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Abstract—In industrial applications, mechanical and physiolog-
ical thresholds may limit the capability of human manipulating
machine via control devices, such as joysticks and steering
wheels. These thresholds can result in loss of information in the
control signals that are kept below the threshold of detection
of the device or the human operator. One approach to mitigate
these effects is stochastic resonance, by injecting additive noise
into a signal to raise its energy content over the threshold of
detection. Though this noise partially corrupts the signal, it can
increase the detectability of the signal by the control device.
This paper provides, for the first time, research towards using
stochastic resonance to improve human performance in control
tasks. In particular, it shows that using adaptive colored noise
can improve the detectability of the steering control signals
recorded from human participants. The approach converts a
signal processing task to an optimization problem, where particle
swarm optimization is employed to obtain the optimal color
(or spectral exponent) of the injected additive noise, generated
through an intelligent technique with fractional order filters.
The results have shown that the proposed method improves
the detectability of sub-threshold steering control signals. This
method can be widely applicable to other industrial domains,
such as energy harvesting and enhancing sensory perception.

Index Terms—Human-machine systems, Intelligent Signal Pro-
cessing, Stochastic Resonance, Fractional Calculus, Steering Con-
trol

I. INTRODUCTION

The subject of intelligent signal processing for industrial
applications consists in applying Artificial Intelligence (AI)
methods and information theory techniques to process acoustic,
image, and other sensor data, instead of using conventional
statistical approaches [1]. It have been found useful in a
variety of industrial case studies, e.g., system control, condition
monitoring and business analysis, etc. One important theme
within this research area is the use of additive noise to improve
system performance, producing noise benefit [2].

System noise is not always detrimental [2]. Under the
umbrella term of noise benefit, various mechanisms are
described where noise can enhance the system performance,
among which the phenomenon of Stochastic Resonance (SR)
is the most commonly used [3]. This technique operates by
injecting additive white noise to a sub-threshold signal – that is,
a weak signal with amplitudes below a threshold of detection
– so that the signal can be detected. Because theoretical white
noise covers all the spectrum range, in practice, white noise
resonates with all the frequencies in the sub-threshold signal.
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Examples of SR applications are: improving sensory percep-
tion [4], [5], prey localization of some organisms [6], energy
harvesting from vehicle tires [7], and weak signal acquisition
tasks on global navigation satellite system [8]. Besides signal
acquisition, SR has been applied extensively in industrial cases
for anomaly detection and fault diagnosis. For instance, Liu et
al. [9] have applied SR to detect magnetic anomalies as a useful
tool for hidden ferromagnetic target identification, while Wang
et al. [10] have used an adaptive SR with multi-scale noise
tuning for effective fault diagnosis of rolling element bearings.
Tang et al. [11] have also studied bearing fault diagnosis by
using SR-based non-linear filter to down-sample and enhance
the envelope signal. Then, Chen et al. [12] have studied
planetary gear fault diagnosis, where adaptive SR is applied
to extract weak fault feature information from reconstructed
signals.

For the study of SR, beyond white noise, the possibility of
using colored noise was theoretically analyzed in [13]. Colored
noise is correlated to time, and does not have a flat frequency
spectrum, which is instead proportional to 1/fν (ν 6= 0), where
ν is an arbitrary spectral exponent characterizing the color of
the noise.

This paper describes how to further enhance noise benefit
through adaptive colored noise with varying spectral exponent,
aimed at improving the detectability of weak signals. In
particular, this provides the first study in the prospect of colored
noise augmenting the capability of humans while controlling
machines (e.g., a vehicle). Because human control typically
occurs under the 1 Hz ceiling, it is reasonable to conjecture
that a specific degree of hysteresis in the additive noise is more
effective than the memoryless characteristics of white noise
when leveraging the noise for SR, and that the properties of the
noise need to be stationary so that it produces a homogeneous
effect during all the control task.

Thresholds in steering control signals may be caused by lash
(or free play) in the steering system, by limitations in human
perception (sensory thresholds), and by impedances associated
to motor response due to the viscoelasticity of the muscles
[14], [15]. These thresholds can be absolute (such as those
in visual perception [16]) or differential (Weber’s Law as an
example [17]).

To study the possibility of colored noise enhancing SR
effects, a colored noise generator for an arbitrary spectral
exponent ν is implemented with the help of fractional calculus
[18]. The output colored noise is then fed to an optimization
pipeline – a particle swarm optimization (PSO) method –
with an objective function specifically designed to increase
the detectability of the weak signal, which is referred to
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as the detection-to-noise ratio. This algorithm is then tested
over data collected from human participants while driving a
vehicle simulation, to find the optimal color and dispersion
of the added noise. Thus, the question of whether noise can
enhance the detectability of human control signals is addressed.
Steering signals are typically with low bandwidth and high
autocorrelation. Because the autocorrelation is highly related to
the power spectrum (via the Wiener-Khinchin theorem), here it
is investigated if the fractional color noise is less detrimental
or more beneficial than the white noise in weak signals.

In summary, the contributions of this paper include: (i) The
concept of SR for human control is studied for the first time,
with the development of an algorithmic method leveraging noise
generated from fractional calculus theory [18]; (ii) Simulations
are carried out to assess if SR through fractional color noise can
assist in controlling machines when meaningful sub-threshold
information is lost. These simulations employ real human-
control data (steering signals in a driving task); (iii) The
characteristics of the injected additive noise are selected through
advanced optimization with an ad hoc objective function, to
address the question whether colored noise can make SR more
effective; (iv) Comparison studies with a genetic algorithm
(GA) and a recurrent neural network (RNN) are conducted to
validate the proposed approach.

The remainder of the paper is organized as follows. Sec. II
introduces relevant background of SR (Sec. II-A) and fractional
calculus (Sec. II-B). Sec. III describes the research methods,
such as the used data (Sec. III-A) and the optimization
procedure (Sec. III-B). The results are explained in Sec. IV.
Finally, conclusions are drawn and potential limitations and
improvements are discussed in Sec. V.

II. BACKGROUND

A. Stochastic Resonance

There exist a number of situations in which, paradoxi-
cally, adding noise or stochasticity to a system enhances
its performance, some of which are reviewed in [2]. This
phenomenon is known as noise benefit. There are a number
of examples: adding noise to a chaotic system in order to
mitigate its sensitivity to initial conditions [19], [20], injecting
additive noise into artificial neural networks to improve their
generalization capacity [21], [22], reservoir computing [23]
and Monte Carlo methods.

One of the most typical settings of noise benefit are threshold
systems representing SR. SR occurs when sensory thresholds
in a receiver prevent a weak signal from being partially or
totally detected. In such circumstances, adding noise to the
signal increases its energy, which may assist to reveal part of
the signal to the receiver [3].

An elementary example of such strategy is shown in Fig. 1.
In the figure, Gaussian noise is added to a signal of varying
frequency, which originally was fully below a threshold of
detection T . By injecting additive noise, the original signal
becomes the trend of the noise, and the noise increases the
amount of energy in the signal, so that it can be detected
beyond the threshold T .
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Fig. 1: (a) Assuming a threshold of detection T = 1.1, the
signal f(t) = sin(2πt2) (black solid line) is undetectable.
Adding Gaussian noise (σ = 0.5) raises the energy content of
the signal partially over the threshold (gray line). Partial infor-
mation about the signal – such as its frequency content – can
be obtained from the additive resultant. (b) The same analysis
is performed on a noisy signal f(t) = sin

(
sin(2πt)t2

)
.

Some examples of SR related to this study include: manipu-
lation and control of nano-devices [24] and sensory perception
devices [4], [5].

B. Coloring White Noise

Colored noise represents noise with memory. Incorporating
color to white noise indicates adding correlation or time
dependence to a sequence of uncorrelated random numbers.
This is equivalent to changing the slope or spectral exponent
of its frequency response. Hence, colored noise is defined
by its power law characteristics in the frequency domain, as
compared to the flat frequency spectrum of white noise.

Herein, we employ a functional means to generate colored
noise by filtering white noise with a suitable transfer function
Hn(s) = sn with spectral exponent n. These filters are
achieved by integrating or differentiating the input signal. This
approach was first used in [18] to generate integral fractional
noise. With classical calculus, the filtering method is limited
to the use of integer spectral exponents n ∈ Z. For example,
filtering white noise with H−1(s) yields Brownian noise1.

Because H−1(s) corresponds to integration in the time
domain, Brownian noise is the result of integrating white noise.
Integration adds memory; Brownian noise describes a random
walk process where the previous state is remembered. But not

1With frequency response proportional to 1/s for complex frequency s =
σ + iω (and frequency ω). That is, a frequency response with a slope of
-20 dB per decade.
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only n = −1 adds memory. The theory of fractional calculus
shows that any n /∈ N ∪ {0} adds memory or fractionality
to a process [25], [26]. Increased system memory in a signal
signifies larger magnitude in the frequency spectrum for smaller
frequencies and smaller magnitude for larger frequencies,
thus controlling the importance of long term effects in the
system. Hence the slope of the frequency spectrum is an
indicator of whether a system presents hysteresis or is otherwise
memoryless.

With fractional calculus, Hn(s) with n ∈ Z can be extended
to a fractional order filter Hν(s), which allows for wider power
law behaviour, generating generic colored noise [14]:

Hν(s) = sν with ν ∈ R. (1)

In the time domain, filtering an arbitrary input signal u(t) with
Eq. 1 can be computed as [27]:

Hν(s) ∗ u(t) =


t−ν−1

Γ(−ν) ∗ u(t) ν < 0, ν /∈ Z−
dm

dtm

[
tm−ν−1

Γ(m−ν) ∗ u(t)
]

ν > 0, ν /∈ Z+
(2)

where m is the smallest integer greater than ν, ∗ is the linear
convolution operator2 and Γ(·) is the Gamma function3. A
stepwise mechanism to approximate Eq. 2 can be found in
[28]:

uν(t) =
1

hν

t/h∑
j=1

Γ (j − ν)

Γ (−ν) j!
u(t− jh) +O(h), (3)

where h is the discretization step, uν(t) the resulting colored
time series and O(h) an error term of order h. Higher order
methods can be found in [29], but Eq. 3 is sufficient when h is
small, as showcased in the corresponding slopes in the power
spectrum of Fig. 2a. For this study, h = 10−3 was utilized.

There is one shortcoming with this approach; the resulting
time series is not stationary in principle. For instance, if the
original time series u(t) is Gaussian white noise of zero mean
and standard deviation σ, u(t) = Wt ∼ N (0, σ2), we have

uν(t) ≈ 1

hν

t/h∑
j=1

Γ (j − ν)

Γ (−ν) j!
Wt, (4)

which has zero mean but with variance

σ2
ν = σ2 1

hν

t/h∑
j=1

Γ (j − ν)

Γ (−ν) j!
. (5)

It can be shown by induction that Eq. 5 is equivalent to

σ2
ν =

Γ(1− ν)N !− Γ(N + 1)Γ(N − ν + 1)

νΓ(−ν)hνN !
σ2, (6)

for ν 6= 0 and where N = t/h. Thus σ2
ν depends on t, and uν(t)

is in essence a random walk and not stationary. Nevertheless,
when computing through fractional operators, for real time
applications one can rely on the short-memory principle [30],
which puts a limit on the number of past observations employed
by the fractional filter. In that case, σ2

ν does not depend on

2(f ∗ g)(t) =
∫∞
−∞ f(τ)g(t− τ) dτ .

3Γ(z) =
∫∞
0 xz−1 exp(−x) dx.
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Fig. 2: (a) Frequency spectrum of white Gaussian noise (σ =
0.5) filtered with Eq. 2 for different values of ν and sampled
at 1000 Hz. The slope of the frequency spectrum approximates
the spectral exponent ν (indicated on the right side of the
figure) up to the Nyquist frequency (500 Hz in this case). (b)
Memory profile of the operator Hν(s) for different values of
ν < 0. t̂ indicates the number of delayed time units – e.g.,
t̂ = 0.5 indicates how an input occurring 0.5 time units ago is
weighted, with respect to new information.

t (or N ) and uv(t) can be considered stationary in the weak
sense. In this study N = 5000 was employed; Fig. 2a shows
that for the particular N the color of the noise is virtually
unaffected within a broad range of frequencies, beyond those
at which human control typically happens – while yielding
the advantages of working with a stationary time series and
controlling computational complexity. The noise can then be
rescaled to any desired standard deviation.

Essentially, Eq. 2 represents fractional order integration (ν <
0) and differentiation (ν > 0). That means integration and
differentiation in gradual non-integer increments. For ν ∈ Z,
classical (non-fractional) differential operators result from Eq. 2
(i.e,

∫ t
0

and d/dt applied sequentially). Hence conventional
operators can be used when ν ∈ Z+ ∪ 0, and the discontinuity
in Eqs. 3-6 is irrelevant.

Fig. 2a shows the result of applying Hν(s) to white
Gaussian noise for different values of the spectral exponent ν
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(Eq. 2), where the slope of the frequency response matches
approximately ν. Fig. 2b indicates how the filter in Eq. 2
weighs inputs occurring at different time, with a decaying
memory effect. In essence, inputs u(t) are filtered – convolved
– by Hν(s) as displayed in Fig. 2b. A concise introduction
to fractional calculus from a mathematical standpoint can be
found in [30], while in [14] the subject is introduced from
an engineering perspective. In [27] numerous examples of
fractional calculus applied to bioengineering are presented.

In a nutshell, the proposed method to generate colored noised
consists in first generating zero mean white noise, and then
filtering the white noise with the transfer function in Eq. 2, for
selecting standard deviation σ in the white noise and spectral
exponent (or color) ν of the resulted coloured time series.

III. METHODS

A. Driving Data

In this paper, it is tested whether colored noise increases
the benefit of SR, with the specific application of ground
vehicle driving in mind. For this, data recorded from human
participants in experiments, where they controlled a simulated
vehicle, are employed.

Ten participants of varying age (20-41 years), gender (7 male
and 3 female) and level of driving experience participated in
the experiments by using a force control steering wheel as
a control device, i.e., a steering wheel that does not rotate
but detects the applied torque by the driver. The presented
graphics in the simulation consisted of a forward road scene
(Fig. 3a), where the participants controlled the simulated vehicle
at 50 km/h by applying torque to the steering wheel (Fig. 3b).
Force control steering is a novel concept which detaches
control intent from hand displacement, yielding a cleaner
steering signal. It was first presented in [31], [32] as a control
and/or communication method with semi-autonomous vehicles.
Effective human-AI integration is a recognized milestone
towards higher transportation automation [33], [34]. One of
the advantages of using steering signals from a force control
devices is that these more closely reflect the intentionality
of the driver in real time, thus are less corrupted for further
analysis [14].

The simulation run in real time at 1000 Hz. At each time
step the vehicle states were updated through a Runge-Kutta
method of order O(h4) [35]. The vehicle states were computed
with the linear vehicle model in [36]. Additionally, a random
perturbation was added to the yaw rate of the vehicle, in order
to mimic the effect produced by road pavement irregularities
and wind gusts. The perturbation was composed by a sum of
sinusoids of different frequencies and was tuned empirically.
The recorded variables were the simulation time, vehicle
position, vehicle heading, yaw rate, lateral offset, body slip
angle and applied torque.

More specific details on the data collection protocol can be
retrieved from [31].

B. Adaptive Stochastic Resonance

To test the possibility of colored noise enhancing SR effects,
an optimization pipeline was set up. This included a colored

(a)

(b)

steering wheelframe

torque sensor

PC

micro-controller

Fig. 3: (a) Forward view of the road scene in the driving
simulation experiments, by which the analyzed data was
collected. (b) Schematic of the force control steering setup;
the steering wheel was locked and attached to a torque sensor
in a frame. A micro-controller transferred the sensor readings
to a desktop PC. Both control devices interact with the same
simulation software on a desktop PC.

noise generator based on the filter in Sec. II-B. The noise
coloring method (Algorithm 1), first generated white Gaussian
noise with standard deviation σ. The resulting noise was filtered
with Eq. 2, for a chosen spectral exponent ν. Then, the noise
was rescaled to its original magnitude content. The parameters
of the algorithm were the sampling frequency fs, the number of
samples N , a random seed rs to initialize the Gaussian noise
generator and ν. The algorithm is not limited to Gaussian
noise and can also be employed with more generic α-stable
symmetric noise [37].

Human steering responses occur in a restricted bandwidth
range [14]. Therefore, it is hypothesized that colored noise with
memory of a particular spectral exponent ν will resonate more
with the frequencies in the steering signal containing actual
steering information, instead of resonating with human-induced
noise.

The optimization process consisted of hybrid PSO with
local constrained Newton method. At each iteration of the
optimization process, a colored noise sequence n(t) was
generated through Algorithm 1, and was added to a sub-
threshold input signal s(t) – the normalized (from −1 to 1)
steering responses (Sec. III-A). A detection threshold T = 1.1
was considered. Hence without SR the signal was undetectable.
This process is summarized in (Eq. 7):
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sR(t) =

{
s(t) + n(t), if |s(t) + n(t)| > T

0, if s(t) + n(t) ∈ [−T, T ]
(7)

sR(t) is the original signal s(t) plus the added noise n(t) –
which may be optimal or not – and that has been weakened
by sensory or mechanical thresholds. The aim is to choose
the characteristics of n(t) that mitigate the threshold effects.
Human steering responses are non-linear, but even for linear
systems the threshold unit makes the whole system non-linear,
which is a requirement for SR [2].

The loss function (L) was based on the following variation
of the signal-to-noise ratio between sR(t) and n(t), which we
refer to as the detection-to-noise ratio (or rD/N):

rD/N =
1

N

N∑
k=1

{1|sR(tk)|>T − 1|n(tk)|>αT }, (8)

where 1 is the indicator function and α is a hyperparameter
which was set to 0.9. Essentially, rD/N is the proportion of
values of sR greater in magnitude than T – detectable values
after adding the noise – minus the percentage of values of
the noise greater than αT . Hence rD/N measures the degree
of detectability of the signal for a particular noise level. As
fractional integration (Sec. II-B) can make the input noisy
signal to drift, it is convenient to add a drift prevention term
to the cost function, acting as a regularization term:

L (sR, n) = −rD/N −
β

N
|
N∑
k=1

sign{n(t)}|, (9)

which relies on the sign function to quantify the deviation of
the filtered noise n(t) from the original symmetric noise uw.
The additional regularization hyperparameter β was set to 0.2.
Both hyperparameters, α and β, were tuned by an empirical
approach. These values will likely differ for other particular
applications.

The loss (Eq. 9), was minimized with the PSO [38] method
with a swarm composed by 30 particles. PSO is a non-
local approach that requires very little information about the
problem at hand; the studied problem yields a different loss
function for every driver and driving scenario. The constrained
Newton method refines the results upon near convergence.
The optimization process run until convergence, i.e., when the
relative change in L was smaller than 10−6. The optimized
variables were the spectral exponent ν and the standard
deviation σ of the added noise n(t). The same approach was
implemented with a GA [39] instead of PSO. Although GAs

Algorithm 1 White Noise Coloring Algorithm
Input: White Gaussian noise sequence
Parameters: fs, N , rs, σ, ν
Output: Colored noise sequence

1: White Gaussian noise generation (with σ): uw(t).
2: Filtering uw(t) with Eq. 2 resulting in uν(t).
3: Colored noise rescaling to the original magnitude content:

n(t) =
∑
t |uw(t)|∑
t |uν(t)| uν(t).

are also very generic, they are often considered slower. The
GA used a population size of 500 and 1500 generations, which
resulted in considerably longer execution times. To display
some of the results (Sec. IV-A), a grid search method was
also applied for the data of a single participant. This was done
to better display the results; in a real setting the grid search
method would be computationally unfeasible. Moreover, the
proposed algorithm was compared with a RNN [40] for signal
reconstruction4.

IV. RESULTS

A. Loss Landscape

Exploratory results for individual participants were first
analyzed, on the assumption that all participants presented
comparable results.

In Fig. 4a the loss landscape (Eq. 9) is shown. The figure was
obtained by averaging the results with colored noise generated
from 20 different random seeds rs (Algorithm 1), from data
belonging to participant 7 – a steering signal of 1 min duration.
For this participant, the loss function is minimized at σ ≈ 0.36,
and with the spectral exponent within the range ν ∈ (0, 1),
producing fractional differentiation (positive ν).

In Fig. 4b, multiple cross sections of the loss landscape
are displayed for different values of σ. It is seen that at non-
optimal values of σ, the loss may present a more distinguished
minimum with respect to ν. This is relevant because in some
settings it may be easier to control the frequency spectrum of
natural noise, through filtering, than its amplitude. For example,
it is easier to filter vehicle vibrations reaching to the steering
wheel – to conform the noise to a particular color – than to
suppress the vibrations. With a steer-by-wire system it is also
possible to inject additive noise into the steering command –
optimized to mitigate the effects of vehicle vibration.

Fig. 4c presents a sample of optimal colored noise, and
illustrative samples of the SR effect on the steering signals for
various participants are displayed in Fig. 5.

B. Optimization Results

The next investigation consisted in an optimization method
through particle swarm optimization. In this case, steering
signals comprising 10 min of driving per participant were
utilized. The resulting loss (Eq. 9), for the 50 different
random seeds rs tested, is averaged in Fig. 6a and 6b.
The results display that colored noise with positive spectral
exponent is beneficial for SR in all the participants – mostly
with ν ∈ (0.5, 1.0). The optimal σ is more variable across
participants as compared to ν. However, the variability is
higher in the results for ν than for σ within each participant
(Fig. 6a and 6b). Thus the optimal color is more dependent on
the initial random seed than the standard deviation. It suggests
that for real time applications a variable ν is more effective.

Further, the advantage of optimizing the color of the noise,
as opposed to optimizing its standard deviation only, is shown
in Fig. 6c. On average, SR reduces the loss (Eq. 9) by

4Architecture: 1 LSTM layer with 180 cells and additional dense output
layer; window length = 50.
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Fig. 4: (a) Loss landscape obtained through grid search (Eq. 9)
for participant 7 (with α = 0.9, β = 0.2). (b) Cross-sections of
the loss L for different values of the standard deviation σ. (c)
Sample of optimal color noise (with σ = 0.36 and ν = 0.5).

approximately 6.96% with PSO. The difference in performance
is noticeable for all the participants with the exception of
participant 6. For this participant the fitted standard deviation
σ is significantly lower than those for the other participants,
suggesting that noise of higher intensity – whether white
or colored – was detrimental in this case. This may be
caused by the particular characteristics of participant 6, who
displayed much lower than average steering performance during
the course of the experiments [31]. On the other hand, the
GA failed to converge in some cases, yielding relatively
worse performance than PSO. In addition, GA requires more
computational power than GA due to larger population size.

Signal reconstruction was also carried out with a RNN for
comparison purposes. The results are shown in Fig. 5. The RNN
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Fig. 5: Steering signals augmented through SR from participants
1,2 and 3 while driving in the same road segment. The thicker
black line is the normalized steering signal – undetectable
given the threshold T . In the thinner gray line, the optimal
colored noise has been added – obtained by minimizing Eq. 9
through PSO and in red via a RNN.

method performs quite poorly on average. The likely reason is
that the threshold is not differentiable, which results in very
slow learning in the backpropagation algorithm. Further, the
RNN needs to learn the useful noise from scratch and requires
massive data, while the loss function characteristics differ from
driver to driver. Another issue is that the loss function defined
in Eq. 9 cannot be effectively used with RNNs, as it is too not
differentiable. In addition, the RNN method is computationally
expensive and not suitable for real time applications.

C. Driving Manoeuvre Reconstruction

In a last experiment, it was tested if the steering signal
retrieved with SR would suffice to control the vehicle. For this,
an additional signal was obtained from sR(t) (Eq. 7), which
consisted in computing the moving average of the noisy signals
(Fig. 5), and rescaling back to its original amplitude content (as
in Algorithm 1). The results show that the conditioned signals
are able to maintain the vehicle within the lanes for confined
periods before drift occurs, albeit with a jerky manoeuvre. Fig. 7
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Fig. 6: Results from the optimization process described in
Sec. III-B and showcased in Sec. IV-B. The boxplots aggregate
the optimized spectral exponent ν (a) and standard deviation σ
(b) for the 50 different random seeds tested, and are tabulated
per participant. The whiskers extend to a maximum of 1.5 times
the interquartile difference, and values outside the whiskers
are regarded as outliers (denoted with ×). Figure (c) shows
the difference in the loss function between white noise and
colored noise obtained via PSO and GA respectively.

displays the range of the lateral offset while the vehicle was
controlled with the steering signals retrieved through SR. The
offset limits were computed from the data of all the participants
(Sec. III-A). As the threshold T is above the higher amplitude
of the steering signal (Sec. III-B), the vehicle trajectory without
added noise corresponds to a straight line.

According to the data collection experiments (Sec. III-A),
Fig. 7 shows that the reconstructed signal is able to maintain
the vehicle within the lane boundaries for approximately 10 s.

With respect to the closed loop stability of the proposed
system, it is impractical to determine it analytically. The
control loop includes a human, a diverse driving environment,
and added noise – which is generated through fractional
calculus and an involved optimization process. Nevertheless, in
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Fig. 7: Segment of simulated road with an overlay in gray color,
which represents the envelope of the maximum and minimum
lateral offset, produced from the steering signals retrieved from
SR – for all the participants data. The straight line (circle
markers) is the vehicle trajectory without SR; with a threshold
above the maximum amplitude of the steering signal.

simulation and with different initial random seeds (Sec. IV-B)
the system behaved in a stable manner. Hence, it is reasonable to
assume that as long as the amplitude of the noise is limited, the
human will be able to control the system effectively. Because
realistic mechanical or sensory threshold values are small, the
required noise amplitude will also be quite low.

V. CONCLUSION

In industrial applications, thresholds of various kinds may
result in loss of information in communication systems. A
possible method to address this degradation, found in actual
living organisms, is that of stochastic resonance, which makes
use of natural noise or injecting additive synthetic noise to
raise the energy content of a signal. In this paper, a machine
learning pipeline was implemented to test if adapting the
spectral exponent of the injected additive noise (i.e., its color),
helps in enhancing the stochastic resonance effect in a specific
application. For this, data collected from human participants
while controlling a simulated vehicle was used. The proposed
approach consists of a bespoke color noise generator based on
fractional calculus.

The results show that colored noise enhances SR in the
studied data; colored noise increases more the detectability
of sub-threshold signals as compared to white noise. In
addition, the optimal color of noise corresponds to fractional
differentiation – between half a derivative up to one derivative.
While all the results were produced in laboratory conditions,
they are suggestive of the possibility of using certain types of
noise to augment the capability of human (steering) control.

As for limitations, in order to ensure that the injected additive
noise signals are stationary, the short-memory principle was
applied. This implies that the injected additive noise is not
pure fractional colored noise. In any case Fig. 2a displays that
the spectral exponent of the noise closely matches the expected
response in a wide range of frequencies. Further, while the
examined results are positive, these are based on offline driving
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data. In order to study the causality effects in the control loop
and human adaptation to threshold effects and injected noise, it
would be beneficial to conduct an extended study in which the
results are validated in real time. With that scheme, varying
threshold can be examined. Also, the approach may benefit
from a scheme to adapt the spectral exponent ν in real time,
according to the instantaneous control characteristics of the
human operator.

Future investigations will be directed towards assessing if
noise can assist humans in the field while controlling machines
(not only vehicles) online, and with other control devices,
such as minimum displacement control sticks. To apply the
presented scheme in a real setting in the future, one imaginable
mechanism is the use of metamaterials [41]. Theoretically, the
bulk modulus of a metamaterial could be calibrated to filter
vehicle vibration, in such a way that only vibration with optimal
color reaches the steering wheel, potentially augmenting human
control performance – e.g., reducing the effects produced by
fatigue or higher workload [42]. Another possibility is the use
in vehicle control through teleoperation, as in this case the
human-operator actions are less affected by the resonant noise.
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