIMULATION DETAILS AND RESULTS

The HS fluid systems were simulated using the
molecular-dynamics algorithm of Rapaport.17 We pre-
pared well-equilibrated systems at packing fractions η =
0.01, 0.02, . . . , 0.49, 0.50 and several system sizes (cubic
simulation box volume V = L3 with L ≈ 17, 20, 25, 34,
and 42).
During the simulation of each system, a random uni-
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formly distributed location was generated at regular in-
tervals and the distance dmin from this location to the
nearest sphere was determined. If dmin > 1/2, then a
spherical particle with diameter σ ≤ 2dmin − 1 can be
successfully inserted at this location. To record this in-
sertion event, a σ-dependent histogram was used with
bins σk = 0.01k, k = 1, . . . , 400, and 1 was added to all
bins with σk ≤ σ. At the end of the simulation, the prob-
ability of successful insertion P (σk, η) is measured as the
ratio pk = nk/ntot of the value nk in bin k to the total
number of insertion attempts ntot.

Because counting insertions can be viewed as a
Bernoulli process, the 95% confidence interval in the
measurement of P (σk, η) can be estimated as sk =

2
√

pk(1−pk)
ntot

. The estimated excess chemical potential is

then calculated as

µex
L (σk, η) = − ln pk ± sk

pk
, (11)

where the subscript L indicates the simulated system
size. When examining the results for different L at fixed
σ and η, we observed a linear dependence of µex

L on L−3

(i.e., the inverse volume or number of simulated spheres).
Therefore, to account for the system size effects, we cal-
culated the weighted least-squares approximation of µex

L
vs L−3 to a straight line and took the value of the straight
line approximant at L−3 = 0 as the measured value of the
excess chemical potential µex(σk, η) = µex

∞
(σk, η). The

95% confidence interval, S(σk, η), for this value was also
estimated using standard regression analysis.
The majority of the computational effort was focused

on systems with L ≈ 25 and 42, where ntot ≈ 1014 for
each simulated system. For η ≤ 0.14 we obtained the re-
sults for σ values up to 4.0, while for larger η the results
were limited to the range of σk where nk ≥ 5. The results
for µex(σk, η), together with the relative size of the esti-
mated confidence interval, S(σk, η)/µ

ex(σk, η), are shown
in Figure 2.
During the simulations, we have also measured the

compressibility factor, z = p/ρ, from the collisional virial.
The size effect was taken into account in the same way
as for the excess chemical potential. As shown in the
top panel of Figure 3, the obtained results are consistent
with and more precise than those of Kolafa, Lab́ık, and
Malijevský,18 as well as more recent results of Pieprzyk
et al.19.
Fitting the simulation data to a polynomial in terms

of x = η/(1 − η), we obtained the following empirical
expression

zfit(x) = 1 + 4x+ 6x2 + z3x
3 − 0.867384x4

+ 1.0598991x5 − 0.8542136x6 + 0.9972434x8

− 0.8407042x9 + 0.1507499x12 + 0.0532314x20

− 0.0469318x21 . (12)

where

z3 =
3

70π

[

529π − 1377 arccos(1/3) + 146
√
2
]

= 2.36476838...
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this work
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FIG. 3. Top: Simulation data (presented relative to the em-
pirical expression (12) and scaled by η−1 for greater clarity)
for the compressibility factor of the HS fluid at different pack-
ing fractions from Refs. 18, 19, and this work. Error bars
represent estimated 95% confidence intervals (i.e., twice the
estimated standard deviations) of the data values.
Bottom: Same data as in the top panel together with different
empirical expressions.

The coefficients up to the cubic term were fixed at their
exact values known from the virial expansion,20 while
others were obtained by the weighted least-squares fit
to the combined simulation data from Refs. 18, 19, and
this work. The powers of x were chosen to minimize
the number of terms necessary to obtain the expression
that agrees with the simulation data within the statistical
error at all the densities up to ρ = 1.03 (η = 0.5393), as
can be seen in the bottom panel of Figure 3.

In Figure 4, we compare the current results for
µex(σ, η) with σ = 1, 2, 3 and 4 to those obtained from
the results for γ(σ, η) using the Gibbs-Cahn integration10

and (5), with the pressure p(η) given by (12). Based on
this comparison we conclude that i) the results obtained
by the two methods agree within the error bar for major-
ity of the data; ii) the two methods are complementary in
that Widom’s particle insertion method has higher preci-
sion at smaller σ and η, while the Gibbs-Cahn integration
is more precise at larger σ and η; iii) The BCSK expres-
sion is quite accurate at σ = 1 for both low and high η,
but becomes less accurate with increasing η for σ > 1.
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FIG. 4. Difference (scaled by η−2) between the excess chem-
ical potential µex(σ, η) measured in simulations (black circles
for Gibbs-Cahn integration10 and red triangles for Widom’s
method used in this work) and the BCSK expression.
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10-3

FIG. 5. Deviation (scaled by η−2) of γfit
0 (η) in (13) from

the MD simulation data16 γMD
0 (η). Error bars show the 95%

confidence intervals of the simulation data and filled circles
show the deviations.

III. ANALYSIS OF RESULTS

In this Section we analyse the deviation of the ex-
cess chemical potential obtained in molecular simula-
tions from the reference expression (10), where p(η) is
given by (12) and γ0(η) obtained from the precise Gibbs-
Cahn measurements presented in Ref. 16. To facilitate

0 1 2 3 4 10 20

0

0.5

1

1.5

2

2.5

3

10-3

Widom

Gibbs-Cahn

BCSK

large-  correction

FIG. 6. Deviations (scaled by σ−2) of the excess chemi-
cal potential simulation results from the expression (10) for
η = 0.12. The results from the Widom’s particle insertion
simulations are shown in red. The results from the Gibbs-
Cahn integration are shown with black open circles. The
dotted green line represents the BCSK expression and the
solid blue line and dots represent large-σ correction (17) with
a0 = 2.2776× 10−3 and b1 = 1.5087.

the analysis, we use the weighted least-squares approxi-
mation to the simulation data16 to obtain the following
polynomial expression for γ0(x), x(η) = η/(1− η),

πγfit
0 (x) = 3x+

9

2
x2 − 81

70
x3 − 0.87992x4 +

3.58153x5 − 4.06093x6 + 5.68225x8 −
6.48896x9 + 2.32409x10 − 0.02681x33, (13)

where the first three coefficients were fixed at their exact
values known from the virial expansion. As in the case of
(12), the powers of x were chosen to minimize the num-
ber of terms. Figure 5 shows the deviation of the above
expression from the simulation data. The above expres-
sion is used in the reference expression (10) to which we
compare the excess chemical potential simulation results
presented in this work.
As an example, the difference (scaled by σ−2) between

the measured excess chemical potential and that obtained
from the reference expression (10) is shown for η = 0.12
in Figure 6. Similar behaviour is observed at other val-
ues of η, except the very high values as discussed later.
We see a statistically significant deviation from the ref-
erence expression for all finite values of σ. The deviation
is largest at small σ (due to the scaling), but appears
to converge to a finite value as σ tends to zero, which
indicates consistency of the simulation results with the
values of c0(η) and c1(η) given by (3).
We also plot the scaled difference between the BCSK

and reference expressions, which looks like a straight line
with respect to σ because c0(η) and c1(η) are the same
in both expressions, so

µex
BCSK − µex

ref

σ2
= c2(η)−πγ0(η)+[c3(η)− 1

6πp(η)]σ . (14)
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FIG. 7. Coefficients of the large-σ correction (17) obtained
from the nonlinear weighted least-squares approximation to
the Widom results for σ ≥ 0.6 and Gibbs-Cahn results. The
errorbars denote estimated confidence intervals. The fitted
curves are polynomials in x = η/(1− η) given by (19).

Note that, as observed earlier, the BCSK expression ap-
pears to be tuned to be the most accurate around σ = 1.
Next, we will discuss possible empirical functional

forms for [µex(σ, η)− µex
ref(σ, η)]/σ

2. Just like the BCSK
expression, a cubic polynomial in the form (2) with c0
and c1 given by (3) will be a straight line in Figure 6
and thus cannot be used to fit the observed deviations
at all σ. One of the possible forms that can be used is a
rational function (Padé approximant) in the form

µex(σ, η)− µex
ref(σ, η)

σ2
=

∑m
j=0 aj(η)σ

j

1 +
∑n

k=1 bk(η)σ
k
. (15)

In order for this expression to converge to 0 as σ → ∞,
m and n must satisfy the condition m < n.

When we tried to determine coefficients aj and bk by
weighted least-squares approximation for the whole range
of σ values, we found that the small-σ behaviour is diffi-
cult to approximate using small m and n. On the other
hand, the deviations from the reference expression at σ
larger than about 0.6 can be well approximated by the
simple Padé approximant with m = 0 and n = 1. (This
can be seen in Figure 6 for η = 0.12, where we used the
Widom results for σ ≥ 0.6 and Gibbs-Cahn results in the
non-linear weighted least-squares approximation to de-
termine a0 and b1.) Therefore, we model the deviations
of the simulation results from the MT expression as the
sum of the large-σ and small-σ corrections

µex(σ, η)− µex
ref(σ, η)

σ2
= Cl(σ, η) + Cs(σ, η) , (16)

where

Cl(σ, η) =
a0(η)

1 + b1(η)σ
. (17)
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FIG. 8. Coefficients of the small-σ correction (18) obtained
from the nonlinear weighted least-squares approximation to
the Widom results for σ ≤ 1.0. The errorbars denote esti-
mated confidence intervals. The fitted curves are polynomials
in x = η/(1− η) given by (26).

The small-σ correction is fast decaying with increasing
σ, as can be seen in Figure 6, so we model it with an
exponential function

Cs(σ, η) = d(η)e−σ/δ(η). (18)

To obtain the coefficients a0(η) and b1(η) in (17), we
used the Widom results for σ ≥ 0.6 and Gibbs-Cahn
results10 in the nonlinear weighted least-squares approx-
imation of the expression [µex(σ, η) − µex

ref(σ, η)]σ
−2 at

each η. Thus obtained values of a0(η) (scaled by η−3)
and b1(η) for all η are shown in Figure 7 together with the
following expressions obtained via weighted least-squares
approximation to polynomials in x = η/(1− η)

afit0 (x)η−3 = 0.9292 + 2.4542x+ 3.6897x2 −
5.5175x3 + 3.3412x4 ,

bfit1 (x) = 1.7694− 2.5851x+ 5.437x2 −
2.2655x3 − 1.5928x4 . (19)

It is interesting to consider how the large-σ correc-
tion is reflected in the Taylor series (7) of γ(σ, η) by
comparing the terms γn(η) to their exactly known virial
expansions21,22

πγ1(η) = 3η + 3η2 +

(

81
√
3

16π
+

24

35

)

η3 +O(η4) , (20)

πγ2(η) = η +
1

2
η2 +

(

81
√
3

16π
− 289

105

)

η3 +O(η4) ,(21)

πγ3(η) =
9
√
3

20π
η3 +O(η4) . (22)

From the expression µex
ref(σ, η) + Cl(σ, η)σ

2 we have

πγ1(η) = c1(η) +
a0(η)

b1(η)
, (23)
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FIG. 9. Deviation of the measured excess chemical potential, µex(σ, η), from different empirical expressions, µex
emp(σ, η), relative

to the estimated standard deviation of the simulation results, S(σ, η): a) µex
emp(σ, η) = µex

BCSK(σ, η); b) µex
emp(σ, η) = µex

ref(σ, η);
c) µex

emp(σ, η) = µex
ref(σ, η) + Cl(σ, η)σ

2; d) µex
emp(σ, η) = µex

ref(σ, η) + Cl(σ, η)σ
2 + Cs(σ, η)σ

2.

πγ2(η) = c0(η)−
a0(η)

b21(η)
, (24)

πγ3(η) =
a0(η)

b31(η)
. (25)

Given the Taylor series for c1(η) = 3η/(1 − η) =
3η + 3η2 + 3η3 + O(η4) and c0(η) = − ln(1 − η) =
η + 1

2η
2 + 1

3η
3 + O(η4), we see that the virial and the

reference expressions match for the η and η2 terms for all
γn(η), n = 1, 2, 3. The η3 coefficient in (20) is ≈ 3.4768
compared to 3 + 0.9292/1.7694 ≈ 3.5251 from (23) and
(19). For γ2(η) we get the η3 coefficient ≈ 0.03872 from
(21) compared to 1/3 − 0.9292/1.76942 ≈ 0.03658 from
(24) and (19). Finally, the η3 coefficient is ≈ 0.2481 from
(22) compared to 0.9292/1.76943 ≈ 0.1677 from (25).
This comparison demonstrates a fairly good agreement
between the empirical expressions obtained from fitting
the simulation data and the virial expressions for γn(η)
in (7).

Another approach could be to use the virial expressions
in order to fix the leading terms of polynomial approxi-
mations of a0(η) and b1(η). From the virial expressions

(20) and (21), the leading terms in (19) would be

a0(η)η
−3 = 0.7717 +O(η) ,

b1(η) = 1.6185 +O(η) .

The η3 coefficient in (25) would now become
0.7717/1.61853 ≈ 0.182, which is somewhat closer to the
value 0.2481 of the virial coefficient in (22), but doesn’t
match it exactly. In order to get the exact match for all
exactly known virial coefficients, we would have to retain
more terms in the Padé approximant (15), introducing
at least two more parameters a1(η) and b2(η). However,
using a more complicated expression for the large-σ cor-
rection makes the data fitting process less stable.
The coefficients of the small-σ correction (18) were

obtained from the nonlinear weighted least-squares ap-
proximation of the Widom results in the expression
[µex(σ, η)−µex

ref(σ, η)]σ
−2−Cl(σ, η) at each η and σ ≤ 1.0.

The results are shown in Figure 8 together with the
weighted least-square approximation to polynomials in
x = η/(1− η)

dfit(x)η−3 = 0.5105− 1.5467x+ 11.285x2 −
14.7402x3 + 5.9413x4 ,
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FIG. 10. Oscillatory behaviour of excess chemical potential
at large packing fractions. The reference expression and large-
σ correction are subtracted from the simulation results for
greater clarity.

δfit(x) = 0.1162 + 0.4183x− 2.6166x2 +

5.4973x3 − 5.281x4 + 1.9846x5 . (26)

The observed in Figure 8 scatter of the results for
d(η)η−3 at η > 0.4 is not due to statistical uncertainly of
our measurements, but is rather related to the oscillatory
behaviour of µex(σ, η) at large η, which we will discuss
later. So, the simple exponential form of the small-σ cor-
rection is well suited for η < 0.4, while for larger η a
more complicated form of this correction is necessary to
adequately fit the simulations.

The accuracy of different empirical expressions com-
pared to the simulation results is shown in Figure 9,
where the differences between the simulation results and
the empirical expressions are shown relative to the es-
timated standard deviation of the simulation results,
µex(σ,η)−µex

emp(σ,η)

S(σ,η) . We present the differences for four dif-

ferent empirical expressions: a) BCSK, given by (2) with
the coefficients from (3) and (4); b) reference expression
(10); c) reference expression with the large-σ correction
(17), where a0(η) and b1(η) are given by (19); d) refer-
ence expression with both large-σ and small-σ corrections
(18), where the coefficients in the small-σ correction are
given by (26).
We see that the BCSK expression is quite accurate for

σ = 1, but deviates from the simulation results for both
smaller and larger σ. The reference expression is not ac-
curate at larger η, but has correct asymptotic behaviour
at small η and in the limits σ → 0 and σ → ∞. The
large-σ correction to the reference expression gives accu-
rate result for σ larger than about 0.6, while addition of
the small-σ correction restores accuracy also at smaller
σ except at η larger than about 0.35, where we observe
the emergence of oscillations. These oscillations are seen
in more details in Figure 10 and are likely to be the pre-

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

FIG. 11. Consistency test (27) for the simulation data (de-
noted ’MD’ in the legend) and several empirical expressions
for the excess chemical potential: ’BCSK’ refers to the BCSK
expression (2-4), ’ref’ is the reference expression (10), and ’ref
+ Cl’ is the reference expression plus the large-σ correction
Cl(σ, η)σ

2 defined in (17), (19).

cursor of the emergent crystalline order in the HS fluid
at packing fractions near the freezing value of η = 0.492.
Considering HS binary mixtures, Smith and Lab́ık23

have derived the following consistency test for a HS fluid
of diameter 1 mixed with infinitely diluted spheres of
diameter σ:

∆test(η) ≡
1

3

∂µex(σ, η)

∂σ

∣

∣

∣

∣

σ=1

+ 1− z(η) = 0 . (27)

In Figure 11, we show the deviation of this expression
from zero for the simulation data, as well as several em-
pirical expressions. The partial derivative for the simula-
tion data is approximated by centered difference formula

∂µex(σ, η)

∂σ

∣

∣

∣

∣

σ=1

≈ µex(1.01, η)− µex(0.99, η)

0.02
,

while the empirical expressions are differentiated analyti-
cally. We use (12) for the compressibility factor z(η). We
see from the Figure that the simulation results are consis-
tent with the test at all values of η. Among the empirical
expressions, the reference expression (10) shows devia-
tion from the test with increasing η, while the BCSK
expression passes the test reasonably well, except at the
highest η. The reference expression with the large-σ cor-
rection, µex

ref(σ, η) + Cl(σ, η)σ
2, is better than the BCSK

at small and moderate η, but exhibits similar deviation
at large η. Adding the small-σ correction does not change
the behaviour, as its contribution is negligibly small at
σ = 1.
In the last part of our analysis of the simulation results,

we focus on µex(σ = 1, η), which is the excess chemical
potential of the HS fluid at packing fraction η. In Fig-
ure 12 we show the deviations (scaled by η−2 for greater
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FIG. 12. Differences (scaled by η−2) between the simulation
results and different empirical expressions, µex

emp at σ = 1. In
the legend, ’BCSK’ refers to the BCSK expression, ’ref + Cl’
refers to µex

ref(1, η) + Cl(1, η), and ’fit’ refers to µex
fit(x(η)) in

(28). The error bars denote estimated 95% confidence inter-
vals in the simulation results. A magnification of the middle
part of the plot is shown in the inset.

clarity) of various empirical expressions from the simu-
lations results. We see that µex

ref(1, η) + Cl(1, η) is more
accurate than the BCSK expression, although the devi-
ations exceed the statistical errors because of the use of
polynomial approximations (19) for the coefficients of Cl

in (17). The expression that is within the error bars of
the simulation data for all η can be expressed as a poly-
nomial with respect to x = η/(1− η)

µex
fit(x) = 8x+ 7x2 + 2.48813x3 − 1.20146x4 +

1.67614x5 − 1.84192x6 + 1.00149x7 +

0.99064x8 − 2.01853x9 + 0.93424x10, (28)

whose first two coefficients have been fixed at their
exactly known values, while others obtained via the
weighted least-square fit to the simulation results at
σ = 1.

IV. SUMMARY

We have performed a series of high-resolution
molecular-dynamics (MD) simulations to determine via
Widom’s particle insertion method the excess chemical
potential µex(σ, η) of a sphere of diameter σ immersed in
the HS fluid with sphere diameter 1 and packing fraction
η. From the considerations of Morphometric Thermody-
namics (MT), the dependence of µex on σ has to follow
a cubic polynomial with the η-dependent coefficients dic-
tated by the limiting behaviour at σ → ∞, which include
the HS fluid equation of state p(η) and the surface free
energy at a hard planar wall γ0(η). On the other, hand,
the exactly known coefficients of the polynomial expan-
sion in powers of σ near σ = 0 differ from those predicted

by the MT, so the cubic polynomial dependence of µex

on σ is not consistent in the limits σ → ∞ and σ → 0.

By combining the results of the Widom’s particle
insertion method with those from the Gibbs-Cahn
method for calculating the surface free energy of the HS
fluid at a spherical wall,10 we observe deviation of the
simulation results from the cubic polynomial dependence
and propose empirical correction expressions for large
and small σ which encode this deviation. Thus obtained
empirical expression µex

ref(σ, η) + Cl(σ, η)σ
2 + Cs(σ, η)σ

2

reproduces with high accuracy the simulation results,
except in the large η region where the simulation results
exhibit oscillations which could be a precursor of the
crystalline structure in the HS fluid near the freezing
transition.

DATA AVAILABILITY

The simulation results for the excess chemical poten-
tial µex(σ, η) of a sphere of diameter σ immersed in
the HS fluid with sphere diameter 1 and packing frac-
tion η obtained via Widom’s particle insertion method
and the compressibility factor of the HS fluid at dif-
ferent η obtained from the collisional virial calcula-
tions are openly available in the University of Leices-
ter Research Archive at https://doi.org/10.25392/
leicester.data.20278443.v1.
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