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Abstract
Background The joint contribution of genetic and environmental exposures to noncommunicable diseases is not well 
characterized.
Objectives We modeled the cumulative effects of common risk alleles and their prevalence variations with classical risk 
factors.
Methods We analyzed mathematically and statistically numbers and effect sizes of established risk alleles for coronary 
artery disease (CAD) and other conditions.
Results In UK Biobank, risk alleles counts in the lowest (175.4) and highest decile (205.7) of the distribution differed by 
only 16.9%, which nevertheless increased CAD prevalence 3.4-fold (p < 0.01). Irrespective of the affected gene, a single risk 
allele multiplied the effects of all others carried by a person, resulting in a 2.9-fold stronger effect size in the top versus the 
bottom decile (p < 0.01) and an exponential increase in risk (R > 0.94). Classical risk factors shifted effect sizes to the steep 
upslope of the logarithmic function linking risk allele numbers with CAD prevalence. Similar phenomena were observed in 
the Estonian Biobank and for risk alleles affecting diabetes mellitus, breast and prostate cancer.
Conclusions Alleles predisposing to common diseases can be carried safely in large numbers, but few additional ones lead 
to sharp risk increments. Here, we describe exponential functions by which risk alleles combine interchangeably but multi-
plicatively with each other and with modifiable risk factors to affect prevalence. Our data suggest that the biological systems 
underlying these diseases are modulated by hundreds of genes but become only fragile when a narrow window of total risk, 
irrespective of its genetic or environmental origins, has been passed.
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wGRS  Weighted genetic risk score

Introduction

Most common noncommunicable diseases share a multi-
factorial etiology, with both exogenous and inherited fac-
tors contributing to their manifestation. In recent years, 
genome-wide association studies (GWAS) have substantially 
increased our understanding of the genetic component of 
disease risk. Specifically, hundreds of loci have been identi-
fied that all modulate risk of diseases such as coronary artery 
disease (CAD), breast cancer, prostate cancer, and type 2 
diabetes mellitus (T2DM) as well as many other common 
diseases [1–4]. These findings have not only enriched the 
exploration of disease mechanisms but also raised the hope 
of improving risk prediction by assessment of the individual 
burden of risk alleles in form of genetic risk scores (GRS) 
[5–7]. However, from a clinical perspective, the conclusions 
from recent studies on this matter have appeared contra-
dictory. Some found only small incremental benefits using 
GRS for risk prediction in the overall population whereas 
others identified individuals in whom a high GRS mirrored 

the risk of damaging mutations found in monogenic condi-
tions [7–11].

Importantly, risk-conferring alleles are found with a high 
frequency in a given population. For example, three out of 
four Western-European ancestry individuals carry at least 
one risk allele at the 9p21 locus, which increases the odds of 
CAD by 1.23 [12]. Given the many genome-wide significant 
loci that have been identified in recent years [13], the total 
number of risk alleles carried by each person is likely to be 
very high. It is thus of critical importance to understand how 
these risk alleles interact. In the absence of empirical data, 
this interaction has been predicted by mathematical mod-
els, in which risk allele counts weighted by their estimated 
effect size from a GWAS are being combined. Examples are 
the logarithm of odds (Log) model or the Probit link func-
tion. Such widely used models predict the cumulative effects 
of risk alleles in a logistic function suggesting a sigmoidal 
relationship between GRS and probability of disease. Here, 
we conduct a systematic empirical evaluation of linear and 
multiplicative models to more precisely define risk conferred 
by common risk alleles [14–17].

From a clinical point of view, it is even more important—
and not well defined yet—In other words, is the cumulative 
burden of common risk alleles tolerably low putting the 
population at the flat part of the curve—or beyond a turn-
ing point, where a few further multipliers (risk alleles) may 
cause a steep increase in disease prevalence?

Finally, factors such as smoking, T2DM, or obesity all 
increase prevalence of CAD and other common diseases. To 
better understand the principle mechanisms underlying the 
combinatorial effects of these and other risk factors with the 
genetic components, we simplified our analysis in that we 
focused on the bare number of highly significant risk alleles, 
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albeit a genetic score built on millions of variants might be 
more precise in giving weight to the genetic risk conferred 
by each percentile of a GRS [7, 18].

Methods

Study participants

The UK Biobank project (UKB; http:// www. ukbio bank. ac. 
uk) is a large prospective cohort study of ~ 500,000 indi-
viduals from across the United Kingdom, aged 40–69 years 
(56.4 ± 8.0) at the recruitment visit between 2006 and 2010 
[19]. The flowchart of our analysis is shown in Supplemen-
tary Figure S1A. Following informed consent, health-related 
information was collected for each participant. In addition 
to self-reported information, dietary and exercise habits, 
multiple physical, cognitive and biochemical measurements 
were obtained. After quality control, we included 465,910 
European individuals (Supplementary Figure S1B). CAD 
was defined as fatal or non-fatal myocardial infarction, per-
cutaneous coronary intervention or coronary artery bypass 
grafting. ICD codes used for definition are listed in Supple-
mentary Table S1. Breast cancer was defined by the primary 
and secondary ICD-10 diagnosis codes of “C50 Malignant 
neoplasm of the mammary gland”. Prostate cancer was 
defined by the primary and secondary ICD-10 diagnosis 
codes of “C61 Malignant neoplasm of the prostate”.

Since the diabetes GWAS, which led to identification of 
most of the genome-wide significant SNPs, included the 
summary statistics of UK biobank data, we used an inde-
pendent source—Estonian biobank—for analysis of diabe-
tes. The Estonian Biobank is a population-based cohort of 
the Estonian Genome Center at the Institute of Genomics 
of the University of Tartu [20]. Quality control details are 
found in the Supplementary Methods. We used 90,976 indi-
viduals for studying CAD and 91,195 individuals for study-
ing T2DM. T2DM was defined by respective ICD-10 codes 
“E11 Type 2 Diabetes mellitus”.

None of the study participants was included in the GWAS 
that led to the identification of the risk alleles. All disease 
cases were considered for this study either being prevalent 
at recruitment in UKB or in the Estonian Biobank (fatal 
and non-fatal) or being registered during follow-up of the 
cohorts.

Selection of risk variants

CAD, breast cancer, prostate cancer and T2DM were 
selected to represent common diseases each being affected 
by risk alleles at more than 100 autosomal loci discovered 
by GWAS meta-analyses [2, 3, 21]. GWAS summary sta-
tistics used for calculation are listed in Supplementary 

Tables S2–S5 and Figure S1C. Moreover, we calculated the 
genome-wide polygenic risk score using 6.6 million CAD 
SNPs [7].

Genetic risk score and subgroups risk calculation

Individuals were grouped simply by the number of risk 
alleles to obtain their frequency distribution in the popula-
tion in form of deciles, without giving weight to their respec-
tive effect sizes. The lowest decile was used as a reference. 
Missing genotypes were replaced by the expected value, 
which is twice the risk allele frequency. As a sensitivity 
analysis, we also constituted deciles of a weighted genetic 
risk score (wGRS), which was calculated based on risk vari-
ants by summing up the number of risk alleles weighted by 
the corresponding log odds ratio for the risk allele. All data 
on the wGRS are shown in the supplement. The analyses 
investigating the exchangeability of risk allele profiles are 
described in detail in the Supplementary Methods and Fig-
ure S2. The non-lipid CAD SNPs and lipid CAD SNPs were 
listed in Supplementary Table S6 [1].

Stratification by modifiable risk factors

CAD prevalence was determined in each decile separated 
for exposure to smoking (ever versus never smokers), obe-
sity (BMI ≥ 30 kg/m2), T2DM, or sedentary lifestyle (< 7.5 
MET-h), detailed in the Supplementary Methods. Predia-
betes was also classified as diabetes mellitus in this study, 
if participants indicated by questionnaire to have diabetes. 
Breast cancer prevalence was determined in each decile 
separated by obesity and alcohol intake for postmenopausal 
women. Finally, prostate cancer prevalence was quantified 
for men with and without a positive family history for pros-
tate cancer and T2DM prevalence was quantified for people 
with and without obesity.

Analysis of data and statistical methods

We assessed the goodness-of-fit of different statistical mod-
els of the relationships between risk allele frequency (x-axis) 
and prevalence/prevalence per allele (y-axis). We tested the 
prevalence contribution of risk alleles in extreme groups by 
estimating the correlation (R) of four competing models: 
Linear, Log, Probit, and Logistic. Respective plots display 
prevalence (on the left) and prevalence mediated per single 
risk allele (on the right) in groups with sample sizes larger 
than 200 subjects (e.g., Figure 2A, B). Scripts are found in 
the Supplementary Methods.

Mean values were calculated as arithmetic averages and 
represented as mean ± standard error. A p value of < 0.05 

http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk
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was considered statistically significant. Trends across deciles 
were tested by linear regression.

We used R [22] (version 4.0.3) and statistic packages of 
tidyverse, data.table, varhandle and ggplot2 for statistical 
calculations. All further details for the methods part could 
be found in Supplementary Methods.

Results

Risk of CAD in relation to risk allele distribution 
in UKB

In UKB, 427,360 subjects had phenotypic data regarding 
CAD, among whom we identified 20,310 cases. All risk 
alleles studied here were located on the diploid set of auto-
somal chromosomes such that the theoretical number of risk 
alleles at the 198 CAD risk loci we studied is between 0 and 
396. Given the high frequency of the common risk alleles in 
the Western population we observed that a person carried an 
average of 190 CAD risk alleles. The mean number of CAD 
risk alleles per person was normally distributed (Fig. 1A) 
and varied between 175.4 and 205.2 in the bottom and top 
decile of the distribution, corresponding to a CAD preva-
lence of 2.4 and 8.2 percent, respectively (Table 1). When 
compared to the first decile, individuals in the tenth decile 
thus carried on average 29.8 or 16.9 percent more risk alleles 
whereas disease was 3.4-fold more prevalent (Table 1). An 

even wider spread in CAD prevalence was observed between 
the 1st (2.0 percent) and 99th (11.2 percent) percentile of 
the risk allele frequency distribution, which differed by 39.7 
risk alleles (Supplementary Table S7). We used EstBB as an 
independent validation dataset and the results for CAD were 
similar to that in UKB (Supplementary Table S7, Table S8).

Generalizability to other common diseases

Studying 218,781 women and 205,624 men in UKB, we 
next determined all cases of validated breast (n = 13,221) 
and prostate cancer (n = 7832). For both diseases, the 134 
published [2, 3] genome-wide significant risk variants were 
normally distributed (Fig. 1B, C). In the lowest decile of the 
frequency distribution, the prevalence of breast cancer and 
prostate cancer were 3.3 percent and 1.6 percent, respec-
tively, with average numbers of risk alleles in these groups 
being 121.6 (breast cancer) and 110.4 (prostate cancer) 
(Table 1). Individuals in the top decile carried on average 
between 20.2 (breast cancer) and 22.4 percent (prostate can-
cer) more risk alleles whereas the disease prevalence went 
up by 3.1- and 5.1-fold, respectively (Table 1). In the lowest 
percentile of the risk allele frequency distribution, a low 
prevalence of breast cancer (2.3 percent) and prostate cancer 
(1.0 percent) contrasted with 14.0 and 11.2 percent in the 
 99th top percentile (Supplementary Table S7).

We carried out the same analyses for T2DM in the Esto-
nian Biobank (301 genome-wide significant risk variants, 

Fig. 1  Histograms showing the distribution of risk alleles counts, 
which were normally distributed by Kolmogorov–Smirnov test (p 
values < 0.05), for coronary artery disease (CAD), breast cancer, 
prostate cancer, and type 2 diabetes mellitus (T2DM) in cases and 
controls separately. The number of common risk alleles per person 

were grouped in bins width of 2 risk alleles per person for respective 
diseases. Each person carried more than one hundred respective risk 
alleles with, on average, cases carrying 3–4 more than controls. Aver-
age numbers are shown for controls in green and for cases in blue 
boxes
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91,195 individuals, Fig. 1D). In the lowest decile of the 
frequency distribution, the prevalence of T2DM was 3.2 
percent with the average number of risk alleles per person 
being 250.9 (Table 1). Individuals in the top decile carried 
on average 34.2 more risk alleles whereas the disease preva-
lence went up to 9.3 percent (Table 1). In the 1st percentile 
of the risk allele frequency distribution, the prevalence of 
T2DM at 2.1 percent contrasted with 10.4 percent in the 
 99th percentile (Supplementary Table S7). Respective data 
for the wGRS are shown in Supplementary Table S8 and 
Supplementary Figure S3.

Per risk allele prevalence

We next grouped subjects carrying the same number of risk 
alleles for a disease and determined the respective disease 
prevalence in these groups. Consistently across all diseases 
tested, we observed a sharp increase in prevalence with a rel-
atively small increase in the number of risk alleles (Fig. 2A, 
Supplementary Figure S4). To investigate prevalence 
instigated per single risk allele we also display prevalence 
divided by the number of respective risk alleles carried in 
a person (Fig. 2B, Supplementary Figure S4). Remarkably, 
any given risk allele in the tenth decile of the risk allele 
distribution conveyed 2.9-, 2.6-, 4.2-, and 2.5-fold stronger 
effects on CAD, breast cancer, prostate cancer, and T2DM 
manifestation, respectively, than the same allele in the first 
decile (all p ≤ 0.01). since these were similar across deciles 
(Supplementary Table S8). In Fig. 2, the area shaded in grey 
represents the majority of subjects in the population, i.e., the 
second to ninth decile. Respective figures for breast cancer, 
prostate cancer, T2DM and the respective data on wGRS are 
shown in Supplementary Figures S5. Figures for independ-
ent validation on EstBB for CAD using both numbers of 
risk alleles and wGRS are shown in Supplementary Figure 
S4 and S5.

Empirical evaluation of regression models

To better understand how risk alleles interact in mathemati-
cal terms, we modeled the relationship between disease 
prevalence and risk allele counts. Using generalized linear 
(GLM) regression models, which require specifying a link 
function, we compared the goodness-of-fit of using a Linear, 
Logistic (Logit), Probit, and Log link function. The good-
ness-of-fit of each of these four models was assessed using 
the correlation between the observed prevalence and the pre-
dicted prevalence from the corresponding model (Fig. 2 and 
Supplementary Figures S4). Consistently, we found that our 
data best fit non-linear link functions (i.e., Logit, Probit or 
Log), of which none consistently outperformed the others 
across different diseases. This finding, likewise, was repli-
cated when we used 6.6 million SNPs [7] to calculate the Ta
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CAD wGRS in UKB. Expectedly, the discrimination of risk 
is slightly better, but the principle functions remained to be 
highly similar to those seen with the 198 top-ranked SNPs. 
(Supplementary Figure S5K, Supplementary Table S8).

Relevance of risk allele function

The prevalence of traditional risk factors and use of lipid-
lowering medication was only marginally different across the 
deciles of the GRS (Supplementary Table S9a). Exclusion 
of variants previously shown to affect lipid levels (n = 28) or 
blood pressure (n = 14) had no influence on the exponential 
appearance of the regression curves for increasing numbers 
of risk allele and CAD prevalence (Supplementary Figure 
S6, A, B, E, F and Supplementary Table S9, Supplemen-
tary Figure S6, C, D, G, H). Likewise, in 10,000 random 
sets of 99 CAD-associated SNPs (out of the 198 CAD risk 
variants), we observed highly similar regression curves 
for CAD prevalence (Supplementary Figure S6, A, B, C, 
D) with Logit- and Log-based models showing regression 
coefficients (R) of 0.96 on average, with little variability 
(Supplementary Figure S6 E, F). These data suggest that 
the cumulative number of risk alleles rather than specific 

combinations of risk alleles is the major determinant of 
genetic risk.

We next restricted the regression analysis to the 28 risk 
alleles known to affect lipid levels and compared their effects 
with 28 SNPs, which have similar published odds ratios for 
CAD but no effects on lipids (Supplementary Table S6). As 
shown in Fig. 3, the increase in CAD prevalence was similar 
across the ten deciles of the two groups of risk alleles. When 
we subdivided individuals within the tenth deciles of the two 
groups of risk alleles in those who carry low (first decile), 
medium (second to ninth deciles), or high (tenth decile) 
numbers of the risk alleles from the other respective group, 
the effects on disease prevalence remained comparable.

Environmental risk factors and disease prevalence

We next studied the impact of established risk factors for 
CAD in UKB; Fig. 4A–D shows data on diabetes as an 
example. As compared to the first decile of the risk allele 
distribution, in the tenth decile, we observed that the abso-
lute increases in prevalence related to diabetes, smoking, 
obesity, sedentary lifestyle, male sex, age ≥ 55 years, average 
total household income before tax below 18,000, being with-
out cholesterol medication, being without blood pressure 

Fig. 2  A Disease prevalence in relation to the number of risk alleles. 
The Y-axis displays the prevalence of coronary artery disease (CAD) 
in the UKB population. The X-axis displays the cumulative number 
of risk alleles per person. The correlation (R) between observed and 
predicted prevalence is given for each of four fitted functions, with 
its 95% confidence interval. B We divided the prevalence of each 

disease by the number of risk alleles per person, showing the effect 
of a single risk allele depending on a person’s overall burden of risk 
variants. The parts of the population residing between the 2nd and 9th 
decile of allele count distribution are highlighted in grey. The green 
and red lines show the fit from the logit and logarithmic functions, 
respectively
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medication, and high cholesterol level (> 6.18 mmol/L) 
were 2.7, 3.0, 3.0, 3.8, 3.4, 2.9, 1.0, 5.4, 2.8, and 1.4-fold 
higher, respectively (all p < 0.01 for first vs the tenth decile; 
Fig. 4B and Supplementary Figure S7). In other words, a 
high genetic risk amplified the absolute prevalence conveyed 
by the respective risk factor.

Figure 4C shows a much more pronounced change in 
CAD risk for diabetes as compared to non-diabetic indi-
viduals across the deciles of the risk allele distribution, in 
relation to the average risk in the respective group. Impor-
tantly, in subjects exposed to a risk factor, we observed a by 
far steeper increase in absolute disease risk with increasing 
numbers of risk alleles than individuals without the respec-
tive risk factor (panel D and E in Fig. 4 and Supplementary 
Figure S7). Respective data for the wGRS—either with 198 
significant SNPs or 6.6 million SNPs—are consistent and 
also shown in the supplement (Supplementary Figure S8 
and Supplementary Table S10).

Similar data were observed for established risk factors 
for breast cancer (obesity, alcohol consumption), prostate 

cancer (positive family history), and T2DM (obesity). The 
absolute increases in prevalence were 7.6- (obesity-breast 
cancer), 8.1- (positive family history-prostate cancer) and 
1.8-fold higher (obesity-T2DM) in the tenth as compared to 
the first decile of respective risk allele distribution and the 
effect of alcohol intake on breast cancer risk was only appar-
ent in women with at least moderate genetic susceptibility 
(all p < 0.01).

Discussion

By studying how established risk alleles affect the preva-
lence of common diseases, we report two important findings. 
First, we observed that respective risk alleles lead to a steep 
increase in risk for CAD, breast cancer, prostate cancer, 
or type 2 diabetes mellitus despite only small changes in 
their overall numbers. Second, all individual risk factors—
genetic and environmental—act multiplicatively and inter-
changeably, and cause disease once a crucial turning point 

Fig. 3  A Prevalence of coronary artery disease in relation to 28 risk 
alleles affecting lipid levels (red dots) and 28 risk alleles with equal 
odds ratios but no effects on lipids (blue dots).  In the first decile 
individuals carried on average  18.9 ± 1.3  lipid-related risk alleles 
and 17.8 ± 1.3 non-lipid-related risk alleles. The respective numbers 
for the tenth decile  were  30.9 ± 1.3  and  28.9 ± 1.3. B CAD preva-
lence is shown in subgroups of the tenth deciles of lipid and non-
lipid SNPs. We subdivided subjects in the tenth decile of lipid-related 

SNPs in a high, medium, and low number non-lipid-related SNP sub-
group. Vice versa, we subdivided the tenth decile of non-lipid-related 
SNPs according to high, medium and low numbers of lipid-associ-
ated variants. Top*, middle*, low* refers to the 10th  decile, 2nd  to 
9th deciles and 1st decile. The effects of  lipid-related and non-lipid-
related risk alleles are interchangeable with respect to the prevalence 
of CAD
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of cumulative risk is being passed. Essentially, irrespective 
of which biological pathways are being affected by disease 
loci or the combination of risk alleles with environmental 
exposures, the only quantity that matters is the total burden 
of these factors which put a person on a logarithmic curve 
of increasing risk.

Our findings have implications for the application of 
polygenic risk scores in predicting risk as well as for the 

understanding of biological mechanisms leading to the 
manifestation of the respective diseases. Regarding the first 
and clinically relevant topic: consistent with the genetic sam-
pling theory, the largely random allocation of chromosomal 
segments during meiosis results in a normal distribution of 
common risk alleles. While the range of this distribution 
increases when more loci are detected to be associated with 
a trait, it is remarkable to observe overall relatively little 

Fig. 4  Prevalence of CAD in risk allele deciles with and without dia-
betes (other risk factors are shown in Supplementary Figure S7). A 
shows the prevalence for CAD in individuals with and without dia-
betes in UKB. B shows CAD prevalence in low (1st), medium (2nd–
9th) and high (10th) deciles of risk allele distribution in the UKB 
without and with diabetes. The grey bars represent the difference in 
prevalence related to diabetes in the three genetic subgroups. As can 
be seen, the effect of diabetes is much larger in subjects with a high 
burden of risk alleles. C shows disease prevalence across the deciles 
of risk alleles in subjects with (red line) and without diabetes (blue 
line). The correlation (R) between observed and predicted prevalence 
is given for fitted logit functions with their 95% confidence inter-

val. D shows disease prevalence across the deciles of risk alleles in 
subjects with (red line) and without diabetes (blue line) as a devia-
tion from the average in the respective group. In the diabetes group 
the increase in risk with increasing numbers of risk alleles is by far 
steeper (linear regression coefficient: diabetes 0.0058, no diabetes 
0.0019). E displays the difference in prevalence between subjects 
with diabetes and without diabetes across increasing deciles of risk 
alleles indicating that increasing risk alleles numbers enhance the 
effect of diabetes. In D and E, the correlation (R) between observed 
and predicted prevalence is given for a quadratic function, with its 
95% confidence interval
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variation in the high numbers of risk alleles across a popula-
tion. This may explain why the predictive value of polygenic 
risk scores has been considered to be low [8–10]. However, 
looking at the first and tenth decile of the population, we 
observe an increase of disease prevalence by up to 5.1-fold. 
Thus, the predictive value of polygenic risk scores seems to 
be clinically relevant mostly for those at the outer ends of 
the distribution curve. In fact, given the apparent exponential 
increase in risk, those who carry high numbers of common 
risk alleles may have risks comparable to people carrying 
damaging mutations otherwise found in monogenic condi-
tions [7].

Our observations are best explained by a simple multi-
plicative model, whereby the effect of each risk allele is 
proportional to the cumulative burden of all other risk alleles 
carried in a person. The resulting non-linear function has 
long been postulated to account for the risk of recurrence of 
common diseases mediated by multiple genetic risk factors 
in relatives [23–26]. Similarly, empirical data on multiple 
environmental risk factors are consistent with a non-linear 
relationship between the number of risk factors and preva-
lence [14]. Consistent with these observations, the stand-
ard model to analyze case–control GWAS data is a logistic 
regression, and genetic risk scores are constructed accord-
ingly [14, 27]. The present data dissect and test these models 
to unprecedented levels and show a remarkably good fit for 
multiplicativity and exchangeability of risk factors. Consist-
ent with theoretical studies [28, 29], we could not distinguish 
between different kinds of similar multiplicative models, i.e., 
Log, Logit, or Probit.

Regarding the biological mechanisms leading to respec-
tive diseases, it is relevant to note that the most common 
risk alleles have no effects on protein structure but rather 
small effects on gene regulation. Thus, the diseases studied 
here seem to be largely driven by alterations of transcrip-
tional activity. In other words, the cumulative number of 
common risk alleles in the population is in the hundreds, 
however, at a certain point, a few additional ones appear 
to destabilize a system of co-regulatory activity in various 
tissues which ultimately affects risk. Whereas at the low 
end of the frequency distributions, many risk alleles were 
tolerated with a lifetime disease prevalence of 2 percent or 
less, most individuals carried way more than this tolerable 
number of risk alleles. In summa, these appeared to disturb 
gene regulation to a degree that ultimately resulted in the 
high prevalence of CAD, T2DM, breast and prostate cancer, 
and likely other common diseases, particularly when modifi-
able risk factors come into play. Our data, therefore, provide 
empirical evidence for the liability threshold model of dis-
ease, whereby the combined effect of multiple risk variants 
with small effects jointly may create a steep increase in risk 
once a critical number is being passed [29, 30].

We found no evidence that CAD risk alleles affecting 
traditional risk factors such as hypercholesterolemia or 
hypertension, behaved any different from the vast majority 
of CAD risk alleles, which currently have neither established 
disease mechanisms nor specific treatments [1]. While this 
observation implies that the etiology of the diseases is more 
complex than thought, it also calls for additional strategies 
to lower the genetic risk of atherosclerosis and its com-
plications. Indeed, the effects of risk alleles that increase 
lipids could be partially neutralized by a lower number 
of risk alleles with non-lipid-related effects. Vice versa, a 
lower count of lipid-related risk alleles was equally effec-
tive in lowering the risk of those carrying high numbers 
of non-lipid-related risk alleles. This is in line—and may 
explain—previous studies, which observed that LDL-choles-
terol lowering is more effective in lowering cardiovascular 
risk in people with a high as compared to those with a low 
genetic risk score [31–34]. In other words, pharmacological 
neutralization of risk alleles that increase LDL-cholesterol 
leads to a more pronounced decrease in risk if the person 
carries overall a high number of risk alleles because cumu-
latively they increase risk exponentially. Not only is that risk 
higher in such individuals, but their benefit from therapy 
also appears to be higher as well, explaining by far lower 
numbers needed to treat for preventing events in people with 
a high genetic risk score[31–34]. Indirectly, the data also add 
genetic evidence for guidelines on primary prevention that 
recommend lipid-lowering treatment in subjects having high 
overall risk despite LDL-cholesterol levels way below the 
population average [35, 36].

Risk alleles exerted multiplicative effects also with exog-
enous risk factors, i.e. the more risk alleles a person carried 
the stronger were the risks associated with smoking, obesity 
or lack of physical exercise. Vice versa, in people free of risk 
factors, we observed relatively little differences in disease 
prevalence across the distribution spectrum of risk alleles. 
As an example, the increase of absolute CAD prevalence 
related to the increase in genetic risk between the first and 
tenth decile of the risk allele distribution was 1.69% in non-
smoking, non-obese women whereas it was 21.1% for male 
smokers with obesity.

Our study has several limitations. Most importantly, we 
aimed at elucidating the principles on how common risk 
alleles interact with each other and the prevalence varia-
tion with and without traditional risk factors rather than 
defining their precise weights. Further studies, based on 
the recent expansion of GWAS, meta-analyses may do this 
for each percentile of a GRS [37]. Indeed, GRS involving 
millions of SNPs will result in more precise estimates of 
genetic risk across the full spectrum found in the population 
(Supplementary Table S8) [7]. Our data indicate how such 
refined estimates for each percentile of a GRS can be used 
for adjustment of the absolute risk—based on individual age, 
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gender, and risk factor profile—a person carries. Indeed, 
understanding the non-linear relationship on combined 
genetic and exposure risk factors will help to inform phy-
sicians regarding the groups of patients having the largest 
benefit from preventive treatments [38]. Next, both popula-
tions studied here as well as the previous identification of 
common risk alleles by GWAS have focused on individuals 
with Western-European descent, such that our findings may 
only apply to this ancestry group. However, the discovery of 
variants displaying genome-wide significant associations is 
still ongoing, such that more variants will be discovered, in 
particular in currently under-represented ancestry popula-
tions [39]. In this sense, our data aim to illustrate genetic 
principles rather than to offer definite risk estimates across 
populations. Furthermore, although we show that risk alleles 
act multiplicatively in diverse diseases, the generalizability 
to other common diseases and additional environmental risk 
factors needs to be verified. In addition, although we have 
shown a strong non-linear model fit between the risk allele 
burden and prevalence, we could not distinguish model fits 
between logarithmic, Logistic and Probit models, consistent 
with theoretical studies [40].

Conclusion

In conclusion, we provide empirical evidence that genetic 
and non-genetic risk factors combine multiplicatively on 
prevalence and that they are exchangeable. Our results are 
consistent with gene–gene interactions and gene–environ-
ment relationship on the prevalence and a multiplicative 
model of liability to common disease, consistent with theo-
retical models that were proposed well before the GWAS era. 
Every person carries a large number of risk alleles yet a few 
more logarithmically increase disease prevalence explain-
ing why the diseases we studied here are so common, a 
phenomenon that is largely exacerbated by modifiable risk 
factors. These findings offer a rationale for directing preven-
tive efforts to individuals with a particularly high burden 
of combined genetic and non-genetic risk [31, 32, 41, 42].
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