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ABSTRACT
A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE)
enables the study of SMBHs. We propose that the distance within which a star is completely
destroyed by a SMBH, defined rt,c, is accurately estimated by equating the SMBH tidal field
(including numerical factors) to the maximum gravitational field in the star. We demonstrate
that this definition accurately reproduces the critical βc = rt/rt,c, where rt = R? (M•/M?)

1/3

is the standard tidal radius with R? and M? the stellar radius and mass and M• the SMBH
mass, for multiple stellar progenitors at various ages, and can be reasonably approximated by
βc ' [ρc/(4ρ?)]1/3, where ρc (ρ?) is the central (average) stellar density. We also calculate the
peak fallback rate and time at which the fallback rate peaks, finding excellent agreement with
hydrodynamical simulations, and also suggest that the partial disruption radius – the distance
at which any mass is successfully liberated from the star – is βpartial ' 4−1/3 ' 0.6. For given
stellar and SMBH populations, this model yields, e.g., the fraction of partial TDEs, the peak
luminosity distribution of TDEs, and the number of directly captured stars.
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1 INTRODUCTION

The tidal disruption of a star by a supermassive black hole (SMBH),
known as a tidal disruption event (TDE; e.g., Rees 1988; Gezari
2021), fuels a luminous flare in the center of a galaxy that can offer
insight into SMBH properties, stars in galactic nuclei, and accretion
physics (including the launching of relativistic outflows; Giannios
& Metzger 2011; Bloom et al. 2011; Zauderer et al. 2011; Cenko
et al. 2012; Brown et al. 2015). The detection rate of TDEs is rapidly
growing (e.g., Holoien et al. 2019; Nicholl et al. 2019; Wevers et al.
2019; Hung et al. 2020; Hinkle et al. 2021; van Velzen et al. 2021;
Hammerstein et al. 2022), and is set to explode in the era of the
Rubin Observatory (Ivezić et al. 2019), but the power of a TDE
to provide this insight hinges on our ability to reliably interpret
observations with theory.

One prediction of TDE theory is that the star is destroyed by
tides if it comes within a distance rt, the tidal radius, of the SMBH.
The timescale for the stellar debris to return to the SMBH – known
as the fallback time – and the resultant accretion luminosity can
then be estimated as (Lacy et al. 1982 and Section 2 below)
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(
r2
t
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)3/2
2π
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Here R is the characteristic size of the star at the time it reaches
the tidal radius, M• is the SMBH mass, and M? is the mass of the
original star. Tfb represents the fundamental evolutionary timescale
of a TDE, and accurately constraining it therefore amounts to deter-
mining the values of rt and R. Typically, rt is estimated by equating
the tidal force of the SMBH to the surface gravity of the star and
dropping numerical factors, which yields

rt = R? (M•/M?)
1/3 , (2)

and R = R?, where R? is the stellar radius. Because the tidal force
varies as the inverse cube of the distance to the SMBH, Equation (2)
should be correct to within a factor of the order unity, and numerical
simulations have confirmed that this is indeed the case over a wide
range of stellar type (e.g., Guillochon&Ramirez-Ruiz 2013; Gafton
et al. 2015; Mainetti et al. 2017; Golightly et al. 2019; Law-Smith
et al. 2019; Gafton & Rosswog 2019; Law-Smith et al. 2020; Miles
et al. 2020; Nixon et al. 2021).

However, while the precise distance at which the star is de-
stroyed by tides must be ∼ rt, the dependence of Equation (1) on r3

t
implies that small changes in rt from its approximate value can have
large bearing on the observable properties of TDEs. Indeed, the
replacement of rt → rp in Equation (1) by, e.g., Evans & Kochanek
(1989); Ulmer (1999); Lodato et al. (2009); Strubbe & Quataert
(2009); Lodato & Rossi (2011), with rp the pericenter distance of
the star (which could be much less than rt), results in a gross under-
estimate of Tfb and a corresponding overestimate of the luminosity
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(Guillochon & Ramirez-Ruiz 2013; Stone et al. 2013; Norman et al.
2021). On the other hand, for stars with a large central density (e.g.,
those that are highly evolved), the core should be able to better with-
stand the tidal shear of the SMBH compared to the star on average,
resulting in a smaller value for the tidal radius than Equation (2).
Indeed, Norman et al. (2021) suggested that since Equation (2) can
be written as rt ' (M•/ρ?)1/3 with ρ? = M?/(4πR3

?/3) the av-
erage density, the core disruption radius at which the high-density
core (and thus the entire star) is destroyed should be replaced with
rt ' (M•/ρc)1/3, with ρc the central stellar density. Law-Smith et al.
(2019); Ryu et al. (2020) reached the same conclusion on empirical
grounds through comparisons to simulations.

Additionally, the probability of a star being scattered onto an
orbit about a SMBHwith a pericenter distance rp ≡ rt/β has a strong
dependence on β: in the Newtonian approximation the probability
distribution function of β satisfies fβ = β−2 for stars in the pinhole
regime of scattering (e.g., Frank & Rees 1976; Lightman & Shapiro
1977), while relativistic effects cause fβ to fall off evenmore steeply
when the tidal radius is comparable to the direct capture radius of
4GM•/c2 for a non-spinning SMBH (which is particularly relevant
for M• & 107M�; Coughlin & Nixon 2022). If the star is not
destroyed at rt but at rt/βc, then even if βc is only marginally
greater than 1 (see Table 1 below), a substantial fraction of TDEs
will be partial and leave a stellar core intact. In these cases the rate
at which stellar debris from the TDE is supplied to the SMBH,
which should be comparable to the accretion luminosity, declines
as ∝ t−9/4 (Coughlin & Nixon 2019; Miles et al. 2020; Nixon et al.
2021), which is significantly steeper than the canonical rate of t−5/3

(Phinney 1989).
The precise value of rt can thus have a large impact on the

observable properties of TDEs. Here we argue that the distance at
which the star is completely destroyed by tides can be more ac-
curately (than Equation 2) identified by equating the tidal field of
the SMBH (including order-unity factors) to the maximum self-
gravitational field within the star, which occurs at a distance within
the stellar interior that we denote the core radius Rc. This radius
(and the maximum self-gravitational field) can be determined nu-
merically and straightforwardly for any star, but, as we show below,
is approximately given by Rc = R? (ρc/ρ?)

−1/3, and results in a
“core disruption radius” that is approximately rt,c ' (M•/ρc)

1/3,
and a core disruption β of βc ' [ρc/(4ρ?)]1/3. In Section 2 we
present our analysis, our results, and make comparisons to numeri-
cal simulations, and we summarize and conclude in Section 3.

2 THE CORE DISRUPTION RADIUS AND PEAK
FALLBACK PROPERTIES

We define the tidal field as the difference in the gravitational field
of the SMBH across the stellar diameter:

ft =
GM•
(r − R?)2

−
GM•
(r + R?)2

'
4GM•R?

r3 , (3)

where M• is the SMBHmass, r is the distance of the center of mass
of the star to the SMBH, and R? is the stellar radius, and in the last
line we assumed r � R?. Typically the tidal field is defined as the
difference in the gravitational field across the stellar radius, and the
factor of 4 in Equation (3) is usually a factor of 2. We argue that the
factor of 4 treats the star as a material body and accounts for the fact
that tides induce a velocity divergence across its diameter. As we
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Figure 1.The gravitational field within aγ = 4/3 (yellow) andγ = 5/3 (pur-
ple) polytrope normalized by its maximum value. The vertical, dashed lines
give the approximate locations at which the gravitational field is maximized.

also show below, this definition accurately reproduces the results of
numerical, hydrodynamical simulations.

The canonical tidal radius equates the tidal field to the stellar
surface gravity and drops numerical factors, yielding Equation (2).
In general, however, a star’s gravitational field is maximized in its
interior, not at its surface. This is apparent from the fact that for radii
within the star R ' 0, the gravitational field is g(R) ' 4πGρcR/3
with ρc the central stellar density, while for R . R? we have
g(R) ' GM?/R2. Equating these two expressions for g(R) then
yields the approximate radius at which the gravitational field is
maximized, which we define as the core radius, Rc:

Rc ' R?

(
ρc
ρ?

)−1/3
. (4)

Here ρ? = M?/(4πR3
?/3) is the average stellar density, and since

ρc ≥ ρ?, we have Rc ≤ R?. Figure 1 shows the gravitational
field of γ = 4/3 and 5/3 polytropes (so the stellar pressure p and
density ρ are related via p ∝ ργ) normalized by their maximum
values. The vertical, dashed lines show Rc as given by Equation
(4), and are Rc/R? ' 0.26 and Rc/Rmax ' 0.55 for the γ = 4/3
and γ = 5/3 polytrope, respectively, which slightly overestimate
the true locations Rc/R? ' 0.22 and Rc/R? ' 0.51.

We expect the star to be completely destroyed when the tidal
field evaluated at the core radius equals the self-gravity of the core,
which corresponds to a tidal radius rt,c of

4GM•Rc

r3
t,c

'
4
3
πGρcRc ⇒ rt,c = rt

(
ρc

4ρ?

)−1/3
. (5)

Defining βc = rt/rt,c, we expect the core (and the entire star) to be
destroyed when

βc, app '

(
ρc

4ρ?

)1/3
. (6)

Law-Smith et al. (2019) and Ryu et al. (2020) empirically found
a similar form for the β at which the star is completely disrupted
by fitting the results of numerical simulations. Equation (6) is ap-
proximate, as we extrapolated and equated the linear variation in
the gravitational field from R = 0 to the inverse-square behavior
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star βc βc,app βc,num Tpeak ÛMpeak
5/3 polytrope 0.96 1.14 0.92 62 d 1.5 M� yr−1

4/3 polytrope 1.97 2.38 2 27 3.4
0.3M� MAMS 1.34 1.67 1.6 36 0.76
0.3M� TAMS 4.7 5.6 > 3 15 1.8
1M� ZAMS 1.80 2.13 1.79 24 3.8
1M� MAMS 2.7 3.5 3.5 23 4.0
1M� TAMS 4.1 5.2 > 3 25 3.8
3M� ZAMS 2.26 2.66 < 3 18 15
3M� MAMS 4.1 4.6 > 3 27 10
3M� TAMS 6 6.8 > 3 21 13

Table 1. The predicted β at which the core of the star is destroyed βc, the
approximate value at which it is destroyed βc,app, and the value of β at
which the star is destroyed as obtained from numerical, hydrodynamical
simulations, βc,num, for the type of star shown in the left column. Tpeak and
ÛMpeak give the time to the peak fallback rate and its value, calculated with
Equation (11), when the star is disrupted by a 106M� SMBH.

from R = R?. More generally the core radius is where the self-
gravitational field is maximized, and the core/complete disruption
radius is found by equating the tidal and self-gravitational fields at
that radius:

4GM•Rc

r3
t,c

= g(Rc) ⇒ rt,c = rt

(
4GM?Rc

g(Rc)R3
?

)1/3

, (7)

corresponding to a β of

βc =
rt

rt,c
=

(
4GM?Rc

g(Rc)R3
?

)−1/3

. (8)

The left panel of Figure 2 shows βc (Equation 8, solid curve)
and βc,app (Equation 6, dashed curve) for a polytropewith polytropic
index γ. For a γ = 5/3 (γ = 4/3) polytrope, we have βc ' 0.96
(βc ' 1.97), while the approximate expression yields βc,app ' 1.14
(βc,app ' 2.38). By comparison, numerical hydrodynamical simu-
lations find that the β at which a γ = 5/3 polytrope is completely
destroyed is βc,num ' 0.92 (Guillochon & Ramirez-Ruiz 2013;
Mainetti et al. 2017; Miles et al. 2020), while for a γ = 4/3 poly-
trope βc,num ' 2 (Guillochon & Ramirez-Ruiz 2013; Mainetti et al.
2017). The right panel of Figure 2 gives the exact and approximate
βc for a 0.3M� (blue), 1M� (green) and 3M� (red) star as a function
of the Hydrogen mass fraction in its core Xcore, where each star was
evolved in isolation at solar metallicity with the stellar evolution
code mesa (Paxton et al. 2011) (v. r21.12.1). The zero-age main
sequence (ZAMS) corresponds to Xcore ' 0.7, while the terminal-
age main sequence (TAMS) has Xcore ' 0. Over the lifetime of
each star, βc increases owing to the increasing density of the core,
and does so dramatically near the TAMS. Table 1 gives the exact
and approximate values of βc for each star at ZAMS and TAMS
and also at the “middle-age main sequence” (MAMS), defined to be
where Xcore ' 0.2 (the 0.3M� , ZAMS star is effectively a γ = 5/3
polytrope and has the same βc etc. as the top row). The numerically
obtained values for the 1M� ZAMS, 1M� MAMS, and 0.3M�
MAMS are taken from Nixon et al. (2021), while upper limits are
from Golightly et al. (2019).

The fallback time given in Equation (1) is estimated by mak-
ing the (crude; see Steinberg et al. 2019) approximation that upon
passing through rt the entire star moves with the center of mass
and is undistorted, in which case the energy of each fluid element
is “frozen-in” at the tidal radius and calculable as a function of its

position within the star. Here, however, when the center of mass
reaches rt,c we do not expect this model to be even approximately
correct for the layers of the star that are outside of the core radius, as
these fluid shells have already been overcome by the gravitational
field of the SMBH. We can gain some insight into the complexity
that this aspect adds to the problem by assuming that the energy of
each fluid shell at radii R > Rc is established at its tidal radius, i.e.,
that the tidal radius as a function of spherical R (valid for R > Rc),
and the corresponding fallback time, is (from Equations 7 and 1)

rt(R) =
(
4GM•R
g(R)

)1/3
, Tfb(R) =

(
rt(R)2

2R

)3/2 2π
√

GM•
. (9)

The left panel of Figure 3 shows Tfb(R) for a γ = 4/3 (yellow)
and 5/3 (purple) polytrope that has R? = R� , M? = M� , and
M• = 106M� , and the vertical, dashed lines show the location of
the core radius. We see that the fallback time decreases from the
surface and reaches a relative minimum at a location near, but just
outside of, the core radius. However, this model for the outer layers
cannot possibly be correct, because the extremities of the star are
closer to the SMBH at the time of disruption. If the fallback times
were distributed as suggested by the left panel of Figure 3, fluid
shells at smaller radii in the interior of the star would cross those at
larger radii, which physically cannot happen.

Figure 3 suggests that gas at radii R & Rc must return to the
SMBH on a timescale that is shorter than the minimum timescale
reached by Tfb(R), but that the energy is distributed dynamically
and in a way that is not captured with this model. The smallest
possible value we would expect for the return time, Tret, is obtained
by letting R = R? and rt(R) = rt,cβc in Equation (9), i.e.,

Tret & Tfb(R?)β
−3
c . (10)

Note that this is the same value one would obtain by assuming that
the energy is frozen-in at pericenter. However, we are not arguing
that this expression holds for any value of β; rather, it is the shortest
return time we expect for the material provided that the center of
mass reaches a pericenter distance smaller than rt,c.

While the gas at R & Rc likely evolves in a way that is not able
to be accurately capturedwith thismodel (andEquation 10 should be
interpreted as a rough lower bound), the core (gas shells at R . Rc)
can still be approximated as moving with the center of mass until
reaching rt,c and should return to the SMBH on a timescale of
∼ Tfb(Rc). Since the core contains a substantial fraction of the mass
of the star (indeed, assuming a constant density ρc for R ≤ Rc
gives Mc ' M?), and hence a substantial fraction will have already
accreted by that time, we expect Tfb(Rc) to coincide approximately
with the peak fallback time, or Tfb(Rc) = NTpeak, where N ∼ 1
is a constant numerical factor across all stars and determinable
from hydrodynamical calculations. Remarkably, comparingTfb(Rc)
to Tpeak from simulations in Guillochon & Ramirez-Ruiz (2013),
Coughlin & Nixon (2015), Golightly et al. (2019) and Nixon et al.
(2021), we find that N = 2 nearly exactly reproduces the numerically
obtained peak fallback times for every star, and thus

Tpeak =

(
rt(Rc)2

2Rc

)3/2
π

√
GM•

. (11)

The right panel of Figure 3 shows the peak fallback time given
by Equation (11) for a 106M� SMBH and the same stars as in the
right panel of Figure 2 as a function of their core Hydrogen mass
fraction; the values at ZAMS,MAMS, and TAMS are given in Table
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Figure 3. Left: The fallback time as a function of initial radius within the star for a γ = 4/3 (yellow) and γ = 5/3 (blue) solar-like polytrope disrupted by a
106M� SMBH. The vertical, dashed lines give the location of the core. Right: The peak fallback time as a function of the Hydrogen core fraction for the same
three stars as in the right panel of Figure 2.

1. The striking feature of these curves is that they display much less
variation with respect to Xcore than does βc (see the right panel of
Figure 2), and the 1M� star in particular has an almost constant peak
fallback time at ∼ 24 days. This finding is consistent with Nixon
et al. (2021), as the solid-blue and dashed-green curves in themiddle
panel of their Figure 3 are effectively identical for all β & 2 (and
equal to ∼ 25 days; note that the legend for this figure is incorrect –
the dashed-green curve is for the 1M� MAMS star). Equation (11)
can also be substantially shorter than the peak fallback time derived
from the frozen-in approximation, e.g., Tpeak ' 24 days for a 1M�
ZAMS star, whereas employing the frozen-in approximation yields
Tpeak ' 1 year, which is over an order of magnitude longer; see
Figure 2 of Golightly et al. (2019).

We can also estimate the magnitude of the peak fallback rate:
since half of the stellar mass is accreted during a TDE and roughly
half of that mass will have been accreted by Tpeak, we expect

ÛMpeak '
M?

4Tfb
. (12)

The final column in Table 1 gives the peak fallback rate for each

star; comparing to Guillochon & Ramirez-Ruiz (2013); Golightly
et al. (2019); Nixon et al. (2021) shows that these predictions are in
remarkably good agreement with the results of numerical simula-
tions. We also note that while the value of βc in Table 1 is somewhat
smaller than βnum for the 0.3M� MAMS and 1.0M� MAMS stars,
the top panel of Figure 3 in Nixon et al. (2021) shows that βc co-
incides almost exactly with the β at which the fallback rate reaches
its maximum value, which suggests that in these instances the core
is largely destroyed and/or reforms at a later time and does not sub-
stantially affect the fallback. Law-Smith et al. (2019) also noted that
very compact stars did not satisfy βc ∝ (ρc/ρ?)

1/3.

The expression for βc (8) is only a function of the properties
of the star. Therefore, rt,c, Tpeak, and ÛMpeak are valid for any SMBH
mass, and this will only break down once the tidal radius becomes
either comparable to the size of the star (i.e., the tidal approxima-
tion becomes invalid) or highly relativistic and the gravitational
radius introduces an additional scale length. These two regimes are
approached in the small and large-SMBH-mass limits, respectively.

Finally, our inferred distance at which the tidal field equals the
self-gravitational field of the star at the stellar surface is a factor of
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41/3 larger than the canonical estimate. However, given our argu-
ments, we would expect this distance to be the one at which the star
just begins to lose mass. Therefore, the partial disruption radius,
where we expect any mass to be stripped from the envelope, is

βpartial = 4−1/3 ' 0.6, (13)

independent of the stellar properties. This agrees with simulations,
which find that the β at which any mass loss occurs is β ' 0.55−0.6
(e.g., Guillochon & Ramirez-Ruiz 2013; Nixon et al. 2021).

3 SUMMARY AND CONCLUSIONS

Weproposed that the complete tidal disruption radius of a star can be
accurately constrained by equating the SMBH tidal field (including
a factor of 4 that accounts for the differential stretching across the
stellar diameter) to the maximum self-gravitational field within the
star, which is generally in the stellar interior. To our knowledge
this statement has not been made in the literature. The radius at
which this equality occurs, which we define as the core radius Rc,
can be straightforwardly determined numerically for any progenitor
and its value (and the self-gravitational field at Rc) inserted into
Equation (8) to determine βc, where rt/βc – with rt the canonical
tidal radius – is the distance within which the star must come to
be completely destroyed. We performed this exercise for a range of
stellar progenitors, andwe also calculated the peak fallback time and
the magnitude of the peak fallback from the TDE (see Equations
11 and 12) and found very good agreement with the results of
hydrodynamical simulations, e.g., βc ' 0.96 (' 1.97) for a γ = 5/3
(4/3) progenitor, while simulations yield βc,num ' 0.92 (βc,num '
2). In general βc must be calculated numerically as a function of
the progenitor (and only of the progenitor, i.e., the SMBH mass
does not enter, unless the SMBH mass is very small so that the
tidal approximation breaks down, or very large so that relativistic
effects become important), but it is approximately given by βc '
[ρc/(4ρ?)]1/3, where ρc (ρ?) is the central (average) stellar density.

For any stellar population, a scattering rate of stars into the
loss cone of the SMBH, and the probability distribution function
of the pericenter distance of tidally disrupted stars, the number of
full vs. partial disruptions can be determined via Equation (8). The
relativistic distribution of pericenter distances was calculated by
Coughlin & Nixon (2022) in the full loss cone regime and shown
to drop sharply near the direct capture radius of the SMBH, and
full disruptions are replaced by direct captures (i.e., the star is
swallowed whole). Since high-β’s are required to disrupt high-mass
(M? & 1M�) stars and the tidal radius is proportional to the stellar
radius, which is smaller (and hence more relativistic) for low-mass
stars, Figure 2 suggests that the vast majority of disruptions by high-
mass SMBHs will be partial and yield a fallback rate that scales as
∝ t−9/4.

With Equations (11) and (12) for the time andmagnitude of the
peak fallback rate, one can – for a given observational facility and
observing strategy – estimate the number of observable TDEs for
a given, underlying SMBH mass distribution. We can also estimate
the number of TDEs that will undergo a period of substantial super-
Eddington accretion, and thus are likely to give rise to relativistic
and jetted outflows. Such information is therefore extremely useful
for constraining the demographics of SMBHs throughout cosmic
time with high-cadence surveys such as the Rubin Observatory.
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